1
|
Smail MA, Lenz KM. Developmental functions of microglia: Impact of psychosocial and physiological early life stress. Neuropharmacology 2024; 258:110084. [PMID: 39025401 DOI: 10.1016/j.neuropharm.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Microglia play numerous important roles in brain development. From early embryonic stages through adolescence, these immune cells influence neuronal genesis and maturation, guide connectivity, and shape brain circuits. They also interact with other glial cells and structures, influencing the brain's supportive microenvironment. While this central role makes microglia essential, it means that early life perturbations to microglia can have widespread effects on brain development, potentially resulting in long-lasting behavioral impairments. Here, we will focus on the effects of early life psychosocial versus physiological stressors in rodent models. Psychosocial stress refers to perceived threats that lead to stress axes activation, including prenatal stress, or chronic postnatal stress, including maternal separation and resource scarcity. Physiological stress refers to physical threats, including maternal immune activation, postnatal infection, and traumatic brain injury. Differing sources of early life stress have varied impacts on microglia, and these effects are moderated by factors such as developmental age, brain region, and sex. Overall, these stressors appear to either 1) upregulate basal microglia numbers and activity throughout the lifespan, while possibly blunting their responsivity to subsequent stressors, or 2) shift the developmental curve of microglia, resulting in differential timing and function, impacting the critical periods they govern. Either could contribute to behavioral dysfunctions that occur after the resolution of early life stress. Exploring how different stressors impact microglia, as well as how multiple stressors interact to alter microglia's developmental functions, could deepen our understanding of how early life stress changes the brain's developmental trajectory. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Psychology, Ohio State University, Columbus, OH, USA.
| | - Kathryn M Lenz
- Department of Psychology, Ohio State University, Columbus, OH, USA; Department of Neuroscience, Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Jacquens A, Csaba Z, Soleimanzad H, Bokobza C, Delmotte PR, Userovici C, Boussemart P, Chhor V, Bouvier D, van de Looij Y, Faivre V, Diao S, Lemoine S, Blugeon C, Schwendimann L, Young-Ten P, Naffaa V, Laprevote O, Tanter M, Dournaud P, Van Steenwinckel J, Degos V, Gressens P. Deleterious effect of sustained neuroinflammation in pediatric traumatic brain injury. Brain Behav Immun 2024; 120:99-116. [PMID: 38705494 DOI: 10.1016/j.bbi.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
INTRODUCTION Despite improved management of traumatic brain injury (TBI), it still leads to lifelong sequelae and disability, particularly in children. Chronic neuroinflammation (the so-called tertiary phase), in particular, microglia/macrophage and astrocyte reactivity, is among the main mechanisms suspected of playing a role in the generation of lesions associated with TBI. The role of acute neuroinflammation is now well understood, but its persistent effect and impact on the brain, particularly during development, are not. Here, we investigated the long-term effects of pediatric TBI on the brain in a mouse model. METHODS Pediatric TBI was induced in mice on postnatal day (P) 7 by weight-drop trauma. The time course of neuroinflammation and myelination was examined in the TBI mice. They were also assessed by magnetic resonance, functional ultrasound, and behavioral tests at P45. RESULTS TBI induced robust neuroinflammation, characterized by acute microglia/macrophage and astrocyte reactivity. The long-term consequences of pediatric TBI studied on P45 involved localized scarring astrogliosis, persistent microgliosis associated with a specific transcriptomic signature, and a long-lasting myelination defect consisting of the loss of myelinated axons, a decreased level of myelin binding protein, and severe thinning of the corpus callosum. These results were confirmed by reduced fractional anisotropy, measured by diffusion tensor imaging, and altered inter- and intra-hemispheric connectivity, measured by functional ultrasound imaging. In addition, adolescent mice with pediatric TBI showed persistent social interaction deficits and signs of anxiety and depressive behaviors. CONCLUSIONS We show that pediatric TBI induces tertiary neuroinflammatory processes associated with white matter lesions and altered behavior. These results support our model as a model for preclinical studies for tertiary lesions following TBI.
Collapse
Affiliation(s)
- Alice Jacquens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France; Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| | - Zsolt Csaba
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Haleh Soleimanzad
- Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, 75005 Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | | | | | | | - Vibol Chhor
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Damien Bouvier
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Yohan van de Looij
- Université de Genève, Service Développement et Croissance, Département de Pédiatrie, Faculté de Médecine, 1211 Genève, Suisse; Centre d'Imagerie Biomédicale, Section Technologie d'Imagerie Animale, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Suisse
| | - Valérie Faivre
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Siaho Diao
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Sophie Lemoine
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Université PSL, Paris, France
| | - Corinne Blugeon
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Université PSL, Paris, France
| | | | | | - Vanessa Naffaa
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Olivier Laprevote
- Université de Paris, CNRS, CiTCoM, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 75015 Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, 75005 Paris, France
| | - Pascal Dournaud
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | | | - Vincent Degos
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France; Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
3
|
Schantz SL, Sneed SE, Fagan MM, Golan ME, Cheek SR, Kinder HA, Duberstein KJ, Kaiser EE, West FD. Human-Induced Pluripotent Stem Cell-Derived Neural Stem Cell Therapy Limits Tissue Damage and Promotes Tissue Regeneration and Functional Recovery in a Pediatric Piglet Traumatic-Brain-Injury Model. Biomedicines 2024; 12:1663. [PMID: 39200128 PMCID: PMC11351842 DOI: 10.3390/biomedicines12081663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in pediatric patients and often results in delayed neural development and altered connectivity, leading to lifelong learning, memory, behavior, and motor function deficits. Induced pluripotent stem cell-derived neural stem cells (iNSCs) may serve as a novel multimodal therapeutic as iNSCs possess neuroprotective, regenerative, and cell-replacement capabilities post-TBI. In this study, we evaluated the effects of iNSC treatment on cellular, tissue, and functional recovery in a translational controlled cortical impact TBI piglet model. Five days post-craniectomy (n = 6) or TBI (n = 18), iNSCs (n = 7) or PBS (n = 11) were injected into perilesional brain tissue. Modified Rankin Scale (mRS) neurological evaluation, magnetic resonance imaging, and immunohistochemistry were performed over the 12-week study period. At 12-weeks post-transplantation, iNSCs showed long-term engraftment and differentiation into neurons, astrocytes, and oligodendrocytes. iNSC treatment enhanced endogenous neuroprotective and regenerative activities indicated by decreasing intracerebral immune responses, preserving endogenous neurons, and increasing neuroblast formation. These cellular changes corresponded with decreased hemispheric atrophy, midline shift, and lesion volume as well as the preservation of cerebral blood flow. iNSC treatment increased piglet survival and decreased mRS scores. The results of this study in a predictive pediatric large-animal pig model demonstrate that iNSC treatment is a robust multimodal therapeutic that has significant promise in potentially treating human pediatric TBI patients.
Collapse
Affiliation(s)
- Sarah L. Schantz
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; (S.L.S.); (S.E.S.); (M.E.G.); (S.R.C.); (H.A.K.); (K.J.D.)
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sydney E. Sneed
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; (S.L.S.); (S.E.S.); (M.E.G.); (S.R.C.); (H.A.K.); (K.J.D.)
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Madison M. Fagan
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; (S.L.S.); (S.E.S.); (M.E.G.); (S.R.C.); (H.A.K.); (K.J.D.)
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Morgane E. Golan
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; (S.L.S.); (S.E.S.); (M.E.G.); (S.R.C.); (H.A.K.); (K.J.D.)
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Savannah R. Cheek
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; (S.L.S.); (S.E.S.); (M.E.G.); (S.R.C.); (H.A.K.); (K.J.D.)
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Holly A. Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; (S.L.S.); (S.E.S.); (M.E.G.); (S.R.C.); (H.A.K.); (K.J.D.)
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Kylee J. Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; (S.L.S.); (S.E.S.); (M.E.G.); (S.R.C.); (H.A.K.); (K.J.D.)
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Erin E. Kaiser
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; (S.L.S.); (S.E.S.); (M.E.G.); (S.R.C.); (H.A.K.); (K.J.D.)
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Franklin D. West
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; (S.L.S.); (S.E.S.); (M.E.G.); (S.R.C.); (H.A.K.); (K.J.D.)
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA
- Animal and Dairy Science Department, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Nikam RM, Kecskemethy HH, Kandula VVR, Averill LW, Langhans SA, Yue X. Abusive Head Trauma Animal Models: Focus on Biomarkers. Int J Mol Sci 2023; 24:4463. [PMID: 36901893 PMCID: PMC10003453 DOI: 10.3390/ijms24054463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Abusive head trauma (AHT) is a serious traumatic brain injury and the leading cause of death in children younger than 2 years. The development of experimental animal models to simulate clinical AHT cases is challenging. Several animal models have been designed to mimic the pathophysiological and behavioral changes in pediatric AHT, ranging from lissencephalic rodents to gyrencephalic piglets, lambs, and non-human primates. These models can provide helpful information for AHT, but many studies utilizing them lack consistent and rigorous characterization of brain changes and have low reproducibility of the inflicted trauma. Clinical translatability of animal models is also limited due to significant structural differences between developing infant human brains and the brains of animals, and an insufficient ability to mimic the effects of long-term degenerative diseases and to model how secondary injuries impact the development of the brain in children. Nevertheless, animal models can provide clues on biochemical effectors that mediate secondary brain injury after AHT including neuroinflammation, excitotoxicity, reactive oxygen toxicity, axonal damage, and neuronal death. They also allow for investigation of the interdependency of injured neurons and analysis of the cell types involved in neuronal degeneration and malfunction. This review first focuses on the clinical challenges in diagnosing AHT and describes various biomarkers in clinical AHT cases. Then typical preclinical biomarkers such as microglia and astrocytes, reactive oxygen species, and activated N-methyl-D-aspartate receptors in AHT are described, and the value and limitations of animal models in preclinical drug discovery for AHT are discussed.
Collapse
Affiliation(s)
- Rahul M. Nikam
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Heidi H. Kecskemethy
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Lauren W. Averill
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Xuyi Yue
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| |
Collapse
|
5
|
Manni L, Leotta E, Mollica I, Serafino A, Pignataro A, Salvatori I, Conti G, Chiaretti A, Soligo M. Acute intranasal treatment with nerve growth factor limits the onset of traumatic brain injury in young rats. Br J Pharmacol 2023. [PMID: 36780920 DOI: 10.1111/bph.16056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) comprises a primary injury directly induced by impact, which progresses into a secondary injury leading to neuroinflammation, reactive astrogliosis, and cognitive and motor damage. To date, treatment of TBI consists solely of palliative therapies that do not prevent and/or limit the outcomes of secondary damage and only stabilize the deficits. The neurotrophin, nerve growth factor (NGF), delivered to the brain parenchyma following intranasal application, could be a useful means of limiting or improving the outcomes of the secondary injury, as suggested by pre-clinical and clinical data. EXPERIMENTAL APPROACH We evaluated the effect of acute intranasal treatment of young (20-postnatal day) rats, with NGF in a TBI model (weight drop/close head), aggravated by hypoxic complications. Immediately after the trauma, rats were intranasally treated with human recombinant NGF (50 μg·kg-1 ), and motor behavioural test, morphometric and biochemical assays were carried out 24 h later. KEY RESULTS Acute intranasal NGF prevented the onset of TBI-induced motor disabilities, and decreased reactive astrogliosis, microglial activation and IL-1β content, which after TBI develops to the same extent in the impact zone and the hypothalamus. CONCLUSION AND IMPLICATIONS Intranasal application of NGF was effective in decreasing the motor dysfunction and neuroinflammation in the brain of young rats in our model of TBI. This work forms an initial pre-clinical evaluation of the potential of early intranasal NGF treatment in preventing and limiting the disabling outcomes of TBI, a clinical condition that remains one of the unsolved problems of paediatric neurology.
Collapse
Affiliation(s)
- Luigi Manni
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Eleonora Leotta
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Ilia Mollica
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Illari Salvatori
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Experimental Medicine, Faculty of Medicine, University of Rome 'La Sapienza', Rome, Italy
| | - Giorgio Conti
- Intensive Pediatric Therapy and Pediatric Trauma Center, Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Chiaretti
- Institute of Pediatrics, Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
6
|
Carney N, Kochanek PM, Adelson PD. Letter: Evolution and Impact of the Brain Trauma Foundation Guidelines. Neurosurgery 2022; 91:e117-e118. [PMID: 35951742 PMCID: PMC10553161 DOI: 10.1227/neu.0000000000002104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Nancy Carney
- School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- School of Medicine, Universidad el Bosque, Bogota, Colombia
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anesthesiology, Pediatrics, Bioengineering, and Clinical and Translational Science, Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - P. David Adelson
- Pediatric Neurosurgery, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, Arizona, USA
| |
Collapse
|
7
|
Nwafor DC, Brichacek AL, Foster CH, Lucke-Wold BP, Ali A, Colantonio MA, Brown CM, Qaiser R. Pediatric Traumatic Brain Injury: An Update on Preclinical Models, Clinical Biomarkers, and the Implications of Cerebrovascular Dysfunction. J Cent Nerv Syst Dis 2022; 14:11795735221098125. [PMID: 35620529 PMCID: PMC9127876 DOI: 10.1177/11795735221098125] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of pediatric morbidity and mortality. Recent studies suggest that children and adolescents have worse post-TBI outcomes and take longer to recover than adults. However, the pathophysiology and progression of TBI in the pediatric population are studied to a far lesser extent compared to the adult population. Common causes of TBI in children are falls, sports/recreation-related injuries, non-accidental trauma, and motor vehicle-related injuries. A fundamental understanding of TBI pathophysiology is crucial in preventing long-term brain injury sequelae. Animal models of TBI have played an essential role in addressing the knowledge gaps relating to pTBI pathophysiology. Moreover, a better understanding of clinical biomarkers is crucial to diagnose pTBI and accurately predict long-term outcomes. This review examines the current preclinical models of pTBI, the implications of pTBI on the brain’s vasculature, and clinical pTBI biomarkers. Finally, we conclude the review by speculating on the emerging role of the gut-brain axis in pTBI pathophysiology.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Chase H. Foster
- Department of Neurosurgery, George Washington University Hospital, Washington D.C., USA
| | | | - Ahsan Ali
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Candice M. Brown
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rabia Qaiser
- Department of Neurosurgery, Baylor Scott and White, Temple, TX, USA
| |
Collapse
|
8
|
Effect of MCI-186 on Lipid Peroxidation in Experimental Traumatic Brain Damage in Rats. Korean J Neurotrauma 2022; 18:188-197. [DOI: 10.13004/kjnt.2022.18.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
|
9
|
Abstract
BACKGROUND Abusive head trauma (AHT), previously known as the shaken baby syndrome, is a severe and potentially fatal form of traumatic brain injury in infant children who have been shaken, and sometimes also sustained an additional head impact. The clinical and autopsy findings in AHT are not pathognomonic and, due to frequent obfuscation by perpetrators, the circumstances surrounding the alleged abuse are often unclear. The concept has evolved that the finding of the combination of subdural hemorrhage, brain injury, and retinal hemorrhages ("the triad") is the result of shaking of an infant ("shaken baby syndrome") and has led to the ongoing controversy whether shaking alone is able to generate sufficient force to produce these lesions. OBJECTIVE In an attempt to investigate whether shaking can engender this lesion triad, animal models have been developed in laboratory rodents and domestic animal species. This review assesses the utility of these animal models to reliably reproduce human AHT pathology and evaluate the effects of shaking on the immature brain. RESULTS Due largely to irreconcilable anatomic species differences between these animal brains and human infants, and a lack of resemblance of the experimental head shaking induced by mechanical devices to real-world human neurotrauma, no animal model has been able to reliably reproduce the full range of neuropathologic AHT changes. CONCLUSION Some animal models can simulate specific brain and ophthalmic lesions found in human AHT cases and provide useful information on their pathogenesis. Moreover, one animal model demonstrated that shaking of a freely mobile head, without an additional head impact, could be lethal, and produce significant brain pathology.
Collapse
|
10
|
Siwicka-Gieroba D, Dabrowski W. Credibility of the Neutrophil-to-Lymphocyte Count Ratio in Severe Traumatic Brain Injury. Life (Basel) 2021; 11:life11121352. [PMID: 34947883 PMCID: PMC8706648 DOI: 10.3390/life11121352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide. The consequences of a TBI generate the activation and accumulation of inflammatory cells. The peak number of neutrophils entering into an injured brain is observed after 24 h; however, cells infiltrate within 5 min of closed brain injury. Neutrophils release toxic molecules including free radicals, proinflammatory cytokines, and proteases that advance secondary damage. Regulatory T cells impair T cell infiltration into the central nervous system and elevate reactive astrogliosis and interferon-γ gene expression, probably inducing the process of healing. Therefore, the neutrophil-to-lymphocyte ratio (NLR) may be a low-cost, objective, and available predictor of inflammation as well as a marker of secondary injury associated with neutrophil activation. Recent studies have documented that an NLR value on admission might be effective for predicting outcome and mortality in severe brain injury patients.
Collapse
|
11
|
Multimodal characterization of Yucatan minipig behavior and physiology through maturation. Sci Rep 2021; 11:22688. [PMID: 34811385 PMCID: PMC8608884 DOI: 10.1038/s41598-021-00782-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023] Open
Abstract
Brain injuries induced by external forces are particularly challenging to model experimentally. In recent decades, the domestic pig has been gaining popularity as a highly relevant animal model to address the pathophysiological mechanisms and the biomechanics associated with head injuries. Understanding cognitive, motor, and sensory aspects of pig behavior throughout development is crucial for evaluating cognitive and motor deficits after injury. We have developed a comprehensive battery of tests to characterize the behavior and physiological function of the Yucatan minipig throughout maturation. Behavioral testing included assessments of learning and memory, executive functions, circadian rhythms, gait analysis, and level of motor activity. We applied traditional behavioral apparatus and analysis methods, as well as state-of-the-art sensor technologies to report on motion and activity, and artificial intelligent approaches to analyze behavior. We studied pigs from 16 weeks old through sexual maturity at 35 weeks old. The results show multidimensional characterization of minipig behavior, and how it develops and changes with age. This animal model may capitulate the biomechanical consideration and phenotype of head injuries in the developing brain and can drive forward the field of understanding pathophysiological mechanisms and developing new therapies to accelerate recovery in children who have suffered head trauma.
Collapse
|
12
|
Snooks KC, Yan K, Farias-Moeller R, Fink EL, Hanson SJ. Continuous Electroencephalogram and Antiseizure Medication Use in an International Pediatric Traumatic Brain Injury Population. Neurocrit Care 2021; 36:573-583. [PMID: 34553297 DOI: 10.1007/s12028-021-01337-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Electrographic seizures are frequent and associated with worse outcomes following traumatic brain injury (TBI). Despite this, the use of continuous electroencephalogram (cEEG) remains low. Our study describes cEEG usage and treatment dosing antiseizure medications (ASMs) in an international pediatric TBI population, hypothesizing that children monitored with cEEG have an increased rate of treatment ASMs because of electrographic seizure detection, compared with children who are not monitored with cEEG. METHODS This subanalysis of the TBI cohort of the international PANGEA study included children, 7 days to 17 years of age, with acute neurological insults admitted to pediatric intensive care units. We analyzed demographics, injury severity, and therapies including prophylactic or treatment ASMs. We evaluated the relationships between cEEG use, seizure frequency, and receipt of treatment ASMs. [Formula: see text] or Fisher's exact test was used to analyze categorical variables, and the Kruskal-Wallis or Mann-Whitney U-test was used for continuous variables. Multivariable analysis for treatment ASM use was performed using logistic regression. RESULTS One hundred-twenty-three of 174 patients with TBI were included. Twenty-seven patients (21.9%) underwent cEEG at any point during pediatric intensive care unit admission. Preexisting seizure disorder (18.2% vs. 2.3%, p = 0.014) and neuromuscular blockade use (52.4% vs. 24.1%, p = 0.011) were more frequently observed in the group monitored on cEEG when compared with those that were not. Presenting median Glasgow Coma Scale score was worse in the cEEG group (7 vs. 9, p = 0.044). There was no significant difference in age, use of intracranial pressure monitoring, or hyperosmolar therapy between the cEEG monitored and nonmonitored groups. Patients who were monitored on cEEG were more likely to receive a treatment dose ASM than those without cEEG monitoring (66.7% vs. 28.1%, p = 0.0002). When compared with those without treatment ASM, the treatment ASM group had more electrographic seizures on their first electroencephalogram following injury (51.6% vs. 4%, p = 0.0001) and more clinical seizures (55.8% vs. 0%, p < 0.0001). CONCLUSIONS Children monitored with cEEG after TBI have an increased prescription of treatment ASMs and clinical and electrographic seizures. The increased rate of treatment ASMs in the cEEG group may indicate increased recognition of electrographic seizures.
Collapse
Affiliation(s)
- Kellie C Snooks
- Medical College of Wisconsin, 9000 W. Wisconsin Ave, Milwaukee, WI, 53226, USA.
| | - Ke Yan
- Medical College of Wisconsin, 9000 W. Wisconsin Ave, Milwaukee, WI, 53226, USA
| | | | - Ericka L Fink
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sheila J Hanson
- Medical College of Wisconsin, 9000 W. Wisconsin Ave, Milwaukee, WI, 53226, USA
| |
Collapse
|
13
|
Zamani A, Ryan NP, Wright DK, Caeyenberghs K, Semple BD. The Impact of Traumatic Injury to the Immature Human Brain: A Scoping Review with Insights from Advanced Structural Neuroimaging. J Neurotrauma 2021; 37:724-738. [PMID: 32037951 DOI: 10.1089/neu.2019.6895] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury (TBI) during critical periods of early-life brain development can affect the normal formation of brain networks responsible for a range of complex social behaviors. Because of the protracted nature of brain and behavioral development, deficits in cognitive and socioaffective behaviors may not become evident until late adolescence and early adulthood, when such skills are expected to reach maturity. In addition, multiple pre- and post-injury factors can interact with the effects of early brain insult to influence long-term outcomes. In recent years, with advancements in magnetic-resonance-based neuroimaging techniques and analysis, studies of the pediatric population have revealed a link between neurobehavioral deficits, such as social dysfunction, with white matter damage. In this review, in which we focus on contributions from Australian researchers to the field, we have highlighted pioneering longitudinal studies in pediatric TBI, in relation to social deficits specifically. We also discuss the use of advanced neuroimaging and novel behavioral assays in animal models of TBI in the immature brain. Together, this research aims to understand the relationship between injury consequences and ongoing brain development after pediatric TBI, which promises to improve prediction of the behavioral deficits that emerge in the years subsequent to early-life injury.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nicholas P Ryan
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia.,Brain & Mind Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Parker KN, Donovan MH, Smith K, Noble-Haeusslein LJ. Traumatic Injury to the Developing Brain: Emerging Relationship to Early Life Stress. Front Neurol 2021; 12:708800. [PMID: 34484104 PMCID: PMC8416304 DOI: 10.3389/fneur.2021.708800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022] Open
Abstract
Despite the high incidence of brain injuries in children, we have yet to fully understand the unique vulnerability of a young brain to an injury and key determinants of long-term recovery. Here we consider how early life stress may influence recovery after an early age brain injury. Studies of early life stress alone reveal persistent structural and functional impairments at adulthood. We consider the interacting pathologies imposed by early life stress and subsequent brain injuries during early brain development as well as at adulthood. This review outlines how early life stress primes the immune cells of the brain and periphery to elicit a heightened response to injury. While the focus of this review is on early age traumatic brain injuries, there is also a consideration of preclinical models of neonatal hypoxia and stroke, as each further speaks to the vulnerability of the brain and reinforces those characteristics that are common across each of these injuries. Lastly, we identify a common mechanistic trend; namely, early life stress worsens outcomes independent of its temporal proximity to a brain injury.
Collapse
Affiliation(s)
- Kaila N. Parker
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Michael H. Donovan
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Kylee Smith
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Linda J. Noble-Haeusslein
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
15
|
Oeur RA, Margulies SS. Target detection in healthy 4-week old piglets from a passive two-tone auditory oddball paradigm. BMC Neurosci 2020; 21:52. [PMID: 33287727 PMCID: PMC7720395 DOI: 10.1186/s12868-020-00601-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Passive auditory oddball tests are effort independent assessments that evaluate auditory processing and are suitable for paediatric patient groups. Our goal was to develop a two-tone auditory oddball test protocol and use this clinical assessment in an immature large animal model. Event-related potentials captured middle latency P1, N1, and P2 responses in 4-week old (N = 16, female) piglets using a custom piglet 32- electrode array on 3 non-consecutive days. The effect of target tone frequency (250 Hz and 4000 Hz) on middle latency responses were tested in a subset of animals. RESULTS Results show that infrequent target tone pulses elicit greater N1 amplitudes than frequent standard tone pulses. There was no effect of day. Electrodes covering the front of the head tend to elicit greater waveform responses. P2 amplitudes increased for higher frequency target tones (4000 Hz) than the regular 1000 Hz target tones (p < 0.05). CONCLUSIONS Two-tone auditory oddball tests produced consistent responses day-to-day. This clinical assessment was successful in the immature large animal model.
Collapse
Affiliation(s)
- R Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, 615 Michael St. Suite 655, Atlanta, GA, USA
| | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, 615 Michael St. Suite 655, Atlanta, GA, USA.
- Emory University, Health Sciences Research Building 1760 Haygood Drive, Suite W242, 30322, Atlanta, Georgia.
| |
Collapse
|
16
|
Karimi SA, Hosseinmardi N, Sayyah M, Hajisoltani R, Janahmadi M. Enhancement of intrinsic neuronal excitability-mediated by a reduction in hyperpolarization-activated cation current (I h ) in hippocampal CA1 neurons in a rat model of traumatic brain injury. Hippocampus 2020; 31:156-169. [PMID: 33107111 DOI: 10.1002/hipo.23270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 01/13/2023]
Abstract
Traumatic brain injury (TBI) is associated with epileptiform activity in the hippocampus; however, the underlying mechanisms have not been fully determined. The goal was to understand what changes take place in intrinsic neuronal physiology in the hippocampus after blunt force trauma to the cortex. In this context, hyperpolarization-activated cation current (Ih ) currents may have a critical role in modulating the neuronal intrinsic membrane excitability; therefore, its contribution to the TBI-induced hyperexcitability was assessed. In a model of TBI caused by controlled cortical impact (CCI), the intrinsic electrophysiological properties of pyramidal neurons were examined 1 week after TBI induction in rats. Whole-cell patch-clamp recordings were performed under current- and voltage-clamp conditions following ionotropic receptors blockade. Induction of TBI caused changes in the intrinsic excitability of pyramidal neurons, as shown by a significant increase and decrease in firing frequency and in the rheobase current, respectively (p < .05). The evoked firing rate and the action potential time to peak were also significantly increased and decreased, respectively (p < .05). In the TBI group, the amplitude of instantaneous and steady-state Ih currents was both significantly smaller than those in the control group (p < .05). The Ih current density was also significantly decreased (p < .001). Findings indicated that TBI led to an increase in the intrinsic excitability in CA1 pyramidal neurons and changes in Ih current could be, in part, one of the underlying mechanisms involved in this hyperexcitability.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Razieh Hajisoltani
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
A Novel Clinical Research Modality for Enrolling Diverse Participants Using a Diverse Team. Brain Sci 2020; 10:brainsci10070434. [PMID: 32650502 PMCID: PMC7408300 DOI: 10.3390/brainsci10070434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/23/2022] Open
Abstract
The advancement of the pediatric traumatic brain injury (TBI) knowledge base requires biospecimens and data from large samples. This study seeks to describe a novel clinical research modality to establish best practices for enrolling a diverse pediatric TBI population and quantifying key information on enrollment into biobanks. Screening form responses were standardized and cleaned through Google Sheets. Data were used to analyze total individuals at each enrollment stage. R was utilized for final analysis, including logistic model and proportion statistical tests, to determine further significance and relationships. Issues throughout data cleaning shed light on limitations of the consent modality. The results suggest that through a diverse research team, the recruited sample exceeds traditional measures of representation (e.g., sex, race, ethnicity). Sex demographics of the study are representative of the local population. Screening for candidates is critical to the success of the consent modality. The consent modality may be modified to increase the diversity of the study population and accept bilingual candidates. Researchers must implement best practices, including increasing inclusivity of bilingual populations, utilizing technology, and improving participant follow-up, to improve health disparities for understudied clinical populations.
Collapse
|
18
|
Diaz-Chávez A, Lajud N, Roque A, Cheng JP, Meléndez-Herrera E, Valdéz-Alarcón JJ, Bondi CO, Kline AE. Early life stress increases vulnerability to the sequelae of pediatric mild traumatic brain injury. Exp Neurol 2020; 329:113318. [PMID: 32305419 DOI: 10.1016/j.expneurol.2020.113318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Early life stress (ELS) is a risk factor for many psychopathologies that happen later in life. Although stress can occur in cases of child abuse, studies on non-accidental brain injuries in pediatric populations do not consider the possible increase in vulnerability caused by ELS. Hence, we sought to determine whether ELS increases the effects of pediatric mild traumatic brain injury (mTBI) on cognition, hippocampal inflammation, and plasticity. Male rats were subjected to maternal separation for 180 min per day (MS180) or used as controls (CONT) during the first 21 post-natal (P) days. At P21 the rats were anesthetized with isoflurane and subjected to a mild controlled cortical impact or sham injury. At P32 the rats were injected with the cell proliferation marker bromodeoxyuridine (BrdU, 500 mg/kg), then evaluated for spatial learning and memory in a water maze (P35-40) and sacrificed for quantification of Ki67+, BrdU+ and Iba1+ (P42). Neither MS180 nor mTBI impacted cognitive outcome when provided alone but their combination (MS180 + mTBI) decreased spatial learning and memory relative to Sham controls (p < .01). mTBI increased microglial activation and affected BrdU+ cell survival in the ipsilateral hippocampus without affecting proliferation rates. However, only MS180 + mTBI increased microglial activation in the area adjacent to the injury and the contralateral CA1 hippocampal subfield, and decreased cell proliferation in the ipsilateral neurogenic niche. Overall, the data show that ELS increases the vulnerability to the sequelae of pediatric mTBI and may be mediated by increased neuroinflammation.
Collapse
Affiliation(s)
- Arturo Diaz-Chávez
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico; Instituto de Investigaciones sobre los Recursos Naturales - Benemérita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Naima Lajud
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Angélica Roque
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Esperanza Meléndez-Herrera
- Instituto de Investigaciones sobre los Recursos Naturales - Benemérita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Juan José Valdéz-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Benemérita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; Psychology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
19
|
Paek D, Kwon DI. A review on four different paths to respiratory arrest from brain injury in children; implications for child abuse. J Forensic Leg Med 2020; 71:101938. [PMID: 32342908 DOI: 10.1016/j.jflm.2020.101938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/17/2020] [Accepted: 03/08/2020] [Indexed: 11/23/2022]
Abstract
Child abuse was suspected in a case of out-of-hospital arrest with minor brain injuries. Confronted with continued disputes on pathophysiologic correlates even after autopsy, to assist the differentiation of potential causes of sudden cardiopulmonary arrest in children, we tried to identify the mechanism of cardiopulmonary arrest in brain injuries from different causes. Systematic review was carried out in two stages. First, major external causes of cardiopulmonary arrest among children and infants were identified from Pubmed and Google Scholar search, and then the exact sequence of cardiopulmonary arrest, and their pathophysiologic features were identified based on articles of animal models of brain injury. From the review, we have identified four major groups of external circumstances for rather sudden cardiopulmonary arrest from brain damage in children, after excluding congenital and other unrelated diseases; 1) impact brain apnea, 2) anoxic insults, 3) drug or other substance induced central nervous system depression, and 4) traumatic brain damage. Each group has different features in the course of cardiac and respiratory arrests. Based on this review of pathophysiologic features of cardio-respiratory responses from external causes, we have presented a suspected, but unlikely, child abuse case of respiratory arrest from brain injury. The social consequences of both unknowingly missing, and falsely incriminating the abuse can be grave, and the identification of the mechanisms of cardiopulmonary arrest from brain injury can be important for the differentiation of various potential causes.
Collapse
Affiliation(s)
- Domyung Paek
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, Seoul, 08826, South Korea.
| | - Dae-Ik Kwon
- Sinpyung Yeonhap Clinic, Daegu, South Korea.
| |
Collapse
|
20
|
Animal Models of Post-Traumatic Epilepsy. Diagnostics (Basel) 2019; 10:diagnostics10010004. [PMID: 31861595 PMCID: PMC7169449 DOI: 10.3390/diagnostics10010004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury is the leading cause of morbidity and mortality worldwide, with the incidence of post-traumatic epilepsy increasing with the severity of the head injury. Post-traumatic epilepsy (PTE) is defined as a recurrent seizure disorder secondary to trauma to the brain and has been described as one of the most devastating complications associated with TBI (Traumatic Brain Injury). The goal of this review is to characterize current animal models of PTE and provide succinct protocols for the development of each of the currently available animal models. The development of translational and effective animal models for post-traumatic epilepsy is critical in both elucidating the underlying pathophysiology associated with PTE and providing efficacious clinical breakthroughs in the management of PTE.
Collapse
|
21
|
Fraunberger E, Esser MJ. Neuro-Inflammation in Pediatric Traumatic Brain Injury-from Mechanisms to Inflammatory Networks. Brain Sci 2019; 9:E319. [PMID: 31717597 PMCID: PMC6895990 DOI: 10.3390/brainsci9110319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Compared to traumatic brain injury (TBI) in the adult population, pediatric TBI has received less research attention, despite its potential long-term impact on the lives of many children around the world. After numerous clinical trials and preclinical research studies examining various secondary mechanisms of injury, no definitive treatment has been found for pediatric TBIs of any severity. With the advent of high-throughput and high-resolution molecular biology and imaging techniques, inflammation has become an appealing target, due to its mixed effects on outcome, depending on the time point examined. In this review, we outline key mechanisms of inflammation, the contribution and interactions of the peripheral and CNS-based immune cells, and highlight knowledge gaps pertaining to inflammation in pediatric TBI. We also introduce the application of network analysis to leverage growing multivariate and non-linear inflammation data sets with the goal to gain a more comprehensive view of inflammation and develop prognostic and treatment tools in pediatric TBI.
Collapse
Affiliation(s)
- Erik Fraunberger
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michael J. Esser
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pediatrics, Cumming School Of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
22
|
Clément T, Lee JB, Ichkova A, Rodriguez-Grande B, Fournier ML, Aussudre J, Ogier M, Haddad E, Canini F, Koehl M, Abrous DN, Obenaus A, Badaut J. Juvenile mild traumatic brain injury elicits distinct spatiotemporal astrocyte responses. Glia 2019; 68:528-542. [PMID: 31670865 DOI: 10.1002/glia.23736] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
Mild-traumatic brain injury (mTBI) represents ~80% of all emergency room visits and increases the probability of developing long-term cognitive disorders in children. To date, molecular and cellular mechanisms underlying post-mTBI cognitive dysfunction are unknown. Astrogliosis has been shown to significantly alter astrocytes' properties following brain injury, potentially leading to significant brain dysfunction. However, such alterations have never been investigated in the context of juvenile mTBI (jmTBI). A closed-head injury model was used to study jmTBI on postnatal-day 17 mice. Astrogliosis was evaluated using glial fibrillary acidic protein (GFAP), vimentin, and nestin immunolabeling in somatosensory cortex (SSC), dentate gyrus (DG), amygdala (AMY), and infralimbic area (ILA) of prefrontal cortex in both hemispheres from 1 to 30 days postinjury (dpi). In vivo T2-weighted-imaging (T2WI) and diffusion tensor imaging (DTI) were performed at 7 and 30 dpi to examine tissue level structural alterations. Increased GFAP-labeling was observed up to 30 dpi in the ipsilateral SSC, the initial site of the impact. However, vimentin and nestin expression was not perturbed by jmTBI. The morphology of GFAP positive cells was significantly altered in the SSC, DG, AMY, and ILA up to 7 dpi that some correlated with magnetic resonance imaging changes. T2WI and DTI values were significantly altered at 30 dpi within these brain regions most prominently in regions distant from the impact site. Our data show that jmTBI triggers changes in astrocytic phenotype with a distinct spatiotemporal pattern. We speculate that the presence and time course of astrogliosis may contribute to pathophysiological processes and long-term structural alterations following jmTBI.
Collapse
Affiliation(s)
| | - Jeong B Lee
- Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | | | | | | | | | - Michael Ogier
- Département des Neurosciences et Sciences Cognitives, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Elizabeth Haddad
- Department of Pediatrics, University of California, Irvine, Irvine, California
| | - Frederic Canini
- Département des Neurosciences et Sciences Cognitives, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Muriel Koehl
- Neurocentre Magendie INSERM U1215, Bordeaux, France
| | | | - Andre Obenaus
- Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Pediatrics, University of California, Irvine, Irvine, California
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France.,Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
23
|
Hajiaghamemar M, Seidi M, Oeur RA, Margulies SS. Toward development of clinically translatable diagnostic and prognostic metrics of traumatic brain injury using animal models: A review and a look forward. Exp Neurol 2019; 318:101-123. [PMID: 31055005 PMCID: PMC6612432 DOI: 10.1016/j.expneurol.2019.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. There is an increasing interest in both clinical and pre-clinical studies to discover biomarkers to accurately diagnose traumatic brain injury (TBI), predict its outcomes, and monitor its progression especially in the developing brain. In humans, the heterogeneity of TBI in terms of clinical presentation, injury causation, and mechanism has contributed to the many challenges associated with finding unifying diagnosis, treatment, and management practices. In addition, findings from adult human research may have little application to pediatric TBI, as age and maturation levels affect the injury biomechanics and neurophysiological consequences of injury. Animal models of TBI are vital to address the variability and heterogeneity of TBI seen in human by isolating the causation and mechanism of injury in reproducible manner. However, a gap between the pre-clinical findings and clinical applications remains in TBI research today. To take a step toward bridging this gap, we reviewed several potential TBI tools such as biofluid biomarkers, electroencephalography (EEG), actigraphy, eye responses, and balance that have been explored in both clinical and pre-clinical studies and have shown potential diagnostic, prognostic, or monitoring utility for TBI. Each of these tools measures specific deficits following TBI, is easily accessible, non/minimally invasive, and is potentially highly translatable between animals and human outcomes because they involve effort-independent and non-verbal tasks. Especially conspicuous is the fact that these biomarkers and techniques can be tailored for infants and toddlers. However, translation of preclinical outcomes to clinical applications of these tools necessitates addressing several challenges. Among the challenges are the heterogeneity of clinical TBI, age dependency of some of the biomarkers, different brain structure, life span, and possible variation between temporal profiles of biomarkers in human and animals. Conducting parallel clinical and pre-clinical research, in addition to the integration of findings across species from several pre-clinical models to generate a spectrum of TBI mechanisms and severities is a path toward overcoming some of these challenges. This effort is possible through large scale collaborative research and data sharing across multiple centers. In addition, TBI causes dynamic deficits in multiple domains, and thus, a panel of biomarkers combining these measures to consider different deficits is more promising than a single biomarker for TBI. In this review, each of these tools are presented along with the clinical and pre-clinical findings, advantages, challenges and prospects of translating the pre-clinical knowledge into the human clinical setting.
Collapse
Affiliation(s)
- Marzieh Hajiaghamemar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Morteza Seidi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - R Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
Kinder HA, Baker EW, Howerth EW, Duberstein KJ, West FD. Controlled Cortical Impact Leads to Cognitive and Motor Function Deficits that Correspond to Cellular Pathology in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019; 36:2810-2826. [PMID: 31084390 DOI: 10.1089/neu.2019.6405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, with children who sustain a TBI having a greater risk of developing long-lasting cognitive, behavioral, and motor function deficits. This has led to increased interest in utilizing large animal models to study pathophysiologic and functional changes after injury in hopes of identifying novel therapeutic targets. In the present study, a controlled cortical impact (CCI) piglet TBI model was utilized to evaluate cognitive, motor, and histopathologic outcomes. CCI injury (4 m/sec velocity, 9 mm depression, 400 msec dwell time) was induced at the parietal cortex. Compared with normal pigs (n = 5), TBI pigs (n = 5) exhibited appreciable cognitive deficiencies, including significantly impaired spatial memory in spatial T-maze testing and a significant decrease in exploratory behaviors followed by marked hyperactivity in open field testing. Additionally, gait analysis revealed significant increases in cycle time and stance percent, significant decreases in hind reach, and a shift in the total pressure index from the front to the hind limb on the affected side, suggesting TBI impairs gait and balance. Pigs were sacrificed 28 days post-TBI and histological analysis revealed that TBI lead to a significant decrease in neurons and a significant increase in microglia activation and astrogliosis/astrocytosis at the perilesional area, a significant loss in neurons at the dorsal hippocampus, and significantly increased neuroblast proliferation at the subventricular zone. These data demonstrate a strong relationship between TBI-induced cellular changes and functional outcomes in our piglet TBI model that lay the framework for future studies that assess the ability of therapeutic interventions to contribute to functional improvements.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Elizabeth W Howerth
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Pathology, University of Georgia, Athens, Georgia
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
25
|
Jantzie L, El Demerdash N, Newville JC, Robinson S. Time to reconsider extended erythropoietin treatment for infantile traumatic brain injury? Exp Neurol 2019; 318:205-215. [PMID: 31082389 DOI: 10.1016/j.expneurol.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 01/03/2023]
Abstract
Pediatric traumatic brain injury (TBI) remains a leading cause of childhood morbidity and mortality worldwide. Most efforts to reduce the chronic impact of pediatric TBI involve prevention and minimization of secondary injury. Currently, no treatments are used in routine clinical care during the acute and subacute phases to actively repair injury to the developing brain. The endogenous pluripotent cytokine erythropoietin (EPO) holds promise as an emerging neuroreparative agent in perinatal brain injury (PBI). EPO signaling in the central nervous system (CNS) is essential for multiple stages of neurodevelopment, including the genesis, survival and differentiation of multiple lineages of neural cells. Postnatally, EPO signaling decreases markedly as the CNS matures. Importantly, high-dose, extended EPO regimens have shown efficacy in preclinical controlled cortical impact (CCI) models of infant TBI at two different, early ages by independent research groups. Specifically, extended high-dose EPO treatment after infantile CCI prevents long-term cognitive deficits in adult rats. Because of the striking differences in the molecular and cellular responses to both injury and recovery in the developing and mature CNS, and the excellent safety profile of EPO in infants and children, extended courses of EPO are currently in Phase III trials for neonates with PBI. Extended, high-dose EPO may also warrant testing for infants and young children with TBI.
Collapse
Affiliation(s)
- Lauren Jantzie
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States..
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Jessie C Newville
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Bolton-Hall AN, Hubbard WB, Saatman KE. Experimental Designs for Repeated Mild Traumatic Brain Injury: Challenges and Considerations. J Neurotrauma 2019; 36:1203-1221. [PMID: 30351225 PMCID: PMC6479246 DOI: 10.1089/neu.2018.6096] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mild traumatic brain injury (mild TBI) is a growing public concern, as evidence mounts that even brain injuries classified as "mild" can result in persistent neurological dysfunction. Multiple brain injuries heighten the likelihood of worsened or more prolonged symptomatology and may trigger long-term neurodegeneration. Animal models provide a logical platform to identify key parameters, such as loading forces, duration between injuries, and number of injuries, which contribute to additive or synergistic damage after repeated mild TBI. Despite the tremendous increase in research productivity in the field of repeated mild TBI, relatively few studies have been designed in such a way as to provide experimental-based insights into the dependence of cellular and functional outcomes on the prescribed parameters of mild TBI. In this review, we summarize how standard models of TBI have been adapted to produce mild TBI and highlight commonly observed aspects of neuropathology replicated in rodent models of mild TBI. The complexity of designing studies of repeated TBI is discussed, including challenges of incorporating appropriate control groups, informative experimental design, and relevant outcome measures. We then feature studies that provide a well-controlled, within-study design varying either the number of injuries or the interinjury interval. Harnessing the power of experimental models of TBI to elucidate which injury parameters are critical contributors to acute and chronic damage after repeated injury can further efforts at prevention and provide improved models for testing mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Amanda N. Bolton-Hall
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
27
|
von Leden RE, Parker KN, Bates AA, Noble-Haeusslein LJ, Donovan MH. The emerging role of neutrophils as modifiers of recovery after traumatic injury to the developing brain. Exp Neurol 2019; 317:144-154. [PMID: 30876905 DOI: 10.1016/j.expneurol.2019.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022]
Abstract
The innate immune response plays a critical role in traumatic brain injury (TBI), contributing to ongoing pathogenesis and worsening long-term outcomes. Here we focus on neutrophils, one of the "first responders" to TBI. These leukocytes are recruited to the injured brain where they release a host of toxic molecules including free radicals, proteases, and pro-inflammatory cytokines, all of which promote secondary tissue damage. There is mounting evidence that the developing brain is more vulnerable to injury that the adult brain. This vulnerability to greater damage from TBI is, in part, attributed to relatively low antioxidant reserves coupled with an early robust immune response. The latter is reflected in enhanced sensitivity to cytokines and a prolonged recruitment of neutrophils into both cortical and subcortical regions. This review considers the contribution of neutrophils to early secondary pathogenesis in the injured developing brain and raises the distinct possibility that these leukocytes, which exhibit phenotypic plasticity, may also be poised to support wound healing. We provide a basic review of the development, life cycle, and granular contents of neutrophils and evaluate their potential as therapeutic targets for early neuroprotection and functional recovery after injury at early age. While neutrophils have been broadly studied in neurotrauma, we are only beginning to appreciate their diverse roles in the developing brain and the extent to which their acute manipulation may result in enduring neurological recovery when TBI is superimposed upon brain development.
Collapse
Affiliation(s)
- Ramona E von Leden
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1701 Trinity St., Austin, TX 78712, USA.
| | - Kaila N Parker
- Department of Psychology, Behavioral Neuroscience, The University of Texas at Austin, 108 E. Dean Keeton St., Austin, TX 78712, USA.
| | - Adrian A Bates
- Institute for Neuroscience, The University of Texas at Austin, 100 E. 24(th) St., Austin, TX 78712, USA.
| | - Linda J Noble-Haeusslein
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1701 Trinity St., Austin, TX 78712, USA; Department of Psychology, Behavioral Neuroscience, The University of Texas at Austin, 108 E. Dean Keeton St., Austin, TX 78712, USA; Institute for Neuroscience, The University of Texas at Austin, 100 E. 24(th) St., Austin, TX 78712, USA.
| | - Michael H Donovan
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1701 Trinity St., Austin, TX 78712, USA.
| |
Collapse
|
28
|
Rowe RK, Harrison JL, Ellis TW, Adelson PD, Lifshitz J. Midline (central) fluid percussion model of traumatic brain injury in pediatric and adolescent rats. J Neurosurg Pediatr 2018; 22:22-30. [PMID: 29676680 DOI: 10.3171/2018.1.peds17449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Experimental traumatic brain injury (TBI) models hold significant validity to the human condition, with each model replicating a subset of clinical features and symptoms. TBI is the leading cause of mortality and morbidity in children and teenagers; thus, it is critical to develop preclinical models of these ages to test emerging treatments. Midline fluid percussion injury (FPI) might best represent mild and diffuse clinical brain injury because of the acute behavioral deficits, the late onset of behavioral morbidities, and the absence of gross histopathology. In this study, the authors sought to adapt a midline FPI to postnatal day (PND) 17 and 35 rats. The authors hypothesized that scaling the craniectomy size based on skull dimensions would result in a reproducible injury comparable to the standard midline FPI in adult rats. METHODS PND17 and PND35 rat skulls were measured, and trephines were scaled based on skull size. Custom trephines were made. Rats arrived on PND10 and were randomly assigned to one of 3 cohorts: PND17, PND35, and 2 months old. Rats were subjected to midline FPI, and the acute injury was characterized. The right reflex was recorded, injury-induced apnea was measured, injury-induced seizure was noted, and the brains were immediately examined for hematoma. RESULTS The authors' hypothesis was supported; scaling the trephines based on skull size led to a reproducible injury in the PND17 and PND35 rats that was comparable to the injury in a standard 2-month-old adult rat. The midline FPI suppressed the righting reflex in both the PND17 and PND35 rats. The injury induced apnea in PND17 rats that lasted significantly longer than that in PND35 and 2-month-old rats. The injury also induced seizures in 73% of PND17 rats compared with 9% of PND35 rats and 0% of 2-month-old rats. There was also a significant relationship between the righting reflex time and presence of seizure. Both PND17 and PND35 rats had visible hematomas with an intact dura, indicative of diffuse injury comparable to the injury observed in 2-month-old rats. CONCLUSIONS With these procedures, it becomes possible to generate brain-injured juvenile rats (pediatric [PND17] and adolescent [PND35]) for studies of injury-induced pathophysiology and behavioral deficits, for which rational therapeutic interventions can be implemented.
Collapse
Affiliation(s)
- Rachel K Rowe
- 1Barrow Neurological Institute at Phoenix Children's Hospital.,3Phoenix Veteran Affairs Healthcare System, Phoenix
| | - Jordan L Harrison
- 1Barrow Neurological Institute at Phoenix Children's Hospital.,2Department of Child Health, University of Arizona College of Medicine, Phoenix.,4Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe; and
| | - Timothy W Ellis
- 5Midwestern University, School of Osteopathic Medicine, Glendale, Arizona
| | - P David Adelson
- 1Barrow Neurological Institute at Phoenix Children's Hospital.,2Department of Child Health, University of Arizona College of Medicine, Phoenix
| | - Jonathan Lifshitz
- 1Barrow Neurological Institute at Phoenix Children's Hospital.,4Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe; and
| |
Collapse
|
29
|
Huh JW, Raghupathi R. Therapeutic strategies to target acute and long-term sequelae of pediatric traumatic brain injury. Neuropharmacology 2018; 145:153-159. [PMID: 29933010 DOI: 10.1016/j.neuropharm.2018.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Pediatric traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality in children. Experimental and clinical studies demonstrate that the developmental age, the type of injury (diffuse vs. focal) and sex may play important roles in the response of the developing brain to a traumatic injury. Advancements in acute neurosurgical interventions and neurocritical care have improved and led to a decrease in mortality rates over the past decades. However, survivors are left with life-long behavioral deficits underscoring the need to better define the cellular mechanisms underlying these functional changes. A better understanding of these mechanisms some of which begin in the acute post-traumatic period may likely lead to targeted treatment strategies. Key considerations in designing pre-clinical experiments to test therapeutic strategies in pediatric TBI include the use of age-appropriate and pathologically-relevant models, functional outcomes that are tested as animals age into adolescence and beyond, sex as a biological variable and the recognition that doses and dosing strategies that have been demonstrated to be effective in animal models of adult TBI may not be effective in the developing brain. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|