1
|
Bettini A, Camelliti P, Stuckey DJ, Day RM. Injectable biodegradable microcarriers for iPSC expansion and cardiomyocyte differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404355. [PMID: 38900068 PMCID: PMC11348074 DOI: 10.1002/advs.202404355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Cell therapy is a potential novel treatment for cardiac regeneration and numerous studies have attempted to transplant cells to regenerate the myocardium lost during myocardial infarction. To date, only minimal improvements to cardiac function have been reported. This is likely to be the result of low cell retention and survival following transplantation. This study aimed to improve the delivery and engraftment of viable cells by using an injectable microcarrier that provides an implantable, biodegradable substrate for attachment and growth of cardiomyocytes derived from induced pluripotent stem cells (iPSC). We describe the fabrication and characterisation of Thermally Induced Phase Separation (TIPS) microcarriers and their surface modification to enable iPSC-derived cardiomyocyte attachment in xeno-free conditions is described. The selected formulation resulted in iPSC attachment, expansion, and retention of pluripotent phenotype. Differentiation of iPSC into cardiomyocytes on the microcarriers is investigated in comparison with culture on 2D tissue culture plastic surfaces. Microcarrier culture is shown to support culture of a mature cardiomyocyte phenotype, be compatible with injectable delivery, and reduce anoikis. The findings from this study demonstrate that TIPS microcarriers provide a supporting matrix for culturing iPSC and iPSC-derived cardiomyocytes in vitro and are suitable as an injectable cell-substrate for cardiac regeneration.
Collapse
Affiliation(s)
- Annalisa Bettini
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Patrizia Camelliti
- School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Richard M. Day
- Centre for Precision Healthcare, Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| |
Collapse
|
2
|
Abouzid MR, Umer AM, Jha SK, Akbar UA, Khraisat O, Saleh A, Mohamed K, Esteghamati S, Kamel I. Stem Cell Therapy for Myocardial Infarction and Heart Failure: A Comprehensive Systematic Review and Critical Analysis. Cureus 2024; 16:e59474. [PMID: 38832190 PMCID: PMC11145929 DOI: 10.7759/cureus.59474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 06/05/2024] Open
Abstract
In exploring therapeutic options for ischemic heart disease (IHD) and heart failure, cell-based cardiac repair has gained prominence. This systematic review delves into the current state of knowledge surrounding cell-based therapies for cardiac repair. Employing a comprehensive search across relevant databases, the study identifies 35 included studies with diverse cell types and methodologies. Encouragingly, these findings reveal the promise of cell-based therapies in cardiac repair, demonstrating significant enhancements in left ventricular ejection fraction (LVEF) across the studies. Mechanisms of action involve growth factors that stimulate angiogenesis, differentiation, and the survival of transplanted cells. Despite these positive outcomes, challenges persist, including low engraftment rates, limitations in cell differentiation, and variations in clinical reproducibility. The optimal dosage and frequency of cell administration remain subjects of debate, with potential benefits from repeated dosing. Additionally, the choice between autologous and allogeneic stem cell transplantation poses a critical decision. This systematic review underscores the potential of cell-based therapies for cardiac repair, bearing implications for innovative treatments in heart diseases. However, further research is imperative to optimize cell type selection, delivery techniques, and long-term efficacy, fostering a more comprehensive understanding of cell-based cardiac repair.
Collapse
Affiliation(s)
- Mohamed R Abouzid
- Internal Medicine, Baptist Hospitals of Southeast Texas, Beaumont, USA
| | - Ahmed Muaaz Umer
- Internal Medicine Residency, Camden Clark Medical Center, Parkersburg, USA
| | - Suman Kumar Jha
- Internal Medicine, Sheer Memorial Adventist Hospital, Banepa, NPL
| | - Usman A Akbar
- Internal Medicine, Camden Clark Medical Center, Parkersburg, USA
| | - Own Khraisat
- Internal Medicine, King Hussein Medical City, Amman, JOR
| | - Amr Saleh
- Cardiovascular Medicine, Yale School of Medicine, New Haven, USA
| | - Kareem Mohamed
- Internal Medicine, University of Missouri Kansas City, Kansas City, USA
| | | | - Ibrahim Kamel
- Internal Medicine, Steward Carney Hospital, Boston, USA
| |
Collapse
|
3
|
Ma J, Wang W, Zhang W, Xu D, Ding J, Wang F, Peng X, Wang D, Li Y. The recent advances in cell delivery approaches, biochemical and engineering procedures of cell therapy applied to coronary heart disease. Biomed Pharmacother 2023; 169:115870. [PMID: 37952359 DOI: 10.1016/j.biopha.2023.115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Cell therapy is an important topic in the field of regeneration medicine that is gaining attention within the scientific community. However, its potential for treatment in coronary heart disease (CHD) has yet to be established. Several various strategies, types of cells, routes of distribution, and supporting procedures have been tried and refined to trigger heart rejuvenation in CHD. However, only a few of them result in a real considerable promise for clinical usage. In this review, we give an update on techniques and clinical studies of cell treatment as used to cure CHD that are now ongoing or have been completed in the previous five years. We also highlight the emerging efficacy of stem cell treatment for CHD. We specifically examine and comment on current breakthroughs in cell treatment applied to CHD, including the most effective types of cells, transport modalities, engineering, and biochemical approaches used in this context. We believe the current review will be helpful for the researcher to distill this information and design future studies to overcome the challenges faced by this revolutionary approach for CHD.
Collapse
Affiliation(s)
- Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 13000, China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Fang Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xia Peng
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dahai Wang
- Department of Rehabilitation, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Yanwei Li
- Department of General Practice and Family Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
4
|
Schubart JR, Zare A, Fernandez-de-Castro RM, Figueroa HR, Sarel I, Tuchman K, Esposito K, Henderson FC, von Schwarz E. Safety and outcomes analysis: transcatheter implantation of autologous angiogenic cell precursors for the treatment of cardiomyopathy. Stem Cell Res Ther 2023; 14:308. [PMID: 37880753 PMCID: PMC10601268 DOI: 10.1186/s13287-023-03539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Stem cell transplantation is an emerging therapy for severe cardiomyopathy, proffering stem cell recruitment, anti-apoptosis, and proangiogenic capabilities. Angiogenic cell precursors (ACP-01) are autologous, lineage-specific, cells derived from a multipotent progenitor cell population, with strong potential to effectively engraft, form blood vessels, and support tissue survival and regeneration. METHODS This IRB approved outcome analysis reports upon 74 consecutive patients who failed medical management for severe cardiomyopathy, and were selected to undergo transcatheter intramyocardial or intracoronary implantation of ACP-01. Serious adverse events (SAEs) were reported. Cell analysis was conducted for each treatment. The left ventricular ejection fraction (LVEF) was measured by multi-gated acquisition scan (MUGA) or echocardiogram at 4 months ± 1.9 months and 12 months ± 5.5 months. Patients reported quality of life statements at 6 months (± 5.6 months). RESULTS Fifty-four of 74 patients met requirements for inclusion (48 males and five females; age 68.1 ± 11.3 years). The mean treatment cell number of 57 × 106 ACP-01 included 7.7 × 106 CD34 + and 21 × 106 CD31 + cells with 97.6% viability. SAEs included one death (previously unrecognized silent MI), ventricular tachycardia (n = 2) requiring cardioversion, and respiratory infection (n = 2). LVEF in the ischemic subgroup (n = 41) improved by 4.7% ± 9.7 from pre-procedure to the first follow-up (4 months ± 1.9 months) (p < 0.004) and by 7.2% ± 10.9 at final follow-up (n = 25) at average 12 months (p < 0.004). The non-ischemic dilated cardiomyopathy subgroup (n = 8) improved by 7.5% ± 6.0 at the first follow-up (p < 0.017) and by 12.2% ± 6.4 at final follow-up (p < 0.003, n = 6). Overall improvement in LVEF from pre-procedure to post-procedure was significant (Fisher's exact test p < 0.004). LVEF improvement was most marked in the patients with the most severe cardiomyopathy (LVEF < 20%) improving from a mean 14.6% ± 3.4% pre-procedurally to 28.4% ± 8% at final follow-up. Quality of life statements reflected improvement in 33/50 (66%), no change in 14/50 (28%), and worse in 3/50 (6%). CONCLUSION Transcatheter implantation of ACP-01 for cardiomyopathy is safe and improves LVEF in the setting of ischemic and non-ischemic cardiomyopathy. The results warrant further investigation in a prospective, blinded, and controlled clinical study. TRIAL REGISTRATION IRB from Genetic Alliance #APC01-001, approval date July 25, 2022. Cardiomyopathy is common and associated with high mortality. Stem cell transplantation is an emerging therapy. Angiogenic cell precursors (ACP-01) are lineage-specific endothelial progenitors, with strong potential for migration, engraftment, angiogenesis, and support of tissue survival and regeneration. A retrospective outcomes analysis of 53 patients with ischemic and non-ischemic dilated cardiomyopathy undergoing transcatheter implantation of ACP-01 demonstrated improvements in the left ventricular ejection fraction of 7.2% ± 10.9 (p < 0.004) and 12.2% ± 6.4, respectively, at 12 months (± 5) follow-up. Quality of life statements reflected improvement in 33/50 (66%) patients.
Collapse
Affiliation(s)
- Jane R Schubart
- Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Amirhossein Zare
- Northern Ontario School of Medicine, Ontario, CA, USA
- Hemostemix Inc, Calgary, CA, Canada
| | | | | | | | - Kelly Tuchman
- The Metropolitan Neurosurgery Group, LLC, 1010 Wayne Ave Suite 420, Silver Spring, MD, 20910, USA.
| | - Kaitlyn Esposito
- The Bobby Jones Chiari Syringomyelia Foundation, New York, NY, USA
| | - Fraser C Henderson
- The Metropolitan Neurosurgery Group, LLC, 1010 Wayne Ave Suite 420, Silver Spring, MD, 20910, USA.
- Department Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Hemostemix Inc, Calgary, CA, Canada.
| | - Ernst von Schwarz
- School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
5
|
Collet BC, Davis DR. Mechanisms of Cardiac Repair in Cell Therapy. Heart Lung Circ 2023; 32:825-835. [PMID: 37031061 DOI: 10.1016/j.hlc.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/10/2022] [Accepted: 01/04/2023] [Indexed: 04/08/2023]
Abstract
Heart failure is an important cause of morbidity and mortality. More than 20 years ago, special interest was drawn to cell therapy as a means of restoring damaged hearts to working condition. But progress has not been straightforward as many of our initial assumptions turned out to be wrong. In this review, we critically examine the last 20 years of progress in cardiac cell therapy and focus on several of the popular beliefs surrounding cell therapy to illustrate the mechanisms involved in restoring heart function after cardiac injury. Are they true or false?
Collapse
Affiliation(s)
- Bérénice C Collet
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
6
|
Mahmud S, Alam S, Emon NU, Boby UH, Kamruzzaman, Ahmed F, Monjur-Al-Hossain ASM, Tahamina A, Rudra S, Ajrin M. Opportunities and challenges in stem cell therapy in cardiovascular diseases: Position standing in 2022. Saudi Pharm J 2022; 30:1360-1371. [PMID: 36249945 PMCID: PMC9563042 DOI: 10.1016/j.jsps.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/17/2022] [Indexed: 10/29/2022] Open
Abstract
This study intends to evaluate the development, importance, pre-clinical and clinical study evaluation of stem cell therapy for the treatment of cardiovascular disease. Cardiovascular disease is one of the main causes of fatality in the whole world. Though there are great progressions in the pharmacological and other interventional treatment options, heart diseases remain a common disorder that causes long-term warnings. Recent accession promotes the symptoms and slows down the adverse effects regarding cardiac remodelling. But they cannot locate the problems of immutable loss of cardiac tissues. In this case, stem cell treatment holds a promising challenge. Stem cells are the cells that are capable of differentiating into many cells according to their needs. So, it is assumed that these cells can distinguish into many cells and if these cells can be individualized into cardiac cells then they can be used to replace the damaged tissues of the heart. There is some abridgment in this therapy, none the less stem cell therapy remains a hopeful destination in the treatment of heart disease.
Collapse
Affiliation(s)
- Shabnur Mahmud
- School of Health and Life Sciences, Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Safaet Alam
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Umme Habiba Boby
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Kamruzzaman
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1205, Bangladesh
| | - A S M Monjur-Al-Hossain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1205, Bangladesh
| | - Afroza Tahamina
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sajib Rudra
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Marzina Ajrin
- Department of Pharmacy, University of Science and Technology Chittagong, Chittagong 4202, Bangladesh
| |
Collapse
|
7
|
Xiao Y, Chen Y, Shao C, Wang Y, Hu S, Lei W. Strategies to improve the therapeutic effect of pluripotent stem cell-derived cardiomyocytes on myocardial infarction. Front Bioeng Biotechnol 2022; 10:973496. [PMID: 35992358 PMCID: PMC9388750 DOI: 10.3389/fbioe.2022.973496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Myocardial infarction (MI) is a common cardiovascular disease caused by permanent loss of cardiomyocytes and the formation of scar tissue due to myocardial ischemia. Mammalian cardiomyocytes lose their ability to proliferate almost completely in adulthood and are unable to repair the damage caused by MI. Therefore, transplantation of exogenous cells into the injured area for treatment becomes a promising strategy. Pluripotent stem cells (PSCs) have the ability to proliferate and differentiate into various cellular populations indefinitely, and pluripotent stem cell-derived cardiomyocytes (PSC-CMs) transplanted into areas of injury can compensate for part of the injuries and are considered to be one of the most promising sources for cell replacement therapy. However, the low transplantation rate and survival rate of currently transplanted PSC-CMs limit their ability to treat MI. This article focuses on the strategies of current research for improving the therapeutic efficacy of PSC-CMs, aiming to provide some inspiration and ideas for subsequent researchers to further enhance the transplantation rate and survival rate of PSC-CMs and ultimately improve cardiac function.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chunlai Shao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- *Correspondence: Wei Lei, ; Shijun Hu,
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- *Correspondence: Wei Lei, ; Shijun Hu,
| |
Collapse
|
8
|
Miloradovic D, Miloradovic D, Ljujic B, Jankovic MG. Optimal Delivery Route of Mesenchymal Stem Cells for Cardiac Repair: The Path to Good Clinical Practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:83-100. [PMID: 35389200 DOI: 10.1007/5584_2022_709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Research has shown that mesenchymal stem cells (MSCs) could be a promising therapy for treating progressive heart disease. However, translation into clinics efficiently and successfully has proven to be much more complicated. Many questions remain for optimizing treatment. Application method influences destiny of MSCs and afterwards impacts results of procedure, yet there is no general agreement about most suitable method of MSC delivery in the clinical setting. Herein, we explain principle of most-frequent MSCs delivery techniques in cardiology. This chapter summarizes crucial translational obstacles of clinical employment of MSCs for cardiac repair when analysed trough a prism of latest research centred on different techniques of MSCs application.
Collapse
Affiliation(s)
- Dragica Miloradovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Miloradovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
9
|
Mathur A, Sim DS, Choudry F, Veerapen J, Colicchia M, Turlejski T, Hussain M, Hamshere S, Locca D, Rakhit R, Crake T, Kastrup J, Agrawal S, Jones DA, Martin J. Five‐year follow‐up of intracoronary autologous cell therapy in acute myocardial infarction: the REGENERATE‐AMI trial. ESC Heart Fail 2022; 9:1152-1159. [PMID: 35043578 PMCID: PMC8934988 DOI: 10.1002/ehf2.13786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Aims The long‐term outcomes of the intracoronary delivery of autologous bone marrow‐derived cells (BMCs) after acute myocardial infarction are not well established. Following the promising 1 year results of the REGENERATE‐AMI trial (despite it not achieving its primary endpoint), this paper presents the analysis of the 5 year clinical outcomes of these acute myocardial infarction patients who were treated with an early intracoronary autologous BMC infusion or placebo. Methods and results A 5 year follow‐up of major adverse cardiac events (defined as the composite of all‐cause death, recurrent myocardial infarction, and all coronary revascularization) and of rehospitalization for heart failure was completed in 85 patients (BMC n = 46 and placebo n = 39). The incidence of major adverse cardiac events was similar between the BMC‐treated patients and the placebo group (26.1% vs. 18.0%, P = 0.41). There were no cases of cardiac death in either group, but an increase in non‐cardiac death was seen in the BMC group (6.5% vs. 0%, P = 0.11). The rates of recurrent myocardial infarction and repeat revascularization were similar between the two groups. There were no cases of rehospitalization for heart failure in either group. Conclusion This 5 year follow‐up analysis of the REGENERATE‐AMI trial did not show an improvement in clinical outcomes for patients treated with cell therapy. This contrasts with the 1 year results which showed improvements in the surrogate outcome measures of ejection fraction and myocardial salvage index.
Collapse
Affiliation(s)
- Anthony Mathur
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Doo Sun Sim
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- Department of Cardiovascular Medicine Chonnam National University Hospital, Chonnam National University School of Medicine Gwangju Korea
| | - Fizzah Choudry
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Jessry Veerapen
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Martina Colicchia
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Tymoteusz Turlejski
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Mohsin Hussain
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Stephen Hamshere
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Didier Locca
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Roby Rakhit
- Department of Cardiology The Royal Free Hospital, Royal Free London Foundation Trust London UK
| | - Tom Crake
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | - Jens Kastrup
- Rigshospitalet and University of Copenhagen Copenhagen Denmark
| | - Samir Agrawal
- Haemato‐Oncology, Barts Health NHS Trust & Immunobiology, Blizard Institute Queen Mary University of London London UK
| | - Daniel A. Jones
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute Queen Mary University of London London UK
- Department of Cardiology Barts Heart Centre, Barts Health NHS Trust London UK
| | | |
Collapse
|
10
|
Marzano LAS, de Castro FLM, Machado CA, de Barros JLVM, Macedo E Cordeiro T, Simões E Silva AC, Teixeira AL, Silva de Miranda A. Potential Role of Adult Hippocampal Neurogenesis in Traumatic Brain Injury. Curr Med Chem 2021; 29:3392-3419. [PMID: 34561977 DOI: 10.2174/0929867328666210923143713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
Traumatic brain injury (TBI) is a serious cause of disability and death among young and adult individuals, displaying complex pathophysiology including cellular and molecular mechanisms that are not fully elucidated. Many experimental and clinical studies investigated the potential relationship between TBI and the process by which neurons are formed in the brain, known as neurogenesis. Currently, there are no available treatments for TBI's long-term consequences being the search for novel therapeutic targets, a goal of highest scientific and clinical priority. Some studies evaluated the benefits of treatments aimed at improving neurogenesis in TBI. In this scenario, herein, we reviewed current pre-clinical studies that evaluated different approaches to improving neurogenesis after TBI while achieving better cognitive outcomes, which may consist in interesting approaches for future treatments.
Collapse
Affiliation(s)
- Lucas Alexandre Santos Marzano
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | | | - Caroline Amaral Machado
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | | | - Thiago Macedo E Cordeiro
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, United States
| | - Aline Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
11
|
Kantapan J, Anukul N, Leetrakool N, Rolin G, Vergote J, Dechsupa N. Iron-Quercetin Complex Preconditioning of Human Peripheral Blood Mononuclear Cells Accelerates Angiogenic and Fibroblast Migration: Implications for Wound Healing. Int J Mol Sci 2021; 22:ijms22168851. [PMID: 34445558 PMCID: PMC8396238 DOI: 10.3390/ijms22168851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-based therapy is a highly promising treatment paradigm in ischemic disease due to its ability to repair tissue when implanted into a damaged site. These therapeutic effects involve a strong paracrine component resulting from the high levels of bioactive molecules secreted in response to the local microenvironment. Therefore, the secreted therapeutic can be modulated by preconditioning the cells during in vitro culturing. Herein, we investigated the potential use of magnetic resonance imaging (MRI) probes, the "iron-quercetin complex" or IronQ, for preconditioning peripheral blood mononuclear cells (PBMCs) to expand proangiogenic cells and enhance their secreted therapeutic factors. PBMCs obtained from healthy donor blood were cultured in the presence of the iron-quercetin complex. Differentiated preconditioning PBMCs were characterized by immunostaining. An enzyme-linked immunosorbent assay was carried out to describe the secreted cytokines. In vitro migration and tubular formation using human umbilical vein endothelial cells (HUVECs) were completed to investigate the proangiogenic efficacy. IronQ significantly increased mononuclear progenitor cell proliferation and differentiation into spindle-shape-like cells, expressing both hematopoietic and stromal cell markers. The expansion increased the number of colony-forming units (CFU-Hill). The conditioned medium obtained from IronQ-treated PBMCs contained high levels of interleukin 8 (IL-8), IL-10, urokinase-type-plasminogen-activator (uPA), matrix metalloproteinases-9 (MMP-9), and tumor necrosis factor-alpha (TNF-α), as well as augmented migration and capillary network formation of HUVECs and fibroblast cells, in vitro. Our study demonstrated that the IronQ-preconditioning PBMC protocol could enhance the angiogenic and reparative potential of non-mobilized PBMCs. This protocol might be used as an adjunctive strategy to improve the efficacy of cell therapy when using PBMCs for ischemic diseases and chronic wounds. However, in vivo assessment is required for further validation.
Collapse
Affiliation(s)
- Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nampeung Anukul
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nipapan Leetrakool
- Blood Bank Section, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Gwenaël Rolin
- Inserm Centre d’Investigation Clinique-1431 (Inserm CIC-1431), Centre Hospitalier Régional Universitaire de Besançon, F-25000 Besançon, France;
- Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Etablissement Français du Sang en Bourgogne Franche-Comté, Université de Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Jackie Vergote
- Laboratoire Signalisation et Transports Ioniques Membranaires (EA 7349), Faculté de Pharmacie, Université de Tours, F-37200 Tours, France;
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence: ; Tel.: +66-53-936-022
| |
Collapse
|
12
|
Zaki MM, Lesha E, Said K, Kiaee K, Robinson-McCarthy L, George H, Hanna A, Appleton E, Liu S, Ng AHM, Khoshakhlagh P, Church GM. Cell therapy strategies for COVID-19: Current approaches and potential applications. SCIENCE ADVANCES 2021; 7:eabg5995. [PMID: 34380619 PMCID: PMC8357240 DOI: 10.1126/sciadv.abg5995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues to burden society worldwide. Despite most patients having a mild course, severe presentations have limited treatment options. COVID-19 manifestations extend beyond the lungs and may affect the cardiovascular, nervous, and other organ systems. Current treatments are nonspecific and do not address potential long-term consequences such as pulmonary fibrosis, demyelination, and ischemic organ damage. Cell therapies offer great potential in treating severe COVID-19 presentations due to their customizability and regenerative function. This review summarizes COVID-19 pathogenesis, respective areas where cell therapies have potential, and the ongoing 89 cell therapy trials in COVID-19 as of 1 January 2021.
Collapse
Affiliation(s)
- Mark M Zaki
- GC Therapeutics Inc., Cambridge, MA 02139, USA
- Department of Neurosurgery, University of Michigan, 1500 E Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Emal Lesha
- GC Therapeutics Inc., Cambridge, MA 02139, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Khaled Said
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiavash Kiaee
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Angy Hanna
- Department of Medicine, Beaumont Hospital, Royal Oak, MI, USA
| | - Evan Appleton
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Songlei Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Alex H M Ng
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Parastoo Khoshakhlagh
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - George M Church
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| |
Collapse
|
13
|
Tripathi H, Peng H, Donahue R, Chelvarajan L, Gottipati A, Levitan B, Al-Darraji A, Gao E, Abdel-Latif A, Berron BJ. Isolation Methods for Human CD34 Subsets Using Fluorescent and Magnetic Activated Cell Sorting: an In Vivo Comparative Study. Stem Cell Rev Rep 2021; 16:413-423. [PMID: 31953639 DOI: 10.1007/s12015-019-09939-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Acute myocardial infarction (AMI) and resulting cardiac damage and heart failure are leading causes of morbidity and mortality worldwide. Multiple studies have examined the utility of CD34+ cells for the treatment of acute and ischemic heart disease. However, the optimal strategy to enrich CD34 cells from clinical sources is not known. We examined the efficacy of fluorescence activated cell sorting (FACS) and magnetic beads cell sorting (MACS) methods for CD34 cell isolation from mobilized human mononuclear peripheral blood cells (mhPBMNCs). METHODS mhPBCs were processed following acquisition using FACS or MACS according to clinically established protocols. Cell viability, CD34 cell purity and characterization of surface marker expression were assessed using a flow cytometer. For in vivo characterization of cardiac repair, we conducted LAD ligation surgery on 8-10 weeks female NOD/SCID mice followed by intramyocardial transplantation of unselected mhPBMNCs, FACS or MACS enriched CD34+ cells. RESULTS Both MACS and FACS isolation methods achieved high purity rates, viability, and enrichment of CD34+ cells. In vivo studies following myocardial infarction demonstrated retention of CD34+ in the peri-infarct region for up to 30 days after transplantation. Retained CD34+ cells were associated with enhanced angiogenesis and reduced inflammation compared to unselected mhPBMNCs or PBS treatment arms. Cardiac scar and fibrosis as assessed by immunohistochemistry were reduced in FACS and MACS CD34+ treatment groups. Finally, reduced scar and augmented angiogenesis resulted in improved cardiac functional recovery, both on the global and regional function and remodeling assessments by echocardiography. CONCLUSION Cell based therapy using enriched CD34+ cells sorted by FACS or MACS result in better cardiac recovery after ischemic injury compared to unselected mhPBMNCs. Both enrichment techniques offer excellent recovery and purity and can be equally used for clinical applications.
Collapse
Affiliation(s)
- Himi Tripathi
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Hsuan Peng
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Renee Donahue
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Lakshman Chelvarajan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Anuhya Gottipati
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Bryana Levitan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Ahmed Al-Darraji
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Erhe Gao
- The Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ahmed Abdel-Latif
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA
| | - Bradley J Berron
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
14
|
Liu C, Han D, Liang P, Li Y, Cao F. The Current Dilemma and Breakthrough of Stem Cell Therapy in Ischemic Heart Disease. Front Cell Dev Biol 2021; 9:636136. [PMID: 33968924 PMCID: PMC8100527 DOI: 10.3389/fcell.2021.636136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/29/2021] [Indexed: 01/15/2023] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of mortality worldwide. Stem cell transplantation has become a promising approach for the treatment of IHD in recent decades. It is generally recognized that preclinical cell-based therapy is effective and have yielded encouraging results, which involves preventing or reducing myocardial cell death, inhibiting scar formation, promoting angiogenesis, and improving cardiac function. However, clinical studies have not yet achieved a desired outcome, even multiple clinical studies showing paradoxical results. Besides, many fundamental puzzles remain to be resolved, for example, what is the optimal delivery timing and approach? Additionally, limited cell engraftment and survival, challenging cell fate monitoring, and not fully understood functional mechanisms are defined hurdles to clinical translation. Here we review some of the current dilemmas in stem cell-based therapy for IHD, along with our efforts and opinions on these key issues.
Collapse
Affiliation(s)
- Chuanbin Liu
- Medical School of Chinese PLA, Beijing, China
- The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| | - Dong Han
- The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| | - Ping Liang
- Department of Interventional Ultrasond, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Li
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| |
Collapse
|
15
|
Abstract
Each year 790,000 people in the United States suffer from a myocardial infarction. This results in the permanent loss of cardiomyocytes and an irreversible loss of cardiac function. Current therapies lower mortality rates, but do not address the core pathology, which opens a pathway to step-wise heart failure. Utilizing stem cells to regenerate the dead tissue is a potential method to reverse these devastating effects. Several clinical trials have already demonstrated the safety of stem cell therapy. In this review, we highlight clinical trials, which have utilized various stem cell lineages, and discuss areas for future research.
Collapse
|
16
|
Xing Y, Ye Y, Zuo H, Li Y. Progress on the Function and Application of Thymosin β4. Front Endocrinol (Lausanne) 2021; 12:767785. [PMID: 34992578 PMCID: PMC8724243 DOI: 10.3389/fendo.2021.767785] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Thymosin β4 (Tβ4) is a multifunctional and widely distributed peptide that plays a pivotal role in several physiological and pathological processes in the body, namely, increasing angiogenesis and proliferation and inhibiting apoptosis and inflammation. Moreover, Tβ4 is effectively utilized for several indications in animal experiments or clinical trials, such as myocardial infarction and myocardial ischemia-reperfusion injury, xerophthalmia, liver and renal fibrosis, ulcerative colitis and colon cancer, and skin trauma. Recent studies have reported the potential application of Tβ4 and its underlying mechanisms. The present study reveals the progress regarding functions and applications of Tβ4.
Collapse
Affiliation(s)
- Yuan Xing
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Pharmacy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yumeng Ye
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Hongyan Zuo, ; Yang Li,
| | - Yang Li
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
- Academy of Life Sciences, Anhui Medical University, Hefei City, China
- *Correspondence: Hongyan Zuo, ; Yang Li,
| |
Collapse
|
17
|
Lotfi F, Jafari M, Rezaei Hemami M, Salesi M, Nikfar S, Behnam Morshedi H, Kojuri J, Keshavarz K. Evaluation of the effectiveness of infusion of bone marrow derived cell in patients with heart failure: A network meta-analysis of randomized clinical trials and cohort studies. Med J Islam Repub Iran 2020; 34:178. [PMID: 33816377 PMCID: PMC8004572 DOI: 10.47176/mjiri.34.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 11/21/2022] Open
Abstract
Background: The aim of this study was to investigate the effectiveness of bone marrow-derived cells (BMC) technology in patients with heart failure and compare it with alternative therapies, including drug therapy, cardiac resynchronization therapy pacemaker (CRT-P), cardiac resynchronization therapy defibrillator (CRT-D).
Methods: A systematic review study was conducted to identify all clinical studies published by 2017. Using keywords such as "Heart Failure, BMC, Drug Therapy, CRT-D, CRT-P" and combinations of the mentioned words, we searched electronic databases, including Scopus, Cochrane Library, and PubMed. The quality of the selected studies was assessed using the Cochrane Collaboration's tool and the Newcastle-Ottawa. The primary and secondary end-points were left ventricular ejection fraction (LVEF) (%), failure cases (Number), left ventricular end-systolic volume (LVES) (ml), and left ventricular end-diastolic volume (LVED) (ml). Random-effects network meta-analyses were used to conduct a systematic comparison. Statistical analysis was done using STATA.
Results: This network meta-analysis covered a total of 57 final studies and 6694 patients. The Comparative effectiveness of BMC versus CRT-D, Drug, and CRT-P methods indicated the statistically significant superiority of BMC over CRT-P (6.607, 95% CI: 2.92, 10.29) in LVEF index and overall CRT-P (-13.946, 95% CI: -18.59, -9.29) and drug therapy (-4.176, 95% CI: -8.02, -.33) in LVES index. In addition, in terms of LVED index, the BMC had statistically significant differences with CRT-P (-10.187, 95% CI: -18.85, -1.52). BMC was also dominant to all methods in failure cases as a final outcome and the difference was statistically significant i.e. BMC vs CRT-D: 0.529 (0.45, 0.62) and BMC vs Drug: 0.516 (0.44, 0.60). In none of the outcomes, the other methods were statistically more efficacious than BMC. The BMC method was superior or similar to the other methods in all outcomes.
Conclusion: The results of this study showed that the BMC method, in general, and especially in terms of failure cases index, had a higher level of clinical effectiveness. However, due to the lack of data asymmetry, insufficient data and head-to-head studies, BMC in this meta-analysis might be considered as an alternative to existing treatments for heart failure.
Collapse
Affiliation(s)
- Farhad Lotfi
- Health Human Resources Research Center, School of Management and Medical Informatics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Jafari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahmood Salesi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy and Evidence-Based Medicine Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Javad Kojuri
- Department of Cardiology, School of Medicine, Clinical Education Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khosro Keshavarz
- Health Human Resources Research Center, School of Management and Medical Informatics, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Fan X, Li K, Zhu L, Deng X, Feng Z, Xu C, Liu S, Wu J. Prolonged therapeutic effects of photoactivated adipose-derived stem cells following ischaemic injury. Acta Physiol (Oxf) 2020; 230:e13475. [PMID: 32306486 DOI: 10.1111/apha.13475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
AIM Adipose-derived stem cells (ASCs) therapies are emerging as a promising approach to therapeutic angiogenesis. Therapeutic persistence and reduced primitive stem cell function following cell delivery remains a critical hurdle for the clinical translation of stem cells in current approaches. METHODS Cultured ASCs were derived from subcutaneous white adipose tissue isolated from mice fed a normal diet (ND). Unilateral hindlimb ischaemia model was induced in high-fat diet (HFD)-fed mice by femoral artery interruption, after which photoactivated and non-light-treated ASCs were injected into the tail vein of mice. Laser Doppler imaging was conducted to measure the blood flow reperfusion. Capillary density was measured in the ischaemic gastrocnemius muscle. mRNA levels of angiogenic factors were determined by reverse-transcription polymerase chain reaction. Flow cytometry was used to determine the characterization of ASCs and endothelial progenitor cell (EPC). Human ASCs secretomes were analysed by liquid chromatography tandem mass spectrometry. RESULTS Our study demonstrated that photoactivated ND-ASCs prolonged functional blood flow perfusion and increased ASCs-derived EPC and neovascularization 38 days after ligation, when compared with saline-treated controls. Profiling analysis in ischaemic muscles showed upregulation of genes associated with pro-angiogenic factors after injection of photoactivated ND-ASCs when compared with the non-light-treated ASCs or saline treated HFD mice. Mass spectrometry revealed that light-treated ASCs conditioned medium retained a more complete pro-angiogenic activity with significant upregulation of angiogenesis related proteins. CONCLUSION Our data demonstrates that photoactivated ND-ASCs improve blood flow recovery and their injection may prove to be a useful strategy for the prevention and treatment of diabetic peripheral arterial disease.
Collapse
Affiliation(s)
- Xin Fan
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Kai Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Luochen Zhu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Ziqian Feng
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Chunrong Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Sijing Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province Drug Discovery Research Center Southwest Medical University Luzhou China
- Laboratory for Cardiovascular Pharmacology Department of Pharmacology School of Pharmacy Southwest Medical University Luzhou China
| |
Collapse
|
19
|
Kino T, Khan M, Mohsin S. The Regulatory Role of T Cell Responses in Cardiac Remodeling Following Myocardial Infarction. Int J Mol Sci 2020; 21:ijms21145013. [PMID: 32708585 PMCID: PMC7404395 DOI: 10.3390/ijms21145013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic injury to the heart causes cardiomyocyte and supportive tissue death that result in adverse remodeling and formation of scar tissue at the site of injury. The dying cardiac tissue secretes a variety of cytokines and chemokines that trigger an inflammatory response and elicit the recruitment and activation of cardiac immune cells to the injury site. Cell-based therapies for cardiac repair have enhanced cardiac function in the injured myocardium, but the mechanisms remain debatable. In this review, we will focus on the interactions between the adoptively transferred stem cells and the post-ischemic environment, including the active components of the immune/inflammatory response that can mediate cardiac outcome after ischemic injury. In particular, we highlight how the adaptive immune cell response can mediate tissue repair following cardiac injury. Several cell-based studies have reported an increase in pro-reparative T cell subsets after stem cell transplantation. Paracrine factors secreted by stem cells polarize T cell subsets partially by exogenous ubiquitination, which can induce differentiation of T cell subset to promote tissue repair after myocardial infarction (MI). However, the mechanism behind the polarization of different subset after stem cell transplantation remains poorly understood. In this review, we will summarize the current status of immune cells within the heart post-MI with an emphasis on T cell mediated reparative response after ischemic injury.
Collapse
Affiliation(s)
- Tabito Kino
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Correspondence: ; Tel.: +1-215-707-3152; Fax: +1-215-707-5737
| |
Collapse
|
20
|
Endothelial progenitor cell transplantation restores vascular injury in mice after whole-brain irradiation. Brain Res 2020; 1746:147005. [PMID: 32622827 DOI: 10.1016/j.brainres.2020.147005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Vascular damage plays an important role in the pathogenesis of radiation-induced brain injury (RBI). Endothelial progenitor cells (EPCs) are responsible for maintaining and repairing endothelial function, and have become a promising method for the treatment of cerebrovascular diseases. However, whether EPC transplantation plays a protective role in RBI has not been fully elucidated. Therefore, the present study investigated the effects of bone marrow-derived EPC transplantation in a whole-brain irradiation (WBI) mouse model. Mice were divided into the three groups: control group, irradiation group and EPCs group. Phosphate buffered saline or EPCs were intravenously injected into mice one week after irradiation, and brains were analyzed eight weeks after injection. Flow cytometry demonstrated that irradiation led to a significant reduction in the peripheral blood EPC count; however, EPC transplantation led to a significant increase in the circulating EPCs. Intravital two-photon imaging and western blotting demonstrated that EPC transplantation reversed the effects of irradiation by decreasing blood-brain barrier permeability and increasing the expression of tight junction proteins in the brain. Additionally, immunofluorescence staining revealed that the brain microvascular density was higher in the EPCs group than the irradiation group. Therefore, EPC transplantation may restore damage caused by WBI to the blood-brain barrier, tight junctions, and cerebral capillary density. These results highlight the potential beneficial effects of EPC transplantation on vascular damage induced by RBI.
Collapse
|
21
|
Park TY, Oh JM, Cho JS, Sim SB, Lee J, Cha HJ. Stem cell-loaded adhesive immiscible liquid for regeneration of myocardial infarction. J Control Release 2020; 321:602-615. [DOI: 10.1016/j.jconrel.2020.02.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
|
22
|
Zhou W, Qiao Z, Nazarzadeh Zare E, Huang J, Zheng X, Sun X, Shao M, Wang H, Wang X, Chen D, Zheng J, Fang S, Li YM, Zhang X, Yang L, Makvandi P, Wu A. 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. J Med Chem 2020; 63:8003-8024. [PMID: 32255358 DOI: 10.1021/acs.jmedchem.9b02115] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wenxian Zhou
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhiguang Qiao
- Medical 3D Printing Center, Shanghai Jiaotong University, Shanghai 200011, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | | | - Jinfeng Huang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xuanqi Zheng
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaolei Sun
- Department of Orthopaedics, Tianjin Hospital, Tianjin 300210, China
| | - Minmin Shao
- Department of ENT and Neck Surgery, Wenzhou Center Hospital, Dingli Hospital of Wenzhou Medical University, Wenzhou Institute of Medical Sciences, Wenzhou 325000, China
| | - Hui Wang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoyan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dong Chen
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jing Zheng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shan Fang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China
| | - Yan Michael Li
- Department of Neurosurgery and Oncology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Xiaolei Zhang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Yang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Aimin Wu
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
23
|
Liew LC, Ho BX, Soh BS. Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Res Ther 2020; 11:138. [PMID: 32216837 PMCID: PMC7098097 DOI: 10.1186/s13287-020-01648-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
The versatility of pluripotent stem cells, attributable to their unlimited self-renewal capacity and plasticity, has sparked a considerable interest for potential application in regenerative medicine. Over the past decade, the concept of replenishing the lost cardiomyocytes, the crux of the matter in ischemic heart disease, with pluripotent stem cell-derived cardiomyocytes (PSC-CM) has been validated with promising pre-clinical results. Nevertheless, clinical translation was hemmed in by limitations such as immature cardiac properties, long-term engraftment, graft-associated arrhythmias, immunogenicity, and risk of tumorigenicity. The continuous progress of stem cell-based cardiac therapy, incorporated with tissue engineering strategies and delivery of cardio-protective exosomes, provides an optimistic outlook on the development of curative treatment for heart failure. This review provides an overview and current status of stem cell-based therapy for heart regeneration, with particular focus on the use of PSC-CM. In addition, we also highlight the associated challenges in clinical application and discuss the potential strategies in developing successful cardiac-regenerative therapy.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
24
|
Maslovaric M, Fatic N, Delević E. State of the art of stem cell therapy for ischaemic cardiomyopathy. Part 2. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 25:7-26. [PMID: 31855197 DOI: 10.33529/angio2019414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ischemic cardiomyopathy is becoming a leading cause of morbidity and mortality in the whole world. Stem cell-based therapy is emerging as a promising option for treatment of ischemic cardiomyopathy. Several stem cell types, including cardiac-derived stem cells, bone marrow-derived stem cells, mesenchymal stem cells, skeletal myoblasts, CD34+ and CD133+ stem cells have been used in clinical trials. Clinical effects mostly depend on transdifferentiation and paracrine factors. One important issue is that a low survival and residential rate of transferred stem cells blocks the effective advances in cardiac improvement. Many other factors associated with the efficacy of cell replacement therapy for ischemic cardiomyopathy mainly including the route of delivery, the type and number of stem cell infusion, the timing of injection, patient's physical conditions, the particular microenvironment onto which the cells are delivered, and clinical conditions remain to be addressed. Here we provide an overview of modern methods of stem cell delivery, types of stem cells and discuss the current state of their therapeutic potential.
Collapse
Affiliation(s)
- Milica Maslovaric
- Prona-Montenegrin Science Promotion Foundation, Podgorica, Montenegro
| | - Nikola Fatic
- Department of Vascular Surgery, Clinical Centre of Montenegro, Podgorica, Montenegro
| | - Emilija Delević
- Medical Faculty in Podgorica, University of Montenegro, Podgorica, Montenegro
| |
Collapse
|
25
|
Wang RM, Christman KL. Injectable biopolymers in the treatment of heart failure and cardiac remodeling. EMERGING TECHNOLOGIES FOR HEART DISEASES 2020:333-355. [DOI: 10.1016/b978-0-12-813706-2.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Sabbah N, Tamari T, Elimelech R, Doppelt O, Rudich U, Zigdon-Giladi H. Predicting Angiogenesis by Endothelial Progenitor Cells Relying on In-Vitro Function Assays and VEGFR-2 Expression Levels. Biomolecules 2019; 9:biom9110717. [PMID: 31717420 PMCID: PMC6921061 DOI: 10.3390/biom9110717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Clinical trials have demonstrated the safety and efficacy of autologous endothelial progenitor cell (EPC) therapy in various diseases. Since EPCs' functions are influenced by genetic, systemic and environmental factors, the therapeutic potential of each individual EPCs is unknown and may affect treatment outcome. Therefore, our aim was to compare EPCs function among healthy donors in order to predict blood vessel formation (angiogenesis) before autologous EPC transplantation. Human EPCs were isolated from the blood of ten volunteers. EPCs proliferation rate, chemoattractant ability, and CXCR4 mRNA levels were different among donors (p < 0.0001, p < 0.01, p < 0.001, respectively). A positive correlation was found between SDF-1, CXCR4, and EPCs proliferation (R = 0.736, p < 0.05 and R = 0.8, p < 0.01, respectively). In-vivo, blood vessels were counted ten days after EPCs transplantation in a subcutaneous mouse model. Mean vessel density was different among donors (p = 0.0001); nevertheless, donors with the lowest vessel densities were higher compared to control (p < 0.05). Finally, using a linear regression model, a mathematical equation was generated to predict blood vessel density relying on: (i) EPCs chemoattractivity, and (ii) VEGFR-2 mRNA levels. Results reveal differences in EPCs functions among healthy individuals, emphasizing the need for a potency assay to pave the way for standardized research and clinical use of human EPCs.
Collapse
Affiliation(s)
- Nadin Sabbah
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
| | - Rina Elimelech
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- Department of Periodontology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Ofri Doppelt
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Utai Rudich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
- Department of Periodontology, Rambam Health Care Campus, Haifa 3109601, Israel
- Correspondence: ; Tel.: +972-4-854-3606
| |
Collapse
|
27
|
Caplan H, Olson SD, Kumar A, George M, Prabhakara KS, Wenzel P, Bedi S, Toledano-Furman NE, Triolo F, Kamhieh-Milz J, Moll G, Cox CS. Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Front Immunol 2019; 10:1645. [PMID: 31417542 PMCID: PMC6685059 DOI: 10.3389/fimmu.2019.01645] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
For several decades, multipotent mesenchymal stromal cells (MSCs) have been extensively studied for their therapeutic potential across a wide range of diseases. In the preclinical setting, MSCs demonstrate consistent ability to promote tissue healing, down-regulate excessive inflammation and improve outcomes in animal models. Several proposed mechanisms of action have been posited and demonstrated across an array of in vitro models. However, translation into clinical practice has proven considerably more difficult. A number of prominent well-funded late-phase clinical trials have failed, thus calling out for new efforts to optimize product delivery in the clinical setting. In this review, we discuss novel topics critical to the successful translation of MSCs from pre-clinical to clinical applications. In particular, we focus on the major routes of cell delivery, aspects related to hemocompatibility, and potential safety concerns associated with MSC therapy in the different settings.
Collapse
Affiliation(s)
- Henry Caplan
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akshita Kumar
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mitchell George
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pamela Wenzel
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Supinder Bedi
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Naama E. Toledano-Furman
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Fabio Triolo
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
28
|
Neonatal myocardial infarction: substantial improvement of cardiac function after autologous bone marrow-derived cell therapy. Clin Res Cardiol 2019; 108:1309-1311. [PMID: 31028476 DOI: 10.1007/s00392-019-01478-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
|
29
|
Andrié RP, Beiert T, Knappe V, Linhart M, Stöckigt F, Klein AM, Ghanem A, Lübkemeier I, Röll W, Nickenig G, Fleischmann BK, Schrickel JW. Treatment with mononuclear cell populations improves post-infarction cardiac function but does not reduce arrhythmia susceptibility. PLoS One 2019; 14:e0208301. [PMID: 30763348 PMCID: PMC6375577 DOI: 10.1371/journal.pone.0208301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Background Clinical and experimental data give evidence that transplantation of stem and progenitor cells in myocardial infarction could be beneficial, although the underlying mechanism has remained elusive. Ventricular tachyarrhythmia is the most frequent and potentially lethal complication of myocardial infarction, but the impact of mono nuclear cells on the incidence of ventricular arrhythmia is still not clear. Objective We aimed to characterize the influence of splenic mononuclear cell populations on ventricular arrhythmia after myocardial infarction. Methods We assessed electrical vulnerability in vivo in mice with left ventricular cryoinfarction 14 days after injury and intramyocardial injection of specific subpopulations of mononuclear cells (MNCs) (CD11b-positive cells, Sca-1-positive cells, early endothelial progenitor cells (eEPCs)). As positive control group we used embryonic cardiomyocytes (eCMs). Epicardial mapping was performed for analysing conduction velocities in the border zone. Left ventricular function was quantified by echocardiography and left heart catheterization. Results In vivo pacing protocols induced ventricular tachycardia (VT) in 30% of non-infarcted mice. In contrast, monomorphic or polymorphic VT could be evoked in 94% of infarcted and vehicle-injected mice (p<0.01). Only transplantation of eCMs prevented post-infarction VT and improved conduction velocities in the border zone in accordance to increased expression of connexin 43. Cryoinfarction resulted in a broad aggravation of left ventricular function. All transplanted cell types augmented left ventricular function to a similar extent. Conclusions Transplantation of different MNC populations after myocardial infarction improves left ventricular function similar to effects of eCMs. Prevention of inducible ventricular arrhythmia is only seen after transplantation of eCMs.
Collapse
Affiliation(s)
- René P. Andrié
- Department of Cardiology, University of Bonn, Bonn, Germany
- * E-mail:
| | - Thomas Beiert
- Department of Cardiology, University of Bonn, Bonn, Germany
| | - Vincent Knappe
- Department of Cardiology, University of Bonn, Bonn, Germany
| | - Markus Linhart
- Department of Cardiology, University of Bonn, Bonn, Germany
| | | | - Alexandra M. Klein
- Institute of Physiology I, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Alexander Ghanem
- Department of Cardiology, Asklepios Hospital Hamburg, Hamburg, Germany
| | - Indra Lübkemeier
- LIMES-Institute, Molecular Genetics, University of Bonn, Bonn, Germany
| | - Wilhelm Röll
- Department of Cardiovascular Surgery, University of Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Cardiology, University of Bonn, Bonn, Germany
| | - Bernd K. Fleischmann
- Institute of Physiology I, Life & Brain Center, University of Bonn, Bonn, Germany
| | | |
Collapse
|
30
|
Hou Y, Li C. Stem/Progenitor Cells and Their Therapeutic Application in Cardiovascular Disease. Front Cell Dev Biol 2018; 6:139. [PMID: 30406100 PMCID: PMC6200850 DOI: 10.3389/fcell.2018.00139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/28/2018] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease is the leading cause of death in the world. The stem/progenitor cell-based therapy has emerged as a promising approach for the treatment of a variety of cardiovascular diseases including myocardial infarction, stroke, peripheral arterial disease, and diabetes. An increasing number of evidence has shown that stem/progenitor cell transplantation could replenish damaged cells, improve cardiac and vascular functions, and repair injured tissues in many pre-clinical studies and clinical trials. In this review, we have outlined the major types of stem/progenitor cells, and summarized the studies in applying these cells, especially endothelial stem/progenitor cells and their derivatives, in the treatment of cardiovascular disease. Here the strategies used to improve the stem/progenitor cell-based therapies in cardiovascular disease and the challenges with these therapies in clinical applications are also reviewed.
Collapse
Affiliation(s)
- Yuning Hou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
31
|
Cell-Based Therapies for Cardiac Regeneration: A Comprehensive Review of Past and Ongoing Strategies. Int J Mol Sci 2018; 19:ijms19103194. [PMID: 30332812 PMCID: PMC6214096 DOI: 10.3390/ijms19103194] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022] Open
Abstract
Despite considerable improvements in the treatment of cardiovascular diseases, heart failure (HF) still represents one of the leading causes of death worldwide. Poor prognosis is mostly due to the limited regenerative capacity of the adult human heart, which ultimately leads to left ventricular dysfunction. As a consequence, heart transplantation is virtually the only alternative for many patients. Therefore, novel regenerative approaches are extremely needed, and several attempts have been performed to improve HF patients’ clinical conditions by promoting the replacement of the lost cardiomyocytes and by activating cardiac repair. In particular, cell-based therapies have been shown to possess a great potential for cardiac regeneration. Different cell types have been extensively tested in clinical trials, demonstrating consistent safety results. However, heterogeneous efficacy data have been reported, probably because precise end-points still need to be clearly defined. Moreover, the principal mechanism responsible for these beneficial effects seems to be the paracrine release of antiapoptotic and immunomodulatory molecules from the injected cells. This review covers past and state-of-the-art strategies in cell-based heart regeneration, highlighting the advantages, challenges, and limitations of each approach.
Collapse
|
32
|
Qi Z, Liu S, Duan F. Effects of bone marrow mononuclear cells delivered through a graft vessel in patients with previous myocardial infarction and chronic heart failure: An echocardiographic study of left ventricular dyssynchrony. JOURNAL OF CLINICAL ULTRASOUND : JCU 2018; 46:512-518. [PMID: 30160313 DOI: 10.1002/jcu.22609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/28/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES Several trials are investigating the delivery of stem cells to treat ischemic cardiomyopathy. The aim of this study was the echocardiographic evaluation of the effectiveness of isolated coronary artery bypass graft (CABG) combined with bone marrow mononuclear cells (BMMNC) delivered through the graft vessels to improve left ventricular dyssynchrony in patients with previous myocardial infarction and chronic heart failure. METHODS 42 patients with previous myocardial infarction and chronic heart failure were randomly allocated to either the CABG only group (n = 18) or the CABG with BMMNC graft group (n = 24group). We used 2D strain imaging to measure the absolute difference in time-to-peak radial strain between the earliest and the latest activated segments on LV short-axis images at the apical (RSTa), at the mitral annulus (RSTb), and at the papillary muscle (RSTm) level. RESULTS The effective rate of LV dyssynchrony improvement was significantly higher in the CABG + BMMNC than in the CABG only group (RSTb: 91.7% vs 50%, P < .05; RSTm: 78.6% vs 35.7%, P < .05; RSTa: 92.3% vs 50%, P < .05). The deterioration rate of LV synchrony was significantly lower in the CABG + BMMNC than in the CABG only group for RSTb (8.3% vs 70%, P < .05;) and RSTm (0 vs 50%, P < .05), but not for RSTa (18.2% vs 37.5%, P > .05). CONCLUSIONS Combining CABG with BMMNC delivering provided a better improvement of left ventricular dyssynchrony than CABG only.
Collapse
Affiliation(s)
- Zhi Qi
- The Department of Ultrasound, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Sheng Liu
- The Department of Cardiovascular Surgery, Fuwai Hospital & Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Tsinghua University, Peking Union Medical College, Beijing, China
| | - Fujian Duan
- Department of Echocardiography, Fuwai Hospital & Cardiovascular Institute, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Tsinghua University, Peking Union Medical College, Beijing
| |
Collapse
|
33
|
Liu W, Zhang H, Mai J, Chen Z, Huang T, Wang S, Chen Y, Wang J. Distinct Anti-Fibrotic Effects of Exosomes Derived from Endothelial Colony-Forming Cells Cultured Under Normoxia and Hypoxia. Med Sci Monit 2018; 24:6187-6199. [PMID: 30183690 PMCID: PMC6134891 DOI: 10.12659/msm.911306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The therapeutic potential of endothelial colony-forming cells (ECFCs) may be impaired in an ischemic environment. Direct injection of ECFCs is not an effective method of rescuing the ischemic heart, but exosomes derived from these cells may be a promising therapeutic tool. However, exosomes produced under normoxia and hypoxia may not be identical. Therefore, the purpose of this study was to investigate alterations in the anti-fibrotic effects of hypoxia-treated ECFC-derived exosomes and the underlying mechanism involved. Material/Methods ECFCs were isolated from peripheral blood and exosomes were collected from ECFCs treated with normoxia (nor-exo) or hypoxia (hyp-exo). Effects of exosomes on cardiac fibroblast activation were evaluated in vitro. MicroRNAs (miRNAs) inside the exosomes were extracted and compared using next-generation RNA sequencing. Predicted target mRNAs of miR-10b-5p were validated using a dual-luciferase reporter gene assay method. Results Nor-exo significantly ameliorated cardiac fibroblast activation in vitro. These effects were attenuated in the hyp-exo-treated group. miR-10b-5p was enriched in nor-exo but not in hyp-exo. Dual-luciferase reporter gene assay found that both SMAD-specific E3 ubiquitin protein ligase 1 (Smurf1) and histone deacetylase 4 (HDAC4) mRNAs were inhibited by miR-10b-5p. The expression of neutral sphingomyelinase 2 (N-SMase2) was decreased in hypoxia ECFCs, and this result was consistent with the changes in miR-10b-5p in hyp-exo. Conclusions Due to a reduction of miR-10b-5p, which targets the fibrotic genes Smurf1 and HDAC4, the anti-fibrotic effects of hyp-exo were abolished.
Collapse
Affiliation(s)
- WenHao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China (mainland)
| | - HaiFeng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China (mainland)
| | - JingTing Mai
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China (mainland)
| | - ZhiTeng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China (mainland)
| | - TuCheng Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China (mainland)
| | - ShaoHua Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China (mainland)
| | - YangXin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China (mainland)
| | - JingFeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
34
|
Beger B, Blatt S, Pabst AM, Hansen T, Goetz H, Al-Nawas B, Ziebart T. Biofunctionalization of synthetic bone substitutes with angiogenic stem cells: Influence on regeneration of critical-size bone defects in an in vivo murine model. J Craniomaxillofac Surg 2018; 46:1601-1608. [PMID: 30196861 DOI: 10.1016/j.jcms.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/23/2018] [Accepted: 06/01/2018] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the influence of human bone marrow-derived endothelial progenitor cells (EPC) on vascularization and bone regeneration in combination with a bone-substitute material (BSM) in a critical-size bone defect in a murine model. Critical-size bone defects were performed and the defects were filled according to the group membership. MATERIALS AND METHODS Eighteen rats were randomized in two experimental groups: BSM (BoneCeramic) with/without EPC biofunctionalization, and a control group without BSM and EPC. Calvaria bone defects were performed and the defects were filled according to the group membership. After 8 weeks, qualitative tissue response of newly formed bone mass was analyzed by histology, cone beam CT (CBCT) and micro-CT (μCT) scans. Occurrence of tumor masses due to EPC vascularization in peripheral organs was investigated microscopically in histological slides of liver and kidney. RESULTS The combination of EPC and BSM showed smaller bone defects in the CT scans and the histological evaluation as the single use of BSM without EPC by trend (p = 0.067). Further, a higher amount of blood vessels could be found in histological slices of BSM in combination with EPC. No inflammatory response or tumor formation could be found. CONCLUSION These findings confirm the biocompatibility of the used BSM and provide evidence that the combination of BSM with EPC might be effective for bone vascularization and regeneration. Using EPC in augmentation sites might overall lead to faster and better bone regeneration and should be further investigated in future studies.
Collapse
Affiliation(s)
- Benjamin Beger
- Department of Oral- and Maxillofacial Surgery, (Head: Univ.-Prof. Dr. Dr. B. Al-Nawas), University Medical Center, Augustusplatz 2, 55131, Mainz, Germany.
| | - Sebastian Blatt
- Department of Oral- and Maxillofacial Surgery, (Head: Univ.-Prof. Dr. Dr. B. Al-Nawas), University Medical Center, Augustusplatz 2, 55131, Mainz, Germany
| | - Andreas Max Pabst
- Department of Oral- and Maxillofacial Surgery, (Head: Prof. Dr. Dr. R. Werkmeister), Federal Armed Forces Hospital, Rübenacherstrasse 170, 56072, Koblenz, Germany
| | - Torsten Hansen
- Institute of Pathology, (Head: Prof. Dr. T. Hansen), Clinic Lippe, Röntgenstrasse 18, 32756, Detmold, Germany
| | - Hermann Goetz
- Biomaterials in Medicine (BioAPP), (Head: Univ.-Prof. Dr. Dr. B. Al-Nawas), University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral- and Maxillofacial Surgery, (Head: Univ.-Prof. Dr. Dr. B. Al-Nawas), University Medical Center, Augustusplatz 2, 55131, Mainz, Germany
| | - Thomas Ziebart
- Department of Oral- and Maxillofacial Surgery, (Head: Univ.-Prof. Dr. Dr. A. Neff), University Hospital Marburg, Baldingerstrasse, 35043, Marburg, Germany
| |
Collapse
|
35
|
Lazar E, Benedek T, Korodi S, Rat N, Lo J, Benedek I. Stem cell-derived exosomes - an emerging tool for myocardial regeneration. World J Stem Cells 2018; 10:106-115. [PMID: 30190780 PMCID: PMC6121000 DOI: 10.4252/wjsc.v10.i8.106] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) continue to represent the number one cause of death and disability in industrialized countries. The most severe form of CVD is acute myocardial infarction (AMI), a devastating disease associated with high mortality and disability. In a substantial proportion of patients who survive AMI, loss of functional cardiomyocytes as a result of ischaemic injury leads to ventricular failure, resulting in significant alteration to quality of life and increased mortality. Therefore, many attempts have been made in recent years to identify new tools for the regeneration of functional cardiomyocytes. Regenerative therapy currently represents the ultimate goal for restoring the function of damaged myocardium by stimulating the regeneration of the infarcted tissue or by providing cells that can generate new myocardial tissue to replace the damaged tissue. Stem cells (SCs) have been proposed as a viable therapy option in these cases. However, despite the great enthusiasm at the beginning of the SC era, justified by promising initial results, this therapy has failed to demonstrate a significant benefit in large clinical trials. One interesting finding of SC studies is that exosomes released by mesenchymal SCs (MSCs) are able to enhance the viability of cardiomyocytes after ischaemia/reperfusion injury, suggesting that the beneficial effects of MSCs in the recovery of functional myocardium could be related to their capacity to secrete exosomes. Ten years ago, it was discovered that exosomes have the unique property of transferring miRNA between cells, acting as miRNA nanocarriers. Therefore, exosome-based therapy has recently been proposed as an emerging tool for cardiac regeneration as an alternative to SC therapy in the post-infarction period. This review aims to discuss the emerging role of exosomes in developing innovative therapies for cardiac regeneration as well as their potential role as candidate biomarkers or for developing new diagnostic tools.
Collapse
Affiliation(s)
- Erzsebet Lazar
- Department of Internal Medicine, Clinic of Haematology and Bone Marrow Transplantation, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540042, Romania
| | - Theodora Benedek
- Department of Internal Medicine, Clinic of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540136, Romania
- Department of Advanced Research in Multimodality Cardiac Imaging, Cardio Med Medical Center, Tirgu Mures 540124, Romania
| | - Szilamer Korodi
- Department of Internal Medicine, Clinic of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540136, Romania
- Department of Advanced Research in Multimodality Cardiac Imaging, Cardio Med Medical Center, Tirgu Mures 540124, Romania
| | - Nora Rat
- Department of Internal Medicine, Clinic of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540136, Romania
- Department of Advanced Research in Multimodality Cardiac Imaging, Cardio Med Medical Center, Tirgu Mures 540124, Romania
| | - Jocelyn Lo
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Imre Benedek
- Department of Internal Medicine, Clinic of Cardiology, University of Medicine and Pharmacy Tirgu Mures, Tirgu Mures 540136, Romania
- Department of Advanced Research in Multimodality Cardiac Imaging, Cardio Med Medical Center, Tirgu Mures 540124, Romania
| |
Collapse
|
36
|
Kir D, Schnettler E, Modi S, Ramakrishnan S. Regulation of angiogenesis by microRNAs in cardiovascular diseases. Angiogenesis 2018; 21:699-710. [DOI: 10.1007/s10456-018-9632-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
|
37
|
Mak WC, Magne B, Cheung KY, Atanasova D, Griffith M. Thermo-rheological responsive microcapsules for time-dependent controlled release of human mesenchymal stromal cells. Biomater Sci 2018; 5:2241-2250. [PMID: 28972602 DOI: 10.1039/c7bm00663b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human mesenchymal stromal cells (hMSCs) are adult-source cells that have been extensively evaluated for cell-based therapies. hMSCs delivered by intravascular injection have been reported to accumulate at the sites of injury to promote tissue repair and can also be employed as vectors for the delivery of therapeutic genes. However, the full potential of hMSCs remains limited as the cells are lost after injection due to anoikis and the adverse pathologic environment. Encapsulation of cells has been proposed as a means of increasing cell viability. However, controlling the release of therapeutic cells over time to target tissue still remains a challenge today. Here, we report the design and development of thermo-rheological responsive hydrogels that allow for precise, time dependent controlled-release of hMSCs. The encapsulated hMSCs retained good viability from 76% to 87% dependent upon the hydrogel compositions. We demonstrated the design of different blended hydrogel composites with modulated strength (S parameter) and looseness of hydrogel networks (N parameter) to control the release of hMSCs from thermo-responsive hydrogel capsules. We further showed the feasibility for controlled-release of encapsulated hMSCs within 3D matrix scaffolds. We reported for the first time by a systematic analysis that there is a direct correlation between the thermo-rheological properties associated with the degradation of the hydrogel composite and the cell release kinetics. This work therefore provides new insights into the further development of smart carrier systems for stem cell therapy.
Collapse
Affiliation(s)
- W C Mak
- Department of Clinical and Experimental Medicine, Linköping University, SE58185, Linköping, Sweden.
| | | | | | | | | |
Collapse
|
38
|
Rui J, Fang S, Wang Y, Lv B, Yu B, Li S. Inhibition of microRNA‑16 protects mesenchymal stem cells against apoptosis. Mol Med Rep 2018; 18:902-910. [PMID: 29767235 PMCID: PMC6059722 DOI: 10.3892/mmr.2018.9012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/13/2018] [Indexed: 11/23/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been used in experimental research and clinical trials for heart function restoration and cardiomyocyte regeneration. However, due to a hostile microenvironment created by ischemia, hypoxia and pro-inflammatory factors, the survival rate of implanted BM-MSCs remains low. Therefore, strategies that can promote BM-MSC survival and prevent apoptosis are required. Previous studies have reported that microRNA-16 (miR-16) can inhibit cell proliferation by targeting several proteins and signal pathway, not only by inducing apoptosis. In the present study, it was investigated whether inhibition of miR-16 reduced BM-MSC apoptosis in a model of ischemia. Flow cytometry analysis revealed that BM-MSCs underwent apoptosis in response to hypoxia/serum deprivation (SD). Additionally, in hypoxic/SD conditions, miR-16 expression increased and B-cell lymphoma (Bcl)-2 protein expression decreased in BM-MSCs. miR-16 did not affect Bcl-2 mRNA expression but downregulated Bcl-2 protein expression. miR-16 inhibitor transfection significantly increased Bcl-2 protein expression and the percentage of apoptotic BM-MSCs was reduced. The pro-apoptotic effects of miR-16 were partially elevated by knocking down of Bcl-2. Furthermore, it was demonstrated that miR-16 exerted its pro-apoptotic effects by activating the mitochondrial pathway of apoptosis via apoptotic protease activating factor-1/caspase-9/poly (ADP ribose) polymerase. Taken together, the results indicated that miR-16 downregulated Bcl-2 expression and promoted BM-MSC apoptosis, indicating that therapies targeting miR-16 may improve the effectiveness of BM-MSC transplantation therapy.
Collapse
Affiliation(s)
- Jiang Rui
- General Practice Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shaohong Fang
- Key Laboratory of the Education Ministry for Myocardial Ischemia Mechanism and Treatment, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yongchen Wang
- General Practice Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bo Lv
- Key Laboratory of the Education Ministry for Myocardial Ischemia Mechanism and Treatment, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bo Yu
- Key Laboratory of the Education Ministry for Myocardial Ischemia Mechanism and Treatment, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shufeng Li
- Key Laboratory of the Education Ministry for Myocardial Ischemia Mechanism and Treatment, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
39
|
Abstract
Despite considerable advances in medicine, cardiovascular disease is still rising, with ischemic heart disease being the leading cause of death and disability worldwide. Thus extensive efforts are continuing to establish effective therapeutic modalities that would improve both quality of life and survival in this patient population. Novel therapies are being investigated not only to protect the myocardium against ischemia-reperfusion injury but also to regenerate the heart. Stem cell therapy, such as potential use of human mesenchymal stem cells and induced pluripotent stem cells and their exosomes, will make it possible not only to address molecular mechanisms of cardiac conditioning, but also to develop new therapies for ischemic heart disease. Despite the studies and progress made over the last 15 years on the use of stem cell therapy for cardiovascular disease, the efforts are still in their infancy. Even though the expectations have been high, the findings indicate that most of the clinical trials generally have been small and the results inconclusive. Because of many negative findings, there is certain pessimism that cardiac cell therapy is likely to yield any meaningful results over the next decade or so. Similar to other new technologies, early failures are not unusual and they may be followed by impressive success. Nevertheless, there has been considerable attention to safety by the clinical investigators because the adverse events of stem cell therapy have been impressively rare. In summary, although regenerative biology might not help the cardiovascular patient in the near term, it is destined to do so over the next several decades.
Collapse
Affiliation(s)
- Maia Terashvili
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Zeljko J Bosnjak
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
40
|
Barwinska D, Traktuev DO, Merfeld-Clauss S, Cook TG, Lu H, Petrache I, March KL. Cigarette Smoking Impairs Adipose Stromal Cell Vasculogenic Activity and Abrogates Potency to Ameliorate Ischemia. Stem Cells 2018; 36:856-867. [PMID: 29589872 DOI: 10.1002/stem.2813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
Cigarette smoking (CS) adversely affects the physiologic function of endothelial progenitor, hematopoietic stem and progenitor cells. However, the effect of CS on the ability of adipose stem/stromal cells (ASC) to promote vasculogenesis and rescue perfusion in the context of ischemia is unknown. To evaluate this, ASC from nonsmokers (nCS-ASC) and smokers (CS-ASC), and their activity to promote perfusion in hindlimb ischemia models, as well as endothelial cell (EC) survival and vascular morphogenesis in vitro were assessed. While nCS-ASC improved perfusion in ischemic limbs, CS-ASC completely lost this therapeutic effect. In vitro vasculogenesis assays revealed that human CS-ASC and ASC from CS-exposed mice showed compromised support of EC morphogenesis into vascular tubes, and the CS-ASC secretome was less potent in supporting EC survival/proliferation. Comparative secretome analysis revealed that CS-ASC produced lower amounts of hepatocyte growth factor (HGF) and stromal cell-derived growth factor 1 (SDF-1). Conversely, CS-ASC secreted the angiostatic/pro-inflammatory factor Activin A, which was not detected in nCS-ASC conditioned media (CM). Furthermore, higher Activin A levels were measured in EC/CS-ASC cocultures than in EC/nCS-ASC cocultures. CS-ASC also responded to inflammatory cytokines with 5.2-fold increase in Activin A secretion, whereas nCS-ASC showed minimal Activin A induction. Supplementation of EC/CS-ASC cocultures with nCS-ASC CM or with recombinant vascular endothelial growth factor, HGF, or SDF-1 did not rescue vasculogenesis, whereas inhibition of Activin A expression or activity improved network formation up to the level found in EC/nCS-ASC cocultures. In conclusion, ASC of CS individuals manifest compromised in vitro vasculogenic activity as well as in vivo therapeutic activity. Stem Cells 2018;36:856-867.
Collapse
Affiliation(s)
- Daria Barwinska
- Department of Cellular and Integrative Physiology.,Krannert Institute of Cardiology.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | - Dmitry O Traktuev
- Krannert Institute of Cardiology.,Division of Cardiology.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.,Center for Regenerative Medicine, Department of Medicine University of Florida, Gainesville, Florida, USA
| | - Stephanie Merfeld-Clauss
- Krannert Institute of Cardiology.,Division of Cardiology.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.,Center for Regenerative Medicine, Department of Medicine University of Florida, Gainesville, Florida, USA
| | - Todd G Cook
- Krannert Institute of Cardiology.,Division of Cardiology.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | - Hongyan Lu
- Krannert Institute of Cardiology.,Division of Cardiology.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | - Irina Petrache
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Department of Medicine, National Jewish Health and University of Colorado, Denver, Colorado, USA
| | - Keith L March
- Department of Cellular and Integrative Physiology.,Krannert Institute of Cardiology.,Division of Cardiology.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.,Center for Regenerative Medicine, Department of Medicine University of Florida, Gainesville, Florida, USA
| |
Collapse
|
41
|
Chambers SEJ, O'Neill CL, Guduric-Fuchs J, McLoughlin KJ, Liew A, Egan AM, O'Brien T, Stitt AW, Medina RJ. The Vasoreparative Function of Myeloid Angiogenic Cells Is Impaired in Diabetes Through the Induction of IL1β. Stem Cells 2018; 36:834-843. [PMID: 29484768 PMCID: PMC6001623 DOI: 10.1002/stem.2810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 01/26/2023]
Abstract
Myeloid angiogenic cells (MACs) promote revascularization through the paracrine release of angiogenic factors and have been harnessed as therapeutic cells for many ischemic diseases. However, their proangiogenic properties have been suggested to be diminished in diabetes. This study investigates how the diabetic milieu affects the immunophenotype and function of MACs. Both MACs isolated from diabetic conditions and healthy cells exposed to a diabetic environment were used to determine the potential of MACs as a cell therapy for diabetic‐related ischemia. MACs were isolated from human peripheral blood and characterized alongside proinflammatory macrophages M (LPS + IFNγ) and proangiogenic macrophages M (IL4). Functional changes in MACs in response to high‐d‐glucose were assessed using an in vitro 3D‐tubulogenesis assay. Phenotypic changes were determined by gene and protein expression analysis. Additionally, MACs from type 1 diabetic (T1D) patients and corresponding controls were isolated and characterized. Our evidence demonstrates MACs identity as a distinct macrophage subtype that shares M2 proangiogenic characteristics, but can be distinguished by CD163hi expression. High‐d‐glucose treatment significantly reduced MACs proangiogenic capacity, which was associated with a significant increase in IL1β mRNA and protein expression. Inhibition of IL1β abrogated the antiangiogenic effect induced by high‐d‐glucose. IL1β was also significantly upregulated in MACs isolated from T1D patients with microvascular complications compared to T1D patients without microvascular complications or nondiabetic volunteers. This study demonstrates that Type 1 diabetes and diabetic‐like conditions impair the proangiogenic and regenerative capacity of MACs, and this response is mediated by IL‐1β. Stem Cells2018;36:834–843
Collapse
Affiliation(s)
- Sarah E J Chambers
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Christina L O'Neill
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Kiran J McLoughlin
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Aaron Liew
- Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science
| | - Aoife M Egan
- Galway Diabetes Research Centre, Department of Medicine, National University of Ireland, Galway, Ireland.,Department of Endocrinology, University Hospital Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), National Centre for Biomedical Engineering Science
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
42
|
Han J, Kim YS, Lim MY, Kim HY, Kong S, Kang M, Choo YW, Jun JH, Ryu S, Jeong HY, Park J, Jeong GJ, Lee JC, Eom GH, Ahn Y, Kim BS. Dual Roles of Graphene Oxide To Attenuate Inflammation and Elicit Timely Polarization of Macrophage Phenotypes for Cardiac Repair. ACS NANO 2018; 12:1959-1977. [PMID: 29397689 DOI: 10.1021/acsnano.7b09107] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Development of localized inflammatory environments by M1 macrophages in the cardiac infarction region exacerbates heart failure after myocardial infarction (MI). Therefore, the regulation of inflammation by M1 macrophages and their timely polarization toward regenerative M2 macrophages suggest an immunotherapy. Particularly, controlling cellular generation of reactive oxygen species (ROS), which cause M1 differentiation, and developing M2 macrophage phenotypes in macrophages propose a therapeutic approach. Previously, stem or dendritic cells were used in MI for their anti-inflammatory and cardioprotective potentials and showed inflammation modulation and M2 macrophage progression for cardiac repair. However, cell-based therapeutics are limited due to invasive cell isolation, time-consuming cell expansion, labor-intensive and costly ex vivo cell manipulation, and low grafting efficiency. Here, we report that graphene oxide (GO) can serve as an antioxidant and attenuate inflammation and inflammatory polarization of macrophages via reduction in intracellular ROS. In addition, GO functions as a carrier for interleukin-4 plasmid DNA (IL-4 pDNA) that propagates M2 macrophages. We synthesized a macrophage-targeting/polarizing GO complex (MGC) and demonstrated that MGC decreased ROS in immune-stimulated macrophages. Furthermore, DNA-functionalized MGC (MGC/IL-4 pDNA) polarized M1 to M2 macrophages and enhanced the secretion of cardiac repair-favorable cytokines. Accordingly, injection of MGC/IL-4 pDNA into mouse MI models attenuated inflammation, elicited early polarization toward M2 macrophages, mitigated fibrosis, and improved heart function. Taken together, the present study highlights a biological application of GO in timely modulation of the immune environment in MI for cardiac repair. Current therapy using off-the-shelf material GO may overcome the shortcomings of cell therapies for MI.
Collapse
Affiliation(s)
- Jin Han
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital , Gwangju, 61469, Republic of Korea
| | - Min-Young Lim
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Han Young Kim
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Saerom Kong
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program of Bioengineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Yeon Woong Choo
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Ju Hee Jun
- Cell Regeneration Research Center, Chonnam National University Hospital , Gwangju, 61469, Republic of Korea
| | - Seungmi Ryu
- Interdisciplinary Program of Bioengineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Hye-Yun Jeong
- Cell Regeneration Research Center, Chonnam National University Hospital , Gwangju, 61469, Republic of Korea
| | - Jooyeon Park
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Gun-Jae Jeong
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Jong-Chan Lee
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School , Gwangju, 61469, Republic of Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University Hospital , Gwangju, 61469, Republic of Korea
- Department of Cardiology, Chonnam National University Hospital , Gwangju, 61649, Republic of Korea
- BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School , 160 Baekseo-ro, Gwangju, 61469, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
- Interdisciplinary Program of Bioengineering, Seoul National University , Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Seoul National University , Seoul, 08826, Republic of Korea
| |
Collapse
|
43
|
Dorobantu M, Popa-Fotea NM, Popa M, Rusu I, Micheu MM. Pursuing meaningful end-points for stem cell therapy assessment in ischemic cardiac disease. World J Stem Cells 2017; 9:203-218. [PMID: 29321822 PMCID: PMC5746641 DOI: 10.4252/wjsc.v9.i12.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
Despite optimal interventional and medical therapy, ischemic heart disease is still an important cause of morbidity and mortality worldwide. Although not included in standard of care rehabilitation, stem cell therapy (SCT) could be a solution for prompting cardiac regeneration. Multiple studies have been published from the beginning of SCT until now, but overall no unanimous conclusion could be drawn in part due to the lack of appropriate end-points. In order to appreciate the impact of SCT, multiple markers from different categories should be considered: Structural, biological, functional, physiological, but also major adverse cardiac events or quality of life. Imaging end-points are among the most used - especially left ventricle ejection fraction (LVEF) measured through different methods. Other imaging parameters are infarct size, myocardial viability and perfusion. The impact of SCT on all of the aforementioned end-points is controversial and debatable. 2D-echocardiography is widely exploited, but new approaches such as tissue Doppler, strain/strain rate or 3D-echocardiography are more accurate, especially since the latter one is comparable with the MRI gold standard estimation of LVEF. Apart from the objective parameters, there are also patient-centered evaluations to reveal the benefits of SCT, such as quality of life and performance status, the most valuable from the patient point of view. Emerging parameters investigating molecular pathways such as non-coding RNAs or inflammation cytokines have a high potential as prognostic factors. Due to the disadvantages of current techniques, new imaging methods with labelled cells tracked along their lifetime seem promising, but until now only pre-clinical trials have been conducted in humans. Overall, SCT is characterized by high heterogeneity not only in preparation, administration and type of cells, but also in quantification of therapy effects.
Collapse
Affiliation(s)
- Maria Dorobantu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Bucharest 014461, Romania
| | | | - Mihaela Popa
- Carol Davila, University of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, Bucharest 020022, Romania
| | - Iulia Rusu
- Carol Davila, University of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, Bucharest 020022, Romania
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Bucharest 014461, Romania.
| |
Collapse
|
44
|
Jeyaraman MM, Rabbani R, Copstein L, Sulaiman W, Farshidfar F, Kashani HH, Qadar SMZ, Guan Q, Skidmore B, Kardami E, Ducas J, Mansour S, Zarychanski R, Abou-Setta AM. Autologous Bone Marrow Stem Cell Therapy in Patients With ST-Elevation Myocardial Infarction: A Systematic Review and Meta-analysis. Can J Cardiol 2017; 33:1611-1623. [PMID: 29173601 DOI: 10.1016/j.cjca.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Randomized controlled trials (RCTs) on bone marrow stem cell (BMSC) therapy in ST-elevation myocardial infarction (STEMI) patients have reported conflicting results. Our main objective was to critically appraise and meta-analyze best-available evidence on efficacy and safety of intracoronary administration of autologous BMSC therapy in STEMI patients after primary percutaneous coronary intervention. METHODS We conducted a search of MEDLINE, PubMed, EMBASE, CENTRAL, Global Health, CINAHL, and conference proceedings in February 2017. Our primary outcome was all-cause mortality. Secondary and safety outcomes included cardiac death, heart failure, arrhythmias, repeat myocardial infarction, or target vessel revascularizations; or improved health-related quality of life, left ventricular ejection fraction, or infarct size. Summary relative and absolute risks were obtained using random effects models. We also evaluated the strength of evidence. RESULTS A comprehensive database search identified 42 RCTs (3365 STEMI patients). BMSC therapy did not significantly decrease mortality (risk ratio, 0.71; 95% confidence interval, 0.45-1.11; I2, 0%; absolute risk reduction, 0.1%; 95% confidence interval, -0.71 to 0.91; 40 trials; 3289 participants; I2, 0%; low strength of evidence). BMSC therapy had no effect on secondary or adverse outcomes. Trial sequential analysis for all-cause mortality showed no evidence of a clinically important difference, with a very low probability that future studies can change the current conclusion. CONCLUSIONS On the basis of evidence from 42 RCTs published in the past 15 years, we provide conclusive evidence for a lack of beneficial effect for autologous BMSC therapy in patients with STEMI.
Collapse
Affiliation(s)
- Maya M Jeyaraman
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Rasheda Rabbani
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Leslie Copstein
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Wasan Sulaiman
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Farnaz Farshidfar
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hessam H Kashani
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sheikh M Z Qadar
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qingdong Guan
- Cellular Therapy Laboratory, CancerCare Manitoba, Winnipeg, Manitoba, Canada; Manitoba Center for Advanced Cell and Tissue Therapy, Winnipeg, Manitoba, Canada
| | - Becky Skidmore
- Information Specialist Consultant, Ottawa, Ontario, Canada
| | - Elissavet Kardami
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - John Ducas
- Section of Cardiology, Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Samer Mansour
- Centre Hospitalier de l'Université de Montreal, Montreal, Quebec, Canada; Faculty of Medicine, Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Ryan Zarychanski
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Haematology and Medical Oncology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | - Ahmed M Abou-Setta
- The George and Fay Yee Center for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
45
|
Janko M, Sahm J, Schaible A, Brune JC, Bellen M, Schroder K, Seebach C, Marzi I, Henrich D. Comparison of three different types of scaffolds preseeded with human bone marrow mononuclear cells on the bone healing in a femoral critical size defect model of the athymic rat. J Tissue Eng Regen Med 2017; 12:653-666. [PMID: 28548246 DOI: 10.1002/term.2484] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 12/15/2022]
Abstract
Large bone defects often pose major difficulties in orthopaedic surgery. The application of long-term cultured stem cells combined with a scaffold lead to a significant improvement of bone healing in recent experiments but is strongly restricted by European Union law. Bone marrow mononuclear cells (BMC), however, can be isolated and transplanted within a few hours and have been proven effective in experimental models of bone healing. The effectivity of the BMC-supported therapy might be influenced by the type of scaffold. Hence, we compared three different scaffolds serving as a carrier for BMC in a rat femoral critical size defect with regard to the osteogenic activity in the defect zone. Human demineralized bone matrix (DBM), bovine cancellous bone hydroxyapatite ceramic (BS), or β-tricalcium phosphate (β-TCP) were seeded with human BMC and hereafter implanted into critically sized bone defects of male athymic nude rats. Autologous bone served as a control. Gene activity was measured after 1 week, and bone formation was analysed histologically and radiologically after 8 weeks. Generally, regenerative gene expression (BMP2, RUNX2, VEGF, SDF-1, and RANKL) as well as bony bridging and callus formation was observed to be most pronounced in defects filled with autologous bone, followed in descending order by DBM, β-TCP, and BS. Although DBM was superior in most aspects of bone regeneration analysed in comparison to β-TCP and BS, the level of autologous bone could not be attained.
Collapse
Affiliation(s)
- Maren Janko
- Department of Trauma, Hand, and Reconstructive Surgery, Hospital of the Goethe University, Frankfurt, Germany
| | - Julian Sahm
- Department of Trauma, Hand, and Reconstructive Surgery, Hospital of the Goethe University, Frankfurt, Germany
| | - Alexander Schaible
- Department of Trauma, Hand, and Reconstructive Surgery, Hospital of the Goethe University, Frankfurt, Germany
| | - Jan C Brune
- German Institute for Cell and Tissue Replacement gGmbH (DIZG), Berlin, Germany
| | - Marlene Bellen
- Department of Trauma, Hand, and Reconstructive Surgery, Hospital of the Goethe University, Frankfurt, Germany
| | - Katrin Schroder
- Center of Physiology, Cardiovascular Physiology, Hospital of the Goethe University, Frankfurt, Germany
| | - Caroline Seebach
- Department of Trauma, Hand, and Reconstructive Surgery, Hospital of the Goethe University, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand, and Reconstructive Surgery, Hospital of the Goethe University, Frankfurt, Germany
| | - Dirk Henrich
- Department of Trauma, Hand, and Reconstructive Surgery, Hospital of the Goethe University, Frankfurt, Germany
| |
Collapse
|
46
|
Lin S, Zhang Q, Shao X, Zhang T, Xue C, Shi S, Zhao D, Lin Y. IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway. Cell Prolif 2017; 50. [PMID: 28960620 DOI: 10.1111/cpr.12390] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/05/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate the role of insulin-like growth factor-1 (IGF-1) and crosstalk between endothelial cells (ECs) and adipose-derived stem cells (ASCs) in the process of angiogenesis. METHODS A three-dimensional collagen gel used to culture mouse ASCs and mouse ECs in vitro was established. The effects of angiogenesis after exposure to IGF-1 were observed by confocal laser scanning microscopy. Western blotting and qPCR were performed to elucidate the underlying mechanisms. RESULTS IGF-1 treatment promoted the formation of vessel-like structures and the recruitment of ASCs in the three-dimensional collagen gel. The angiogenic genes and proteins in ECs were up-regulated by IGF-1 and in co-culture. Similar changes in the genes and in the proteins were detected in ASCs after exposure to IGF-1 and co-culture. p-Akt expression levels were high in ECs and ASCs after exposure to IGF-1 and co-culture. CONCLUSIONS IGF-1 and co-culture between cells facilitate the process of angiogenesis via the PI3-kinase/Akt signalling pathway. In ECs, IGF-1 stimulates the expression of angiogenesis-related growth factors with the activation of the PI3-kinase/Akt signalling pathway. Co-cultured ECs exposed to excess VEGF-A and other angiogenesis-related growth factors para-secreted from ASCs exhibit high expression of angiogenesis-related genes and proteins. In ASCs, IGF-1 induces the recruitment and function of ASCs by up-regulating the expression of PDGFB, MMPs and α-SMA. Crosstalk with ECs further facilitates changes in ASCs.
Collapse
Affiliation(s)
- Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoru Shao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyue Xue
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Danshensu accelerates angiogenesis after myocardial infarction in rats and promotes the functions of endothelial progenitor cells through SDF-1α/CXCR4 axis. Eur J Pharmacol 2017; 814:274-282. [PMID: 28864209 DOI: 10.1016/j.ejphar.2017.08.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023]
Abstract
The present study was performed to investigate the potential role of Danshensu in therapeutic angiogenesis in ischemic myocardium and endothelial progenitor cells (EPCs) function. The rat model of myocardial infarction (MI) injury was induced by left anterior descending coronary artery ligation for 14 days. Danshensu significantly alleviated myocardial ischemia injury by ameliorating left ventricular function and reducing infarct size. Furthermore, Danshensu potentiated post-ischemia neovascularization as evidenced by increased microvessel density in infarction boundary zone, as well as the expression of marker proteins vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Moreover, Danshensu notably promoted stromal cell-derived factor-1α (SDF-1α) level in plasma and C-X-C chemokine receptor type 4 (CXCR4) expression in peri-infarction myocardium, and AMD3100 (CXCR4 antagonist) could reverse the angiogenic and cardioprotective effects of Danshensu. For in vitro study, EPCs were isolated from bone marrow of rats. On the one hand, Danshensu provided significant cytoprotection against hypoxia insult by boosting EPCs viability and inhibiting apoptosis, and upregulated Akt phosphorylation. On the other hand, Danshensu enhanced proangiogenic functions of EPCs on cell migration and tube formation, and increased SDF-1α and CXCR4 expression. Likewise, the cytoprotection and proangiogenic functions of Danshensu on EPCs were partly negated by LY294002 (PI3K antagonist) and CXCR4 siRNA, respectively. Taken together, our results suggested that the cardioprotection of Danshensu in MI rats may be related to promoting myocardial neovascularization. The possible mechanisms may involve improving EPCs survival in hypoxia condition through Akt phosphorylation, and accelerating EPCs proangiogenic functions through SDF-1α/CXCR4 axis.
Collapse
|
48
|
Endothelial Progenitor Cells for Ischemic Stroke: Update on Basic Research and Application. Stem Cells Int 2017; 2017:2193432. [PMID: 28900446 PMCID: PMC5576438 DOI: 10.1155/2017/2193432] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/03/2017] [Indexed: 01/14/2023] Open
Abstract
Ischemic stroke is one of the leading causes of human death and disability worldwide. So far, ultra-early thrombolytic therapy is the most effective treatment. However, most patients still live with varying degrees of neurological dysfunction due to its narrow therapeutic time window. It has been confirmed in many studies that endothelial progenitor cells (EPCs), as a kind of adult stem cells, can protect the neurovascular unit by repairing the vascular endothelium and its secretory function, which contribute to the recovery of neurological function after an ischemic stroke. This paper reviews the basic researches and clinical trials of EPCs especially in the field of ischemic stroke and addresses the combination of EPC application with new technologies, including neurovascular intervention, synthetic particles, cytokines, and EPC modification, with the aim of shedding some light on the application of EPCs in treating ischemic stroke in the future.
Collapse
|
49
|
Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017; 37:94-116. [PMID: 28579130 DOI: 10.1016/j.arr.2017.05.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Aging is the main risk factor contributing to vascular dysfunction and the progression of vascular diseases. In this review, we discuss the causes and mechanisms of vascular aging at the tissue and cellular level. We focus on Endothelial Cell (EC) and Smooth Muscle Cell (SMC) aging due to their critical role in mediating the defective vascular phenotype. We elaborate on two categories that contribute to cellular dysfunction: cell extrinsic and intrinsic factors. Extrinsic factors reflect systemic or environmental changes which alter EC and SMC homeostasis compromising vascular function. Intrinsic factors induce EC and SMC transformation resulting in cellular senescence. Replenishing or rejuvenating the aged/dysfunctional vascular cells is critical to the effective repair of the vasculature. As such, this review also elaborates on recent findings which indicate that stem cell and gene therapies may restore the impaired vascular cell function, reverse vascular aging, and prolong lifespan.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
50
|
Rodrigo SF, Mann I, van Ramshorst J, Beeres SL, Zwaginga JJ, Fibbe WE, Bax JJ, Schalij MJ, Atsma DE. Safety and efficacy of percutaneous intramyocardial bone marrow cell injection for chronic myocardial ischemia: Long-term results. J Interv Cardiol 2017; 30:440-447. [PMID: 28752630 DOI: 10.1111/joic.12408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Intramyocardial injection of bone marrow cells (BMC) in refractory angina patients with chronic myocardial ischemia has shown to be safe and improve clinical status during short-term follow-up. However, scarce data are available on long-term (>12 months) safety and efficacy. Therefore, the occurrence of clinical events and the long-term clinical effects of intramyocardial BMC injection were evaluated in patients with chronic myocardial ischemia up to 10 years after treatment. METHODS AND RESULTS Patients (n = 100, age 64 ± 9 years, male 88%) with chronic myocardial ischemia who underwent intramyocardial BMC injection between 2004 and 2010 were evaluated. During yearly outpatient clinic visits, the occurrence of clinical events was documented. In addition, clinical status was assessed according to the Canadian Cardiovascular Society (CCS) score and quality of life was measured using the Seattle Angina Questionnaire. These parameters were evaluated at baseline and during the first year, followed by cross-sectional long-term follow-up which was performed in 2011 and 2014. No adverse events considered related to the procedure occurred during 10 years of follow-up. Observed annual mortality rate and annual myocardial infarction rate were 3.8% and 1.9% per year, respectively. When compared to baseline, CCS class and quality of life remained significantly better during 5-year follow-up after BMC treatment (both P < 0.05). CONCLUSIONS The present long-term follow-up study shows that intramyocardial BMC injection in patients with chronic myocardial ischemia is safe and improves both angina complaints and quality of life up to 5 years after BMC treatment.
Collapse
Affiliation(s)
- Sander F Rodrigo
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Imke Mann
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan van Ramshorst
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Saskia L Beeres
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap Jan Zwaginga
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.,Jon J. van Rood Center for Clinical Transfusion Research, Sanquin, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem E Fibbe
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J Schalij
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|