1
|
Aguilar-Castillo MJ, Cabezudo-García P, García-Martín G, Lopez-Moreno Y, Estivill-Torrús G, Ciano-Petersen NL, Oliver-Martos B, Narváez-Pelaez M, Serrano-Castro PJ. A Systematic Review of the Predictive and Diagnostic Uses of Neuroinflammation Biomarkers for Epileptogenesis. Int J Mol Sci 2024; 25:6488. [PMID: 38928193 PMCID: PMC11487433 DOI: 10.3390/ijms25126488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
A central role for neuroinflammation in epileptogenesis has recently been suggested by several investigations. This systematic review explores the role of inflammatory mediators in epileptogenesis, its association with seizure severity, and its correlation with drug-resistant epilepsy (DRE). The study analysed articles published in JCR journals from 2019 to 2024. The search strategy comprised the MESH, free terms of "Neuroinflammation", and selective searches for the following single biomarkers that had previously been selected from the relevant literature: "High mobility group box 1/HMGB1", "Toll-Like-Receptor 4/TLR-4", "Interleukin-1/IL-1", "Interleukin-6/IL-6", "Transforming growth factor beta/TGF-β", and "Tumour necrosis factor-alpha/TNF-α". These queries were all combined with the MESH terms "Epileptogenesis" and "Epilepsy". We found 243 articles related to epileptogenesis and neuroinflammation, with 356 articles from selective searches by biomarker type. After eliminating duplicates, 324 articles were evaluated, with 272 excluded and 55 evaluated by the authors. A total of 21 articles were included in the qualitative evaluation, including 18 case-control studies, 2 case series, and 1 prospective study. As conclusion, this systematic review provides acceptable support for five biomarkers, including TNF-α and some of its soluble receptors (sTNFr2), HMGB1, TLR-4, CCL2 and IL-33. Certain receptors, cytokines, and chemokines are examples of neuroinflammation-related biomarkers that may be crucial for the early diagnosis of refractory epilepsy or may be connected to the control of epileptic seizures. Their value will be better defined by future studies.
Collapse
Affiliation(s)
| | - Pablo Cabezudo-García
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
| | - Guillermina García-Martín
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
| | - Yolanda Lopez-Moreno
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
| | - Nicolas Lundahl Ciano-Petersen
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
- Hospitales Vithas Málaga y Xanit Internacional, 29016 Málaga, Spain
| | - Begoña Oliver-Martos
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
- Departamento de Fisiologia Animal, Biologìa Celular y Genética, Universidad de Málaga, 29010 Málaga, Spain
| | - Manuel Narváez-Pelaez
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Hospitales Vithas Málaga y Xanit Internacional, 29016 Málaga, Spain
- Departamento de Fisiología, Universidad de Málaga, 29010 Málaga, Spain
| | - Pedro Jesús Serrano-Castro
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (P.C.-G.); (G.G.-M.); (Y.L.-M.); (G.E.-T.); (N.L.C.-P.); (B.O.-M.)
- Servicio de Neurología, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Alianza Andalucía Neuro-RECA—Roche en Neurología Médica de Precisión, 29010 Málaga, Spain
- Hospitales Vithas Málaga y Xanit Internacional, 29016 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
2
|
Zhou C, Satpute V, Yip KL, Anderson LL, Hawkins N, Kearney J, Arnold JC. A high seizure burden increases several prostaglandin species in the hippocampus of a Scn1a +/- mouse model of Dravet syndrome. Prostaglandins Other Lipid Mediat 2024; 172:106836. [PMID: 38599513 DOI: 10.1016/j.prostaglandins.2024.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Dravet syndrome is an intractable epilepsy with a high seizure burden that is resistant to current anti-seizure medications. There is evidence that neuroinflammation plays a role in epilepsy and seizures, however few studies have specifically examined neuroinflammation in Dravet syndrome under conditions of a higher seizure burden. Here we used an established genetic mouse model of Dravet syndrome (Scn1a+/- mice), to examine whether a higher seizure burden impacts the number and morphology of microglia in the hippocampus. Moreover, we examined whether a high seizure burden influences classical inflammatory mediators in this brain region. Scn1a+/- mice with a high seizure burden induced by thermal priming displayed a localised reduction in microglial cell density in the granule cell layer and subgranular zone of the dentate gyrus, regions important to postnatal neurogenesis. However, microglial cell number and morphology remained unchanged in other hippocampal subfields. The high seizure burden in Scn1a+/- mice did not affect hippocampal mRNA expression of classical inflammatory mediators such as interleukin 1β and tumour necrosis factor α, but increased cyclooxygenase 2 (COX-2) expression. We then quantified hippocampal levels of prostanoids that arise from COX-2 mediated metabolism of fatty acids and found that Scn1a+/- mice with a high seizure burden displayed increased hippocampal concentrations of numerous prostaglandins, notably PGF2α, PGE2, PGD2, and 6-K-PGF1A, compared to Scn1a+/- mice with a low seizure burden. In conclusion, a high seizure burden increased hippocampal concentrations of various prostaglandin mediators in a mouse model of Dravet syndrome. Future studies could interrogate the prostaglandin pathways to further better understand their role in the pathophysiology of Dravet syndrome.
Collapse
Affiliation(s)
- Cilla Zhou
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Vaishali Satpute
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Ka Lai Yip
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Lyndsey L Anderson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Nicole Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Jennifer Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
3
|
Dong Y, Zhang X, Wang Y. Interleukins in Epilepsy: Friend or Foe. Neurosci Bull 2024; 40:635-657. [PMID: 38265567 PMCID: PMC11127910 DOI: 10.1007/s12264-023-01170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/28/2023] [Indexed: 01/25/2024] Open
Abstract
Epilepsy is a chronic neurological disorder with recurrent unprovoked seizures, affecting ~ 65 million worldwide. Evidence in patients with epilepsy and animal models suggests a contribution of neuroinflammation to epileptogenesis and the development of epilepsy. Interleukins (ILs), as one of the major contributors to neuroinflammation, are intensively studied for their association and modulatory effects on ictogenesis and epileptogenesis. ILs are commonly divided into pro- and anti-inflammatory cytokines and therefore are expected to be pathogenic or neuroprotective in epilepsy. However, both protective and destructive effects have been reported for many ILs. This may be due to the complex nature of ILs, and also possibly due to the different disease courses that those ILs are involved in. In this review, we summarize the contributions of different ILs in those processes and provide a current overview of recent research advances, as well as preclinical and clinical studies targeting ILs in the treatment of epilepsy.
Collapse
Affiliation(s)
- Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xia Zhang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Ying Wang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Li W, Wu J, Zeng Y, Zheng W. Neuroinflammation in epileptogenesis: from pathophysiology to therapeutic strategies. Front Immunol 2023; 14:1269241. [PMID: 38187384 PMCID: PMC10771847 DOI: 10.3389/fimmu.2023.1269241] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Epilepsy is a group of enduring neurological disorder characterized by spontaneous and recurrent seizures with heterogeneous etiology, clinical expression, severity, and prognosis. Growing body of research investigates that epileptic seizures are originated from neuronal synchronized and excessive electrical activity. However, the underlying molecular mechanisms of epileptogenesis have not yet been fully elucidated and 30% of epileptic patients still are resistant to the currently available pharmacological treatments with recurrent seizures throughout life. Over the past two decades years accumulated evidences provide strong support to the hypothesis that neuroinflammation, including microglia and astrocytes activation, a cascade of inflammatory mediator releasing, and peripheral immune cells infiltration from blood into brain, is associated with epileptogenesis. Meanwhile, an increasing body of preclinical researches reveal that the anti-inflammatory therapeutics targeting crucial inflammatory components are effective and promising in the treatment of epilepsy. The aim of the present study is to highlight the current understanding of the potential neuroinflammatory mechanisms in epileptogenesis and the potential therapeutic targets against epileptic seizures.
Collapse
|
5
|
Viswas A, Dabla PK, Gupta S, Yadav M, Tanwar A, Upreti K, Koner BC. SCN1A Genetic Alterations and Oxidative Stress in Idiopathic Generalized Epilepsy Patients: A Causative Analysis in Refractory Cases. Indian J Clin Biochem 2023. [DOI: 10.1007/s12291-023-01164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 08/27/2024]
|
6
|
Foiadelli T, Santangelo A, Costagliola G, Costa E, Scacciati M, Riva A, Volpedo G, Smaldone M, Bonuccelli A, Clemente AM, Ferretti A, Savasta S, Striano P, Orsini A. Neuroinflammation and status epilepticus: a narrative review unraveling a complex interplay. Front Pediatr 2023; 11:1251914. [PMID: 38078329 PMCID: PMC10703175 DOI: 10.3389/fped.2023.1251914] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/11/2023] [Indexed: 12/09/2024] Open
Abstract
Status epilepticus (SE) is a medical emergency resulting from the failure of the mechanisms involved in seizure termination or from the initiation of pathways involved in abnormally prolonged seizures, potentially leading to long-term consequences, including neuronal death and impaired neuronal networks. It can eventually evolve to refractory status epilepticus (RSE), in which the administration of a benzodiazepine and another anti-seizure medications (ASMs) had been ineffective, and super-refractory status epilepticus (SRSE), which persists for more than 24 h after the administration of general anesthesia. Objective of the present review is to highlight the link between inflammation and SE. Several preclinical and clinical studies have shown that neuroinflammation can contribute to seizure onset and recurrence by increasing neuronal excitability. Notably, microglia and astrocytes can promote neuroinflammation and seizure susceptibility. In fact, inflammatory mediators released by glial cells might enhance neuronal excitation and cause drug resistance and seizure recurrence. Understanding the molecular mechanisms of neuroinflammation could be crucial for improving SE treatment, wich is currently mainly addressed with benzodiazepines and eventually phenytoin, valproic acid, or levetiracetam. IL-1β signal blockade with Anakinra has shown promising results in avoiding seizure recurrence and generalization in inflammatory refractory epilepsy. Inhibiting the IL-1β converting enzyme (ICE)/caspase-1 is also being investigated as a possible target for managing drug-resistant epilepsies. Targeting the ATP-P2X7R signal, which activates the NLRP3 inflammasome and triggers inflammatory molecule release, is another avenue of research. Interestingly, astaxanthin has shown promise in attenuating neuroinflammation in SE by inhibiting the ATP-P2X7R signal. Furthermore, IL-6 blockade using tocilizumab has been effective in RSE and in reducing seizures in patients with febrile infection-related epilepsy syndrome (FIRES). Other potential approaches include the ketogenic diet, which may modulate pro-inflammatory cytokine production, and the use of cannabidiol (CBD), which has demonstrated antiepileptic, neuroprotective, and anti-inflammatory properties, and targeting HMGB1-TLR4 axis. Clinical experience with anti-cytokine agents such as Anakinra and Tocilizumab in SE is currently limited, although promising. Nonetheless, Etanercept and Rituximab have shown efficacy only in specific etiologies of SE, such as autoimmune encephalitis. Overall, targeting inflammatory pathways and cytokines shows potential as an innovative therapeutic option for drug-resistant epilepsies and SE, providing the chance of directly addressing its underlying mechanisms, rather than solely focusing on symptom control.
Collapse
Affiliation(s)
- T. Foiadelli
- Clinica Pediatrica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - A. Santangelo
- Pediatric Neurology, Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - G. Costagliola
- Pediatric Oncology, Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - E. Costa
- Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - M. Scacciati
- Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - A. Riva
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, IRCCS Istituto “G. Gaslini”, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - G. Volpedo
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, IRCCS Istituto “G. Gaslini”, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - M. Smaldone
- Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - A. Bonuccelli
- Pediatric Neurology, Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - A. M. Clemente
- Clinica Pediatrica, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - A. Ferretti
- Pediatrics Unit, Neuroscience, Mental Health and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - S. Savasta
- Pediatric Clinic and Rare Disease Microcitemico Hospital, University of Cagliari, Cagliari, Italy
| | - P. Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, IRCCS Istituto “G. Gaslini”, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - A. Orsini
- Pediatric Neurology, Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| |
Collapse
|
7
|
Yuan YG, Wang JL, Zhang YX, Li L, Reza AMMT, Gurunathan S. Biogenesis, Composition and Potential Therapeutic Applications of Mesenchymal Stem Cells Derived Exosomes in Various Diseases. Int J Nanomedicine 2023; 18:3177-3210. [PMID: 37337578 PMCID: PMC10276992 DOI: 10.2147/ijn.s407029] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Exosomes are nanovesicles with a wide range of chemical compositions used in many different applications. Mesenchymal stem cell-derived exosomes (MSCs-EXOs) are spherical vesicles that have been shown to mediate tissue regeneration in a variety of diseases, including neurological, autoimmune and inflammatory, cancer, ischemic heart disease, lung injury, and liver fibrosis. They can modulate the immune response by interacting with immune effector cells due to the presence of anti-inflammatory compounds and are involved in intercellular communication through various types of cargo. MSCs-EXOs exhibit cytokine storm-mitigating properties in response to COVID-19. This review discussed the potential function of MSCs-EXOs in a variety of diseases including neurological, notably epileptic encephalopathy and Parkinson's disease, cancer, angiogenesis, autoimmune and inflammatory diseases. We provided an overview of exosome biogenesis and factors that regulate exosome biogenesis. Additionally, we highlight the functions and potential use of MSCs-EXOs in the treatment of the inflammatory disease COVID-19. Finally, we covered a strategies and challenges of MSCs-EXOs. Finally, we discuss conclusion and future perspectives of MSCs-EXOs.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jia-Lin Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ya-Xin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ling Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Türkiye
| | | |
Collapse
|
8
|
Chen Y, Nagib MM, Yasmen N, Sluter MN, Littlejohn TL, Yu Y, Jiang J. Neuroinflammatory mediators in acquired epilepsy: an update. Inflamm Res 2023; 72:683-701. [PMID: 36745211 DOI: 10.1007/s00011-023-01700-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a group of chronic neurological disorders that have diverse etiologies but are commonly characterized by spontaneous seizures and behavioral comorbidities. Although the mechanisms underlying the epileptic seizures mostly remain poorly understood and the causes often can be idiopathic, a considerable portion of cases are known as acquired epilepsy. This form of epilepsy is typically associated with prior neurological insults, which lead to the initiation and progression of epileptogenesis, eventually resulting in unprovoked seizures. A convergence of evidence in the past two decades suggests that inflammation within the brain may be a major contributing factor to acquired epileptogenesis. As evidenced in mounting preclinical and human studies, neuroinflammatory processes, such as activation and proliferation of microglia and astrocytes, elevated production of pro-inflammatory cytokines and chemokines, blood-brain barrier breakdown, and upregulation of inflammatory signaling pathways, are commonly observed after seizure-precipitating events. An increased knowledge of these neuroinflammatory processes in the epileptic brain has led to a growing list of inflammatory mediators that can be leveraged as potential targets for new therapies of epilepsy and/or biomarkers that may provide valued information for the diagnosis and prognosis of the otherwise unpredictable seizures. In this review, we mainly focus on the most recent progress in understanding the roles of these inflammatory molecules in acquired epilepsy and highlight the emerging evidence supporting their candidacy as novel molecular targets for new pharmacotherapies of acquired epilepsy and the associated behavioral deficits.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marwa M Nagib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Taylor L Littlejohn
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
9
|
Dev P, Cyriac M, Chakravarty K, Pathak A. Blood and CSF biomarkers for post-stroke epilepsy: a systematic review. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractPost-stroke epilepsy is a common complication of ischemic stroke which adversely affects the prognosis of patients. Clinical and radiological parameters cannot adequately predict the risk. Therefore, the discovery of biomarkers is imperatively needed for predicting post-stroke epilepsy. We conducted a systematic review of diagnostic and prognostic biomarkers for post-stroke epilepsy through a comprehensive literature search in different databases. All articles that met our inclusion criteria were assessed for quality using the modified Quality Assessment of Diagnostic Accuracy Studies questionnaire. Eight eligible studies were included in this systematic review. Out of 22 assessed biomarkers, nine biomarkers showed significant association with post-stroke epilepsy. The T allele of CD40 (cluster of differentiation 40) −1C/T polymorphism, the CC genotype of TRPM6 (transient receptor potential cation channel subfamily M member 6) rs2274924, the allele polymorphism of MAD2 (mitochondrial aldehyde dehydrogenase 2), the mRNA level of interleukin-6 (IL-6), the plasma level of endostatin, and the mRNA expression of IL-1β show a positive correlation with post-stroke epilepsy; while S100 calcium-binding protein B, heat shock 70 kDa protein-8 and neuropeptide Y are inversely associated with post-stroke epilepsy. As a small number of patients were recruited, further studies are needed to confirm their potential use for predicting post-stroke epilepsy.
Collapse
|
10
|
Hippocampal Cytokine Release in Experimental Epileptogenesis—A Longitudinal In Vivo Microdialysis Study. Brain Sci 2022; 12:brainsci12050677. [PMID: 35625063 PMCID: PMC9139593 DOI: 10.3390/brainsci12050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/27/2022] Open
Abstract
Background: Inflammation, particularly cytokine release, contributes to epileptogenesis by influencing the cerebral tissue remodeling and neuronal excitability that occurs after a precipitating epileptogenic insult. While several cytokines have been explored in this process, release kinetics are less well investigated. Determining the time course of cytokine release in the epileptogenic zone is necessary for precisely timed preventive or therapeutic anti-inflammatory interventions. Methods: Hippocampal extracellular levels of six cytokines and chemokines (IL-1β, IL-6, IL-10, CCL2, CCL3, and CCL5) were quantified at various time points during epileptogenesis in a rat model of mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) using microdialysis (MD). Results: The analysis of microdialysates demonstrated consistent elevation at all time points during epileptogenesis for IL-1β and IL-10. IL-10 release was maximal on day 1, IL-1β release peaked at day 8. No correlation between local hippocampal IL-1β concentrations and IL-1β blood levels was found. Conclusion: The release kinetics of IL-1β are consistent with its established pro-epileptogenic properties, while the kinetics of IL-10 suggest a counter-regulatory effect. This proof-of-concept study demonstrates the feasibility of intraindividual longitudinal monitoring of hippocampal molecular inflammatory processes via repetitive MD over several weeks and sheds light on the kinetics of hippocampal cytokine release during epileptogenesis.
Collapse
|
11
|
Amin F, Tabassum S, Sarwar S, Qureshi R, Sohaib Khalid M, Riaz N, Al-Qahtani WH, Murtaza I. Neuroprotective Effect of Otostegia limbata Against PTZ-Induced Mice Model of Epilepsy by Attenuated Expression of p-NFκB and TNF-α. Front Neurosci 2022; 16:779681. [PMID: 35392411 PMCID: PMC8982360 DOI: 10.3389/fnins.2022.779681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent unprovoked seizures. Currently available antiepileptic drugs have severe side effects and do not offer complete cure. Herbal remedies have been used for centuries to treat many neurodegenerative disorders. Otostegia limbata L. belongs to the largest and medicinally important family Lamiaceae and is distributed in hilly areas of Pakistan. This study was designed to assess the antioxidant, anti-inflammatory, and anticonvulsant potential of O. limbata. The methanolic extract showed significant antioxidant activity assessed by (1,1-diphenyl 2-picrylhydrazyl) free-radical scavenging assay, nitric oxide scavenging, and iron chelation antioxidant assays. The methanolic extract was evaluated for its anticonvulsant effect, employing the pentylenetetrazole (PTZ)-induced mice model of epilepsy. Three different doses of O. limbata (100, 200, and 300 mg/kg) were administered orally 30 min before PTZ [50 mg/kg, intraperitoneal (i.p.)] injection, while diazepam was used as a positive control. The extract at 300 mg/kg significantly decreased the duration and increased the latency of the PTZ-induced seizures. The expression of inflammatory cytokines tumor necrosis factor α (p-TNF-α) and phosphorylated transcription factor nuclear factor kappa B (p-NF-κB), in the cortex and hippocampus of the brains of treated mice were analyzed through enzyme-linked immunosorbent assay and western blot analysis. The morphological changes and number of surviving neurons were recorded through hematoxylin and eosin staining. The seizure score and survival rate of the treated group showed considerable differences as compared to the PTZ group. TNF-α and p-NF-K b expression were downregulated as compared to the PTZ group. The anticonvulsant effect may be the outcome of the antioxidant potential and high levels of phenols and flavonoids detected in the methanolic plant extract through Fourier transform infrared spectrophotometer and gas chromatography–mass spectrometry analysis.
Collapse
Affiliation(s)
- Farhana Amin
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Sobia Tabassum
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
- *Correspondence: Sobia Tabassum,
| | - Sadia Sarwar
- Department of Pharmacognosy, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Rahmatullah Qureshi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Muhammad Sohaib Khalid
- Department of Pharmacognosy, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Naveeda Riaz
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Wahidah H. Al-Qahtani
- Department of Food Sciences and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Iram Murtaza
- Department of Biochemistry and Molecular Biology, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
12
|
Wolinski P, Ksiazek-Winiarek D, Glabinski A. Cytokines and Neurodegeneration in Epileptogenesis. Brain Sci 2022; 12:brainsci12030380. [PMID: 35326336 PMCID: PMC8945903 DOI: 10.3390/brainsci12030380] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
Epilepsy is a common brain disorder characterized by a heterogenous etiology. Its main features are recurrent seizures. Despite many clinical studies, about 30% of cases are refractory to treatment. Recent studies suggested the important role of immune-system elements in its pathogenesis. It was suggested that a deregulated inflammatory process may lead to aberrant neural connectivity and the hyperexcitability of the neuronal network. The aim of our study was the analysis of the expression of inflammatory mediators in a mouse model of epilepsy and their impact on the neurodegeneration process located in the brain. We used the KA-induced model of epilepsy in SJL/J mice and performed the analysis of gene expression and protein levels. We observed the upregulation of IL1β and CXCL12 in the early phase of KA-induced epilepsy and elevated levels of CCL5 at a later time point, compared with control animals. The most important result obtained in our study is the elevation of CXCL2 expression at both studied time points and its correlation with the neurodegeneration observed in mouse brain. Increasing experimental and clinical data suggest the influence of peripheral inflammation on epileptogenesis. Thus, studies focused on the molecular markers of neuroinflammation are of great value and may help deepen our knowledge about epilepsy, leading to the discovery of new drugs.
Collapse
|
13
|
Labh R, Gupta R, Narang M, Halder S, Kar R. Effect of valproate and add-on levetiracetam on inflammatory biomarkers in children with epilepsy. Epilepsy Behav 2021; 125:108358. [PMID: 34717170 DOI: 10.1016/j.yebeh.2021.108358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Contemporary research indicates the role of neuroinflammation/inflammatory markers in epilepsy. In addition, comorbidities such as anxiety and poor health-related quality of life are vital concerns in clinical care of pediatric patients with epilepsy. This open-label, prospective, observational study evaluated the effect of valproate and add-on levetiracetam on serum levels of C-C motif ligand 2 (CCL2) and Interleukin-1 beta (IL-1β) in pediatric patients with epilepsy. We also studied effect of valproate and add-on levetiracetam on anxiety and health-related quality of life (HRQoL) in specified age subgroups. METHODS Children aged 1 to 12 years, diagnosed with epilepsy (generalized or focal seizures), treated with valproate (n = 40) and valproate with add-on levetiracetam (n = 40) were included. All patients were followed up for 16 weeks and assessed for changes in serum CCL2 and IL-1β levels. Spence Children Anxiety Scale short version (SCAS-S) and QOLCE-16 scales were used to measure anxiety and HRQoL, respectively, in specific age groups. RESULTS The serum CCL2 level decreased significantly (p < .001) from 327.95 ± 59.07 pg/ml to 207.02 ± 41.50 pg/ml in the valproate group and from 420.65 ± 83.72 pg/ml to 250.06 ± 46.05 pg/ml in the add-on levetiracetam group. Serum IL-1β level did not change significantly in both groups. Spence Children Anxiety Scale short version scores were decreased and QOLCE-16 scores were increased significantly (p < .001) in both valproate and add-on levetiracetam groups. CONCLUSIONS The results of our study suggest that valproate and levetiracetam led to decrease serum CCL2 levels without any change in serum IL-1β levels in children with epilepsy. Anti-inflammatory property of valproate and levetiracetam might underlie their antiepileptic effect and CCL2 could be a potential marker of drug efficacy in epilepsy. Also, valproate and levetiracetam reduced anxiety and improved quality of life in children with epilepsy in the age groups evaluated.
Collapse
Affiliation(s)
- Rajpushpa Labh
- Department of Pharmacology, University College of Medical Sciences & GTB Hospital, University of Delhi, New Delhi, India
| | - Rachna Gupta
- Department of Pharmacology, University College of Medical Sciences & GTB Hospital, University of Delhi, New Delhi, India.
| | - Manish Narang
- Department of Pediatrics, University College of Medical Sciences & GTB Hospital, University of Delhi, New Delhi, India
| | - Sumita Halder
- Department of Pharmacology, University College of Medical Sciences & GTB Hospital, University of Delhi, New Delhi, India
| | - Rajarshi Kar
- Department of Biochemistry, University College of Medical Sciences & GTB Hospital, University of Delhi, New Delhi, India
| |
Collapse
|
14
|
Gillinder L, McCombe P, Powell T, Hartel G, Gillis D, Rojas IL, Radford K. Cytokines as a marker of central nervous system autoantibody associated epilepsy. Epilepsy Res 2021; 176:106708. [PMID: 34271300 DOI: 10.1016/j.eplepsyres.2021.106708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/11/2021] [Accepted: 07/03/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Autoantibodies to central nervous system (CNS) antigens are increasingly identified in patients with epilepsy. Alterations in cytokines and chemokines have also been demonstrated in epilepsy, but this has not been explored in subjects with autoantibodies. If antibody positive and antibody negative subjects show a difference in immune activation, as measured by cytokine levels, this could improve diagnostic and therapeutic approaches, and provide insights into the underlying pathophysiology. We aimed to evaluate serum and CSF cytokines and chemokines in patients with and without autoantibody positivity to identify any differences between the two groups. METHODS We studied participants who had undergone serum and CSF testing for CNS autoantibodies, as part of their clinical evaluation. Cases were classified as antibody positive or antibody negative for comparison. Stored CSF and sera were analysed for cytokine and chemokine concentrations. RESULTS 25 participants underwent testing. 8 were antibody positive, 17 were antibody negative. Significant elevations in the mean concentration of IL-13 and RANTES in CSF were found in the antibody positive cases and significant elevation of CSF VEGF was found in the antibody negative cases. Significant elevations in the mean concentrations of serum TNFβ, INFγ, bNGF, IL-8, and IL-12 were seen in the antibody negative group, and there was poor correlation between the majority of serum and CSF concentrations. SIGNIFICANCE Measurement of cytokines and chemokines such as IL-13 and RANTES could be useful in diagnosis of autoimmune associated epilepsy. Such markers might also guide targeted immunotherapy to improve seizure control and provide insights into the underlying pathophysiology of epilepsy associated with CNS autoantibodies.
Collapse
Affiliation(s)
- Lisa Gillinder
- Mater Advanced Epilepsy Unit, Mater Centre of Neurosciences, Brisbane, Australia; Mater Research Institute, The University of Queensland, Brisbane, Australia.
| | - Pamela McCombe
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Tamara Powell
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Gunter Hartel
- QIMR Berghofer Department of Statistics, Brisbane, Australia
| | | | - Ingrid Leal Rojas
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Kristen Radford
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
15
|
Langenbruch L, Wiendl H, Groß C, Kovac S. Diagnostic utility of cerebrospinal fluid (CSF) findings in seizures and epilepsy with and without autoimmune-associated disease. Seizure 2021; 91:233-243. [PMID: 34233238 DOI: 10.1016/j.seizure.2021.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 01/17/2023] Open
Abstract
Patients with seizures and epilepsy routinely undergo multiple diagnostic tests, which may include cerebrospinal fluid (CSF) analysis. This review aims to outline different CSF parameters and their alterations in seizures or epilepsy. We then discuss the utility of CSF analysis in seizure patients in different clinical settings in depth. Some routine CSF parameters are frequently altered after seizures, but are not specific such as CSF protein and lactate. Pleocytosis and CSF specific oligoclonal bands are rare and should be considered as signs of infectious or immune mediated seizures and epilepsy. Markers of neuronal damage show conflicting results, and are as yet not established in clinical practice. Parameters of neuronal degeneration and more specific immune parameters are less well studied, and are areas of further research. CSF analysis in new-onset seizures or status epilepticus serves well in the differential diagnosis of seizure etiology. Here, considerations should include autoimmune-associated seizures. CSF findings in these disorders are a special focus of this review and are summarized in a comprehensive overview. Until now, CSF analysis has not yielded clinically helpful biomarkers for refractory epilepsy or for assessment of neuronal damage which is a subject of further studies.
Collapse
Affiliation(s)
- Lisa Langenbruch
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany; Department of Neurology, Klinikum Osnabrück, Am Finkenhügel 1, 49076 Osnabrück, Germany.
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany.
| | - Catharina Groß
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany.
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany.
| |
Collapse
|
16
|
Ortega Ibarra JM, Cifuentes-Castro VH, Medina-Ceja L, Morales-Villagrán A. Nano dot blot: An alternative technique for protein identification and quantification in a high throughput format. J Neurosci Methods 2021; 358:109194. [PMID: 33901567 DOI: 10.1016/j.jneumeth.2021.109194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Dot blot technique has been used in a similar way to western blotting, with the major difference being the lack of protein separation with electrophoresis. Protein samples are spotted over a membrane paper, the identification and quantification of a protein is achieved by immunodetection procedures such as colorimetry, fluorescence or chemiluminescence. This technique is widely accepted, but it uses large amounts of sample and antibodies to reveal the presence of the target protein. Significant milestones have been reached to achieve better results with the use of less sample and reagents; however, the ninety-six-well format is still in use. NEW METHOD In this work, we propose an innovation to this technique, reducing the amount of sample and antibodies to identify a specific protein when compared to the regular dot blot method. Procedure consists of using a sample volume of approximately 200 nanoliters deposited with a multineedle device developed by our group. RESULTS Five samples of standard protein or antigen can be spotted in a Cartesian format to identify and quantify the protein involved in physiological or pathological conditions. In addition, at least five replicates of sample or antigen are used to enable better statistics to calculate the concentration of every standard and the protein present in a sample. CONCLUSIONS Hundreds of samples can be deposited in a few minutes and analyzed in a single experimental session. To validate this method, which we called nano dot blot, six proteins involved in the inflammation process were tested in acute and chronic rat models of seizures.
Collapse
Affiliation(s)
| | | | - Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Guadalajara, Jalisco, Mexico.
| | | |
Collapse
|
17
|
Advances in the Development of Biomarkers for Poststroke Epilepsy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5567046. [PMID: 33959658 PMCID: PMC8075663 DOI: 10.1155/2021/5567046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022]
Abstract
Stroke is the main cause of acquired epilepsy in elderly people. Poststroke epilepsy (PSE) not only affects functional recovery after stroke but also brings considerable social consequences. While some factors such as cortical involvement, hemorrhagic transformation, and stroke severity are associated with increased seizure risk, so far that remains controversial. In recent years, there are an increasing number of studies on potential biomarkers of PSE as tools for diagnosing and predicting epileptic seizures. Biomarkers such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), glutamate, and S100 calcium-binding protein B (S100B) in blood are associated with the occurrence of PSE. This review is aimed at summarizing the progress on potential biomarkers of PSE.
Collapse
|
18
|
Chen M, Jiang Y, Ma L, Zhou X, Wang N. Comparison of the Therapeutic Effects of Sodium Valproate and Levetiracetam on Pediatric Epilepsy and the Effects of Nerve Growth Factor and γ-Aminobutyric Acid. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:520-530. [PMID: 34178799 PMCID: PMC8214608 DOI: 10.18502/ijph.v50i3.5593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: We aimed to investigate the therapeutic effect of sodium valproate combined with levetiracetam on pediatric epilepsy and the effects of nerve growth factor and γ-aminobutyric acid. Methods: Eighty-three epileptic children admitted to Xuzhou Municipal Hospital of Xuzhou Medical University (Xuzhou, China) from Jan 2018 to Nov 2019 were collected and divided into a control group (40 cases, treated with sodium valproate alone) and an observation group (43 cases, treated with sodium valproate combined with levetiracetam). The therapeutic effect and incidence of adverse reactions were observed. The levels of nerve growth factor (NGF), γ-aminobutyric acid (GABA) and serum neuron-specific enolase (NSE) of children were compared. Changes of cognitive function and the total effective rate were evaluated. Logistic regression analysis was used to analyze the risk factors affecting the therapeutic effect. Results: After treatment, NGF, GABA and NSE in the observation group were significantly improved compared with those before treatment. The cognitive function of the observation group was significantly improved after treatment when compared with the control group. The total effective rate in the observation group was higher than that in the control group. Adverse reactions in the observation group were less than those in the control group. Seizure type, NGF, GABA, NSE and treatment methods were independent risk factors affecting the therapeutic effect of pediatric epilepsy. Conclusion: The application of sodium valproate combined with levetiracetam in the treatment of pediatric epilepsy is helpful to improve the overall therapeutic effect, significantly improve the cognitive function of children, and improve the levels of NGF, GABA and NSE.
Collapse
Affiliation(s)
- Min Chen
- Department of Pediatrics, Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou 221116, China
| | - Yazhou Jiang
- Department of Pediatrics, Suqian People's Hospital, Suqian 223800, China
| | - Li Ma
- Department of Pediatrics, Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou 221116, China
| | - Xuedian Zhou
- Department of Pediatrics, Heping Women and Children's Hospital of Xuzhou, Xuzhou 221000, China
| | - Nuan Wang
- Department of Neurology, Affiliated Hospital of China University of Mining and Technology, Xuzhou City, 221116, China
| |
Collapse
|
19
|
Shen L, Yang J, Tang Y. Predictive Values of the SeLECT Score and IL-1β for Post-Stroke Epilepsy. Neuropsychiatr Dis Treat 2021; 17:2465-2472. [PMID: 34349512 PMCID: PMC8326770 DOI: 10.2147/ndt.s324271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/21/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To establish a new prognostic tool for the prediction of post-stroke epilepsy (PSE) through combining the SeLECT score with IL-1β. PATIENTS AND METHODS This prospective observational study included 915 patients with acute ischemic stroke. The SeLECT score was calculated, and serum IL-1β levels were measured within 24 h of their admission. One unprovoked late seizure following the acute phase of stroke was diagnosed as PSE. All patients were divided into PSE group and non-PSE group according to the occurrence of PSE. Multivariate analysis was performed to determine the independent associations between the SeLECT score, IL-1β and PSE. Receiver operating characteristic (ROC) curve was employed to assess the predictive values of the SeLECT score, IL-1β and their combination for PSE. RESULTS Fifty-three patients occurred PSE within 1 year after stroke onset (5.8%). Multivariate analysis demonstrated that the SeLECT score [odds ratio (OR): 1.416, 95% confidence interval (CI): 1.191-1.863, P=0.013] and IL-1β (OR: 1.457, 95% CI: 1.215-1.894, P<0.001) were independent risk factors for PSE after adjusting for more than one comorbidity, stroke laterality, large-artery atherosclerosis, thrombolysis, age and use of statins. The AUC of the SeLECT score and IL-1β for predicting PSE was 0.756 (SE: 0.033, 95% CI: 0.692-0.819) and 0.811 (SE: 0.032, 95% CI: 0.748-0.875), respectively. The AUC of their combination was 0.933 (SE: 0.027, 95% CI: 0.880-0.985). Z test showed that the AUC of their combination was significantly higher than that of the SeLECT score or IL-1β alone (0.933 vs 0.756, Z=4.151, P<0.01; 0.933 vs 0.811, Z=2.914, P<0.01). Combination prediction of the SeLECT score and IL-1β for PSE had a high predictive value with a sensitivity of 88.06% and specificity of 82.37%. CONCLUSION The combination of the SeLECT score and IL-1β had a potential to act as a new prognostic tool for the prediction of PSE.
Collapse
Affiliation(s)
- Lan Shen
- Department of Neurology, Central Hospital of Jiangjin District, Chongqing, 402260, People's Republic of China
| | - Jun Yang
- Department of Critical Care Medicine, Central Hospital of Jiangjin District, Chongqing, 402260, People's Republic of China
| | - Yueling Tang
- Department of Neurology, Central Hospital of Jiangjin District, Chongqing, 402260, People's Republic of China
| |
Collapse
|
20
|
Simani L, Sadeghi M, Ryan F, Dehghani M, Niknazar S. Elevated Blood-Based Brain Biomarker Levels in Patients with Epileptic Seizures: A Systematic Review and Meta-analysis. ACS Chem Neurosci 2020; 11:4048-4059. [PMID: 33147022 DOI: 10.1021/acschemneuro.0c00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recently, growing attention has been paid to the changes of brain biomarkers following the epilepsy. However, establishing specific epilepsy-related biomarkers has been impeded due to contradictory findings. This study systematically reviewed the evidence on brain biomarkers in epilepsy and determined reliable biomarkers in epileptic patients. A comprehensive systematic search of online databases was performed to find eligible studies up to August 2019. The quality of studies methodologically was assessed using the Newcastle-Ottawa Scale score. Among the several biomarkers, S100 calcium binding protein B (S100B) and neuron specific enolase (NSE) have been qualified for meta-analysis of the association between epilepsy and the brain biomarkers. Inverse-variance weights method was used to calculate pooled standardized mean difference (SMD) estimate with 95% CI, and random effects meta-analysis was conducted taking into account conceptual heterogeneity. Sensitivity analysis and publication bias assessment was performed using Stata. Of 29 studies that were qualified for further analysis, only 22 studies were eligible to quantify by meta-analysis. Significant increase of serum S100B levels (SMD = 0.80; 95% CI 0.18 to 1.42) but not NSE (SMD = 0.45; 95% CI -0.09 to 1.00) has been found in epileptic patients compared with healthy controls. Subgroup meta-analysis by age demonstrated that S100B could be found in pediatric (SMD = 1.15; 95% CI 0.03 to 2.27) not adult patients (SMD = 0.43; 95% CI -0.12 to 0.98). Findings of this meta-analysis indicate that serum level of S100B is significantly increased in epileptic patients, suggesting the elevation and release of the brain biomarkers from brain to blood following epileptic seizures.
Collapse
Affiliation(s)
- Leila Simani
- Skull base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Masoumeh Sadeghi
- Department of Epidemiology, Faculty of Health, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, 1650 Cedar Ave., Montreal, Quebec H3A 1A1, Canada
| | - Mohsen Dehghani
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| |
Collapse
|
21
|
Chen H, Chen Y, Zhong JM. Detection and diagnostic value of serum NSE and S100B protein levels in patients with seizures associated with mild gastroenteritis: A retrospective observational study. Medicine (Baltimore) 2020; 99:e23439. [PMID: 33235129 PMCID: PMC7710215 DOI: 10.1097/md.0000000000023439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Benign convulsions with mild gastroenteritis (CwG) and febrile seizures (FS) associated with mild gastroenteritis are 2 different diseases in the spectrum of seizures associated with mild gastroenteritis. However, specific and useful indicators for the identification of the 2 diseases are lacking. A retrospective analysis was performed to compare the serum neuronal-specific enolase (NSE) and S100B protein levels between patients with these 2 diseases to evaluate the value of NSE and S100B for differential diagnosis between these 2 diseases.The clinical data and NSE and S100B protein levels of 81 children with seizure-associated mild gastroenteritis were collected. According to the axillary temperature at the time of convulsions, all patients were classified into an afebrile seizure (AFS) group, hereafter called the CwG group (n = 46), and a febrile seizure group (FS group, n = 35).The serum NSE level was higher in the CwG group than in the FS group (14.046 (11.095, 19.266) pg/ml and 9.034 (7.158, 12.165) pg/ml, respectively, P < .001); however, the serum S100B protein levels in the CwG and the FS group were not significantly different (P > .05). Receiver operating characteristic (ROC) curve analysis showed that the area under the curve (AUC) for NSE was 0.806, P = .000, which was statistically significant. The Youden index was largest (0.605) for a serum NSE cut-off value of 10.460 pg/ml, which yielded a sensitivity and specificity of 89% and 71%, respectively, for prediction of a CwG diagnosis.NSE may contribute to the differential diagnosis of CwG and FS associated with mild gastroenteritis.
Collapse
|
22
|
Tan Z, Jiang J, Tian F, Peng J, Yang Z, Li S, Long X. Serum Visinin-Like Protein 1 Is a Better Biomarker Than Neuron-Specific Enolase for Seizure-Induced Neuronal Injury: A Prospective and Observational Study. Front Neurol 2020; 11:567587. [PMID: 33071949 PMCID: PMC7544981 DOI: 10.3389/fneur.2020.567587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Visinin-like protein 1 (VILIP-1) is an established biomarker of neuronal injury. The levels of serum VILIP-1, neuron-specific enolase (NSE) and caveolin-1 (CAV-1) were measured to investigate potential of VILIP-1 as a biomarker for seizure-induced neuronal injury, and the correlation of VILIP-1 with severity of epilepsy and blood-brain barrier dysfunction were investigated. Materials and Methods: Patient with epilepsy from 14 to 70 years of age and age-, sex-matched healthy subjects were involved in this study. All blood sample of patients were collected within 3–72 h after the seizure. The severity of epilepsy and levels of serum VILIP-1, NSE and CAV-1 were measured. Accuracy of VILIP-1 and NSE was obtained from receiver operating curve analyses. Associations between VILIP-1 and severity of epilepsy, VILIP-1 and CAV-1 were investigated. Results: A total of 58 patients and 29 healthy control subjects were included in our study. The levels of serum VILIP-1, NSE, and CAV-1 in the patient group were significantly higher than those in the control group. VILIP-1 has higher and significant accuracy for assessing seizure-induced neuronal injury compared with NSE. VILIP-1 levels were positively associated with severity of epilepsy and CAV-1 in patients with epilepsy. Conclusions: VILIP-1 may be a better serum biomarker than NSE for assessing seizure-induced neuronal injury and even brain injury caused by various pathological condition. Further studies are required to explore the clinical contribution of VILIP-1 in diagnosis, treatment strategies and outcome assessments of epilepsy.
Collapse
Affiliation(s)
- Zheren Tan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianlin Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fafa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinxin Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuyu Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure 2020; 82:65-79. [PMID: 33011590 DOI: 10.1016/j.seizure.2020.09.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a brain disease associated with epileptic seizures as well as with neurobehavioral outcomes of this condition. In the last century, inflammation emerged as a crucial factor in epilepsy etiology. Various brain insults through activation of neuronal and non-neuronal brain cells initiate a series of inflammatory events. Growing observations strongly suggest that abnormal activation of critical inflammatory processes contributes to epileptogenesis, a gradual process by which a normal brain transforms into the epileptic brain. Increased knowledge of inflammatory pathways in epileptogenesis has unveiled mechanistic targets for novel antiepileptic therapies. Molecules specifically targeting the pivotal inflammatory pathways may serve as promising candidates to halt the development of epilepsy. The present paper reviews the pieces of evidence conceptually supporting the potential role of inflammatory mechanisms and the relevant blood-brain barrier (BBB) disruption in epileptogenesis. Also, it discusses the mechanisms underlying inflammation-induced neuronal-glial network impairment and highlights innovative neuroregulatory actions of typical inflammatory molecules. Finally, it presents a brief analysis of observations supporting the therapeutic role of inflammation-targeting tiny molecules in epileptic seizures.
Collapse
Affiliation(s)
- Iqra Mukhtar
- H.E.J Research Institute of Chemistry, International Center For Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
24
|
Association between IL-1β and recurrence after the first epileptic seizure in ischemic stroke patients. Sci Rep 2020; 10:13505. [PMID: 32782321 PMCID: PMC7419303 DOI: 10.1038/s41598-020-70560-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/22/2020] [Indexed: 11/08/2022] Open
Abstract
To analyze the association of IL-1β with recurrence after the first epileptic seizure in ischemic stroke patients and evaluate its predictive value. 238 patients with the first epileptic seizure after ischemic stroke were included in this study. IL-1β expression levels were detected through quantitative Real-Time PCR. Kaplan–Meier method was used to perform univariate analysis with log-rank test. The variables with P < 0.1 were then included in multivariate analysis. Receiver operating characteristic (ROC) curve was used to evaluate the predictive value. Among all 238 patients, 107 patients (44.96%) had seizure recurrence and 131 patients (55.04%) had no recurrence. Kaplan–Meier analysis showed that high expression of IL-1β, low age (< 65 years), male, cortical involvement, large lesion size, late onset, severe neurological impairment and partial seizure type were associated with seizure recurrence. Multivariate analysis showed that IL-1β expression level (hazard ratio 2.057, 95% confidence interval 1.296–3.318) was independently associated with seizure recurrence. The area under ROC curve (AUC) was 0.803 (SE 0.030, 95% confidence interval 0.744–0.862) when IL-1β expression levels were applied in predicting seizure recurrence. IL-1β might be a useful biomarker for early discovery of recurrence after the first epileptic seizure in ischemic stroke patients.
Collapse
|
25
|
Tao Z, Chun-Yan H, Hua P, Bin-Bin Y, Xiaoping T. Phyllathin From Phyllanthus Amarus Ameliorates Epileptic Convulsion and Kindling Associated Post-Ictal Depression in Mice via Inhibition of NF-κB/TLR-4 Pathway. Dose Response 2020; 18:1559325820946914. [PMID: 32821254 PMCID: PMC7412921 DOI: 10.1177/1559325820946914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/14/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Epilepsy is a chronic, complex, unprovoked, and recurrent disorder of the nervous system that affected several people worldwide. Phyllanthus amarus (PA) has been documented to have neuroprotective potential. Aim To evaluate the potential of standardized extract of PA and its possible mechanism of action against the Pentylenetetrazol (PTZ)-induced convulsion and kindling associated post-ictal depression in experimental mice. Materials and Methods Phyllathin was isolated from methanolic extract of PA and well-characterized using HPTLC, ESI-MS/MS, and LC/MS. Phyllathin containing a standardized extract of PA (50, 100, and 200 mg/kg) was administered in convulsed and kindled mice, followed by an assessment of various parameters. Results The spectral analysis confirmed the molecular formula and weight of phyllanthin as C24H34O6 and 418.2342 Da. PA (100 and 200 mg/kg) significantly ameliorated PTZ-induced (p < 0.05) duration, onset of tonic-clonic convulsion, and mortality in mice. It also significantly attenuated (p < 0.05) PTZ-induced kindling in mice. Alteration in brain GABA, dopamine, and glutamate, Na+K+ATPase, Ca+2-ATPase activities, and oxido-nitrosative stress in kindled mice was significantly restored (p < 0.05) by PA treatment. It also significantly (p < 0.05) down-regulated brain mRNA expressions of NF-κB, TNF-α, IL-1β, COX-2, and TLR-4. Histological aberrations induced by PTZ in the brain of a kindled rat was significantly (p < 0.05) ameliorated by PA. Conclusion Phyllanthin containing a standardized extract of PA exerts its antiepileptic potential via balancing excitatory (glutamate) and inhibitory (GABA) brain monoamines, voltage-gated ion channels (Na+K+/Ca+2-ATPase) and inhibition of NF-κB/TLR-4 pathway to ameliorate neuroinflammation (TNF-α, IL-1β, and COX-2) in experimental mice.
Collapse
Affiliation(s)
- Zhang Tao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hu Chun-Yan
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peng Hua
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Bin-Bin
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tang Xiaoping
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
26
|
Wei N, Zhang H, Wang J, Wang S, Lv W, Luo L, Xu Z. The Progress in Diagnosis and Treatment of Exosomes and MicroRNAs on Epileptic Comorbidity Depression. Front Psychiatry 2020; 11:405. [PMID: 32528321 PMCID: PMC7247821 DOI: 10.3389/fpsyt.2020.00405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
The occurrence of epilepsy can increase the incidence of depression, and the risk of epilepsy in the patients with depression is also high, both of which have an adverse effect on the life and the psychology of the patient, which is not conducive to the prognosis of the patients with epilepsy. With lucubrating the function of exosomes and microRNAs, some scholars found that the exosomes and its microRNAs have development prospect in the diagnosis and treatment of the disease. MicroRNAs are involved in the regulation of seizures and depression, as biomarkers, that can significantly improve the management of epileptic patients and play a preventive role in the occurrence of epilepsy and epilepsy depressive disorder. Moreover, due to its regulation to genes, appropriate application of microRNAs may have therapeutic effect on epilepsy and depression with the characteristics of long distance transmission and stability of exosomes, to a certain extent. This provides a great convenience for the diagnosis and treatment of epileptic comorbidity depression.
Collapse
Affiliation(s)
- Nian Wei
- Zunyi Medical University, Zunyi, China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jing Wang
- Prevention and Health Care, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shen Wang
- Zunyi Medical University, Zunyi, China
| | - Wenbo Lv
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Limei Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| |
Collapse
|
27
|
Mu RZ, Liu S, Liang KG, Jiang D, Huang YJ. A Meta-Analysis of Neuron-Specific Enolase Levels in Cerebrospinal Fluid and Serum in Children With Epilepsy. Front Mol Neurosci 2020; 13:24. [PMID: 32210762 PMCID: PMC7076182 DOI: 10.3389/fnmol.2020.00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/03/2020] [Indexed: 01/29/2023] Open
Abstract
Background: Studies suggest that neuron-specific enolase (NSE) levels in the cerebrospinal fluid (CSF) and serum play an important role in childhood epilepsy. However, these investigations remain controversial due to inconsistent clinical results. The present study aimed to quantitatively summarize and assess whether CSF and serum NSE levels are associated with epilepsy in children. Methods : A systematic search of the Harvard Hollis+, Clinicaltrials, Open Gray, China National Knowledge Infrastructure, and Wanfang databases was performed. Studies investigating NSE and epilepsy were identified and retrieved. Original studies with data overlapping those from other investigations and those lacking the necessary data were excluded. The included studies were extracted and synthesized, and data were analyzed using a random-effects model in R Studio and Comprehensive Meta-Analysis version 3 (Biostat, Englewood, NJ, USA). Results: Random-effects meta-analysis of 26 studies, including 1,360 patients, and 1,256 healthy control, revealed that childhood epilepsy exhibited meaningfully increased CSF and serum levels of NSE compared with controls [Hedges' g = 1.962 (95% confidence interval, 1.413-2.512); P < 0.001]. No single study meaningfully influenced the overall association between CSF and serum levels of NSE and epilepsy after sensitivity analysis. Subgroup analyses according to sample source and assay type revealed a significant association between NSE levels and epilepsy. Stratified analysis confirmed that NSE levels were significantly correlated with the severity of neurological compromise. Metaregression analyses revealed that sample size, mean age, and sex may contribute to effect-size reductions; however, sample source, assay type, and country did not moderate effect size. Funnel plots constructed using the trim-and-fill method confirmed that the outcome of the meta-analysis could not be due to publication bias. Conclusion: The results demonstrated that childhood epilepsy exhibits significantly elevated levels of NSE in the CSF and serum, thus strengthening the association between increased NSE levels and epilepsy.
Collapse
Affiliation(s)
- Rong-Zheng Mu
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China.,College of Equipment Management and UAV Engineering, Air Force Engineering University, Xi'an, China
| | - Shuang Liu
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
| | - Kai-Ge Liang
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China
| | - Dan Jiang
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Yao-Jiang Huang
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing, China.,Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
28
|
Apoptotic Markers Are Increased in Epilepsy Patients: A Relation with Manganese Superoxide Dismutase Ala16Val Polymorphism and Seizure Type through IL-1 β and IL-6 Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6250429. [PMID: 32219137 PMCID: PMC7079223 DOI: 10.1155/2020/6250429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/11/2020] [Accepted: 02/26/2020] [Indexed: 01/23/2023]
Abstract
The MnSOD Ala16Val single nucleotide polymorphism (SNP) has been associated with different diseases. However, there are scarcely studies relating this SNP in epilepsy, a neurologic disease that involves some interacting pathways, such as apoptotic and inflammatory factors. In this sense, we decided to investigate the relationship of MnSOD Ala16Val SNP with apoptotic markers in epilepsy and its relation with inflammatory pathway and seizure type. Ninety subjects were evaluated (47 epilepsies; 43 controls) by questionnaires and laboratorial exams. We observed a higher percentage of VV genotype in the epilepsy group when compared to the control group. IL-1β, IL-6, caspase-1, and caspase-3 levels were increased in the epilepsy group (VV genotype). Furthermore, an important correlation between IL-1β vs. caspase-1 and IL-6 vs. caspase-3 was observed in the epilepsy group (VV genotype). The epilepsy group which presented generalized seizures also demonstrated a positive correlation between IL-1β vs. CASP1 and IL-6 vs. CASP3. Thus, it is a plausible propose that epilepsy patients with VV genotype and generalized seizures present a worse inflammatory and apoptotic status. Our findings suggest that the knowledge of MnSOD Ala16Val polymorphism existence is important to evaluate molecular mechanisms associated to seizure and improve the treatment of these patients.
Collapse
|
29
|
Hodges SL, Lugo JN. Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res 2020; 161:106282. [DOI: 10.1016/j.eplepsyres.2020.106282] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
|
30
|
Hanin A, Lambrecq V, Denis JA, Imbert-Bismut F, Rucheton B, Lamari F, Bonnefont-Rousselot D, Demeret S, Navarro V. Cerebrospinal fluid and blood biomarkers of status epilepticus. Epilepsia 2019; 61:6-18. [PMID: 31828792 DOI: 10.1111/epi.16405] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022]
Abstract
Status epilepticus is a condition resulting either from the failure of the mechanisms responsible for seizure termination or from the initiation of mechanisms that lead to abnormally prolonged seizures and require urgent administration of antiepileptic drugs. Refractory status epilepticus requires anesthetics drugs and may lead to brain injury with molecular and cellular alterations (eg, inflammation, and neuronal and astroglial injury) that could induce neurologic sequels and further development of epilepsy. Outcome scores based on demographic, clinical, and electroencephalography (EEG) condition are available, allowing prediction of the risk of mortality, but the severity of brain injury in survivors is poorly evaluated. New biomarkers are needed to predict with higher accuracy the outcome of patients admitted with status in an intensive care unit. Here, we summarize the findings of studies from patients and animal models of status epilepticus. Specific protein markers can be detected in the cerebrospinal fluid and the blood. One of the first described markers of neuronal death is the neuron-specific enolase. Gliosis resulting from inflammatory responses after status can be detected through the increase of S100-beta, or some cytokines, like the High Mobility Group Box 1. Other proteins, like progranulin may reflect the neuroprotective mechanisms resulting from the brain adaptation to excitotoxicity. These new biomarkers aim to prospectively identify the severity and development of disability, and subsequent epilepsy of patients with status. We discuss the advantages and disadvantages of each biomarker, by evaluating their brain specificity, stability in the fluids, and sensitivity to external interferences, such as hemolysis. Finally, we emphasize the need for further development and validation of such biomarkers in order to better assess patients with severe status epilepticus.
Collapse
Affiliation(s)
- Aurélie Hanin
- Brain and Spine Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Virginie Lambrecq
- Brain and Spine Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.,Epilepsy Unit (VL, VN) and Neuro-Intensive care Unit (SD), Neurology Department, AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France.,Sorbonne Université, Paris, France
| | - Jérôme Alexandre Denis
- Sorbonne Université, Paris, France.,Department of Endocrine and Oncological Biochemistry (J.AD), Metabolic Biochemistry (BR, DBR, FI, FL), AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Françoise Imbert-Bismut
- Department of Endocrine and Oncological Biochemistry (J.AD), Metabolic Biochemistry (BR, DBR, FI, FL), AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Benoît Rucheton
- Department of Endocrine and Oncological Biochemistry (J.AD), Metabolic Biochemistry (BR, DBR, FI, FL), AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Foudil Lamari
- Department of Endocrine and Oncological Biochemistry (J.AD), Metabolic Biochemistry (BR, DBR, FI, FL), AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Dominique Bonnefont-Rousselot
- Department of Endocrine and Oncological Biochemistry (J.AD), Metabolic Biochemistry (BR, DBR, FI, FL), AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France.,UTCBS, U 1022 Inserm, UMR 8258 CNRS, Paris University, Paris, France
| | - Sophie Demeret
- Epilepsy Unit (VL, VN) and Neuro-Intensive care Unit (SD), Neurology Department, AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Vincent Navarro
- Brain and Spine Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.,Epilepsy Unit (VL, VN) and Neuro-Intensive care Unit (SD), Neurology Department, AP-HP, GH Pitié-Salpêtrière-Charles Foix, Paris, France.,Sorbonne Université, Paris, France
| |
Collapse
|
31
|
Rawat C, Kukal S, Dahiya UR, Kukreti R. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation 2019; 16:197. [PMID: 31666079 PMCID: PMC6822425 DOI: 10.1186/s12974-019-1592-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/23/2019] [Indexed: 01/15/2023] Open
Abstract
Epilepsy, a common multifactorial neurological disease, affects about 69 million people worldwide constituting nearly 1% of the world population. Despite decades of extensive research on understanding its underlying mechanism and developing the pharmacological treatment, very little is known about the biological alterations leading to epileptogenesis. Due to this gap, the currently available antiepileptic drug therapy is symptomatic in nature and is ineffective in 30% of the cases. Mounting evidences revealed the pathophysiological role of neuroinflammation in epilepsy which has shifted the focus of epilepsy researchers towards the development of neuroinflammation-targeted therapeutics for epilepsy management. Markedly increased expression of key inflammatory mediators in the brain and blood-brain barrier may affect neuronal function and excitability and thus may increase seizure susceptibility in preclinical and clinical settings. Cyclooxygenase-2 (COX-2), an enzyme synthesizing the proinflammatory mediators, prostaglandins, has widely been reported to be induced during seizures and is considered to be a potential neurotherapeutic target for epilepsy management. However, the efficacy of such therapy involving COX-2 inhibition depends on various factors viz., therapeutic dose, time of administration, treatment duration, and selectivity of COX-2 inhibitors. This article reviews the preclinical and clinical evidences supporting the role of COX-2 in seizure-associated neuroinflammation in epilepsy and the potential clinical use of COX-2 inhibitors as a future strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ujjwal Ranjan Dahiya
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India.
| |
Collapse
|
32
|
Kobylarek D, Iwanowski P, Lewandowska Z, Limphaibool N, Szafranek S, Labrzycka A, Kozubski W. Advances in the Potential Biomarkers of Epilepsy. Front Neurol 2019; 10:685. [PMID: 31312171 PMCID: PMC6614180 DOI: 10.3389/fneur.2019.00685] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a group of chronic neurological disorders characterized by recurrent, spontaneous, and unpredictable seizures. It is one of the most common neurological disorders, affecting tens of millions of people worldwide. Comprehensive studies on epilepsy in recent decades have revealed the complexity of epileptogenesis, in which immunological processes, epigenetic modifications, and structural changes in neuronal tissues have been identified as playing a crucial role. This review discusses the recent advances in the biomarkers of epilepsy. We evaluate the possible molecular background underlying the clinical changes observed in recent studies, focusing on therapeutic investigations, and the evidence of their safety and efficacy in the human population. This article reviews the pathophysiology of epilepsy, including recent reports on the effects of oxidative stress and hypoxia, and focuses on specific biomarkers and their clinical implications, along with further perspectives in epilepsy research.
Collapse
Affiliation(s)
- Dominik Kobylarek
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
33
|
Choi J, Choi SA, Kim SY, Kim H, Lim BC, Hwang H, Chae JH, Kim KJ, Oh S, Kim EY, Shin JS. Association Analysis of Interleukin-1β, Interleukin-6, and HMGB1 Variants with Postictal Serum Cytokine Levels in Children with Febrile Seizure and Generalized Epilepsy with Febrile Seizure Plus. J Clin Neurol 2019; 15:555-563. [PMID: 31591845 PMCID: PMC6785474 DOI: 10.3988/jcn.2019.15.4.555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose Febrile seizure (FS) is a unique type of seizure that only occurs during childhood. Genelized epilepsy with febrile seizure plus (GEFS+) is a familial epilepsy syndrome associated with FS and afebrile seizure (AFS). Both seizure types are related to fever, but whether genetic susceptibility to inflammation is implicated in them is still unclear. To analyze the associations between postictal serum cytokine levels and genetic variants in the cytokine genes interleukin (IL)-1β, IL-6, and high mobility group box-1 (HMGB1) in FS and GEFS+. Methods Genotyping was performed in 208 subjects (57 patients with FS, 43 patients with GEFS+, and 108 controls) with the SNaPshot assay for IL-1β-31 (rs1143627), IL-1β-511 (rs16944), IL-6-572 (rs1800796), and HMGB1 3814 (rs2249825). Serum IL-1β, IL-6, and HMGB1 levels were analyzed within 2 hours after seizure attacks using the ELISA in only 68 patients (38 FS, 10 GEFS+, and 20 controls). The allele distribution, genotype distribution, and correlations with serum cytokine levels were analyzed. Results Near-complete linkage disequilibrium exists between IL-1β-31 and IL-1β-511 variants. CT genotypes of these variants were associated with significantly higher postictal serum IL-1β levels than were CC+TT genotypes in FS (both p<0.05). CT genotypes of IL-1β-31 and IL-1β-511 variants were more strongly associated with FS than were CC+TT genotypes (odds ratio=1.691 and 1.731, respectively). For GEFS+, serum IL-1β levels after AFS for CT genotypes of IL-1β-31 and IL-1β-511 were also higher than for CC+TT genotypes. No significant associations were found for IL-6 and HMGB1. Conclusions Genetic variants located in IL-1β-31 and IL-1β-511 promotor regions are correlated with higher postictal IL-1β levels in FS. These results suggest that IL-1 gene cluster variants in IL-1β-31 and IL-1β-511 are a host genetic factor for provoking FS in Korean children.
Collapse
Affiliation(s)
- Jieun Choi
- Department of Pediatrics, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Sun Ah Choi
- Department of Pediatrics, Dankook University Hospital, Cheonan, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Hwang
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul, Korea
| | - Jong Hee Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sohee Oh
- Department of Biostatistics, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Young Kim
- Department of Pediatrics, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jeon Soo Shin
- Department of Microbiology, Brain Korea 21 Plus Project for Medical Science, Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
34
|
Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflammation 2018; 15:144. [PMID: 29764485 PMCID: PMC5952578 DOI: 10.1186/s12974-018-1192-7] [Citation(s) in RCA: 410] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/06/2018] [Indexed: 12/18/2022] Open
Abstract
Epilepsy, a neurological disease characterized by recurrent seizures, is often associated with a history of previous lesions in the nervous system. Impaired regulation of the activation and resolution of inflammatory cells and molecules in the injured neuronal tissue is a critical factor to the development of epilepsy. However, it is still unclear as to how that unbalanced regulation of inflammation contributes to epilepsy. Therefore, one of the goals in epilepsy research is to identify and elucidate the interconnected inflammatory pathways in systemic and neurological disorders that may further develop epilepsy progression. In this paper, inflammatory molecules, in neurological and systemic disorders (rheumatoid arthritis, Crohn’s, Type I Diabetes, etc.) that could contribute to epilepsy development, are reviewed. Understanding the neurobiology of inflammation in epileptogenesis will contribute to the development of new biomarkers for better screening of patients at risk for epilepsy and new therapeutic targets for both prophylaxis and treatment of epilepsy.
Collapse
Affiliation(s)
- Amna Rana
- Department of Pathology and Anatomy, Department of Neurology, Eastern Virginia Medical School, 700 W. Olney Road, Lewis Hall, Office 2174, Norfolk, VA, 23507, USA
| | - Alberto E Musto
- Department of Pathology and Anatomy, Department of Neurology, Eastern Virginia Medical School, 700 W. Olney Road, Lewis Hall, Office 2174, Norfolk, VA, 23507, USA.
| |
Collapse
|
35
|
Nakhjavan-Shahraki B, Yousefifard M, Oraii A, Sarveazad A, Hosseini M. Meta-analysis of neuron specific enolase in predicting pediatric brain injury outcomes. EXCLI JOURNAL 2017; 16:995-1008. [PMID: 28900380 PMCID: PMC5579403 DOI: 10.17179/excli2017-405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/12/2017] [Indexed: 12/28/2022]
Abstract
A reliable biomarker has not been identified to predict the outcome of traumatic brain injury (TBI) in children. Therefore, the present systematic review and meta-analysis aimed to assess the association between neuron specific enolase (NSE) and traumatic brain injury (TBI) in children. Two independent reviewers searched electronic databases of EMBASE, Cochrane library, Medline and Scopus and then they summarized the results and did a quality control check. At the end, standardized mean difference (SMD) with 95 % confidence interval (CI) and performance of NSE were assessed. 10 studies were included in the present meta-analysis. Average serum (SMD=1.3; 95 % CI: 0.5 to 2.1; p=0.001) and CSF levels (SMD=2.45; 95 % CI: 1.04 to 3.8; p<0.0001) of NSE biomarker were significantly higher in children with TBI with unfavorable outcome compared with other children. Serum NSE had an area under the curve, sensitivity and specificity of 0.75 (95 % CI: 0.72 to 0.79), 0.74 (95 % CI: 0.64 to 0.82) and 0.69 (95 % CI: 0.59 to 0.77), respectively in prediction outcome of TBI. Positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio of serum NSE were 2.4 (95 % CI: 1.7 to 3.3), 0.38 (95 % CI: 0.26 to 0.55) and 6.0 (95 % CI: 3.0 to 12.0), respectively. The results show that the performance of NSE is in a moderate level in prediction of unfavorable outcome in children with TBI. However, data in this aspect is not sufficient and more studies are needed.
Collapse
Affiliation(s)
| | - Mahmoud Yousefifard
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Oraii
- Department of Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|