1
|
Kobyliak N, Khomenko M, Falalyeyeva T, Fedchenko A, Savchuk O, Tseyslyer Y, Ostapchenko L. Probiotics for pancreatic β-cell function: from possible mechanism of action to assessment of effectiveness. Crit Rev Microbiol 2024; 50:663-683. [PMID: 37705353 DOI: 10.1080/1040841x.2023.2257776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by chronic hyperglycemia because of insulin resistance (IR) and\or pancreatic β-cell dysfunction. Last century research showed that gut microbiota has a direct effect on metabolism and metabolic diseases. New studies into the human microbiome and its connection with the host is making it possible to develop new therapies for a wide variety of diseases. Inflammation is a well-known precursor to metabolic syndrome, which increases the risk of hypertension, visceral obesity, and dyslipidemia, which can lead to T2D through the damage of pancreatic β-cell and reduce insulin secretion. Current understanding for beneficial effects of probiotics in T2D strictly rely on both animal and clinical data, which mostly focused on their impact on IR, anthropometric parameters, glycemic control and markers of chronic systemic inflammation. From the other hand, there is a lack of evidence-based probiotic efficacy on pancreatic β-cell function in terms of T2D and related metabolic disorders. Therefore, current review will focus on the efficacy of probiotics for the protection of β-cells damage and it`s mechanism in patients with T2D.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Maria Khomenko
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Medical Laboratory CSD, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | | | | | | |
Collapse
|
2
|
Dasriya VL, Samtiya M, Ranveer S, Dhillon HS, Devi N, Sharma V, Nikam P, Puniya M, Chaudhary P, Chaudhary V, Behare PV, Dhewa T, Vemuri R, Raposo A, Puniya DV, Khedkar GD, Vishweswaraiah RH, Vij S, Alarifi SN, Han H, Puniya AK. Modulation of gut-microbiota through probiotics and dietary interventions to improve host health. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6359-6375. [PMID: 38334314 DOI: 10.1002/jsfa.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Dietary patterns play an important role in regards to the modulation and control of the gut microbiome composition and function. The interaction between diet and microbiota plays an important role in order to maintain intestinal homeostasis, which ultimately affect the host's health. Diet directly impacts the microbes that inhabit the gastrointestinal tract (GIT), which then contributes to the production of secondary metabolites, such as short-chain fatty acids, neurotransmitters, and antimicrobial peptides. Dietary consumption with genetically modified probiotics can be the best vaccine delivery vector and protect cells from various illnesses. A holistic approach to disease prevention, treatment, and management takes these intrinsically linked diet-microbes, microbe-microbe interactions, and microbe-host interactions into account. Dietary components, such as fiber can modulate beneficial gut microbiota, and they have resulting ameliorative effects against metabolic disorders. Medical interventions, such as antibiotic drugs can conversely have detrimental effects on gut microbiota by disputing the balance between Bacteroides and firmicute, which contribute to continuing disease states. We summarize the known effects of various dietary components, such as fibers, carbohydrates, fatty acids, vitamins, minerals, proteins, phenolic acids, and antibiotics on the composition of the gut microbiota in this article in addition to the beneficial effect of genetically modified probiotics and consequentially their role in regards to shaping human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Soniya Ranveer
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Nishu Devi
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Vikas Sharma
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pranali Nikam
- College of Dairy Science and Food Technology, Dau Shri Vasudev Chandrakar, Kamdhenu University, Raipur, India
| | - Monica Puniya
- Science and Standards Division, Food Safety and Standards Authority of India, FDA Bhawan, New Delhi, India
| | - Priya Chaudhary
- Microbiology Department, VCSG Government Institute of Medical Science and Research, Srinagar, India
| | - Vishu Chaudhary
- University Institute of Biotechnology, Chandigarh University, Sahibzada Ajit Singh Nagar, India
| | - Pradip V Behare
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Dharun Vijay Puniya
- Center of One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Gulab D Khedkar
- Paul Hebert Center for DNA Barcoding and Biodiversity Studies, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | | | - Shilpa Vij
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sehad N Alarifi
- Department of Food and Nutrition Science, Al-Quwayiyah College of Sciences and Humanities, Shaqra University, Shaqraa, Saudi Arabia
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, South Korea
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
3
|
Paladino L, Rappa F, Barone R, Macaluso F, Zummo FP, David S, Szychlinska MA, Bucchieri F, Conway de Macario E, Macario AJL, Cappello F, Marino Gammazza A. NF-kB Regulation and the Chaperone System Mediate Restorative Effects of the Probiotic Lactobacillus fermentum LF31 in the Small Intestine and Cerebellum of Mice with Ethanol-Induced Damage. BIOLOGY 2023; 12:1394. [PMID: 37997993 PMCID: PMC10669058 DOI: 10.3390/biology12111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023]
Abstract
Probiotics are live microorganisms that yield health benefits when consumed, generally by improving or restoring the intestinal flora (microbiota) as part of the muco-microbiotic layer of the bowel. In this work, mice were fed with ethanol alone or in combination with the probiotic Lactobacillus fermentum (L. fermentum) for 12 weeks. The modulation of the NF-κB signaling pathway with the induction of Hsp60, Hsp90, and IkB-α by the probiotic occurred in the jejunum. L. fermentum inhibited IL-6 expression and downregulated TNF-α transcription. NF-κB inactivation concurred with the restoration of the intestinal barrier, which had been damaged by ethanol, via the production of tight junction proteins, ameliorating the ethanol-induced intestinal permeability. The beneficial effect of the probiotic on the intestine was repeated for the cerebellum, in which downregulation of glial inflammation-related markers was observed in the probiotic-fed mice. The data show that L. fermentum exerted anti-inflammatory and cytoprotective effects in both the small intestine and the cerebellum, by suppressing ethanol-induced increased intestinal permeability and curbing neuroinflammation. The results also suggest that L. fermentum could be advantageous, along with the other available means, for treating intestinal diseases caused by stressors associated with inflammation and dysbiosis.
Collapse
Affiliation(s)
- Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
- Institute of Translational Pharmacology (IFT), Italy National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
| | - Filippo Macaluso
- Department of SMART Engineering Solutions & Technologies, eCampus University, 22060 Novedrate, Italy;
| | - Francesco Paolo Zummo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
| | - Sabrina David
- Department Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, 90133 Palermo, Italy;
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, UKE-Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy;
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (F.R.); (R.B.); (F.P.Z.); (F.B.); (F.C.)
| |
Collapse
|
4
|
Lee Y, Nguyen TL, Roh H, Kim A, Park J, Lee JY, Kang YR, Kang H, Sohn MY, Park CI, Kim DH. Mechanisms underlying probiotic effects on neurotransmission and stress resilience in fish via transcriptomic profiling. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109063. [PMID: 37678478 DOI: 10.1016/j.fsi.2023.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
In recent years, studies have highlighted the significant impact of probiotic treatment on the central nervous system (brain) and stress regulation through the microbiota-gut-brain axis, yet there have been limited knowledge on this axis in fish. Therefore, this study aimed to enhance the current understanding of the mechanisms underlying probiotic effects on neurotransmission and stress alleviation in fish through transcriptomic profiling. In this study, olive flounders (Paralichthys olivaceus) were subjected to two trial setups: a 1-month lab-scale trial and a 6-month field-scale trial, with and without the probiotic strain Lactococcus lactis WFLU12. RNA-Seq analysis was performed using liver samples collected from fish at one-month post-feeding (mpf) in both trials. Additionally, fish growth was monitored monthly, and serological parameters were measured at one mpf in the field-scale experiment. The results of the lab-scale trial showed that probiotic administration significantly upregulated genes related to neurotransmission, such as htr3a, mao, ddc, ntsr1, and gfra2. These findings highlight the impact of probiotics on modulating neurotransmission via the microbiota-gut-brain axis. In the field-scale experiment, fish growth was significantly promoted and the sera levels of AST, LDH, and cortisol were significantly higher in the control group compared to the probiotics group. Furthermore, genes involved in stress responses (e.g. hsp70, hsp90B1, hspE1, prdx1, and gss) and transcriptional regulators (e.g. fos, dusp1, and dusp2) exhibited significant upregulation in the control group compared to the probiotics group, indicating that probiotic administration can alleviate stress levels in fish. Overall, this study provides valuable insights into the mechanisms underlying the beneficial effects of probiotics in fish, specifically regarding their impact on neurotransmission and stress alleviation.
Collapse
Affiliation(s)
- Yoonhang Lee
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Thanh Luan Nguyen
- Department of Science and Technology, HUTECH University, Ho Chi Minh City, Viet Nam
| | - HyeongJin Roh
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Ahran Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Jiyeon Park
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Ju-Yeop Lee
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Yu-Ra Kang
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Hyoyeong Kang
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Min-Young Sohn
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea.
| |
Collapse
|
5
|
Hoseini SM, Yousefi M, Afzali-Kordmahalleh A, Pagheh E, Taheri Mirghaed A. Effects of Dietary Lactic Acid Supplementation on the Activity of Digestive and Antioxidant Enzymes, Gene Expressions, and Bacterial Communities in the Intestine of Common Carp, Cyprinus carpio. Animals (Basel) 2023; 13:1934. [PMID: 37370444 DOI: 10.3390/ani13121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The present study investigated the effects of dietary lactic acid (LA) supplementation on the growth performance, intestinal digestive/antioxidant enzymes' activities, gene expression, and bacterial communities in common carp, Cyprinus carpio. Four diets were formulated to contain 0 g/kg LA (control), at 2.5 g/kg LA (2.5LAC), 5 g/kg LA (5LAC), and 10 g/kg LA (10LAC) and offered to the fish over a period of 56 days. The results showed that dietary 5 g/kg LA supplementation improved growth performance and feed efficiency in the fish. All LA treatments exhibited significant elevations in the intestinal trypsin and chymotrypsin activities, whereas the intestinal lipase, amylase, and alkaline phosphatase activities exhibited significant elevations in the 5LAC and 10LAC treatments. All LA treatments exhibited significant elevations in the intestinal heat shock protein 70, tumor necrosis factor-alpha, interleukin-1 beta, and defensin gene expressions, and the highest expression was observed in the 5LAC treatment. Additionally, dietary LA treatment significantly increased the lysozyme expression and Lactobacillus sp. population in the intestine of the fish, and the highest values were observed in the 5LAC and 10LAC treatments. Aeromonas sp. and Vibrio sp. populations decreased in the LA treatments, and the lowest Aeromonas sp. population was observed in the 10LAC treatment. The intestinal mucin2 and mucin5 expressions, and the hepatic reduced glutathione content, significantly increased, whereas hepatic glutathione peroxidase, glutathione reductase, and malondialdehyde significantly decreased in the 5LAC and 10LAC treatments. In conclusion, dietary 5 g/kg LA is recommended for common carp feeding to improve growth rate, antioxidant capacity, and intestinal health.
Collapse
Affiliation(s)
- Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan 4915677555, Iran
| | - Morteza Yousefi
- Department of Veterinary Medicine, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Alireza Afzali-Kordmahalleh
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran
| | - Esmaeil Pagheh
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan 4915677555, Iran
| | - Ali Taheri Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran
| |
Collapse
|
6
|
Ozen M, Piloquet H, Schaubeck M. Limosilactobacillus fermentum CECT5716: Clinical Potential of a Probiotic Strain Isolated from Human Milk. Nutrients 2023; 15:2207. [PMID: 37432320 PMCID: PMC10181152 DOI: 10.3390/nu15092207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
Breastfeeding provides the ideal nutrition for infants. Human milk contains a plethora of functional ingredients which foster the development of the immune system. The human milk microbiota predominantly contributes to this protective effect. This is mediated by various mechanisms, such as an antimicrobial effect, pathogen exclusion and barrier integrity, beneficial effects on the gastrointestinal microbiota, vitamin synthesis, immunity enhancement, secreted probiotic factors, and postbiotic mechanisms. Therefore, human milk is a good source for isolating probiotics for infants who cannot be exclusively breastfed. One such probiotic which was isolated from human milk is Limosilactobacillus fermentum CECT5716. In this review, we give an overview of available interventional studies using Limosilactobacillus fermentum CECT5716 and summarise preclinical trials in several animal models of different pathologies, which have given first insights into its mechanisms of action. We present several randomised clinical studies, which have been conducted to investigate the clinical efficacy of the Limosilactobacillus fermentum CECT5716 strain in supporting the host's health.
Collapse
Affiliation(s)
- Metehan Ozen
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye;
| | - Hugues Piloquet
- Department of Paediatric Chronic Diseases, Nantes University Hospital, 44000 Nantes, France;
| | | |
Collapse
|
7
|
Hypouricemic, anti-inflammatory, and antioxidant activities of Lactobacillus-based functional yogurt in induced-arthritic male Wistar rats: Therapeutic and protective potentials. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
The Effects of Probiotics Supplementation on Clinical Status and Biomarkers of Oxidative Damage and Inflammation in Children with Brucellosis: A Randomized, Double-Blind, and Placebo-Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2541117. [PMID: 36045651 PMCID: PMC9423965 DOI: 10.1155/2022/2541117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Background Increased levels of inflammatory cytokines and oxidative damage may play crucial roles in the pathogenesis of brucellosis. The purpose of this trial was to evaluate the impact of probiotics administration on clinical status and biomarkers of oxidative damage and inflammation in pediatric patients diagnosed with brucellosis. Methods This randomized, double-blind, and placebo-controlled trial was performed by recruiting 40 patients, 8–15 years of age, who had been diagnosed with brucellosis. Study participants were randomly allocated into two groups to receive either probiotics supplement or placebo (n = 20 each group) for 8 weeks. Blood samples were collected at the onset and after 8 weeks of intervention to quantify biochemical parameters. Clinical status was examined by a pediatric infectious disease specialist. Results Following 8-week intervention, probiotics supplementation substantially improved total antioxidant capacity (P < 0.001) and malondialdehyde (P=0.002). Furthermore, the difference between probiotics group and placebo group for the duration of fever (P=0.02) and musculoskeletal pain (P=0.001) was statistically significant, though probiotics administration had no significant effects on high-sensitivity C-reactive protein, total glutathione, and other clinical outcomes compared with placebo. Conclusion Overall, probiotics intake had beneficial impact on clinical status and body antioxidative defense system in pediatric patients with brucellosis.
Collapse
|
9
|
Liso M, De Giuseppe R, Pontonio E. Editorial: The interplay between food and intestinal microbiota: How they impact on the well-being status of the host. Front Microbiol 2022; 13:980243. [PMID: 35923411 PMCID: PMC9343087 DOI: 10.3389/fmicb.2022.980243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marina Liso
- National Institute of Gastroenterology “S. de Bellis” Research Hospital (IRCCS), Bari, Italy
- *Correspondence: Marina Liso
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Erica Pontonio
- Department of Soil, Plant, and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
10
|
Gao Y, Wu A, Li Y, Chang Y, Xue C, Tang Q. The risk of carrageenan-induced colitis is exacerbated under high-sucrose/high-salt diet. Int J Biol Macromol 2022; 210:475-482. [PMID: 35483512 DOI: 10.1016/j.ijbiomac.2022.04.158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
Abstract
As a common used food additive, the threat of carrageenan to colon health is controversial, and is inseparable from personal eating habits. However, no detailed descriptions are available concerning the influence of different dietary patterns on the risk of carrageenan-induced colitis. In this study, we explored the risk of κ-carrageenan-induced colitis under high-sucrose or high-salt diet in mice. Intervention with carrageenan under high-sucrose diet significantly reduced colon length and induced more serious deepening of the crypts. In addition, the intake of carrageenan under high-sucrose/high-salt diet induced more serious goblet cell reduction and increased intestinal permeability. 16S rRNA sequencing and LC-MS based metabonomic approaches were conducted to explore the changes of gut microbiota and metabolites. It was found that the intake of carrageenan under high-sucrose/high-salt diet significantly reduced the abundance of anti-inflammatory bacterium and increased the abundance of harmful bacterium, which was significantly related to the decrease of anti-inflammatory metabolites in colon, such as methyl caffeate, spermine, oleanolic acid and senecionine. Overall, high-sucrose or high-salt diet increased the risk of carrageenan-induced colitis. This reminds us to maintain good eating habits, do not prefer high-sugar or high-salt foods, and try not to consume large amounts of carrageenan continuously to maintain gut health.
Collapse
Affiliation(s)
- Yuan Gao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Axue Wu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yuan Li
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yaoguang Chang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, China
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
11
|
Zhao F, Wang C, Song S, Fang C, Kristiansen K, Li C. Intake of a Chicken Protein-Based or Soy Protein-Based Diet Differentially Affects Growth Performance, Absorptive Capacity, and Gut Microbiota in Young Rats. Mol Nutr Food Res 2022; 66:e2101124. [PMID: 35583811 DOI: 10.1002/mnfr.202101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/12/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Both plant and animal products provide protein for human demands. However, the effect of protein sources on the physiological responses and the composition and functions of the gut microbiota during the early stage of life have received little attention. METHODS AND RESULTS In the present study, chicken protein and soy protein are fed to young weaning rats for 14 days based on the AIN-93G diet formulation. The growth performance is recorded, and the morphology of the small intestine is analyzed to estimate the absorptive capacity. Shotgun metagenomic sequencing is applied to analyze the cecal microbiota. The chicken protein-based diet (CHPD) enhances growth performance and absorptive capacity in young rats compared to the soy protein-based diet (SPD). The CHPD maintains higher levels of Lactobacillus species, associated with glutathione synthesis. CONCLUSION The CHPD seems favorable for young growing rats in relation to growth performance and absorptive capacity, correlated with changes in the composition and functional potential of the gut microbiota.
Collapse
Affiliation(s)
- Fan Zhao
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Chong Wang
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.,Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Shangxin Song
- School of Food Science, Nanjing Xiaozhuang University, 3601 Hongjing Road, Nanjing, 211171, P. R. China
| | - Chao Fang
- BGI-Shenzhen, Shenzhen, 518083, P. R. China
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.,BGI-Shenzhen, Shenzhen, 518083, P. R. China.,Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 166555, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
12
|
Su L, Ma F, An Z, Ji X, Zhang P, Yue Q, Zhao C, Sun X, Li K, Li B, Liu X, Zhao L. The Metabolites of Lactobacillus fermentum F-B9-1 Relieved Dextran Sulfate Sodium-Induced Experimental Ulcerative Colitis in Mice. Front Microbiol 2022; 13:865925. [PMID: 35572623 PMCID: PMC9096258 DOI: 10.3389/fmicb.2022.865925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Because of the increased incidence and prevalence, ulcerative colitis (UC) has become a global health issue in the world. Current therapies for UC are not totally effective which result in persistent and recurrent symptom of many patients. Lactobacillus with anti-inflammatory effects might be beneficial to the prevention or treatment for UC. Here, we examined the ameliorative effects of the metabolites of Lactobacillus fermentum F-B9-1 (MLF) in Caco-2 cells and dextran sodium sulfate (DSS)-induced UC model mice. MLF displayed intestinal barrier-protective activities in Caco-2 cells by increasing the expression of Occludin and ZO-1. They also showed anti-inflammatory potential in interleukin (IL)-1β and IL-6. In order to further examine the in vivo anti-inflammatory effect of MLF, the MLF was gavaged in the DSS-induced UC model mice. The intragastric administration of MLF effectively alleviated colitis symptoms of weight loss, diarrhea, colon shortening, and histopathological scores, protected intestinal barrier function by increasing Occludin and ZO-1, and attenuated colonic and systemic inflammation by suppressing production of IL-1β and IL-6. Finally, the use of MLF remodeled the diversity of the gut microbiota and increased the number of beneficial microorganisms. Overall, the results demonstrated that MLF relieved DSS-induced UC in mice. And MLF might be an effective therapy method to UC in the clinic in the future.
Collapse
Affiliation(s)
- Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shengshengxiangrong (Shandong) Biotechnology Co., Ltd., Jinan, China
| | - Feifan Ma
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xiuyu Ji
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ping Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chen Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd., Jinan, China
| | - Baojun Li
- Jinan Hangchen Biotechnology Co., Ltd., Jinan, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Chenzhang Biotechnology Co., Ltd., Jinan, China
| |
Collapse
|
13
|
Oral and external intervention on the crosstalk between microbial barrier and skin via foodborne functional component. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Paulino do Nascimento LC, Lacerda DC, Ferreira DJS, de Souza EL, de Brito Alves JL. Limosilactobacillus fermentum, Current Evidence on the Antioxidant Properties and Opportunities to be Exploited as a Probiotic Microorganism. Probiotics Antimicrob Proteins 2022; 14:960-979. [PMID: 35467236 DOI: 10.1007/s12602-022-09943-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 12/14/2022]
Abstract
The unbalance in the production and removal of oxygen-reactive species in the human organism leads to oxidative stress, a physiological condition commonly linked to the occurrence of cancer, neurodegenerative, inflammatory, and metabolic disorders. The implications of oxidative stress in the gut have been associated with gut microbiota impairments and gut dysbiosis. Some lactobacilli strains have shown an efficient antioxidant system capable of protecting against oxidative stress and related-chronic diseases. Recently, in vitro and experimental studies and some clinical trials have demonstrated the efficacy of the administration of various Limosilactobacillus fermentum strains to modulate beneficially the host antioxidant system resulting in the amelioration of a variety of systemic diseases phenotypes. This review presents and discusses the currently available studies on identifying L. fermentum strains with anti-oxidant properties, their sources, range of the administered doses, and duration of the intervention in experiments with animals and clinical trials. This review strives to serve as a relevant and well-cataloged reference of L. fermentum strains with capabilities of inducing anti-oxidant effects and health-promoting benefits to the host, envisaging their broad applicability to disease control.
Collapse
Affiliation(s)
| | - Diego Cabral Lacerda
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil
| | | | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil.
| |
Collapse
|
15
|
The Therapeutic Role of Exercise and Probiotics in Stressful Brain Conditions. Int J Mol Sci 2022; 23:ijms23073610. [PMID: 35408972 PMCID: PMC8998860 DOI: 10.3390/ijms23073610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurological disorders such as Parkinson’s disease, Alzheimer’s dementia, ischemic stroke, and head and spinal cord injury. The increased production of reactive oxygen species (ROS) has been associated with mitochondrial dysfunction, altered metal homeostasis, and compromised brain antioxidant defence. All these changes have been reported to directly affect synaptic activity and neurotransmission in neurons, leading to cognitive dysfunction. In this context two non-invasive strategies could be employed in an attempt to improve the aforementioned stressful brain status. In this regard, it has been shown that exercise could increase the resistance against oxidative stress, thus providing enhanced neuroprotection. Indeed, there is evidence suggesting that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. However, the differential effects of different types of exercise (aerobic exhausted exercise, anaerobic exercise, or the combination of both types) and the duration of physical activity will be also addressed in this review as likely determinants of therapeutic efficacy. The second proposed strategy is related to the use of probiotics, which can also reduce some biomarkers of oxidative stress and inflammatory cytokines, although their underlying mechanisms of action remain unclear. Moreover, various probiotics produce neuroactive molecules that directly or indirectly impact signalling in the brain. In this review, we will discuss how physical activity can be incorporated as a component of therapeutic strategies in oxidative stress-based neurological disorders along with the augmentation of probiotics intake.
Collapse
|
16
|
Glutathione Immobilized Polycaprolactone Nanofiber Mesh as a Dermal Drug Delivery Mechanism for Wound Healing in a Diabetic Patient. Processes (Basel) 2022. [DOI: 10.3390/pr10030512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glutathione (GSH) is an anti-inflammatory and antioxidant biomolecule. Polycaprolactone (PCL) nanofiber mesh (NFM) is capable of the attachment and release of biomolecules for prolonged periods and has the potential as a transdermal drug delivery system during wound healing for a diabetic patient. Our earlier study found that high levels of sugar in diabetic male mice were significantly decreased by daily doses of glutathione administered on the mice. Furthermore, oxidative stress found in diabetic male mice led to the total depletion of glutathione levels in the body’s organs (pancreas, spleen, epididymis, and testis). The objective of this study was to attach GSH with PCL NFM for the controlled release of GSH biomolecules for long periods of time from the fiber mesh into a diabetic body. This study produced PCL NFM using an electrospun technique and tested it on mice to evaluate its efficiency as a dermal drug delivery mechanism. This study dissolved GSH (2.5 mg/mL) with phosphate-buffered saline (PBS) and glutaraldehyde (GLU) solution to create GSH-PBS and GSH-GLU complexes. Each complex was used to soak PCL NFM for 24 h and dried to create PCL-GSH-PBS and PCL-GSH-GLU meshes. Fiber morphology, degradation, fibroblast cell proliferation, cytotoxicity, and GSH release activities from each mesh were compared. Fibroblast cell adhesion and cytotoxicity tests found excellent biocompatibility of both GSH-immobilized PCL meshes and no degradation until 20 days of the study period. The disk diffusion method was conducted to test the antibacterial properties of the sample groups. Release tests confirmed that the attachment of GSH with PCL by GSH-GLU complex resulted in a steady release of GSH compared to the fast release of GSH from PCL-GSH-PBS mesh. The disk diffusion test confirmed that PCL-GSH-GLU has antibacterial properties. The above results conclude that GSH-GLU immobilized PCL NFM can be a suitable candidate for a transdermal anti-oxidative and anti-bacterial drug delivery system such as bandage, skin graft for wound healing application in a diabetic patient.
Collapse
|
17
|
Limosilactobacillus fermentum Strains with Claimed Probiotic Properties Exert Anti-oxidant and Anti-inflammatory Properties and Prevent Cardiometabolic Disorder in Female Rats Fed a High-Fat Diet. Probiotics Antimicrob Proteins 2021; 15:601-613. [PMID: 34817804 DOI: 10.1007/s12602-021-09878-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
This study assessed the effects of a mixed formulation containing Limosilactobacillus (L.) fermentum 139, L. fermentum 263, and L. fermentum 296 on cardiometabolic parameters, inflammatory markers, short-chain fatty acid (SCFA) fecal contents, and oxidative stress in colon, liver, heart, and kidney tissues of female rats fed a high-fat diet (HFD). Female Wistar rats were allocated into control diet (CTL, n = 6), HFD (n = 6), and HFD receiving L. fermentum formulation (HFD-LF, n = 6). L. fermentum formulation (1 × 109 CFU/mL of each strain) was administered two twice a day for 4 weeks. Administration of L. fermentum increased acetate and succinate fecal contents and reduced hyperlipidemia and hyperglycemia in rats fed a HFD (p < 0.05). Administration of L. fermentum decreased low-grade inflammation and improved antioxidant capacity along the gut, liver, heart, and kidney tissues in female rats fed a HFD (p < 0.05). Administration of L. fermentum prevented dyslipidemia, inflammation, and oxidative stress in colon, liver, heart, and kidney in female rats fed a HFD.
Collapse
|
18
|
Temporal Transcriptomics of Gut Escherichia coli in Caenorhabditis elegans Models of Aging. Microbiol Spectr 2021; 9:e0049821. [PMID: 34523995 PMCID: PMC8557943 DOI: 10.1128/spectrum.00498-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Host-bacterial interactions over the course of aging are understudied due to complexities of the human microbiome and challenges of collecting samples that span a lifetime. To investigate the role of host-microbial interactions in aging, we performed transcriptomics using wild-type Caenorhabditis elegans (N2) and three long-lived mutants (daf-2, eat-2, and asm-3) fed Escherichia coli OP50 and sampled at days 5, 7.5, and 10 of adulthood. We found host age is a better predictor of the E. coli expression profiles than host genotype. Specifically, host age was associated with clustering (permutational multivariate analysis of variance [PERMANOVA], P = 0.001) and variation (Adonis, P = 0.001, R2 = 11.5%) among E. coli expression profiles, whereas host genotype was not (PERMANOVA, P > 0.05; Adonis, P > 0.05, R2 = 5.9%). Differential analysis of the E. coli transcriptome yielded 22 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 100 KEGG genes enriched when samples were grouped by time point [LDA, linear discriminant analysis; log(LDA), ≥2; P ≤ 0.05], including several involved in biofilm formation. Coexpression analysis of host and bacterial genes yielded six modules of C. elegans genes that were coexpressed with one bacterial regulator gene over time. The three most significant bacterial regulators included genes relating to biofilm formation, lipopolysaccharide production, and thiamine biosynthesis. Age was significantly associated with clustering and variation among transcriptomic samples, supporting the idea that microbes are active and plastic within C. elegans throughout life. Coexpression analysis further revealed interactions between E. coli and C. elegans that occurred over time, building on a growing literature of host-microbial interactions. IMPORTANCE Previous research has reported effects of the microbiome on health span and life span of Caenorhabditis elegans, including interactions with evolutionarily conserved pathways in humans. We build on this literature by reporting the gene expression of Escherichia coli OP50 in wild-type (N2) and three long-lived mutants of C. elegans. The manuscript represents the first study, to our knowledge, to perform temporal host-microbial transcriptomics in the model organism C. elegans. Understanding changes to the microbial transcriptome over time is an important step toward elucidating host-microbial interactions and their potential relationship to aging. We found that age was significantly associated with clustering and variation among transcriptomic samples, supporting the idea that microbes are active and plastic within C. elegans throughout life. Coexpression analysis further revealed interactions between E. coli and C. elegans that occurred over time, which contributes to our growing knowledge about host-microbial interactions.
Collapse
|
19
|
Pastor-Villaescusa B, Blanco-Rojo R, Olivares M. Evaluation of the Effect of Limosilactobacillus fermentum CECT5716 on Gastrointestinal Infections in Infants: A Systematic Review and Meta-Analysis. Microorganisms 2021; 9:microorganisms9071412. [PMID: 34208893 PMCID: PMC8305821 DOI: 10.3390/microorganisms9071412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 12/13/2022] Open
Abstract
Reducing the incidence of gastrointestinal infections (GIs) that occur at early stages to mitigate hospitalizations and treatments with adverse effects is a promising strategy for providing well-being to infants and their families. This systematic review and meta-analysis explores whether the early administration of Limosilactobacillus fermentum CECT5716 might be effective as a preventive therapy for GIs. We reviewed the literature to identify randomized controlled trials (RCTs) investigating the effectiveness of milk formulas supplemented with L. fermentum CECT5716 administered to infants at early stages to reduce the incidence of GIs. The MEDLINE (via PubMed), Web of Science (WoS), and Cochrane Central Register of Controlled Trials (via CENTRAL) databases were searched up to 15 June 2021. GI data from the included studies were synthesized in a random-effects model. Three RCTs were finally selected including 435 infants. There was a significant reduction in the incidence rate of GIs for those receiving L. fermentum CECT5716 compared with those receiving placebo (IRR: 0.52, 95% CI: 0.36-0.74, p = 0.0004). Heterogeneity between studies was moderate (I2 = 54.5%). Based on the present systematic review and meta-analysis, the administration of L. fermentum CECT5716 at doses from 1 × 109 to 8.4 × 108 cfu/day in milk formulas may prevent GIs in infants up to 12 months old. Longer-term studies including a higher number of infants are needed to determine whether the use of this probiotic during the early stages of life is an efficient way to reduce the incidence of GIs.
Collapse
Affiliation(s)
- Belén Pastor-Villaescusa
- Metabolism in Childhood Research Group, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Córdoba, Spain;
- Biosearch Life SA, Camino de Purchil 66, 18004 Granada, Spain;
| | | | - Mónica Olivares
- Biosearch Life SA, Camino de Purchil 66, 18004 Granada, Spain;
- Correspondence:
| |
Collapse
|
20
|
Zamani B, Sheikhi A, Namazi N, Larijani B, Azadbakht L. The Effects of Supplementation with Probiotic on Biomarkers of Oxidative Stress in Adult Subjects: a Systematic Review and Meta-analysis of Randomized Trials. Probiotics Antimicrob Proteins 2021; 12:102-111. [PMID: 30666617 DOI: 10.1007/s12602-018-9500-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous studies have supposed that probiotic supplementation led to a positive effect on different health outcomes. Furthermore, several studies indicated that probiotics supplementation improved antioxidant status, while some studies did not indicate these effects. Hence, current systematic review and meta-analysis study was conducted to determine the effect of probiotic supplementation on some oxidative stress biomarkers among adult subjects. We searched four electronic databases PubMed, SCOPUS, ISI Web of Science, and the Cochrane Library till November 2017. Clinical trials that compared the effects of probiotic supplementation with the control group were included. A random-effect model was used to pool weighted mean difference (WMD). Finding of 11 included studies (n = 577) indicated that probiotic supplementation increased total antioxidant capacity (TAC) (WMD 77.30 mmol/L; 95% confidence interval [CI] 2.60, 152.01; I2 = 88.3%) and reduced malondialdehyde (MDA) (WMD - 0.31 μmol/L; 95% CI - 0.54, - 0.08; I2 = 71.5%) significantly compared to the control group. However, its effects on glutathione (GSH) was not significant (WMD = 19.32 μmol/L; 95% CI - 18.70, 57.33; I2 = 64.9%). The current meta-analysis revealed that probiotic supplementation may result in increasing TAC and lowering MDA, which improve antioxidant status. However, due to high heterogeneity, findings should be interpreted with caution. Further investigations are required to elucidate the effect of supplementation with probiotics on biomarkers of antioxidants.
Collapse
Affiliation(s)
- Behzad Zamani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box: 1416643931, Tehran, Iran
| | - Ali Sheikhi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box: 1416643931, Tehran, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box: 1416643931, Tehran, Iran. .,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
21
|
Abdi M, Lohrasbi V, Asadi A, Esghaei M, Jazi FM, Rohani M, Talebi M. Interesting probiotic traits of mother's milk Lactobacillus isolates; from bacteriocin to inflammatory bowel disease improvement. Microb Pathog 2021; 158:104998. [PMID: 34044041 DOI: 10.1016/j.micpath.2021.104998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
AIMS AND BACKGROUND Lactobacillus spp. are an important element in breast milk. This component has a beneficial effect on the composition of the intestinal microflora and the intestinal immune system. The aim of this study was to isolate and identify Lactobacillus strains in breast milk and evaluate some of their probiotic properties, such as presence of bacteriocin genes, adhesion to HT-29 cell line, competition with enteropathogens in cell culture, and effect on serum level of lipids and digestive enzymes, and mice model of inflammatory bowel disease (IBD). MATERIALS AND METHODS A total of 323 lactic acid bacteria (LAB) were isolated from breast milk samples of healthy mothers with the age ranges from 21 to 45 years old. These isolates were subjected to phenotypic and molecular experiments. The frequency of bacteriocin genes was determined by polymerase chain reaction (PCR). Adhesion of Lactobacillus isolates to HT-29 cells was measured based on the number of attached bacterial cells in 20 fields of the light microscopy. Competition test was done by colony count and real-time PCR procedures. Five strongly adhesive Lactobacillus strains were selected and administered orally to the treatment groups. After 8 days, the serum level of digestive enzymes and improvement in induced IBD, and after 14 days, the serum level of lipids (triglycerides, total cholesterol, HDL, and LDL) in treated mice were surveyed compared to the control groups. RESULTS Based on the phenotypic and molecular experiments, L. casei, L. plantarum, L. rhamnosus, and L. acidophilus strains were isolated and identified in the breast milk samples. The highest frequency of bacteriocin genes belonged to Plantaricin B (100%), followed by Plantaricin D (84.7%), Plantaricin G (84.7%), and Plantaricin EF (54.3%). Also, 71.8% of the isolates were strongly adhesive, 21.8% were non-adhesive, and 6.4% were adhesive. Lactobacillus strains had a significant effect on the displacement of enteropathogens. The in vitro cholesterol-removing ability of L. casei (L1), L. casei (L2), L. casei (L3), L. plantarum (L4), and L. rhamnosus (L5) was 3.5, 31.5, 21.3, 18.7, and 27.3%, respectively. The serum level of total cholesterol in the L. plantarum (L4) group as well as LDL in the L. casei (L3) (p = .0108) and L. rhamnosus (L5) (p = .0206) groups decreased significantly compared to the control group. The serum level of lipase increased in all the treatment groups compared to the control group, which was significant in the L. plantarum (L4) group (p = .0390). Disease activity index (DAI) scores were improved significantly in L. casei (L3) group compared to the IBD control group (p < .0001). CONCLUSION It could be concluded that lactobacilli strains isolated from the breast milk samples had good probiotic properties, such as presence of bacteriocin genes, attaching to enterocyte-like HT-29 cells, competing with intestinal pathogens, lowering cholesterol, and improving IBD. Thus, after further studies, they could be considered as probiotic strains.
Collapse
Affiliation(s)
- Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Lohrasbi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Limosilactobacillus fermentum CECT5716: Mechanisms and Therapeutic Insights. Nutrients 2021; 13:nu13031016. [PMID: 33801082 PMCID: PMC8003974 DOI: 10.3390/nu13031016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics microorganisms exert their health-associated activities through some of the following general actions: competitive exclusion, enhancement of intestinal barrier function, production of bacteriocins, improvement of altered microbiota, and modulation of the immune response. Among them, Limosilactobacillus fermentum CECT5716 has become one of the most promising probiotics and it has been described to possess potential beneficial effects on inflammatory processes and immunological alterations. Different studies, preclinical and clinical trials, have evidenced its anti-inflammatory and immunomodulatory properties and elucidated the precise mechanisms of action involved in its beneficial effects. Therefore, the aim of this review is to provide an updated overview of the effect on host health, mechanisms, and future therapeutic approaches.
Collapse
|
23
|
Probiotic Properties of Lactiplantibacillus plantarum LB5 Isolated from Kimchi Based on Nitrate Reducing Capability. Foods 2020; 9:foods9121777. [PMID: 33266127 PMCID: PMC7760155 DOI: 10.3390/foods9121777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study was to investigate the probiotic properties of lactic acid bacteria isolated from Korean radish water kimchi (dongchimi). A total of 800 isolates of lactic acid bacteria were isolated from kimchi, and the strain having reduction and tolerance capability for nitrate and nitrite was selected and identified as Lactiplantibacillus plantarum LB5 (LPLB5) by 16S rRNA sequencing. LPLB5 showed higher tolerance to acidic pH values (pH 2.5), 0.3% bile salts, and heat treatment (40, 50, and 60 °C). Antibacterial activity showed strong inhibition against four food-borne pathogenic bacteria (E. coli O157:H7 ATCC 35150, Pseudomonas aeruginosa KCCM 12539, Listeria monocytogenes KCCM 40307, and Staphylococcus aureus ATCC 25923). The strain did not show any antibiotic resistance, β-hemolytic activity, or ability to produce β-glucuronidase. LPLB5 also exhibited a 30% auto-aggregation ability and 33–60% co-aggregation ability with four pathogenic bacteria (E. coli O157: H7 ATCC 35150, E. coli KCTC 2571, L. monocytogenes ATCC 51776, and S. aureus ATCC 25923). Moreover, the strain showed approximately 40% 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical- and 10% 2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activity. In cell culture studies, human colon epithelial cells (Caco-2) were treated with LPLB5 (106 and 107 CFU/mL); the bacteria showed more than 70% adherence onto and a 32% invasion rate into the Caco-2 cells. LPLB5 significantly decreased the mRNA expression levels of pro-inflammatory cytokines (interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α)) and increased the mRNA expression levels of anti-inflammatory cytokines (interleukin-4 (IL-4), interleukin-10 (IL-10), and interferon-gamma (IFN-γ)) in lipopolysaccharide-stimulated Caco-2 cells. Our data suggest that LPLB5 is safe and possesses probiotic, antioxidant, and anti-inflammatory activities.
Collapse
|
24
|
Fernández L, Pannaraj PS, Rautava S, Rodríguez JM. The Microbiota of the Human Mammary Ecosystem. Front Cell Infect Microbiol 2020; 10:586667. [PMID: 33330129 PMCID: PMC7718026 DOI: 10.3389/fcimb.2020.586667] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human milk contains a dynamic and complex site-specific microbiome, which is not assembled in an aleatory way, formed by organized microbial consortia and networks. Presence of some genera, such as Staphylococcus, Streptococcus, Corynebacterium, Cutibacterium (formerly known as Propionibacterium), Lactobacillus, Lactococcus and Bifidobacterium, has been detected by both culture-dependent and culture-independent approaches. DNA from some gut-associated strict anaerobes has also been repeatedly found and some studies have revealed the presence of cells and/or nucleic acids from viruses, archaea, fungi and protozoa in human milk. Colostrum and milk microbes are transmitted to the infant and, therefore, they are among the first colonizers of the human gut. Still, the significance of human milk microbes in infant gut colonization remains an open question. Clinical studies trying to elucidate the question are confounded by the profound impact of non-microbial human milk components to intestinal microecology. Modifications in the microbiota of human milk may have biological consequences for infant colonization, metabolism, immune and neuroendocrine development, and for mammary health. However, the factors driving differences in the composition of the human milk microbiome remain poorly known. In addition to colostrum and milk, breast tissue in lactating and non-lactating women may also contain a microbiota, with implications in the pathogenesis of breast cancer and in some of the adverse outcomes associated with breast implants. This and other open issues, such as the origin of the human milk microbiome, and the current limitations and future prospects are addressed in this review.
Collapse
Affiliation(s)
- Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Pia S. Pannaraj
- Department of Pediatrics and Molecular Microbiology and Immunology, Keck School of Medicine and Children’s Hospital, Los Angeles, CA, United States
| | - Samuli Rautava
- University of Helsinki and Helsinki University Hospital, New Children’s Hospital, Pediatric Research Center, Helsinki, Finland
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
25
|
Pourrajab B, Fatahi S, Sohouli MH, Găman MA, Shidfar F. The effects of probiotic/synbiotic supplementation compared to placebo on biomarkers of oxidative stress in adults: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 62:490-507. [PMID: 33016089 DOI: 10.1080/10408398.2020.1821166] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS During the last decades, there has been a burst of scientific literature hypothesizing the antioxidant effect of probiotics. However, the results of these studies are inconsistent and a final conclusion has yet to be reached. Thus, the aim of this study was to assess the effects of probiotic/synbiotic supplementation on serum total antioxidant capacity (TAC), glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) levels in adults. METHODS AND RESULTS The following online databases were searched until August 26th 2020: PubMed/Medline, Scopus, Clarivate Analytics Web of Science, Cochrane Central Register of Controlled Trials, Science Direct, Google Scholar and Igaku Chuo Zasshi. The effect sizes were expressed as the weighted mean difference (WMD) with 95% confidence intervals (CI). A total of 31 eligible trials with 1681 participants (839 cases and 842 controls) were included in this meta-analysis. The results revealed that the supplementation with probiotics/synbiotics, significantly increased serum TAC (WMD: 54.14 mmol/L, 95% CI: 27.87, 80.40, P < 0.001), GSH (WMD: 40.38 μmol/L, 95% CI: 20.72, 60.03, P < 0.001) and NO (WMD: 3.54 μmol/L, 95% CI: 1.73, 5.34, P < 0.001) levels. In addition, MDA levels were significantly reduced (WMD: -0.45 μmol/L, 95% CI: -0.58,-0.32, P < 0.001) following probiotic/synbiotic supplementation. None of the variables showed a significant change in the sensitivity analysis. CONCLUSION Available evidence suggests that probiotic/synbiotic supplementation can significantly increase serum TAC, GSH and NO, as well as reduce MDA levels in adults. Therefore, probiotic/synbiotic supplementation may play a role in improving antioxidant indices and reducing oxidative stress in the body.
Collapse
Affiliation(s)
- Behnaz Pourrajab
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran Iran.,Student Research Committee, Faculty of public health branch, Iran University of Medical Sciences, Tehran Iran
| | - Somaye Fatahi
- Student Research Committee, Faculty of public health branch, Iran University of Medical Sciences, Tehran Iran
| | - Mohammad Hassan Sohouli
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran Iran.,Student Research Committee, Faculty of public health branch, Iran University of Medical Sciences, Tehran Iran
| | - Mihnea-Alexandru Găman
- Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran Iran
| |
Collapse
|
26
|
Marsova M, Poluektova E, Odorskaya M, Ambaryan A, Revishchin A, Pavlova G, Danilenko V. Protective effects of Lactobacillus fermentum U-21 against paraquat-induced oxidative stress in Caenorhabditis elegans and mouse models. World J Microbiol Biotechnol 2020; 36:104. [PMID: 32632560 DOI: 10.1007/s11274-020-02879-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/27/2020] [Indexed: 12/19/2022]
Abstract
The aims of this work were to identify in vivo manifestations of antioxidant activity of Lactobacillus strains isolated from healthy human biotopes and to show the possibility of protective action of the selected strain on the model of oxidative stress induced by paraquat in the model of early Parkinson's disease (PD) in mice. We studied the protective effects of 14 Lactobacillus strains belonging to five species on the lifespan of the soil nematode Caenorhabditis elegans experiencing oxidative stress induced by paraquat. The Lactobacillus strains used in this study were selected previously based on their ability to reduce oxidative stress in vitro. One of the strains that showed promising results on C. elegans was tested in a mouse model of PD in which C57/BL6 mice were injected regularly with paraquat. We assessed the state of their internal organs, the preservation of dopaminergic neurons in the substantia nigra as well as their motor coordination. The positive impact of Lactobacillus fermentum U-21 strain supplementation on paraquat treated animals was observed. L. fermentum U-21 strain reduced the toxicity of paraquat in C. elegans model: the lifespan of the soil nematode C. elegans was extended by 25%. L. fermentum U-21 protected the mice against anatomical and behavioral changes typical of PD: there were no changes in the coordination of movement and the preservation of dopaminergic neurons in the brain. Life span of the nematode C. elegans pre-grown on a lawn of E. coli OP50 + Lactobacillus under oxidative stress conditions; the concentration of the oxidizing agent paraquat in the S medium was 50 mmol l-1.
Collapse
Affiliation(s)
- Maria Marsova
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia.
- Moscow Institute of Physics and Technology (National Research University), Moscow, Russia.
| | - Elena Poluektova
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Maya Odorskaya
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Alexander Ambaryan
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | | - Galina Pavlova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valeriy Danilenko
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Kamalian A, Sohrabi Asl M, Dolatshahi M, Afshari K, Shamshiri S, Momeni Roudsari N, Momtaz S, Rahimi R, Abdollahi M, Abdolghaffari AH. Interventions of natural and synthetic agents in inflammatory bowel disease, modulation of nitric oxide pathways. World J Gastroenterol 2020; 26:3365-3400. [PMID: 32655263 PMCID: PMC7327787 DOI: 10.3748/wjg.v26.i24.3365] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) refers to a group of disorders characterized by chronic inflammation of the gastrointestinal (GI) tract. The elevated levels of nitric oxide (NO) in serum and affected tissues; mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme; can exacerbate GI inflammation and is one of the major biomarkers of GI inflammation. Various natural and synthetic agents are able to ameliorate GI inflammation and decrease iNOS expression to the extent comparable with some IBD drugs. Thereby, the purpose of this study was to gather a list of natural or synthetic mediators capable of modulating IBD through the NO pathway. Electronic databases including Google Scholar and PubMed were searched from 1980 to May 2018. We found that polyphenols and particularly flavonoids are able to markedly attenuate NO production and iNOS expression through the nuclear factor κB (NF-κB) and JAK/STAT signaling pathways. Prebiotics and probiotics can also alter the GI microbiota and reduce NO expression in IBD models through a broad array of mechanisms. A number of synthetic molecules have been found to suppress NO expression either dependent on the NF-κB signaling pathway (i.e., dexamethasone, pioglitazone, tropisetron) or independent from this pathway (i.e., nicotine, prednisolone, celecoxib, β-adrenoceptor antagonists). Co-administration of natural and synthetic agents can affect the tissue level of NO and may improve IBD symptoms mainly by modulating the Toll like receptor-4 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Masoud Sohrabi Asl
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahsa Dolatshahi
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Khashayar Afshari
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Shiva Shamshiri
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
28
|
Ávila PRM, Michels M, Vuolo F, Bilésimo R, Burger H, Milioli MVM, Sonai B, Borges H, Carneiro C, Abatti M, Santana IVV, Michelon C, Dal-Pizzol F. Protective effects of fecal microbiota transplantation in sepsis are independent of the modulation of the intestinal flora. Nutrition 2020; 73:110727. [DOI: 10.1016/j.nut.2020.110727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/02/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
|
29
|
Han Y, Xiao H. Whole Food–Based Approaches to Modulating Gut Microbiota and Associated Diseases. Annu Rev Food Sci Technol 2020; 11:119-143. [DOI: 10.1146/annurev-food-111519-014337] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intake of whole foods, such as fruits and vegetables, may confer health benefits to the host. The beneficial effects of fruits and vegetables were mainly attributed to their richness in polyphenols and microbiota-accessible carbohydrates (MACs). Components in fruits and vegetables modulate composition and associated functions of the gut microbiota, whereas gut microbiota can transform components in fruits and vegetables to produce metabolites that are bioactive and important for health. The progression of multiple diseases, such as obesity and inflammatory bowel disease, is associated with diet and gut microbiota. Although the exact causality between these diseases and specific members of gut microbiota has not been well characterized, accumulating evidence supported the role of fruits and vegetables in modulating gut microbiota and decreasing the risks of microbiota-associated diseases. This review summarizes the latest findings on the effects of whole fruits and vegetables on gut microbiota and associated diseases.
Collapse
Affiliation(s)
- Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
30
|
Rossi G, Cerquetella M, Gavazza A, Galosi L, Berardi S, Mangiaterra S, Mari S, Suchodolski JS, Lidbury JA, Steiner JM, Pengo G. Rapid Resolution of Large Bowel Diarrhea after the Administration of a Combination of a High-Fiber Diet and a Probiotic Mixture in 30 Dogs. Vet Sci 2020; 7:vetsci7010021. [PMID: 32050688 PMCID: PMC7158687 DOI: 10.3390/vetsci7010021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Canine fiber responsive diarrhea is a form of chronic colitis that improves clinically after adding fiber to the diet. In the present study, we investigated the effect of a combination of a high-fiber, highly digestible, hypoallergenic diet with a probiotic mixture in 30 dogs with chronic colitis that were unresponsive to various dietary and/or pharmacological interventions. Fecal scores, canine chronic enteropathy clinical activity index (CCECAI) scores, the dysbiosis index (DI), and histologic images of colonic biopsies were evaluated. At baseline (day 0; T0) and after 30 days of treatment (T1), all variables evaluated in our patients (i.e., fecal and CCECAI scores and histopathology) improved significantly at T1, with the exception of DI. However, there was a numerical shift from a state of dysbiosis to one of normobiosis. The combination of the diet and the probiotic used in the present study induced the resolution of clinical signs in a mean of 8.5 days (maximum 15 days) and did not necessitate any other treatments or the further addition of alimentary fiber.
Collapse
Affiliation(s)
- Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Matteo Cerquetella
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Alessandra Gavazza
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
- Correspondence: ; Tel.: +39-0737-403-458
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Sara Mangiaterra
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Subeide Mari
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (J.S.S.); (J.A.L.); (J.M.S.)
| | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (J.S.S.); (J.A.L.); (J.M.S.)
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (J.S.S.); (J.A.L.); (J.M.S.)
| | - Graziano Pengo
- St. Antonio Veterinary Clinic, S.S. 415 Paullese 6, 26020 Madignano (CR), Italy;
| |
Collapse
|
31
|
Bazyar H, Maghsoumi-Norouzabad L, Yarahmadi M, Gholinezhad H, Moradi L, Salehi P, Haghighi-zadeh MH, Zare Javid A. The Impacts of Synbiotic Supplementation on Periodontal Indices and Biomarkers of Oxidative Stress in Type 2 Diabetes Mellitus Patients with Chronic Periodontitis Under Non-Surgical Periodontal Therapy. A Double-Blind, Placebo-Controlled Trial. Diabetes Metab Syndr Obes 2020; 13:19-29. [PMID: 32021348 PMCID: PMC6954633 DOI: 10.2147/dmso.s230060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
AIM The aim of the current study was to investigate that combination of the synbiotic supplementation in adjunct with non-surgical periodontal therapy (NSPT) is useful in treating periodontitis and biomarkers of oxidative stress in type 2 diabetes mellitus (T2DM) patients. METHODS In this study, 47 patients suffering from DM and CP were recruited and randomly assigned to two groups. The intervention (n= 23) and control (n=24) groups received either multispecies probiotic supplement plus 100 mg fructo-oligosaccharide (500 mg in each capsule) or placebo capsule containing 500 mg wheat flour, respectively, every day for 8 weeks. All subjects were treated with NSPT during the intervention period. Serum levels of interleukin-1β (IL-1β), malondialdehyde (MDA), total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and periodontal indices including clinical attachment loss (CAL), pocket depth (PD) (main outcome), BOP, and plaque index were measured before and after the intervention. RESULTS Supplementation with the synbiotic with NSPT led to a significant decrease in the levels of IL-1β, MDA, plaque index, PD, and CAL in the intervention group post-intervention (p < 0.05). The serum levels of TAC, SOD, and GPx were significantly increased in the intervention group compared with the baseline (p < 0.05). Consumption of synbiotic with NSPT, compared to the control, resulted in a significant decrease in the mean changes of IL-1β, MDA, and CAL (p < 0.05). Also, the mean changes of TAC and GPx were significantly higher in the intervention group compared with the control group (p < 0.05). Also, in the intervention group was seen a significant reduction in plaque index (p = 0.035) and BOP (p = 0.04) compared with the control group. CONCLUSION It was observed that synbiotic supplementation with NSPT may be beneficial in improving inflammatory, antioxidant, and periodontal status in T2DM patients with CP.
Collapse
Affiliation(s)
- Hadi Bazyar
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Maghsoumi-Norouzabad
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Yarahmadi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Gholinezhad
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Moradi
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parvin Salehi
- Department of Periodontology, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ahmad Zare Javid
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Correspondence: Ahmad Zare Javid Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IranTel +98 914 317 6237 Email
| |
Collapse
|
32
|
Naghmouchi K, Belguesmia Y, Bendali F, Spano G, Seal BS, Drider D. Lactobacillus fermentum: a bacterial species with potential for food preservation and biomedical applications. Crit Rev Food Sci Nutr 2019; 60:3387-3399. [PMID: 31729242 DOI: 10.1080/10408398.2019.1688250] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lactic acid-producing bacteria are the most commonly used probiotics that play an important role in protecting the host against harmful microorganisms, strengthening the host immune system, improving feed digestibility, and reducing metabolic disorders. Lactobacillus fermentum (Lb. fermentum) is a Gram-positive bacterium belonging to Lactobacillus genus, and many reportedly to enhance the immunologic response as well as prevent community-acquired gastrointestinal and upper respiratory infections. Additionally, Lb. fermentum strains produce diverse and potent antimicrobial peptides, which can be applied as food preservative agents or as alternatives to antibiotics. Further functions attributed to probiotic Lb. fermentum strains are their abilities to decrease the level of blood stream cholesterol (as cholesterol-lowering agents) and to potentially help prevent alcoholic liver disease and colorectal cancer among humans. Finally, Lb. fermentum is a key microorganism in sourdough technology, contributing to flavor, texture, or health-promoting dough ingredients, and has recently been used to develop new foods stuffs such as fortified and functional foods with beneficial attributes for human health. Development of such new foodstuffs are currently taking important proportions of the food industry market. Furthermore, an increasing awareness of the consumers prompts the food-makers to implement alternative environmental friendly solutions in the production processes and/or suitable biological alternative to limit the use of antibiotics in feed and food. Here, we give an account on the application of Lb. fermentum strains in the biomedical and food preservation fields, with a focus on probiotic features such as bacteriocin production. We also summarize the use of Lb. fermentum as cell factories with the aim to improve the efficacy and health value of functional food.
Collapse
Affiliation(s)
- Karim Naghmouchi
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Al Baha University, Saudi Arabia.,Faculté des Sciences de Tunis, Université de Tunis El Manar, LR01ES05 Biochimie et Biotechnologie, Tunis, Tunisie
| | - Yanath Belguesmia
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Giuseppe Spano
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Foggia, Italy
| | - Bruce S Seal
- Biology Program, Oregon State University Cascades, Bend, Oregon, USA
| | - Djamel Drider
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| |
Collapse
|
33
|
Wu Y, Wang B, Xu H, Tang L, Li Y, Gong L, Wang Y, Li W. Probiotic Bacillus Attenuates Oxidative Stress- Induced Intestinal Injury via p38-Mediated Autophagy. Front Microbiol 2019; 10:2185. [PMID: 31632359 PMCID: PMC6779063 DOI: 10.3389/fmicb.2019.02185] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
Probiotics have been widely used in maintaining intestinal health and one of their benefits is to enhance host antioxidant capacity. However, the involved molecular mechanisms require further investigated. Autophagy is a self-protection process in response to diverse stresses. We hypothesized that probiotics could modulate intestinal autophagy to alleviate oxidative stress. Sprague-Dawley (SD) rats were orally administered Bacillus SC06 or SC08 daily for 24 days and thereafter received an intraperitoneal injection of diquat (DQ) to induce oxidative stress. We found that rats administered Bacillus SC06 showed more significant intestinal tissue repair and antioxidant properties than those administered SC08, which suggests a strain-specific effect of probiotics. Moreover, SC06 alleviated apoptosis by regulating the expression of Bcl2, Bax and cleaved caspase-3. Further investigations revealed that SC06 triggered autophagy, indicated by the upregulation of LC3 and Beclin1 and the degradation of p62 in rat jejunum and IEC-6 cells. Preincubation with autophagy inhibitor 3-methyladenine (3-MA) significantly aggravated reactive oxygen species (ROS) production and apoptotic cell formation. Furthermore, we demonstrated that p38 MAPK (mitogen-activated protein kinase), not AKT (alpha serine/threonine kinase)/mTOR (mammalian target of rapamycin), was involved in SC06-induced autophagy. Taken together, Bacillus SC06 can alleviate oxidative stress-induced disorders and apoptosis via p38-mediated autophagy. The above findings highlight a novel mechanism underlying the beneficial effects of probiotics as functional food and provide a new perspective on the prevention and treatment of oxidative damages.
Collapse
Affiliation(s)
- Yanping Wu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Han Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yali Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Tian X, Yu Z, Feng P, Ye Z, Li R, Liu J, Hu J, Kakade A, Liu P, Li X. Lactobacillus plantarum TW1-1 Alleviates Diethylhexylphthalate-Induced Testicular Damage in Mice by Modulating Gut Microbiota and Decreasing Inflammation. Front Cell Infect Microbiol 2019; 9:221. [PMID: 31297340 PMCID: PMC6607032 DOI: 10.3389/fcimb.2019.00221] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Diethylhexylphthalate (DEHP), acting as an endocrine disruptor, disturbed reproductive health. Here, we evaluated the effects of Lactobacillus plantarum TW1-1 (L. plantarum TW1-1) on DEHP-induced testicular damage in adult male mice. Results showed that oral supplementation of L. plantarum TW1-1 significantly increased the serum testosterone concentration, enhanced the semen quality, and attenuated gonad development defects in DEHP-exposed mice. L. plantarum TW1-1 also alleviated DEHP-induced oxidative stress and inflammatory responses by decreasing the mRNA expression and serum protein concentration of different inflammatory factors [tumor necrosis factor-α, interleukin (IL)-1β and IL-6]. Furthermore, L. plantarum TW1-1 significantly reduced DEHP-induced intestinal hyper-permeability and the increase in the serum lipopolysaccharide level. Gut microbiota diversity analysis revealed that L. plantarum TW1-1 shifted the DEHP-disrupted gut microbiota to that of the control mice. At phylum level, L. plantarum TW1-1 reversed DEHP-induced Bacteroidetes increase and Firmicutes decrease, and restored Deferribacteres in DEHP-exposed mice. Spearman's correlation analysis showed that Bacteroidetes, Deferribacteres, and Firmicutes were associated with DEHP-induced testicular damage. In addition, the ratio of Firmicutes to Bacteroidetes (Firm/Bac ratio) significantly decreased from 0.28 (control group) to 0.13 (DEHP-exposed group), which was restored by L. plantarum TW1-1 treatment. Correlation analysis showed that the Firm/Bac ratio was negatively correlated with testicular damage and inflammation. These findings suggest that L. plantarum TW1-1 prevents DEHP-induced testicular damage via modulating gut microbiota and decreasing inflammation.
Collapse
Affiliation(s)
- Xiaozhu Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Zhengsheng Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ze Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Rong Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Juyuan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Junping Hu
- Key Laboratory for Reproductive Medicine and Embryo, The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Lanzhou, China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
35
|
Tian X, Yu Z, Feng P, Ye Z, Li R, Liu J, Hu J, Kakade A, Liu P, Li X. Lactobacillus plantarum TW1-1 Alleviates Diethylhexylphthalate-Induced Testicular Damage in Mice by Modulating Gut Microbiota and Decreasing Inflammation. Front Cell Infect Microbiol 2019. [PMID: 31297340 DOI: 10.3389/fcimb.2019.00221/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Diethylhexylphthalate (DEHP), acting as an endocrine disruptor, disturbed reproductive health. Here, we evaluated the effects of Lactobacillus plantarum TW1-1 (L. plantarum TW1-1) on DEHP-induced testicular damage in adult male mice. Results showed that oral supplementation of L. plantarum TW1-1 significantly increased the serum testosterone concentration, enhanced the semen quality, and attenuated gonad development defects in DEHP-exposed mice. L. plantarum TW1-1 also alleviated DEHP-induced oxidative stress and inflammatory responses by decreasing the mRNA expression and serum protein concentration of different inflammatory factors [tumor necrosis factor-α, interleukin (IL)-1β and IL-6]. Furthermore, L. plantarum TW1-1 significantly reduced DEHP-induced intestinal hyper-permeability and the increase in the serum lipopolysaccharide level. Gut microbiota diversity analysis revealed that L. plantarum TW1-1 shifted the DEHP-disrupted gut microbiota to that of the control mice. At phylum level, L. plantarum TW1-1 reversed DEHP-induced Bacteroidetes increase and Firmicutes decrease, and restored Deferribacteres in DEHP-exposed mice. Spearman's correlation analysis showed that Bacteroidetes, Deferribacteres, and Firmicutes were associated with DEHP-induced testicular damage. In addition, the ratio of Firmicutes to Bacteroidetes (Firm/Bac ratio) significantly decreased from 0.28 (control group) to 0.13 (DEHP-exposed group), which was restored by L. plantarum TW1-1 treatment. Correlation analysis showed that the Firm/Bac ratio was negatively correlated with testicular damage and inflammation. These findings suggest that L. plantarum TW1-1 prevents DEHP-induced testicular damage via modulating gut microbiota and decreasing inflammation.
Collapse
Affiliation(s)
- Xiaozhu Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Zhengsheng Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ze Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Rong Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Juyuan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Junping Hu
- Key Laboratory for Reproductive Medicine and Embryo, The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Lanzhou, China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
36
|
Ayyanna R, Ankaiah D, Arul V. Anti-inflammatory and Antioxidant Properties of Probiotic Bacterium Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 in Wistar Albino Rats. Front Microbiol 2018; 9:3063. [PMID: 30619149 PMCID: PMC6301997 DOI: 10.3389/fmicb.2018.03063] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/27/2018] [Indexed: 01/27/2023] Open
Abstract
The potent antioxidant probiotic strains Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 were assessed for anti-inflammatory properties in carrageenan (acute) and complete Freund’s adjuvant-induced inflammation (chronic) models in the present study. The two probiotic strains were administered orally along with feed to the Wistar albino male rats as whole cell as well as microencapsulated form. The following experiments were performed to evaluate the anti-inflammatory properties of probiotic strains and the results were observed that the encapsulated and unencapsulated probiotic strains have exhibited statistically significant decrease in paw thickness. Percentage of inhibition in paw thickness of microencapsulated probiotic bacteria (Group VIII), unencapsulated strains (Group IX) were revealed 85 ± 13% and 77 ± 25%, respectively. In Hematoxylin and Eosin staining, results were revealed that the probiotic strains were exhibited anti-inflammatory effects on inflammation-induced paw tissues. qRT-PCR studies revealed upregulation of anti-inflammatory cytokine genes and down-regulation pro-inflammatory cytokine genes in probiotic-treated rat paw tissues. Further, the expression of anti-inflammatory and pro-inflammatory cytokines were examined using immunohistochemistry and ELISA methods. The probiotic administered rat paw tissue in different groups have exhibited the low level of lipid peroxides formation and higher anti-oxidant activities when compared to the control and inflammation control tissues.
Collapse
Affiliation(s)
- Repally Ayyanna
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Dasari Ankaiah
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
37
|
Surya A, Liu X, Miller MJ. Glutathione Utilization in Lactobacillus fermentum CECT 5716. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12651-12656. [PMID: 30417643 DOI: 10.1021/acs.jafc.8b06136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glutathione, a tripeptide antioxidant, has recently been shown to be either utilized or synthesized by Gram-positive bacteria, such as lactic acid bacteria. Glutathione plays an important role in countering environmental stress, such as oxidative stress. In this study, cellular activity regarding glutathione in Lactobacillus fermentum CECT 5716 is characterized. We demonstrate that L. fermentum CECT 5716 has a better survival rate in the presence of glutathione under both oxidative and metal stress. As L. fermentum CECT 5716 does not possess the ability to synthesize glutathione under the conditions tested, it shows the ability to uptake both reduced and oxidized glutathione from the environment, regenerate reduced glutathione from oxidized glutathione, and perform secretion of glutathione to the environment.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Food Science and Human Nutrition , University of Illinois at Urbana-Champaign , 1302 West Pennsylvania Avenue , Urbana , Illinois 61801 , United States
| | - Xiaoji Liu
- Department of Food Science and Human Nutrition , University of Illinois at Urbana-Champaign , 1302 West Pennsylvania Avenue , Urbana , Illinois 61801 , United States
| | - Michael J Miller
- Department of Food Science and Human Nutrition , University of Illinois at Urbana-Champaign , 1302 West Pennsylvania Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
38
|
Di Nunzio M, Bordoni A, Aureli F, Cubadda F, Gianotti A. Sourdough Fermentation Favorably Influences Selenium Biotransformation and the Biological Effects of Flatbread. Nutrients 2018; 10:nu10121898. [PMID: 30513976 PMCID: PMC6316522 DOI: 10.3390/nu10121898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/04/2023] Open
Abstract
Although selenium is of great importance for the human body, in several world regions the intake of this essential trace element does not meet the dietary reference values. To achieve optimal intake, fortification of bread by using selenium-enriched flour has been put forward. Less is known on the potential effect of sourdough fermentation, which might be worth exploring as the biological effects of selenium strongly depend on its chemical form and sourdough fermentation is known to cause transformations of nutrients and phytochemicals, including the conversion of inorganic selenium into organic selenocompounds. Here we investigated the bio transformation of selenium by sourdough fermentation in a typical Italian flatbread (piadina) made with standard (control) or selenium-enriched flour. The different piadina were submitted to in vitro digestion, and the biological activity of the resulting hydrolysates was tested by means of cultured human liver cells exposed to an exogenous oxidative stress. The use of selenium-enriched flour and sourdough fermentation increased the total content of bioaccessible selenium in organic form, compared to conventional fermentation, and led to protective effects counteracting oxidative damage in cultured cells. The present study suggests that selenium-rich, sourdough-fermented bakery products show promise for improving human selenium nutrition whenever necessary.
Collapse
Affiliation(s)
- Mattia Di Nunzio
- Department of Agri-Food Sciences and Technologies (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy.
| | - Alessandra Bordoni
- Department of Agri-Food Sciences and Technologies (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy.
| | - Federica Aureli
- Department of Food Safety, Nutrition, and Veterinary Public Health, Istituto Superiore di Sanità-Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesco Cubadda
- Department of Food Safety, Nutrition, and Veterinary Public Health, Istituto Superiore di Sanità-Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Andrea Gianotti
- Department of Agri-Food Sciences and Technologies (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy.
| |
Collapse
|
39
|
Rodrigues R, Guerra G, Soares J, Santos K, Rolim F, Assis P, Araújo D, de Araújo Júnior RF, Garcia VB, de Araújo AA, Queiroga R. Lactobacillus rhamnosus EM1107 in goat milk matrix modulates intestinal inflammation involving NF-κB p65 and SOCs-1 in an acid-induced colitis model. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
40
|
Badehnoosh B, Karamali M, Zarrati M, Jamilian M, Bahmani F, Tajabadi-Ebrahimi M, Jafari P, Rahmani E, Asemi Z. The effects of probiotic supplementation on biomarkers of inflammation, oxidative stress and pregnancy outcomes in gestational diabetes. J Matern Fetal Neonatal Med 2018; 31:1128-1136. [PMID: 28326881 DOI: 10.1080/14767058.2017.1310193] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study was designed to evaluate the effects of probiotic supplementation on biomarkers of inflammation, oxidative stress and pregnancy outcomes among subjects with gestational diabetes (GDM). METHODS This randomized, double-blind, placebo-controlled clinical trial was done among 60 subjects with GDM who were not on oral hypoglycemic agents. Patients were randomly allocated to intake either probiotic capsule containing Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium bifidum (2 × 109 CFU/g each) (n = 30) or placebo (n = 30) for six weeks. RESULTS Compared with the placebo, probiotic supplementation resulted in significant decreases in fasting plasma glucose (FPG) (-5.3 ± 6.7 vs. +0.03 ± 9.0 mg/dL, p = .01), serum high-sensitivity C-reactive protein (hs-CRP) (-2.2 ± 2.7 vs. +0.5 ± 2.4 μg/mL, p < .001), plasma malondialdehyde (MDA) concentrations (-0.1 ± 0.8 vs. +0.5 ± 1.5 μmol/L, p = .03) and MDA/TAC ratio (-0.0003 ± 0.0008 vs. +0.0009 ± 0.002, p = .004), and a significant increase in total antioxidant capacity (TAC) levels (+65.4 ± 103.3 vs. -37.2 ± 143.7 mmol/L, p = .002). Probiotic supplementation did not affect pregnancy outcomes. CONCLUSIONS Overall, probiotic supplementation among women with GDM for six weeks had beneficial effects on FPG, serum hs-CRP, plasma TAC, MDA and oxidative stress index, but did not affect pregnancy outcomes.
Collapse
Affiliation(s)
- Bita Badehnoosh
- a Department of Gynecology and Obstetrics , School of Medicine, Alborz University of Medical Sciences , Karaj , Iran
| | - Maryam Karamali
- b Department of Gynecology and Obstetrics , School of Medicine, Iran University of Medical Sciences , Tehran , Iran
| | - Mitra Zarrati
- c Faculty of Nutrition , School of Public Health, Iran University of Medical Sciences , Tehran , Iran
| | - Mehri Jamilian
- d Endocrinology and Metabolism Research Center, Arak University of Medical Sciences , Arak , Iran
| | - Fereshteh Bahmani
- e Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , Iran
| | - Maryam Tajabadi-Ebrahimi
- f Faculty member of Science department, Science faculty , Islamic Azad University , Tehran , Iran
| | - Parvaneh Jafari
- g Department of Microbiology, Science faculty , Islamic Azad University , Arak , Iran
| | - Elham Rahmani
- h Department of Gynecology and Obstetrics , School of Medicine, Bushehr University of Medical Sciences , Bushehr , Iran
| | - Zatollah Asemi
- e Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , Iran
| |
Collapse
|
41
|
Ren C, Dokter‐Fokkens J, Figueroa Lozano S, Zhang Q, de Haan BJ, Zhang H, Faas MM, de Vos P. Lactic Acid Bacteria May Impact Intestinal Barrier Function by Modulating Goblet Cells. Mol Nutr Food Res 2018; 62:e1700572. [PMID: 29333697 PMCID: PMC5900975 DOI: 10.1002/mnfr.201700572] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/11/2017] [Indexed: 12/19/2022]
Abstract
SCOPE Lactic acid bacteria (LAB) are recognized to promote gastrointestinal health by mechanisms that are not fully understood. LABs might modulate the mucus and thereby enhance intestinal barrier function. Herein, we investigate effects of different LAB strains and species on goblet cell genes involved in mucus synthesis. METHODS AND RESULTS Gene expression profiles of goblet-cell-associated products (mucin MUC2, trefoil factor 3, resistin-like molecule β, carbohydrate sulfotransferase 5, and galactose-3-O-sulfotransferase 2) induced by LAB or their derived conditioned medium in human goblet cell line LS174T are studied. Effects of LAB on gene transcription are assessed with or without exposure to TNF-α, IL-13, or the mucus damaging agent tunicamycin. LAB do impact the related genes in a species- and strain-specific fashion and their effects are different in the presence of the cytokines and tunicamycin. Bioactive factors secreted by some strains are also found to regulate goblet cell-related genes. CONCLUSION Our findings provide novel insights in differences in modulatory efficacy on mucus genes between LAB species and strains. This study further unravels direct interactions between LAB and intestinal goblet cells, and highlights the importance of rationally selecting appropriate LAB candidates to achieve specific benefits in the gut.
Collapse
Affiliation(s)
- Chengcheng Ren
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Center GroningenHanzeplein 1The Netherlands
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Jelleke Dokter‐Fokkens
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Center GroningenHanzeplein 1The Netherlands
| | - Susana Figueroa Lozano
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Center GroningenHanzeplein 1The Netherlands
| | - Qiuxiang Zhang
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Bart J. de Haan
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Center GroningenHanzeplein 1The Netherlands
| | - Hao Zhang
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Marijke M. Faas
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Center GroningenHanzeplein 1The Netherlands
| | - Paul de Vos
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen and University Medical Center GroningenHanzeplein 1The Netherlands
| |
Collapse
|
42
|
Marsova M, Abilev S, Poluektova E, Danilenko V. A bioluminescent test system reveals valuable antioxidant properties of lactobacillus strains from human microbiota. World J Microbiol Biotechnol 2018; 34:27. [PMID: 29344877 DOI: 10.1007/s11274-018-2410-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
Abstract
Oxidative stress cause serious damages in human organism resulting in multiple diseases. Antioxidant therapy includes diet, the use of chemical agents or commensal bacteria such as lactobacilli. This study aims to evaluate the antioxidant (AO) activity of cell-free culture supernatants of lactobacilli, isolated from different parts of the human body. A test system based on Escherichia coli MG1655 strains carrying plasmids encoding luminescent biosensors pSoxS-lux and pKatG-lux inducible by superoxide anion and hydrogen peroxide, respectively, was used to analyze cell-free culture supernatants of lactobacilli. Bioluminescent detection systems are suitable for quick screening of AO activity of lactobacilli. The majority of strains (51 out of 81) belonging to six different species demonstrated various levels of antioxidant activity. This activity was confirmed using the trolox equivalent method. The genome of one of the strains showing high AO activity was sequenced, and the genes putatively involved in AO capacity were determined. Potencies of standard AO and CFS from the most active Lactobacillus strains. Percentages of decrease in the detected luminescence (IAO%) in the presence of AO or CFS are presented. L. br.-L. brevis, L. pl. -L. plantarum, L. rh.-L. rhamnosus.
Collapse
Affiliation(s)
- Maria Marsova
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Serikbay Abilev
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elena Poluektova
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Valeriy Danilenko
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
- Scientific Research Center for Biotechnology of Antibiotics "BIOAN", Moscow, Russian Federation
| |
Collapse
|
43
|
Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, Garcia F, Olivares M, Rodríguez-Cabezas ME, Gálvez J. Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on microRNAs expression and microbiota composition. Mol Nutr Food Res 2017; 61. [PMID: 28752563 DOI: 10.1002/mnfr.201700144] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Abstract
SCOPE To compare the intestinal anti-inflammatory effects of two probiotics Lactobacillus fermentum and Lactobacillus salivarius in mouse colitis, focusing on their impact on selected miRNAs and microbiota composition. METHODS AND RESULTS Male C57BL/6J mice were randomly assigned to four groups (n = 10): non-colitic, DSS colitic and two colitic groups treated with probiotics (5 × 108 CFU/mouse/day). Both probiotics ameliorated macroscopic colonic damage. They improved the colonic expression of markers involved in the immune response, and the expression of miR-155 and miR-223. L. fermentum also restored miR-150 and miR-143 expression, also linked to the preservation of the intestinal barrier function. Besides, these beneficial effects were associated with the amelioration of the microbiota dysbiosis and a recovery of the SCFAs- and lactic acid-producing bacterial populations, although only L. fermentum improved Chao richness, Pielou evenness and Shannon diversity. Moreover, L. fermentum also restored the Treg cell population in MLNs and the Th1/Th2 cytokine balance. CONCLUSION Both probiotics exerted intestinal anti-inflammatory effects in DSS-mouse colitis, maybe due to their ability to restore the intestinal microbiota homeostasis and modulate the immune response. L. fermentum showed a greater beneficial effect compared to L. salivarius, which makes it more interesting for future studies.
Collapse
Affiliation(s)
- Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Jose Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - M Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Natalia Chueca
- Department of Microbiology, ibs.GRANADA, Complejo Hospitalario Universitario de Granada, ibs.GRANADA, Granada, Spain
| | - Federico Garcia
- Department of Microbiology, ibs.GRANADA, Complejo Hospitalario Universitario de Granada, ibs.GRANADA, Granada, Spain
| | | | - M Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
44
|
Should Research on the Nutritional Potential and Health Benefits of Fermented Cereals Focus More on the General Health Status of Populations in Developing Countries? Microorganisms 2017; 5:microorganisms5030040. [PMID: 28757585 PMCID: PMC5620631 DOI: 10.3390/microorganisms5030040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/18/2017] [Accepted: 07/23/2017] [Indexed: 01/29/2023] Open
Abstract
Cereal foods fermented by lactic acid bacteria are staples in many countries around the world particularly in developing countries, but some aspects of the nutritional and health benefits of traditional fermented foods in developing countries have not been sufficiently investigated compared to fermented foods in high-income countries. Today, malnutrition worldwide is characterized by a double burden, excess leading to non-communicable diseases like obesity or diabetes alongside micronutrient deficiencies. In addition, populations in developing countries suffer from infectious and parasitic diseases that can jeopardize the health benefits provided by their traditional fermented foods. Using examples, we argue that research on traditional fermented cereals in developing countries should focus more on their effect on inflammation and oxidative stress under conditions including infectious or non-infectious gut inflammation.
Collapse
|
45
|
Park E, Paik HD, Lee SM. Combined effects of whey protein hydrolysates and probiotics on oxidative stress induced by an iron-overloaded diet in rats. Int J Food Sci Nutr 2017; 69:298-307. [DOI: 10.1080/09637486.2017.1354977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Eunju Park
- Department of Food and Nutrition, Kyungnam University, Changwon, South Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea
| | - Seung-Min Lee
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, South Korea
| |
Collapse
|
46
|
Turck D, Bresson JL, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI, Mangelsdorf I, McArdle HJ, Naska A, Neuhäuser-Berthold M, Nowicka G, Pentieva K, Sanz Y, Stern M, Tomé D, Van Loveren H, Vinceti M, Willatts P, Martin A, Strain JJ, Siani A. Lactobacillus fermentum CECT 5716 and a reduction of the Staphylococcus load in breast milk which reduces the risk of infectious mastitis: evaluation of a health claim pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J 2017; 15:e04917. [PMID: 32625577 PMCID: PMC7010029 DOI: 10.2903/j.efsa.2017.4917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following an application from Biosearch Life, submitted for authorisation of a health claim pursuant to Article 14 of Regulation (EC) No 1924/2006 via the Competent Authority of France, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to Lactobacillus fermentum CECT 5716 and decreases the Staphylococcus load in breast milk. High Staphylococcus load in breast milk is a risk factor for infectious mastitis. The scope of the application was proposed to fall under a health claim referring to disease risk reduction. The Panel considers that Lactobacillus fermentum CECT 5716 is sufficiently characterised. In the context of this application, the Staphylococcus load in breast milk can be considered a risk factor for the development of infectious mastitis, as long as evidence is provided that the consumption of Lactobacillus fermentum CECT 5716 reduces the Staphylococcus load in breast milk as well as the incidence of infectious mastitis. Three human intervention studies investigated the effect of Lactobacillus fermentum CECT 5716 on the Staphylococcus load of breast milk in lactating women. One of these studies was conducted in lactating women free of infectious mastitis at baseline. The Panel considers that no conclusions can be drawn from this study for the scientific substantiation of the claim owing to important methodological limitations. The other two studies were conducted in lactating women with infectious mastitis and, therefore, the effect of the intervention on the incidence of infectious mastitis cannot be assessed. The Panel concludes that a cause and effect relationship has not been established between the consumption of Lactobacillus fermentum CECT 5716 and a reduction of the Staphylococcus load in breast milk which reduces the risk of infectious mastitis.
Collapse
|
47
|
Shi Y, Zhai Q, Li D, Mao B, Liu X, Zhao J, Zhang H, Chen W. Restoration of cefixime-induced gut microbiota changes by Lactobacillus cocktails and fructooligosaccharides in a mouse model. Microbiol Res 2017; 200:14-24. [DOI: 10.1016/j.micres.2017.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/21/2016] [Accepted: 04/01/2017] [Indexed: 12/22/2022]
|
48
|
Pophaly SD, Poonam S, Pophaly SD, Kapila S, Nanda DK, Tomar SK, Singh R. Glutathione biosynthesis and activity of dependent enzymes in food-grade lactic acid bacteria harbouring multidomain bifunctional fusion gene (gshF). J Appl Microbiol 2017; 123:194-203. [PMID: 28403558 DOI: 10.1111/jam.13471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/20/2016] [Accepted: 04/07/2017] [Indexed: 12/20/2022]
Abstract
AIMS To assess glutathione (GSH) biosynthesis ability and activity of dependent enzymes in food-grade lactic acid bacteria (LAB) and correlating with genomic information on GSH system in LAB. METHODS AND RESULTS Whole-genome sequences of 26 food-grade LAB were screened for the presence/absence of a set of genes involved in de novo GSH system. Multiple strains of Streptococcus thermophilus (37), Lactobacillus casei (37), Lactobacillus rhamnosus (4), Lactobacillus paracasei (8) Lactobacillus plantarum (23) and Lactobacillus fermentum (22) were screened for biochemical evidence of the GSH system. Multiple sequence analysis of GshF sequences was carried out for comparing the genomic signatures between GSH-producing and nonproducing species. CONCLUSIONS Streptococcus thermophilus was found to have de novo GSH biosynthesis as well as import ability. Lactobacillus sp. were negative for GSH synthesis but could import it from the medium. All the species exhibited prolific GSH reductase and peroxidase activity. Sequence analysis revealed the absence of key amino acid residues as well as a truncated N-terminal region in lactobacilli. SIGNIFICANCE AND IMPACT OF THE STUDY The study provides a comprehensive view on the status of an important antioxidative system (the GSH system) in LAB and is expected to serve as a primer for future work on the mechanistic role of GSH in the group.
Collapse
Affiliation(s)
- S D Pophaly
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India.,Department of Dairy Microbiology, College of Dairy Science and Food Technology, Chhattisgarh Kamdhenu Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - S Poonam
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - S D Pophaly
- Section of Population Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - S Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - D K Nanda
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - S K Tomar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - R Singh
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India.,Directorate of Knowledge Management in Agriculture, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
49
|
Chooruk A, Piwat S, Teanpaisan R. Antioxidant activity of various oral Lactobacillus
strains. J Appl Microbiol 2017; 123:271-279. [DOI: 10.1111/jam.13482] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/29/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
Affiliation(s)
- A. Chooruk
- Common Oral Diseases and Epidemiology Research Center; Faculty of Dentistry; Prince of Songkla University; Hat-Yai Thailand
- Department of Stomatology; Faculty of Dentistry; Prince of Songkla University; Hat-Yai Thailand
| | - S. Piwat
- Common Oral Diseases and Epidemiology Research Center; Faculty of Dentistry; Prince of Songkla University; Hat-Yai Thailand
- Department of Preventive Dentistry; Faculty of Dentistry; Prince of Songkla University; Hat-Yai Thailand
| | - R. Teanpaisan
- Common Oral Diseases and Epidemiology Research Center; Faculty of Dentistry; Prince of Songkla University; Hat-Yai Thailand
- Department of Stomatology; Faculty of Dentistry; Prince of Songkla University; Hat-Yai Thailand
| |
Collapse
|
50
|
Rivero-Gutiérrez B, Gámez-Belmonte R, Suárez MD, Lavín JL, Aransay AM, Olivares M, Martínez-Augustin O, Sánchez de Medina F, Zarzuelo A. A synbiotic composed of Lactobacillus fermentum CECT5716 and FOS prevents the development of fatty acid liver and glycemic alterations in rats fed a high fructose diet associated with changes in the microbiota. Mol Nutr Food Res 2017; 61. [PMID: 28463404 DOI: 10.1002/mnfr.201600622] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/14/2017] [Accepted: 04/12/2017] [Indexed: 12/14/2022]
Abstract
We investigated the effect of a high fructose diet (HFD) on Sprague Dawley rats and the impact of a synbiotic composed of Lactobacillus fermentum CECT5716 and fructooligosaccharides. Feeding the HFD for 5 weeks resulted in liver steatosis and insulin resistance but not obesity. These changes were associated with increased production of short-chain fatty acids and increased Bacteroidetes in feces, with an augmented Bacteroidetes/Firmicutes ratio, among other changes in the microbiota. In addition, barrier function was weakened, with increased LPS plasma levels. These data are consistent with increased fructose availability in the distal gut due to saturation of absorptive mechanisms, leading to dysbiosis, endotoxemia, hepatic steatosis, and insulin resistance. Treatment with the synbiotic prevented some of the pathological effects, so that treated rats did not develop steatosis or systemic inflammation, while dysbiosis and barrier function were greatly ameliorated. In addition, the synbiotic had hypolipidemic effects. The synbiotic composed by L. fermentum CECT5716 and fructooligosaccharides has beneficial effects in a model of metabolic syndrome induced by a HFD, suggesting it might be clinically useful in this type of condition, particularly considering that high fructose intake has been related to metabolic syndrome in humans.
Collapse
Affiliation(s)
- Belén Rivero-Gutiérrez
- Department of and Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Spain
| | - Reyes Gámez-Belmonte
- Department of and Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Spain
| | - María Dolores Suárez
- Department of Biochemistry and Molecular Biology II1, CIBERehd, School of Pharmacy, University of Granada, Spain
| | | | | | | | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II1, CIBERehd, School of Pharmacy, University of Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Spain.,Instituto de Ciencia y tecnología de los Alimentos José Mataix, University of GRANADA, Spain
| | - Fermín Sánchez de Medina
- Department of and Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Spain
| | - Antonio Zarzuelo
- Department of and Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Spain
| |
Collapse
|