1
|
Du X, Barnett CL, Widmeyer KM, Wang X, Brightman DS, Noonan CW, Weaver KN, Hopkin RJ, Wu Y. RMND1 and PLN variants are the underlying cause of Perrault-like syndrome and cardiac anomalies in a patient. Clin Case Rep 2024; 12:e9537. [PMID: 39493792 PMCID: PMC11527736 DOI: 10.1002/ccr3.9537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
Recent studies have established an association between RMND1 variants and Perrault syndrome. In this case report, we present a female patient with Perrault syndrome and cardiomyopathy, resulting from variants in RMND1 and PLN, respectively.
Collapse
Affiliation(s)
- Xiaoli Du
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Cara L. Barnett
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kimberly M. Widmeyer
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Xinjian Wang
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Diana S. Brightman
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Carolee W. Noonan
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kathryn N. Weaver
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Robert J. Hopkin
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Yaning Wu
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
2
|
Hristov BH, Noble WS, Bertero A. Systematic identification of interchromosomal interaction networks supports the existence of specialized RNA factories. Genome Res 2024; 34:1610-1623. [PMID: 39322282 PMCID: PMC11529845 DOI: 10.1101/gr.278327.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Most studies of genome organization have focused on intrachromosomal (cis) contacts because they harbor key features such as DNA loops and topologically associating domains. Interchromosomal (trans) contacts have received much less attention, and tools for interrogating potential biologically relevant trans structures are lacking. Here, we develop a computational framework that uses Hi-C data to identify sets of loci that jointly interact in trans This method, trans-C, initiates probabilistic random walks with restarts from a set of seed loci to traverse an input Hi-C contact network, thereby identifying sets of trans-contacting loci. We validate trans-C in three increasingly complex models of established trans contacts: the Plasmodium falciparum var genes, the mouse olfactory receptor "Greek islands," and the human RBM20 cardiac splicing factory. We then apply trans-C to systematically test the hypothesis that genes coregulated by the same trans-acting element (i.e., a transcription or splicing factor) colocalize in three dimensions to form "RNA factories" that maximize the efficiency and accuracy of RNA biogenesis. We find that many loci with multiple binding sites of the same DNA-binding proteins interact with one another in trans, especially those bound by factors with intrinsically disordered domains. Similarly, clustered binding of a subset of RNA-binding proteins correlates with trans interaction of the encoding loci. We observe that these trans-interacting loci are close to nuclear speckles. These findings support the existence of trans- interacting chromatin domains (TIDs) driven by RNA biogenesis. Trans-C provides an efficient computational framework for studying these and other types of trans interactions, empowering studies of a poorly understood aspect of genome architecture.
Collapse
Affiliation(s)
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Alessandro Bertero
- Molecular Biotechnology Center "Guido Tarone," Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| |
Collapse
|
3
|
Gregorich ZR, Larson EJ, Zhang Y, Braz CU, Liu C, Ge Y, Guo W. Integrated proteomics and transcriptomics analysis reveals insights into differences in premature mortality associated with disparate pathogenic RBM20 variants. J Mol Cell Cardiol 2024; 197:S0022-2828(24)00173-1. [PMID: 39490642 DOI: 10.1016/j.yjmcc.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Variants in RNA binding motif protein 20 (RBM20) are causative in a severe form of dilated cardiomyopathy referred to as RBM20 cardiomyopathy, yet the mechanisms are unclear. Moreover, the reason(s) for phenotypic heterogeneity in carriers with different pathogenic variants are similarly opaque. To gain insight, we carried out multi-omics analysis, including the first analysis of gene expression changes at the protein level, of mice carrying two different pathogenic variants in the RBM20 nuclear localization signal (NLS). Direct comparison of the phenotypes confirmed greater premature morality in S639G variant carrying mice compared to mice with the S637A variant despite similar cardiac remodeling and dysfunction. Analysis of differentially spliced genes uncovered alterations in the splicing of both RBM20 target genes and non-target genes, including several genes previously implicated in arrhythmia. Global proteomics analysis found that a greater number of proteins were differentially expressed in the hearts of Rbm20S639G mice relative to WT than in Rbm20S637A versus WT. Gene ontology analysis suggested greater mitochondrial dysfunction in Rbm20S639G mice, although direct comparison of protein expression in the hearts of Rbm20S639G versus Rbm20S637A mice failed to identify any significant differences. Similarly, few differences were found by direct comparison of gene expression at the transcript level in Rbm20S639G and Rbm20S637A despite greater coverage. Our data provide a comprehensive overview of gene splicing and expression differences associated with pathogenic variants in RBM20, as well as insights into the molecular underpinnings of phenotypic heterogeneity associated with different dilated cardiomyopathy-associated variants.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eli J Larson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yanghai Zhang
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Camila U Braz
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Chunling Liu
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
4
|
Khan M, Jahangir A. The Uncertain Benefit from Implantable Cardioverter-Defibrillators in Nonischemic Cardiomyopathy: How to Guide Clinical Decision-Making? Heart Fail Clin 2024; 20:407-417. [PMID: 39216926 DOI: 10.1016/j.hfc.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Life-threatening dysrhythmias remain a significant cause of mortality in patients with nonischemic cardiomyopathy (NICM). Implantable cardioverter-defibrillators (ICD) effectively reduce mortality in patients who have survived a life-threatening arrhythmic event. The evidence for survival benefit of primary prevention ICD for patients with high-risk NICM on guideline-directed medical therapy is not as robust, with efficacy questioned by recent studies. In this review, we summarize the data on the risk of life-threatening arrhythmias in NICM, the recommendations, and the evidence supporting the efficacy of primary prevention ICD, and highlight tools that may improve the identification of patients who could benefit from primary prevention ICD implantation.
Collapse
Affiliation(s)
- Mohsin Khan
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA
| | - Arshad Jahangir
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA.
| |
Collapse
|
5
|
Kayvanpour E, Sedaghat-Hamedani F, Li DT, Miersch T, Weis T, Hoefer I, Frey N, Meder B. Prognostic Value of Circulating Fibrosis Biomarkers in Dilated Cardiomyopathy (DCM): Insights into Clinical Outcomes. Biomolecules 2024; 14:1137. [PMID: 39334904 PMCID: PMC11430616 DOI: 10.3390/biom14091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) involves myocardial remodeling, characterized by significant fibrosis and extracellular matrix expansion. These changes impair heart function, increasing the risk of heart failure and sudden cardiac death. This study investigates the prognostic value of circulating fibrosis biomarkers as a less invasive method in DCM patients. METHODS Plasma samples from 185 patients with confirmed DCM were analyzed to measure 13 circulating biomarkers using Luminex bead-based multiplex assays and ELISA. The prognostic value of these biomarkers was evaluated concerning heart failure-associated events and all-cause mortality. RESULTS Elevated MMP-2 levels (>1519.3 ng/mL) were linked to older age, higher diabetes prevalence, lower HDL, increased NT-proBNP and hs-TnT levels, and severe systolic dysfunction. High TIMP-1 levels (>124.9 ng/mL) correlated with elevated NT-proBNP, more atrial fibrillation, reduced exercise capacity, and larger right ventricles. Increased GDF-15 levels (>1213.9 ng/mL) were associated with older age, systemic inflammation, renal impairment, and poor exercise performance. Elevated OPN levels (>81.7 ng/mL) were linked to higher serum creatinine and NT-proBNP levels. Over a median follow-up of 32.4 months, higher levels of these biomarkers predicted worse outcomes, including increased risks of heart failure-related events and mortality. CONCLUSIONS Circulating fibrosis biomarkers, particularly MMP-2, TIMP-1, GDF-15, and OPN, are valuable prognostic tools in DCM. They reflect the severity of myocardial remodeling and systemic disease burden, aiding in risk stratification and therapeutic intervention. Integrating these biomarkers into clinical practice could improve DCM management and patient prognosis.
Collapse
Affiliation(s)
- Elham Kayvanpour
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), 69120 Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), 69120 Heidelberg, Germany
| | - Daniel Tian Li
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), 69120 Heidelberg, Germany
| | - Tobias Miersch
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Tanja Weis
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), 69120 Heidelberg, Germany
| | - Imo Hoefer
- Experimental Cardiology Laboratory, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Norbert Frey
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), 69120 Heidelberg, Germany
| | - Benjamin Meder
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), 69120 Heidelberg, Germany
- Klaus Tschira Institute for Computational Cardiology, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Serpa F, Finn CM, Tahir UA. Navigating the penetrance and phenotypic spectrum of inherited cardiomyopathies. Heart Fail Rev 2024; 29:873-881. [PMID: 38898187 DOI: 10.1007/s10741-024-10405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/21/2024]
Abstract
Inherited cardiomyopathies are genetic diseases that can lead to heart failure and sudden cardiac death. These conditions tend to run in families, following an autosomal dominant pattern where first-degree relatives have a 50% chance of carrying the pathogenic variant. Despite significant advancements and increased accessibility of genetic testing, accurately predicting the phenotypic expression of these conditions remains challenging due to the inherent variability in their clinical manifestations and the incomplete penetrance observed. This poses challenges in providing patient care and effectively communicating the potential risk of future disease to patients and their families. To address these challenges, this review aims to synthesize the available evidence on penetrance, expressivity, and factors influencing disease expression to improve communication and risk assessment for patients with inherited cardiomyopathies and their family members.
Collapse
Affiliation(s)
- Frans Serpa
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Caitlin M Finn
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Usman A Tahir
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Myers MC, Wang S, Zhong Y, Maruyama S, Bueno C, Bastien A, Fazeli MS, Golchin N. Prevalence of Genetically Associated Dilated Cardiomyopathy: A Systematic Literature Review and Meta-Analysis. Cardiol Res 2024; 15:233-245. [PMID: 39205965 PMCID: PMC11349141 DOI: 10.14740/cr1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a leading cause of heart failure and cardiac transplantation globally. Disease-associated genetic variants play a significant role in the development of DCM. Accurately determining the prevalence of genetically associated DCM (genetic DCM) is important for developing targeted prevention strategies. This review synthesized published literature on the global prevalence of genetic DCM across various populations, focusing on two of the most common variants: titin (TTN) and myosin heavy chain 7 (MYH7). Methods MEDLINE® and Embase were searched from database inception to September 19, 2022 for English-language studies reporting the prevalence of genetic DCM within any population. Studies using family history as a proxy for genetic DCM were excluded. Results Of 2,736 abstracts, 57 studies were included. Among the global adult or mixed (mostly adults with few pediatric patients) DCM population, median prevalence was 20.2% (interquartile range (IQR): 16.3-36.0%) for overall genetic DCM, 11.4% (IQR: 8.2-17.8%) for TTN-associated DCM, and 3.2% (IQR: 1.8-5.2%) for MYH7-associated DCM. Global prevalence of overall pediatric genetic DCM within the DCM population was similar (weighted mean: 21.3%). Few studies reported data on the prevalence of genetic DCM within the general population. Conclusions Our study identified variable prevalence estimates of genetic DCM across different populations and geographic locations. The current evidence may underestimate the genetic contributions due to limited screening and detection of potential DCM patients. Epidemiological studies using long-read whole genome sequencing to identify structural variants or non-coding variants are needed, as well as large cohort datasets with genotype-phenotype correlation analyses.
Collapse
Affiliation(s)
| | - Su Wang
- Evidinno Outcomes Research Inc., Vancouver, BC, Canada
| | - Yue Zhong
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hespe S, Gray B, Puranik R, Peters S, Sweeting J, Ingles J. The role of genetic testing in management and prognosis of individuals with inherited cardiomyopathies. Trends Cardiovasc Med 2024:S1050-1738(24)00053-7. [PMID: 39004295 DOI: 10.1016/j.tcm.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Inherited cardiomyopathies are a heterogeneous group of heart muscle conditions where disease classification has traditionally been based on clinical characteristics. However, this does not always align with genotype. While there are well described challenges of genetic testing, understanding the role of genotype in patient management is increasingly required. We take a gene-by-gene approach, reviewing current evidence for the role of genetic testing in guiding prognosis and management of individuals with inherited cardiomyopathies. In particular, focusing on causal variants in genes definitively associated with arrhythmogenic cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy. This review identifies genotype-specific disease sub-groups with strong evidence supporting the use of genetics in clinical management and highlights that at present, the spectrum of clinical utility is not reflected in current guidelines. Of 13 guideline or expert consensus statements for management of cardiomyopathies, there are seven gene-specific therapeutic recommendations that have been published from four documents. Understanding how genotype influences phenotype provides evidence for the role of genetic testing for prognostic and therapeutic purposes, moving us closer to precision-medicine based care.
Collapse
Affiliation(s)
- Sophie Hespe
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Australia
| | - Belinda Gray
- Faculty of Medicine and Health, The University of Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Rajesh Puranik
- Faculty of Medicine and Health, The University of Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Stacey Peters
- Department of Cardiology and Genomic Medicine, Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Joanna Sweeting
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - Jodie Ingles
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
9
|
Goanta EV, Vacarescu C, Tartea G, Ungureanu A, Militaru S, Muraretu A, Faur-Grigori AA, Petrescu L, Vătăsescu R, Cozma D. Unexpected Genetic Twists in Patients with Cardiac Devices. J Clin Med 2024; 13:3801. [PMID: 38999368 PMCID: PMC11242405 DOI: 10.3390/jcm13133801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Objective: To assess the frequency and types of genetic mutations in patients with arrhythmias who underwent cardiac device implantation. Methods: Retrospective observational study, including 38 patients with different arrhythmias and cardiac arrest as a first cardiac event. Treatment modalities encompass pacemakers, transvenous defibrillators, loop recorders, subcutaneous defibrillators, and cardiac resynchronization therapy. All patients underwent genetic testing, using commercially available panels (106-174 genes). Outcome measures include mortality, arrhythmia recurrence, and device-related complications. Results: Clinical parameters revealed a family history of sudden cardiac death in 19 patients (50%), who were predominantly male (58%) and had a mean age of 44.5 years and a mean left ventricle ejection fraction of 40.3%. Genetic testing identified mutations in various genes, predominantly TMEM43 (11%). In two patients (3%) with arrhythmogenic cardiomyopathy, complete subcutaneous defibrillator extraction with de novo transvenous implantable cardioverter-defibrillator implantation was needed. The absence of multiple associations among severe gene mutations was crucial for cardiac resynchronization therapy response. Mortality in this group was around 3% in titin dilated cardiomyopathy patients. Conclusions: Integration of genetic testing into the decision-making process for patients with electronic devices represents a paradigm shift in personalized medicine. By identifying genetic markers associated with arrhythmia susceptibility, heart failure etiology, and cardiac resynchronization therapy response, clinicians can tailor device choices to optimize patient outcomes.
Collapse
Affiliation(s)
- Emilia-Violeta Goanta
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Cardiology Department, Emergency County Hospital of Craiova, Tabaci Street, Nr. 1, 200642 Craiova, Romania; (G.T.); (A.U.); (A.M.)
| | - Cristina Vacarescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.P.); (D.C.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Georgica Tartea
- Cardiology Department, Emergency County Hospital of Craiova, Tabaci Street, Nr. 1, 200642 Craiova, Romania; (G.T.); (A.U.); (A.M.)
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Adrian Ungureanu
- Cardiology Department, Emergency County Hospital of Craiova, Tabaci Street, Nr. 1, 200642 Craiova, Romania; (G.T.); (A.U.); (A.M.)
| | - Sebastian Militaru
- Department of Cardiology, Craiova University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Alexandra Muraretu
- Cardiology Department, Emergency County Hospital of Craiova, Tabaci Street, Nr. 1, 200642 Craiova, Romania; (G.T.); (A.U.); (A.M.)
| | | | - Lucian Petrescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.P.); (D.C.)
| | - Radu Vătăsescu
- Cardiology Department, Clinical Emergency Hospital, 014461 Bucharest, Romania;
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Dragos Cozma
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.P.); (D.C.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
10
|
Eshraghi R, Shafie D, Raisi A, Goleij P, Mirzaei H. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 2024; 24:102. [PMID: 38760573 DOI: 10.1007/s10142-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Luo X, Jia H, Wang F, Mo H, Kang Y, Zhang N, Zhao L, Xu L, Yang Z, Yang Q, Chang Y, Li S, Bian N, Hua X, Cui H, Cao Y, Chu C, Zeng Y, Chen X, Chen Z, Ji W, Long C, Song J, Niu Y. Primate Model Carrying LMNA Mutation Develops Dilated Cardiomyopathy. JACC Basic Transl Sci 2024; 9:380-395. [PMID: 38559624 PMCID: PMC10978409 DOI: 10.1016/j.jacbts.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 04/04/2024]
Abstract
To solve the clinical transformation dilemma of lamin A/C (LMNA)-mutated dilated cardiomyopathy (LMD), we developed an LMNA-mutated primate model based on the similarity between the phenotype of primates and humans. We screened out patients with LMD and compared the clinical data of LMD with TTN-mutated and mutation-free dilated cardiomyopathy to obtain the unique phenotype. After establishment of the LMNA c.357-2A>G primate model, primates were continuously observed for 48 months, and echocardiographic, electrophysiological, histologic, and transcriptional data were recorded. The LMD primate model was found to highly simulate the phenotype of clinical LMD. In addition, the LMD primate model shared a similar natural history with humans.
Collapse
Affiliation(s)
- Xiang Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Han Mo
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Lizhu Xu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhengsheng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiaoyan Yang
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shulin Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chu Chu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yuqiang Zeng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Xinglong Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhigang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Chengzu Long
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, USA
- Department of Neurology, New York University School of Medicine, New York, New York, USA
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
12
|
Fundikira LS, Chillo P, Alimohamed MZ, Mayala H, Kifai E, Aloyce GM, Kamuhabwa A, Kwesigabo G, van Laake LW, Asselbergs FW. Characterization of Non-Ischemic Dilated Cardiomyopathy in a Native Tanzanian Cohort: MOYO Study. Glob Heart 2024; 19:26. [PMID: 38434152 PMCID: PMC10906337 DOI: 10.5334/gh.1298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/12/2024] [Indexed: 03/05/2024] Open
Abstract
Background Non-ischemic dilated cardiomyopathy (NIDCM) is a common cause of heart failure with progressive tendency. The disease occurs in one in every 2,500 individuals in the developed world, with high morbidity and mortality. However, detailed data on the role of NIDCM in heart failure in Tanzania is lacking. Aim To characterize NIDCM in a Tanzanian cohort with respect to demographics, clinical profile, imaging findings and management. Methods Characterization of non-ischemic dilated cardioMyOpathY in a native Tanzanian cOhort (MOYO) is a prospective cohort study of NIDCM patients seen at the Jakaya Kikwete Cardiac Institute. Patients aged ≥18 years with a clinical diagnosis of heart failure, an ejection fraction of ≤45% on echocardiography and no evidence of ischemia were enrolled. Clinical data, echocardiography, electrocardiography (ECG), coronary angiography and stress ECG information were collected from February 2020 to March 2022. Results Of 402 patients, n = 220 (54.7%) were males with a median (IQR) age of 55.0 (41.0, 66.0) years. Causes of NIDCM were presumably hypertensive n = 218 (54.2%), idiopathic n = 116 (28.9%), PPCM n = 45 (11.2%), alcoholic n = 10 (2.5%) and other causes n = 13 (3.2%). The most common presenting symptoms were dyspnea n = 342 (85.1%), with the majority of patients presenting with New York Heart Association (NYHA) Class III n = 195 (48.5%). The mean (SD) left ventricular ejection fraction (LVEF) was 29.4% (±7.7), and severe systolic dysfunction (LVEF <30%) was common n = 208 (51.7%). Compared with other forms of DCM, idiopathic DCM patients were significantly younger, had more advanced NYHA class (p < 0.001) and presented more often with left bundle branch block on ECG (p = 0.0042). There was suboptimal use of novel guidelines recommended medications ARNI n = 10 (2.5%) and SGLT2 2-inhibitors n = 2 (0.5%). Conclusions In our Tanzanian cohort, the majority of patients with NIDCM have an identified underlying cause, and they present at late stages of the disease. Patients with idiopathic DCM are younger with more severe disease compared to other forms of NIDCM.
Collapse
Affiliation(s)
- Lulu Said Fundikira
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania, Tanzania
| | - Pilly Chillo
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania, Tanzania
- Jakaya Kikwete Cardiac Institute, Dar es Salaam, Tanzania
| | - Mohamed Z. Alimohamed
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania, Tanzania
- Tanzania Human Genetics Organization, Dar es Salaam, Tanzania
| | - Henry Mayala
- Jakaya Kikwete Cardiac Institute, Dar es Salaam, Tanzania
| | | | | | - Appolinary Kamuhabwa
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania, Tanzania
| | - Gideon Kwesigabo
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania, Tanzania
| | - Linda W. van Laake
- Department of Cardiology, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Folkert W. Asselbergs
- Amsterdam University Medical Centers, Department of Cardiology, University of Amsterdam, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, United Kingdom
| |
Collapse
|
13
|
Voinescu OR, Ionescu BI, Militaru S, Afana AS, Sascau R, Vasiliu L, Onciul S, Dobrescu MA, Cozlac RA, Cozma D, Rancea R, Dragulescu B, Andreescu NI, Puiu M, Jurcut RO, Chirita-Emandi A. Genetic Characterization of Dilated Cardiomyopathy in Romanian Adult Patients. Int J Mol Sci 2024; 25:2562. [PMID: 38473809 DOI: 10.3390/ijms25052562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Dilated cardiomyopathy (DCM) represents a group of disorders affecting the structure and function of the heart muscle, leading to a high risk of heart failure and sudden cardiac death (SCD). DCM frequently involves an underlying genetic etiology. Genetic testing is valuable for risk stratification, treatment decisions, and family screening. Romanian population data on the genetic etiology of DCM are lacking. We aimed to investigate the genetic causes for DCM among Romanian adult patients at tertiary referral centers across the country. Clinical and genetic investigations were performed on adult patients presenting to tertiary hospitals in Romania. The genetic investigations used next-generation sequencing panels of disease-associated DCM genes. A total of 122 patients with DCM underwent genetic testing. The mean age at DCM diagnosis was 41.6 ± 12.4 years. The genetic investigations identified pathogenic or likely pathogenic variants in 50.8% of participants, while 25.4% had variants of unknown significance. Disease-causing variants in 15 genes were identified in people with DCM, with 31 previously unreported variants. Variants in TTN, LMNA, and DSP explained 75% of genetic causes for DCM. In total, 52.4% of patients had a family history of DCM/SCD. Left ventricular ejection fraction of <35% was observed in 41.9% of patients with disease-causing variants and 55% with negative or uncertain findings. Further genotype-phenotype correlations were explored in this study population. The substantial percentage (50.8%) of disease-causing variants identified in patients with DCM acknowledges the importance of genetic investigations. This study highlights the genetic landscape in genes associated with DCM in the Romanian population.
Collapse
Affiliation(s)
- Oana Raluca Voinescu
- Department of Cardiology, Cardiology Discipline II, University of Medicine and Pharmacy "Victor Babeș", Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Bogdana Ioana Ionescu
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila', Dionisie Lupu Street, no. 37, Sector 2, 4192910 Bucharest, Romania
- Expert Center for Rare Cardiac Genetic Diseases, Emergency Institute for Cardiovascular Diseases 'Prof.dr.C.C.Iliescu', Fundeni 258, 022328 Bucharest, Romania
| | - Sebastian Militaru
- Department of Cardiology, Craiova University of Medicine and Pharmacy, Petru Rareș Street no 2, 200349 Craiova, Romania
- Cardiomed Hospital, Craiova, Str. Spania, Nr. 35A, 200513 Craiova, Romania
| | - Andreea Sorina Afana
- Department of Cardiology, Craiova University of Medicine and Pharmacy, Petru Rareș Street no 2, 200349 Craiova, Romania
- Cardiomed Hospital, Craiova, Str. Spania, Nr. 35A, 200513 Craiova, Romania
| | - Radu Sascau
- Internal Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700503 Iași, Romania
- Cardiology Department, Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu", 50 Boulevard Carol I, 700503 Iași, Romania
| | - Laura Vasiliu
- Internal Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700503 Iași, Romania
- Cardiology Department, Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu", 50 Boulevard Carol I, 700503 Iași, Romania
| | - Sebastian Onciul
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila', Dionisie Lupu Street, no. 37, Sector 2, 4192910 Bucharest, Romania
| | - Mihaela Amelia Dobrescu
- Genetics Department, Craiova University of Medicine and Pharmacy, Petru Rareș 2 Street, 200349 Craiova, Romania
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
| | - Ramona Alina Cozlac
- Department of Cardiology, Cardiology Discipline II, University of Medicine and Pharmacy "Victor Babeș", Eftimie Murgu Sq., 300041 Timișoara, Romania
- Cardiology Department, Institute of Cardiovascular Diseases, Gheorghe Adam Street, 13A, 300310 Timișoara, Romania
| | - Dragos Cozma
- Department of Cardiology, Cardiology Discipline II, University of Medicine and Pharmacy "Victor Babeș", Eftimie Murgu Sq., 300041 Timișoara, Romania
- Cardiology Department, Institute of Cardiovascular Diseases, Gheorghe Adam Street, 13A, 300310 Timișoara, Romania
| | - Raluca Rancea
- Cardiology Department, Heart Institute Niculae Stăncioiu, 19-21 Motilor Street, 400001 Cluj-Napoca, Romania
| | - Bogdan Dragulescu
- Communications Department, Politehnica University Timisoara, sq Victoriei 2, 300006 Timișoara, Romania
| | - Nicoleta Ioana Andreescu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babeș" Timișoara, 2 Piaţa Eftimie Murgu Street, 300041 Timişoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children "Louis Țurcanu" Iosif Nemoianu Street N°2, 300011 Timișoara, Romania
| | - Maria Puiu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babeș" Timișoara, 2 Piaţa Eftimie Murgu Street, 300041 Timişoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children "Louis Țurcanu" Iosif Nemoianu Street N°2, 300011 Timișoara, Romania
| | - Ruxandra Oana Jurcut
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila', Dionisie Lupu Street, no. 37, Sector 2, 4192910 Bucharest, Romania
- Expert Center for Rare Cardiac Genetic Diseases, Emergency Institute for Cardiovascular Diseases 'Prof.dr.C.C.Iliescu', Fundeni 258, 022328 Bucharest, Romania
| | - Adela Chirita-Emandi
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babeș" Timișoara, 2 Piaţa Eftimie Murgu Street, 300041 Timişoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children "Louis Țurcanu" Iosif Nemoianu Street N°2, 300011 Timișoara, Romania
| |
Collapse
|
14
|
Di Loria A, Ferravante C, D'Agostino Y, Giurato G, Tursi M, Grego E, Perego M, Weisz A, Ciaramella P, Santilli R. Gene-expression profiling of endomyocardial biopsies from dogs with dilated cardiomyopathy phenotype. J Vet Cardiol 2024; 52:78-89. [PMID: 38508121 DOI: 10.1016/j.jvc.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION The employment of advanced molecular biology technologies has expanded the diagnostic investigation of cardiomyopathies in dogs; these technologies have predominantly been performed on postmortem samples, although the recent use of endomyocardial biopsy in living dogs has enabled a better premortem diagnostic approach to study the myocardial injury. ANIMALS, MATERIALS, AND METHODS Endomyocardial biopsies were collected in nine dogs with a dilated cardiomyopathy phenotype (DCM-p) and congestive heart failure and submitted to histologic examination, next-generation sequencing (NGS), and polymerase chain reaction analysis. Data from three healthy dogs (Fastq files) were retrieved from a previously approved study and used as a control group for ribonucleic acid sequencing. RESULTS Histologic examination revealed endocardial fibrosis in 6 of 9 dogs, whereas lymphocytic interstitial infiltrates were detected in 2 of 9 dogs, and lymphoplasmacytic and macrophage infiltrates were detected in 1 of 9 dogs. On polymerase chain reaction analysis, two dogs tested positive for canine parvovirus 2 and one dog for canine distemper virus. Gene-expression pathways involved in cellular energy metabolism (especially carbohydrates-insulin) and cardiac structural proteins were different in all DCM-p dogs compared to those in the control group. When dogs with lymphocytic interstitial infiltrates were compared to those in the control group, NGS analysis revealed the predominant role of genes related to inflammation and pathogen infection. CONCLUSIONS NGS technology performed on in vivo endomyocardial biopsies has identified different molecular and genetic factors that could play a role in the development and/or progression of DCM-p in dogs.
Collapse
Affiliation(s)
- A Di Loria
- Department of Veterinary Medicine and Animal Productions, University Federico II, Napoli, 80130, Italy
| | - C Ferravante
- Department of Veterinary Medicine and Animal Productions, University Federico II, Napoli, 80130, Italy; Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy; Medical Genomics Program, AOU 'SS. Giovanni di Dio e Ruggi d'Aragona', University of Salerno, 84131 Salerno, Italy
| | - Y D'Agostino
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy; Medical Genomics Program, AOU 'SS. Giovanni di Dio e Ruggi d'Aragona', University of Salerno, 84131 Salerno, Italy
| | - G Giurato
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy; Genome Research Center for Health, Campus of Medicine, University of Salerno, 84081 Baronissi, Italy
| | - M Tursi
- Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy
| | - E Grego
- Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy
| | - M Perego
- Clinica Veterinaria Malpensa, Viale Marconi 27, Samarate, 21017 Varese, Italy
| | - A Weisz
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy; Medical Genomics Program, AOU 'SS. Giovanni di Dio e Ruggi d'Aragona', University of Salerno, 84131 Salerno, Italy; Genome Research Center for Health, Campus of Medicine, University of Salerno, 84081 Baronissi, Italy
| | - P Ciaramella
- Department of Veterinary Medicine and Animal Productions, University Federico II, Napoli, 80130, Italy.
| | - R Santilli
- Clinica Veterinaria Malpensa, Viale Marconi 27, Samarate, 21017 Varese, Italy; Department of Clinical Sciences, Cornell University, 930, Campus Road, 14853, Ithaca, NY, USA
| |
Collapse
|
15
|
Gregorich ZR, Yanghai Z, Kamp TJ, Granzier H, Guo W. Mechanisms of RBM20 Cardiomyopathy: Insights From Model Systems. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004355. [PMID: 38288598 PMCID: PMC10923161 DOI: 10.1161/circgen.123.004355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
RBM20 (RNA-binding motif protein 20) is a vertebrate- and muscle-specific RNA-binding protein that belongs to the serine-arginine-rich family of splicing factors. The RBM20 gene was first identified as a dilated cardiomyopathy-linked gene over a decade ago. Early studies in Rbm20 knockout rodents implicated disrupted splicing of RBM20 target genes as a causative mechanism. Clinical studies show that pathogenic variants in RBM20 are linked to aggressive dilated cardiomyopathy with early onset heart failure and high mortality. Subsequent studies employing pathogenic variant knock-in animal models revealed that variants in a specific portion of the arginine-serine-rich domain in RBM20 not only disrupt splicing but also hinder nucleocytoplasmic transport and lead to the formation of RBM20 biomolecular condensates in the sarcoplasm. Conversely, mice harboring a disease-associated variant in the RRM (RNA recognition motif) do not show evidence of adverse remodeling or exhibit sudden death despite disrupted splicing of RBM20 target genes. Thus, whether disrupted splicing, biomolecular condensates, or both contribute to dilated cardiomyopathy is under debate. Beyond this, additional questions remain, such as whether there is sexual dimorphism in the presentation of RBM20 cardiomyopathy. What are the clinical features of RBM20 cardiomyopathy and why do some individuals develop more severe disease than others? In this review, we summarize the reported observations and discuss potential mechanisms of RBM20 cardiomyopathy derived from studies employing in vivo animal models and in vitro human-induced pluripotent stem cell-derived cardiomyocytes. Potential therapeutic strategies to treat RBM20 cardiomyopathy are also discussed.
Collapse
Affiliation(s)
- Zachery R. Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
| | - Zhang Yanghai
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
| | - Timothy J. Kamp
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
16
|
Báez-Ferrer N, Díaz-Flores-Estévez F, Pérez-Cejas A, Avanzas P, Lorca R, Abreu-González P, Domínguez-Rodríguez A. Natural History of Dilated Cardiomyopathy Due to c.77T>C (p.Val26Ala) in Emerin Protein. J Clin Med 2024; 13:660. [PMID: 38337354 PMCID: PMC10856282 DOI: 10.3390/jcm13030660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Introduction: Dilated cardiomyopathy (DCM) mainly affects young individuals and is the main indication of heart transplantation. The variant c.77T>C (p.Val26Ala) of the gene coding for emerin (EMD) in chromosome Xq28 has been catalogued as a pathogenic variant for the development of DCM, exhibiting an X-linked inheritance pattern. (2) Methods: A retrospective study was conducted covering the period 2015-2023 in patients with DCM of genetic origin. The primary endpoint was patient age at onset of the first composite major cardiac event, in the form of a first episode of heart failure, malignant ventricular arrhythmia, or end-stage heart failure, according to the presence of truncating variant in titin gene (TTNtv) versus the p.Val26Ala mutation in the EMD protein. (3) Results: A total of 31 and 22 patients were included in the EMD group and TTNtv group, respectively. The primary endpoint was significantly higher in the EMD group, with a hazard ratio of 4.16 (95% confidence interval: 1.83-9.46; p = 0.001). At 55 years of age, all the patients in the EMD group had already presented heart failure, nine presented malignant ventricular arrhythmia (29%), and 13 required heart transplantation (42%). (4) Conclusions: DCM secondary to the c.77T>C (p.Val26Ala) mutation in the EMD gene is associated to an increased risk of major cardiac events compared to patients with DCM due to TTNtv, with a large proportion of transplanted patients in the fifth decade of life.
Collapse
Affiliation(s)
- Néstor Báez-Ferrer
- Cardiology Department, Hospital Universitario de Canarias, 38320 Tenerife, Spain
| | - Felícitas Díaz-Flores-Estévez
- Department of Genetics, Hospital Universitario de Canarias, 38320 Tenerife, Spain; (F.D.-F.-E.); (A.P.-C.)
- Department of Laboratory, Hospital Universitario de Canarias, 38320 Tenerife, Spain
| | - Antonia Pérez-Cejas
- Department of Genetics, Hospital Universitario de Canarias, 38320 Tenerife, Spain; (F.D.-F.-E.); (A.P.-C.)
- Department of Laboratory, Hospital Universitario de Canarias, 38320 Tenerife, Spain
| | - Pablo Avanzas
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (P.A.); (R.L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Rebeca Lorca
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (P.A.); (R.L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33003 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
| | - Pedro Abreu-González
- Physiology Department, Faculty of Medicine, Universidad de La Laguna, 38200 Tenerife, Spain;
| | - Alberto Domínguez-Rodríguez
- Cardiology Department, Hospital Universitario de Canarias, 38320 Tenerife, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Europea de Canarias, 38300 Tenerife, Spain
| |
Collapse
|
17
|
Xiao Y, Cheng D, Luo K, Li M, Tan Y, Lin G, Hu L. Evaluation of genetic risk of apparently balanced chromosomal rearrangement carriers by breakpoint characterization. J Assist Reprod Genet 2024; 41:147-159. [PMID: 37993578 PMCID: PMC10789712 DOI: 10.1007/s10815-023-02986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
PURPOSE To report genetic characteristics and associated risk of chromosomal breaks due to chromosomal rearrangements in large samples. METHODS MicroSeq, a technique that combines chromosome microdissection and next-generation sequencing, was used to identify chromosomal breakpoints. Long-range PCR and Sanger sequencing were used to precisely characterize 100 breakpoints in 50 ABCR carriers. RESULTS In addition to the recurrent regions of balanced rearrangement breaks in 8q24.13, 11q11.23, and 22q11.21 that had been documented, we have discovered a 10-Mb region of 12q24.13-q24.3 that could potentially be a sparse region of balanced rearrangement breaks. We found that 898 breakpoints caused gene disruption and a total of 188 breakpoints interrupted genes recorded in OMIM. The percentage of breakpoints that disrupted autosomal dominant genes recorded in OMIM was 25.53% (48/188). Fifty-four of the precisely characterized breakpoints had 1-8-bp microhomologous sequences. CONCLUSION Our findings provide a reference for the evaluation of the pathogenicity of mutations in related genes that cause protein truncation in clinical practice. According to the characteristics of breakpoints, non-homologous end joining and microhomology-mediated break-induced replication may be the main mechanism for ABCRs formation.
Collapse
Affiliation(s)
- Yanqin Xiao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
| | - Dehua Cheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China
| | - Keli Luo
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China
| | - Mengge Li
- National Engineering and Research Center of Human Stem Cells, Changsha, 410023, Hunan, China
- Hunan Guangxiu Hospital, Changsha, 410023, Hunan, China
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410023, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, 410008, Hunan, China
| | - Liang Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410023, Hunan, China.
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, 410008, Hunan, China.
| |
Collapse
|
18
|
Houweling AC, Lekanne Deprez RH, Wilde AAM. Human Genetics of Cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:977-990. [PMID: 38884765 DOI: 10.1007/978-3-031-44087-8_63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The identification of a disease-causing variant in a patient diagnosed with cardiomyopathy allows for presymptomatic testing in at risk relatives. Carriers of a pathogenic variant can subsequently be screened at intervals by a cardiologist to assess the risk for potentially life-threatening arrhythmias which can be life-saving. In addition, gene-specific recommendations for risk stratification and disease specific pharmacological options for therapy are beginning to emerge. The large variability in disease penetrance, symptoms, and prognosis, and in some families even in cardiomyopathy subtype, makes genetic counseling both of great importance and complicated.
Collapse
Affiliation(s)
- Arjan C Houweling
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ronald H Lekanne Deprez
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Jansen M, de Brouwer R, Hassanzada F, Schoemaker AE, Schmidt AF, Kooijman-Reumerman MD, Bracun V, Slieker MG, Dooijes D, Vermeer AMC, Wilde AAM, Amin AS, Lekanne Deprez RH, Herkert JC, Christiaans I, de Boer RA, Jongbloed JDH, van Tintelen JP, Asselbergs FW, Baas AF. Penetrance and Prognosis of MYH7 Variant-Associated Cardiomyopathies: Results From a Dutch Multicenter Cohort Study. JACC. HEART FAILURE 2024; 12:134-147. [PMID: 37565978 DOI: 10.1016/j.jchf.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND MYH7 variants cause hypertrophic cardiomyopathy (HCM), noncompaction cardiomyopathy (NCCM), and dilated cardiomyopathy (DCM). Screening of relatives of patients with genetic cardiomyopathy is recommended from 10 to 12 years of age onward, irrespective of the affected gene. OBJECTIVES This study sought to study the penetrance and prognosis of MYH7 variant-associated cardiomyopathies. METHODS In this multicenter cohort study, penetrance and major cardiomyopathy-related events (MCEs) were assessed in carriers of (likely) pathogenic MYH7 variants by using Kaplan-Meier curves and log-rank tests. Prognostic factors were evaluated using Cox regression with time-dependent coefficients. RESULTS In total, 581 subjects (30.1% index patients, 48.4% male, median age 37.0 years [IQR: 19.5-50.2 years]) were included. HCM was diagnosed in 226 subjects, NCCM in 70, and DCM in 55. Early penetrance and MCEs (age <12 years) were common among NCCM-associated variant carriers (21.2% and 12.0%, respectively) and DCM-associated variant carriers (15.3% and 10.0%, respectively), compared with HCM-associated variant carriers (2.9% and 2.1%, respectively). Penetrance was significantly increased in carriers of converter region variants (adjusted HR: 1.87; 95% CI: 1.15-3.04; P = 0.012) and at age ≤1 year in NCCM-associated or DCM-associated variant carriers (adjusted HR: 21.17; 95% CI: 4.81-93.20; P < 0.001) and subjects with a family history of early MCEs (adjusted HR: 2.45; 95% CI: 1.09-5.50; P = 0.030). The risk of MCE was increased in subjects with a family history of early MCEs (adjusted HR: 1.82; 95% CI: 1.15-2.87; P = 0.010) and at age ≤5 years in NCCM-associated or DCM-associated variant carriers (adjusted HR: 38.82; 95% CI: 5.16-291.88; P < 0.001). CONCLUSIONS MYH7 variants can cause cardiomyopathies and MCEs at a young age. Screening at younger ages may be warranted, particularly in carriers of NCCM- or DCM-associated variants and/or with a family history of MCEs at <12 years.
Collapse
Affiliation(s)
- Mark Jansen
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Cardiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart).
| | - Remco de Brouwer
- Netherlands Heart Institute, Utrecht, the Netherlands; Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Fahima Hassanzada
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Angela E Schoemaker
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Amand F Schmidt
- Department of Cardiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom; Department of Cardiology, University Medical Centre Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, University Medical Centre Amsterdam, Amsterdam, the Netherlands
| | - Maria D Kooijman-Reumerman
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Valentina Bracun
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Martijn G Slieker
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Department of Pediatric Cardiology, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Alexa M C Vermeer
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Department of Human Genetics, University Medical Centre Amsterdam Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Arthur A M Wilde
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Department of Cardiology, University Medical Centre Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, University Medical Centre Amsterdam, Amsterdam, the Netherlands
| | - Ahmad S Amin
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Department of Cardiology, University Medical Centre Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, University Medical Centre Amsterdam, Amsterdam, the Netherlands
| | - Ronald H Lekanne Deprez
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Department of Human Genetics, University Medical Centre Amsterdam Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Johanna C Herkert
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Imke Christiaans
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudolf A de Boer
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Department of Cardiology, Thorax Center, Erasmus University Medical Center, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Jan D H Jongbloed
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - J Peter van Tintelen
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart); Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom; Department of Cardiology, University Medical Centre Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, University Medical Centre Amsterdam, Amsterdam, the Netherlands; Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
| | - Annette F Baas
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| |
Collapse
|
20
|
West G, Sedighi S, Agnetti G, Taimen P. Intermediate filaments in the heart: The dynamic duo of desmin and lamins orchestrates mechanical force transmission. Curr Opin Cell Biol 2023; 85:102280. [PMID: 37972529 DOI: 10.1016/j.ceb.2023.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
The intermediate filament (IF) cytoskeleton supports cellular structural integrity, particularly in response to mechanical stress. The most abundant IF proteins in mature cardiomyocytes are desmin and lamins. The desmin network tethers the contractile apparatus and organelles to the nuclear envelope and the sarcolemma, while lamins, as components of the nuclear lamina, provide structural stability to the nucleus and the genome. Mutations in desmin or A-type lamins typically result in cardiomyopathies and recent studies emphasized the synergistic roles of desmin and lamins in the maintenance of nuclear integrity in cardiac myocytes. Here we explore the emerging roles of the interdependent relationship between desmin and lamins in providing resilience to nuclear structure while transducing extracellular mechanical cues into the nucleus.
Collapse
Affiliation(s)
- Gun West
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520, Turku, Finland
| | - Sogol Sedighi
- Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA
| | - Giulio Agnetti
- Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA; DIBINEM - University of Bologna, 40123, Bologna, Italy.
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520, Turku, Finland; Department of Pathology, Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
21
|
Wang S, Zhang Z, He J, Liu J, Guo X, Chu H, Xu H, Wang Y. Comprehensive review on gene mutations contributing to dilated cardiomyopathy. Front Cardiovasc Med 2023; 10:1296389. [PMID: 38107262 PMCID: PMC10722203 DOI: 10.3389/fcvm.2023.1296389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most common primary myocardial diseases. However, to this day, it remains an enigmatic cardiovascular disease (CVD) characterized by ventricular dilatation, which leads to myocardial contractile dysfunction. It is the most common cause of chronic congestive heart failure and the most frequent indication for heart transplantation in young individuals. Genetics and various other factors play significant roles in the progression of dilated cardiomyopathy, and variants in more than 50 genes have been associated with the disease. However, the etiology of a large number of cases remains elusive. Numerous studies have been conducted on the genetic causes of dilated cardiomyopathy. These genetic studies suggest that mutations in genes for fibronectin, cytoskeletal proteins, and myosin in cardiomyocytes play a key role in the development of DCM. In this review, we provide a comprehensive description of the genetic basis, mechanisms, and research advances in genes that have been strongly associated with DCM based on evidence-based medicine. We also emphasize the important role of gene sequencing in therapy for potential early diagnosis and improved clinical management of DCM.
Collapse
Affiliation(s)
- Shipeng Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhiyu Zhang
- Department of Cardiovascular Medicine, The Second People's Hospital of Yibin, Yibin, China
| | - Jiahuan He
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Junqian Liu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xia Guo
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Haoxuan Chu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hanchi Xu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Khan M, Jahangir A. The Uncertain Benefit from Implantable Cardioverter-Defibrillators in Nonischemic Cardiomyopathy: How to Guide Clinical Decision-Making? Cardiol Clin 2023; 41:545-555. [PMID: 37743077 DOI: 10.1016/j.ccl.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Life-threatening dysrhythmias remain a significant cause of mortality in patients with nonischemic cardiomyopathy (NICM). Implantable cardioverter-defibrillators (ICD) effectively reduce mortality in patients who have survived a life-threatening arrhythmic event. The evidence for survival benefit of primary prevention ICD for patients with high-risk NICM on guideline-directed medical therapy is not as robust, with efficacy questioned by recent studies. In this review, we summarize the data on the risk of life-threatening arrhythmias in NICM, the recommendations, and the evidence supporting the efficacy of primary prevention ICD, and highlight tools that may improve the identification of patients who could benefit from primary prevention ICD implantation.
Collapse
Affiliation(s)
- Mohsin Khan
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA
| | - Arshad Jahangir
- Aurora Cardiovascular and Thoracic Services, Center for Advanced Atrial Fibrillation Therapies, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 West Kinnickinnic River Parkway, Suite 777, Milwaukee, WI 53215, USA.
| |
Collapse
|
23
|
Elzamzami FD, Samal A, Arun AS, Dharmaraj T, Prasad NR, Rendon-Jonguitud A, DeVine L, Walston JD, Cole RN, Wilson KL. Native lamin A/C proteomes and novel partners from heart and skeletal muscle in a mouse chronic inflammation model of human frailty. Front Cell Dev Biol 2023; 11:1240285. [PMID: 37936983 PMCID: PMC10626543 DOI: 10.3389/fcell.2023.1240285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023] Open
Abstract
Clinical frailty affects ∼10% of people over age 65 and is studied in a chronically inflamed (Interleukin-10 knockout; "IL10-KO") mouse model. Frailty phenotypes overlap the spectrum of diseases ("laminopathies") caused by mutations in LMNA. LMNA encodes nuclear intermediate filament proteins lamin A and lamin C ("lamin A/C"), important for tissue-specific signaling, metabolism and chromatin regulation. We hypothesized that wildtype lamin A/C associations with tissue-specific partners are perturbed by chronic inflammation, potentially contributing to dysfunction in frailty. To test this idea we immunoprecipitated native lamin A/C and associated proteins from skeletal muscle, hearts and brains of old (21-22 months) IL10-KO versus control C57Bl/6 female mice, and labeled with Tandem Mass Tags for identification and quantitation by mass spectrometry. We identified 502 candidate lamin-binding proteins from skeletal muscle, and 340 from heart, including 62 proteins identified in both tissues. Candidates included frailty phenotype-relevant proteins Perm1 and Fam210a, and nuclear membrane protein Tmem38a, required for muscle-specific genome organization. These and most other candidates were unaffected by IL10-KO, but still important as potential lamin A/C-binding proteins in native heart or muscle. A subset of candidates (21 in skeletal muscle, 30 in heart) showed significantly different lamin A/C-association in an IL10-KO tissue (p < 0.05), including AldoA and Gins3 affected in heart, and Lmcd1 and Fabp4 affected in skeletal muscle. To screen for binding, eleven candidates plus prelamin A and emerin controls were arrayed as synthetic 20-mer peptides (7-residue stagger) and incubated with recombinant purified lamin A "tail" residues 385-646 under relatively stringent conditions. We detected strong lamin A binding to peptides solvent exposed in Lmcd1, AldoA, Perm1, and Tmem38a, and plausible binding to Csrp3 (muscle LIM protein). These results validated both proteomes as sources for native lamin A/C-binding proteins in heart and muscle, identified four candidate genes for Emery-Dreifuss muscular dystrophy (CSRP3, LMCD1, ALDOA, and PERM1), support a lamin A-interactive molecular role for Tmem38A, and supported the hypothesis that lamin A/C interactions with at least two partners (AldoA in heart, transcription factor Lmcd1 in muscle) are altered in the IL10-KO model of frailty.
Collapse
Affiliation(s)
- Fatima D. Elzamzami
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arushi Samal
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adith S. Arun
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tejas Dharmaraj
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Neeti R. Prasad
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alex Rendon-Jonguitud
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeremy D. Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert N. Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine L. Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Wang Y, Jia H, Song J. Accurate Classification of Non-ischemic Cardiomyopathy. Curr Cardiol Rep 2023; 25:1299-1317. [PMID: 37721634 PMCID: PMC10651539 DOI: 10.1007/s11886-023-01944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE OF REVIEW This article aims to review the accurate classification of non-ischemic cardiomyopathy, including the methods, basis, subtype characteristics, and prognosis, especially the similarities and differences between different classifications. RECENT FINDINGS Non-ischemic cardiomyopathy refers to a myocardial disease that excludes coronary artery disease or ischemic injury and has a variety of etiologies and high incidence. Recent studies suggest that traditional classification methods based on primary/mixed/acquired or genetic/non-genetic cannot meet the precise needs of contemporary clinical management. This article systematically describes the history of classifications of cardiomyopathy and presents etiological and genetic differences between cardiomyopathies. The accurate classification is described from the perspective of morphology, function, and genomics in hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, left ventricular noncompaction, and partially acquired cardiomyopathy. The different clinical characteristics and treatment needs of these cardiomyopathies are elaborated. Some single-gene mutant cardiomyopathies have unique phenotypes, and some cardiomyopathies have mixed phenotypes. These special classifications require personalized precision treatment, which is worthy of independent research. This article describes recent advances in the accurate classification of non-ischemic cardiomyopathy from clinical phenotypes and causative genes, discusses the advantages and usage scenarios of each classification, compares the differences in prognosis and patient management needs of different subtypes, and summarizes common methods and new exploration directions for accurate classification.
Collapse
Affiliation(s)
- Yifan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
25
|
郑 奎, 武 菲, 娄 美, 王 莹, 李 博, 郝 京, 王 永, 张 英, 齐 焕. [Clinical and genetic characteristics of children with primary dilated cardiomyopathy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:726-731. [PMID: 37529955 PMCID: PMC10414173 DOI: 10.7499/j.issn.1008-8830.2303077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES To study the genetic characteristics, clinical characteristics, and prognosis of children with primary dilated cardiomyopathy (DCM). METHODS A retrospective analysis was performed on the medical data of 44 children who were diagnosed with DCM in Hebei Children's Hospital from July 2018 to February 2023. According to the genetic testing results, they were divided into two groups: gene mutation-positive group (n=17) and gene mutation-negative group (n=27). The two groups were compared in terms of clinical data at initial diagnosis and follow-up data. RESULTS Among the 44 children with DCM, there were 21 boys (48%) and 23 girls (52%). Respiratory symptoms including cough and shortness of breath were the most common symptom at initial diagnosis (34%, 15/44). The detection rate of gene mutations was 39% (17/44). There were no significant differences between the two groups in clinical characteristics, proportion of children with cardiac function grade Ⅲ or Ⅳ, brain natriuretic peptide levels, left ventricular ejection fraction, and left ventricular fractional shortening at initial diagnosis (P>0.05). The median follow-up time was 23 months, and 9 children (20%) died, including 8 children from the gene mutation-positive group, among whom 3 had TTN gene mutation, 2 had LMNA gene mutation, 2 had TAZ gene mutation, and 1 had ATAD3A gene mutation. The gene mutation-positive group had a significantly higher mortality rate than the gene mutation-negative group (P<0.05). CONCLUSIONS There is no correlation between the severity of DCM at initial diagnosis and gene mutations in children. However, children with gene mutations may have a poorer prognosis.
Collapse
Affiliation(s)
- 奎 郑
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 菲 武
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 美娜 娄
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 莹雪 王
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 博 李
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 京霞 郝
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 永丽 王
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 英谦 张
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| | - 焕军 齐
- 河北省儿童医院心内科/河北省小儿心血管重点实验室,河北石家庄050031
| |
Collapse
|
26
|
Heshmatzad K, Naderi N, Maleki M, Abbasi S, Ghasemi S, Ashrafi N, Fazelifar AF, Mahdavi M, Kalayinia S. Role of non-coding variants in cardiovascular disease. J Cell Mol Med 2023; 27:1621-1636. [PMID: 37183561 PMCID: PMC10273088 DOI: 10.1111/jcmm.17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) constitute one of the significant causes of death worldwide. Different pathological states are linked to CVDs, which despite interventions and treatments, still have poor prognoses. The genetic component, as a beneficial tool in the risk stratification of CVD development, plays a role in the pathogenesis of this group of diseases. The emergence of genome-wide association studies (GWAS) have led to the identification of non-coding parts associated with cardiovascular traits and disorders. Variants located in functional non-coding regions, including promoters/enhancers, introns, miRNAs and 5'/3' UTRs, account for 90% of all identified single-nucleotide polymorphisms associated with CVDs. Here, for the first time, we conducted a comprehensive review on the reported non-coding variants for different CVDs, including hypercholesterolemia, cardiomyopathies, congenital heart diseases, thoracic aortic aneurysms/dissections and coronary artery diseases. Additionally, we present the most commonly reported genes involved in each CVD. In total, 1469 non-coding variants constitute most reports on familial hypercholesterolemia, hypertrophic cardiomyopathy and dilated cardiomyopathy. The application and identification of non-coding variants are beneficial for the genetic diagnosis and better therapeutic management of CVDs.
Collapse
Affiliation(s)
- Katayoun Heshmatzad
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Shiva Abbasi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Serwa Ghasemi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Nooshin Ashrafi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
27
|
Wanert C, El Louali F, Al Dybiat S, Nguyen K, Zaffran S, Ovaert C. Genetic profile and genotype-phenotype correlations in childhood cardiomyopathy. Arch Cardiovasc Dis 2023; 116:309-315. [PMID: 37246080 DOI: 10.1016/j.acvd.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Genetic cardiomyopathy is a rare disease in childhood. AIMS To analyse clinical and genetic aspects of a paediatric cardiomyopathy population, and to establish genotype-phenotype correlations. METHODS We performed a retrospective study of all patients with idiopathic cardiomyopathy aged<18years in Southeast France. Secondary causes of cardiomyopathy were excluded. All data (clinical, echocardiography, genetic testing) were collected retrospectively. Patients were classified into six groups: hypertrophic cardiomyopathy; dilated cardiomyopathy; restrictive cardiomyopathy; left ventricular non-compaction; arrhythmogenic right ventricular dysplasia; and mixed cardiomyopathy. Patients who did not have a complete genetic test according to current scientific developments had another deoxyribonucleic acid blood sample during the study time. Genetic tests were considered positive if the variant found was classified as pathogenic, likely pathogenic or a variant of uncertain significance. RESULTS Eighty-three patients were included between 2005 and 2019. Most patients had hypertrophic cardiomyopathy (39.8%) or dilated cardiomyopathy (27.7%). The median age at diagnosis was 1.28years (interquartile range: 0.27-10.48years). Heart transplantation was performed in 30.1% of patients, and 10.8% died during follow-up. Among 64 patients with a complete genetic analysis, 64.1% had genetic anomalies, mostly in MYH7 (34.2%) and MYBPC3 (12.2%) genes. There were no differences in the whole cohort between genotype-positive and genotype-negative patients. In the hypertrophic cardiomyopathy group, 63.6% had a positive genetic test. Patients with a positive genetic test more often had extracardiac impact (38.1% vs. 8.3%; P=0.009), and more often required an implantable cardiac defibrillator (23.8% vs. 0%; P=0.025) or a heart transplant (19.1% vs. 0%; P=0.047). CONCLUSIONS In our population, children with cardiomyopathy had a high positive genetic test rate. Hypertrophic cardiomyopathy with a positive genetic test is associated with a worse outcome.
Collapse
Affiliation(s)
- Chloé Wanert
- Department of Paediatric Cardiology, Timone Infant Hospital, AP-HM, 13005 Marseille, France; Marseille Medical Genetics, Inserm UMR 1251, Aix-Marseille University, 13385 Marseille, France.
| | - Fedoua El Louali
- Department of Paediatric Cardiology, Timone Infant Hospital, AP-HM, 13005 Marseille, France
| | - Sarab Al Dybiat
- Department of Paediatric Cardiology, Timone Infant Hospital, AP-HM, 13005 Marseille, France
| | - Karine Nguyen
- Marseille Medical Genetics, Inserm UMR 1251, Aix-Marseille University, 13385 Marseille, France; Department of Specialized Cardiogenetics, Timone Infant Hospital, AP-HM, 13005 Marseille, France
| | - Stéphane Zaffran
- Marseille Medical Genetics, Inserm UMR 1251, Aix-Marseille University, 13385 Marseille, France
| | - Caroline Ovaert
- Department of Paediatric Cardiology, Timone Infant Hospital, AP-HM, 13005 Marseille, France; Department of Specialized Cardiogenetics, Timone Infant Hospital, AP-HM, 13005 Marseille, France
| |
Collapse
|
28
|
Lazzeroni D, Crocamo A, Ziveri V, Notarangelo MF, Rizzello D, Spoladori M, Donelli D, Cacciola G, Ardissino D, Niccoli G, Peretto G. Personalized Management of Sudden Death Risk in Primary Cardiomyopathies: From Clinical Evaluation and Multimodality Imaging to Ablation and Cardioverter-Defibrillator Implant. J Pers Med 2023; 13:jpm13050877. [PMID: 37241047 DOI: 10.3390/jpm13050877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Sudden cardiac death represents the leading cause of death worldwide; although the majority of sudden deaths occur in an elderly population with coronary artery disease, some occur in young and otherwise healthy individuals, as is the case of cardiomyopathies. The aim of the present review is to provide a stepwise hierarchical approach for the global sudden death risk estimation in primary cardiomyopathies. Each individual risk factor is analyzed for its contribution to the overall risk of sudden death for each specific cardiomyopathy as well as across all primary myocardial diseases. This stepwise hierarchical and personalized approach starts from the clinical evaluation, subsequently passes through the role of electrocardiographic monitoring and multimodality imaging, and finally concludes with genetic evaluation and electro-anatomical mapping. In fact, the sudden cardiac death risk assessment in cardiomyopathies depends on a multiparametric approach. Moreover, current indications for ventricular arrhythmia ablation and defibrillator implantation are discussed.
Collapse
Affiliation(s)
- Davide Lazzeroni
- Prevention and Rehabilitation Unit of Parma, IRCCS Fondazione Don Gnocchi, 43100 Parma, Italy
| | - Antonio Crocamo
- U.O.C. di Cardiologia, Azienda Ospedaliero-Universitaria di Parma, 43100 Parma, Italy
| | - Valentina Ziveri
- Prevention and Rehabilitation Unit of Parma, IRCCS Fondazione Don Gnocchi, 43100 Parma, Italy
| | | | - Davide Rizzello
- U.O.C. di Cardiologia, Azienda Ospedaliero-Universitaria di Parma, 43100 Parma, Italy
| | - Matteo Spoladori
- U.O.C. di Cardiologia, Azienda Ospedaliero-Universitaria di Parma, 43100 Parma, Italy
| | - Davide Donelli
- U.O.C. di Cardiologia, Azienda Ospedaliero-Universitaria di Parma, 43100 Parma, Italy
| | - Giovanna Cacciola
- Prevention and Rehabilitation Unit of Parma, IRCCS Fondazione Don Gnocchi, 43100 Parma, Italy
| | - Diego Ardissino
- U.O.C. di Cardiologia, Azienda Ospedaliero-Universitaria di Parma, 43100 Parma, Italy
| | - Giampaolo Niccoli
- U.O.C. di Cardiologia, Azienda Ospedaliero-Universitaria di Parma, 43100 Parma, Italy
| | - Giovanni Peretto
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
29
|
Verdonschot JA, Wang P, Derks KW, Adriaens ME, Stroeks SL, Henkens MT, Raafs AG, Sikking M, de Koning B, van den Wijngaard A, Krapels IP, Nabben M, Brunner HG, Heymans SR. Clustering of Cardiac Transcriptome Profiles Reveals Unique: Subgroups of Dilated Cardiomyopathy Patients. JACC Basic Transl Sci 2023; 8:406-418. [PMID: 37138803 PMCID: PMC10149655 DOI: 10.1016/j.jacbts.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 02/04/2023]
Abstract
Dilated cardiomyopathy is a heterogeneous disease characterized by multiple genetic and environmental etiologies. The majority of patients are treated the same despite these differences. The cardiac transcriptome provides information on the patient's pathophysiology, which allows targeted therapy. Using clustering techniques on data from the genotype, phenotype, and cardiac transcriptome of patients with early- and end-stage dilated cardiomyopathy, more homogeneous patient subgroups are identified based on shared underlying pathophysiology. Distinct patient subgroups are identified based on differences in protein quality control, cardiac metabolism, cardiomyocyte function, and inflammatory pathways. The identified pathways have the potential to guide future treatment and individualize patient care.
Collapse
Affiliation(s)
- Job A.J. Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Ping Wang
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kasper W.J. Derks
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Michiel E. Adriaens
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Sophie L.V.M. Stroeks
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Michiel T.H.M. Henkens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
- Netherlands Heart Institute (NLHI), Utrecht, the Netherlands
| | - Anne G. Raafs
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Maurits Sikking
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bart de Koning
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ingrid P.C. Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Miranda Nabben
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Han G. Brunner
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
- GROW Institute for Developmental Biology and Cancer, Maastricht University, Maastricht, the Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephane R.B. Heymans
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| |
Collapse
|
30
|
Sorrentino U, Gabbiato I, Canciani C, Calosci D, Rigon C, Zuccarello D, Cassina M. Homozygous TNNI3 Mutations and Severe Early Onset Dilated Cardiomyopathy: Patient Report and Review of the Literature. Genes (Basel) 2023; 14:genes14030748. [PMID: 36981019 PMCID: PMC10048074 DOI: 10.3390/genes14030748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
The TNNI3 gene encodes for the cardiac isoform of troponin I, a pivotal component of the sarcomeric structure of the myocardium. While heterozygous TNNI3 missense mutations have long been associated with autosomal dominant hypertrophic and restrictive cardiomyopathies, the role of TNNI3 null mutations has been more debated due to the paucity and weak characterization of reported cases and the low penetrance of heterozygous genotypes. In recent years, however, an increasing amount of evidence has validated the hypothesis that biallelic TNNI3 null mutations cause a severe form of neonatal dilated cardiomyopathy. Here, we expand the case series reporting two unrelated patients afflicted with early onset dilated cardiomyopathy, due to homozygosity for the p.Arg98* TNNI3 variant, which had thus far been documented only in heterozygous patients and apparently healthy carriers, and the recurrent p.Arg69Alafs*8 variant, respectively. A review of previously reported biallelic TNNI3 loss-of-function variants and their associated cardiac phenotypes was also performed.
Collapse
Affiliation(s)
- Ugo Sorrentino
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (U.S.); (I.G.); (C.C.); (D.C.); (C.R.); (M.C.)
| | - Ilaria Gabbiato
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (U.S.); (I.G.); (C.C.); (D.C.); (C.R.); (M.C.)
| | - Chiara Canciani
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (U.S.); (I.G.); (C.C.); (D.C.); (C.R.); (M.C.)
| | - Davide Calosci
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (U.S.); (I.G.); (C.C.); (D.C.); (C.R.); (M.C.)
| | - Chiara Rigon
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (U.S.); (I.G.); (C.C.); (D.C.); (C.R.); (M.C.)
| | - Daniela Zuccarello
- Clinical Genetics Unit, University Hospital of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-0498212524
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (U.S.); (I.G.); (C.C.); (D.C.); (C.R.); (M.C.)
| |
Collapse
|
31
|
Li X, Shen Y, Xu X, Guo G, Chen Y, Wei Q, Li H, He K, Liu C. Genomic and RNA-Seq profiling of patients with HFrEF unraveled OAS1 mutation and aggressive expression. Int J Cardiol 2023; 375:44-54. [PMID: 36414043 DOI: 10.1016/j.ijcard.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Heart failure (HF) is a complex pathophysiological state characterized by inadequate delivery of blood and nutrients to the cardiac tissues. It is rarely curable and is commonly associated with a poor prognosis. In this study, we aimed to analyse exomic and RNA-Seq data from patients with HF to identify the key altered pathways in HF. METHODS Whole blood samples were collected from patients with HF and subjected to whole exome sequencing (WES) and RNA-Seq analysis. The gene expression and RNA-Seq data obtained were verified using gene chip analysis and RT-PCR. RESULTS Both exomic and RNA-Seq data confirmed the dysregulation of phosphorylation and immune signalling in patients with HF. Specifically, exomic analysis showed that TITIN, OBSCURIN, NOD2, CDH2, MAP3K5, and SLC17A4 mutations were associated with HF, and RNA-Seq revealed that S100A12, S100A8, S100A9, PFDN5, and TMCC2, were upregulated in patients with HF. Additionally, comparison between RNA-seq and WES data showed that OAS1 mutations are associated with HF. CONLCUSION Our findings indicated that patients with HF show an overall disruption of key phosphorylation and immune signalling pathways. Based on RNA-seq and WES, OAS1 mutations may be primarily responsible for these changes.
Collapse
Affiliation(s)
- Xin Li
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing 100853, China
| | - Yanying Shen
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang Xu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Ge Guo
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Yibing Chen
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Qingxia Wei
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Hanlu Li
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Kunlun He
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing 100853, China; Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China.
| | - Chunlei Liu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China; Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing 100853, China.
| |
Collapse
|
32
|
Fairweather D, Beetler DJ, Musigk N, Heidecker B, Lyle MA, Cooper LT, Bruno KA. Sex and gender differences in myocarditis and dilated cardiomyopathy: An update. Front Cardiovasc Med 2023; 10:1129348. [PMID: 36937911 PMCID: PMC10017519 DOI: 10.3389/fcvm.2023.1129348] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
In the past decade there has been a growing interest in understanding sex and gender differences in myocarditis and dilated cardiomyopathy (DCM), and the purpose of this review is to provide an update on this topic including epidemiology, pathogenesis and clinical presentation, diagnosis and management. Recently, many clinical studies have been conducted examining sex differences in myocarditis. Studies consistently report that myocarditis occurs more often in men than women with a sex ratio ranging from 1:2-4 female to male. Studies reveal that DCM also has a sex ratio of around 1:3 women to men and this is also true for familial/genetic forms of DCM. Animal models have demonstrated that DCM develops after myocarditis in susceptible mouse strains and evidence exists for this progress clinically as well. A consistent finding is that myocarditis occurs primarily in men under 50 years of age, but in women after age 50 or post-menopause. In contrast, DCM typically occurs after age 50, although the age that post-myocarditis DCM occurs has not been investigated. In a small study, more men with myocarditis presented with symptoms of chest pain while women presented with dyspnea. Men with myocarditis have been found to have higher levels of heart failure biomarkers soluble ST2, creatine kinase, myoglobin and T helper 17-associated cytokines while women develop a better regulatory immune response. Studies of the pathogenesis of disease have found that Toll-like receptor (TLR)2 and TLR4 signaling pathways play a central role in increasing inflammation during myocarditis and in promoting remodeling and fibrosis that leads to DCM, and all of these pathways are elevated in males. Management of myocarditis follows heart failure guidelines and there are currently no disease-specific therapies. Research on standard heart failure medications reveal important sex differences. Overall, many advances in our understanding of the effect of biologic sex on myocarditis and DCM have occurred over the past decade, but many gaps in our understanding remain. A better understanding of sex and gender effects are needed to develop disease-targeted and individualized medicine approaches in the future.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Nicolas Musigk
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melissa A. Lyle
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
33
|
Wang X, Zhang Q, Yang N, Wang X, Zhang Z. Simple screening model based on electrocardiogram for patients with dilated cardiomyopathy. Medicine (Baltimore) 2023; 102:e32910. [PMID: 36820535 PMCID: PMC9907988 DOI: 10.1097/md.0000000000032910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Therefore, screening and early diagnosis of potential DCM patients is beneficial. Electrocardiogram (ECG) can be an inexpensive and easily available screening tool. We aimed to construct a simple screening model for DCM based on electrocardiogram. In this retrospective observational study, we consecutively enrolled 117 DCM patients between July 1, 2016 and July 1, 2021 as the DCM group, while 117 patients hospitalized in the same period with normal echocardiography and ECG were selected as the non-DCM group. Patients were randomly assigned to the training and validation sets at 8:2. ECG parameters of left ventricular related leads were exacted. Logistic regression was performed to evaluate screening indicators of ECG parameters and a nomogram was conducted. The screening ability of the model was evaluated using receiver operating characteristic analysis. Furthermore, the nomogram was assessed using calibration curve and decision curve analysis. Screening indicators included in the nomogram were the amplitude of S wave in V1 and V3 leads, the amplitude of R wave in aVF and V6 leads, and PR interval. The nomogram performed satisfactory discrimination in the training (area under the receiver operating characteristic curve = 0.904) and validation (area under the receiver operating characteristic curve = 0.878) sets and good calibration (Hosmer-Lemeshow P = .066). Decision curve analysis demonstrated the model can generate a net benefit of 0.33 when the threshold probability was 0.543. The nomogram based on electrocardiogram is a simple and practical screening tool for potential DCM patients.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qian Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Na Yang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xishu Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
- * Correspondence: Zhiguo Zhang, Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province 130021, China (e-mail: )
| |
Collapse
|
34
|
Hata Y, Ichimata S, Hirono K, Yamaguchi Y, Oku Y, Ichida F, Nishida N. Pathological and Comprehensive Genetic Investigation of Autopsy Cases of Idiopathic Bradyarrhythmia. Circ J 2022; 87:111-119. [PMID: 36070930 DOI: 10.1253/circj.cj-22-0397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Idiopathic bradyarrhythmia is considered to be due to pathological degeneration of the cardiac conduction system (CCS) during aging. There appears to have been no comprehensive genetic investigations in patients with idiopathic bradyarrhythmia. METHODS AND RESULTS Ten autopsy cases with advanced bradyarrhythmia (6 men and 4 women; age: 70-94 years, 81.5±6.9 years; 5 cases each of sinus node dysfunction [SND] and complete atrioventricular block [CAVB]) were genetically investigated by using whole-exome sequencing. Morphometric analysis of the CCS was performed with sex-, age- and comorbidity-matched control cases. As a result, severe loss of nodal cells and distal atrioventricular conduction system were found in SND and CAVB, respectively. However, the conduction tissue loss was not significant in either the atrioventricular node or the proximal bundle of His in CAVB cases. A total of 13 heterozygous potential variants were found in 3 CAVB and 2 SND cases. Of these 13 variants, 4 were missense in the known progressive cardiac conduction disease-related genes: GATA4 and RYR2. In the remaining 9 variants, 5 were loss-of-function mutation with highly possible pathogenicity. CONCLUSIONS In addition to degenerative changes of selectively vulnerable areas in the heart during advancing age, the vulnerability of the CCS, which may be associated with "rare variants of small effect," may also be a contributing factor to the degeneration of CCS, leading to "idiopathic" bradyarrhythmia.
Collapse
Affiliation(s)
- Yukiko Hata
- Department of Legal Medicine, Faculty of Medicine, University of Toyama
| | - Shojiro Ichimata
- Department of Legal Medicine, Faculty of Medicine, University of Toyama
| | - Keiichi Hirono
- Department of Pediatrics, Faculty of Medicine, University of Toyama
| | - Yoshiaki Yamaguchi
- Department of Legal Medicine, Faculty of Medicine, University of Toyama
- Department of Cardiology, Saiseikai Takaoka Hospital
| | - Yuko Oku
- Department of Legal Medicine, Faculty of Medicine, University of Toyama
| | - Fukiko Ichida
- Department of Pediatrics, International University of Health & Welfare
| | - Naoki Nishida
- Department of Legal Medicine, Faculty of Medicine, University of Toyama
| |
Collapse
|
35
|
Hurkmans EGE, Brand ACAM, Verdonschot JAJ, te Loo DMWM, Coenen MJH. Pharmacogenetics of chemotherapy treatment response and -toxicities in patients with osteosarcoma: a systematic review. BMC Cancer 2022; 22:1326. [PMID: 36536332 PMCID: PMC9761983 DOI: 10.1186/s12885-022-10434-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common bone tumor in children and adolescents. Despite multiagent chemotherapy, only 71% of patients survives and these survivors often experience long-term toxicities. The main objective of this systematic review is to provide an overview of the discovery of novel associations of germline polymorphisms with treatment response and/or chemotherapy-induced toxicities in osteosarcoma. METHODS: MEDLINE and Embase were systematically searched (2010-July 2022). Genetic association studies were included if they assessed > 10 germline genetic variants in > 5 genes in relevant drug pathways or if they used a genotyping array or other large-scale genetic analysis. Quality was assessed using adjusted STrengthening the REporting of Genetic Association studies (STREGA)-guidelines. To find additional evidence for the identified associations, literature was searched to identify replication studies. RESULTS After screening 1999 articles, twenty articles met our inclusion criteria. These range from studies focusing on genes in relevant pharmacokinetic pathways to whole genome sequencing. Eleven articles reported on doxorubicin-induced cardiomyopathy. For seven genetic variants in CELF4, GPR35, HAS3, RARG, SLC22A17, SLC22A7 and SLC28A3, replication studies were performed, however without consistent results. Ototoxicity was investigated in one study. Five small studies reported on mucosistis or bone marrow, nephro- and/or hepatotoxicity. Six studies included analysis for treatment efficacy. Genetic variants in ABCC3, ABCC5, FasL, GLDC, GSTP1 were replicated in studies using heterogeneous efficacy outcomes. CONCLUSIONS Despite that results are promising, the majority of associations were poorly reproducible due to small patient cohorts. For the future, hypothesis-generating studies in large patient cohorts will be necessary, especially for cisplatin-induced ototoxicity as these are largely lacking. In order to form large patient cohorts, national and international collaboration will be essential.
Collapse
Affiliation(s)
- Evelien G. E. Hurkmans
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Annouk C. A. M. Brand
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Job A. J. Verdonschot
- grid.412966.e0000 0004 0480 1382Department of Clinical Genetics and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - D. Maroeska W. M. te Loo
- grid.10417.330000 0004 0444 9382Department of Pediatrics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Marieke J. H. Coenen
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands ,grid.5645.2000000040459992XDepartment of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Bourfiss M, van Vugt M, Alasiri AI, Ruijsink B, van Setten J, Schmidt AF, Dooijes D, Puyol-Antón E, Velthuis BK, van Tintelen JP, te Riele AS, Baas AF, Asselbergs FW. Prevalence and Disease Expression of Pathogenic and Likely Pathogenic Variants Associated With Inherited Cardiomyopathies in the General Population. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003704. [PMID: 36264615 PMCID: PMC9770140 DOI: 10.1161/circgen.122.003704] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pathogenic and likely pathogenic variants associated with arrhythmogenic right ventricular cardiomyopathy (ARVC), dilated cardiomyopathy (DCM), and hypertrophic cardiomyopathy (HCM) are recommended to be reported as secondary findings in genome sequencing studies. This provides opportunities for early diagnosis, but also fuels uncertainty in variant carriers (G+), since disease penetrance is incomplete. We assessed the prevalence and disease expression of G+ in the general population. METHODS We identified pathogenic and likely pathogenic variants associated with ARVC, DCM and/or HCM in 200 643 UK Biobank individuals, who underwent whole exome sequencing. We calculated the prevalence of G+ and analyzed the frequency of cardiomyopathy/heart failure diagnosis. In undiagnosed individuals, we analyzed early signs of disease expression using available electrocardiography and cardiac magnetic resonance imaging data. RESULTS We found a prevalence of 1:578, 1:251, and 1:149 for pathogenic and likely pathogenic variants associated with ARVC, DCM and HCM respectively. Compared with controls, cardiovascular mortality was higher in DCM G+ (odds ratio 1.67 [95% CI 1.04; 2.59], P=0.030), but similar in ARVC and HCM G+ (P≥0.100). Cardiomyopathy or heart failure diagnosis were more frequent in DCM G+ (odds ratio 3.66 [95% CI 2.24; 5.81], P=4.9×10-7) and HCM G+ (odds ratio 3.03 [95% CI 1.98; 4.56], P=5.8×10-7), but comparable in ARVC G+ (P=0.172). In contrast, ARVC G+ had more ventricular arrhythmias (P=3.3×10-4). In undiagnosed individuals, left ventricular ejection fraction was reduced in DCM G+ (P=0.009). CONCLUSIONS In the general population, pathogenic and likely pathogenic variants associated with ARVC, DCM, or HCM are not uncommon. Although G+ have increased mortality and morbidity, disease penetrance in these carriers from the general population remains low (1.2-3.1%). Follow-up decisions in case of incidental findings should not be based solely on a variant, but on multiple factors, including family history and disease expression.
Collapse
Affiliation(s)
- Mimount Bourfiss
- Dept of Cardiology, Univ Medical Center Utrecht, Utrecht Univ, Utrecht, the Netherlands (M.B., M.v.V., A.I.A., A.S.J.M.t.R., B.R., J.v.S., A.F.S., F.W.A.)
| | - Marion van Vugt
- Dept of Cardiology, Univ Medical Center Utrecht, Utrecht Univ, Utrecht, the Netherlands (M.B., M.v.V., A.I.A., A.S.J.M.t.R., B.R., J.v.S., A.F.S., F.W.A.)
| | - Abdulrahman I. Alasiri
- Dept of Cardiology, Univ Medical Center Utrecht, Utrecht Univ, Utrecht, the Netherlands (M.B., M.v.V., A.I.A., A.S.J.M.t.R., B.R., J.v.S., A.F.S., F.W.A.)
| | - Bram Ruijsink
- Dept of Cardiology, Univ Medical Center Utrecht, Utrecht Univ, Utrecht, the Netherlands (M.B., M.v.V., A.I.A., A.S.J.M.t.R., B.R., J.v.S., A.F.S., F.W.A.)
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom (B.R., E.P.-A.)
| | - Jessica van Setten
- Dept of Cardiology, Univ Medical Center Utrecht, Utrecht Univ, Utrecht, the Netherlands (M.B., M.v.V., A.I.A., A.S.J.M.t.R., B.R., J.v.S., A.F.S., F.W.A.)
| | - A. Floriaan Schmidt
- Dept of Cardiology, Univ Medical Center Utrecht, Utrecht Univ, Utrecht, the Netherlands (M.B., M.v.V., A.I.A., A.S.J.M.t.R., B.R., J.v.S., A.F.S., F.W.A.)
- Faculty of Population Health Sciences Institute of Cardiovascular Science, London, London, United Kingdom (A.F.S., F.W.A.)
| | - Dennis Dooijes
- Dept of Genetics, Univ Medical Center Utrecht, Utrecht Univ, Utrecht, the Netherlands (D.D., J.P.v.T., A.F.B.)
| | - Esther Puyol-Antón
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom (B.R., E.P.-A.)
| | - Birgitta K. Velthuis
- Dept of Radiology, Univ Medical Center Utrecht, Utrecht Univ, Utrecht, the Netherlands (B.K.V.)
| | - J. Peter van Tintelen
- Dept of Genetics, Univ Medical Center Utrecht, Utrecht Univ, Utrecht, the Netherlands (D.D., J.P.v.T., A.F.B.)
| | - Anneline S.J.M. te Riele
- Dept of Cardiology, Univ Medical Center Utrecht, Utrecht Univ, Utrecht, the Netherlands (M.B., M.v.V., A.I.A., A.S.J.M.t.R., B.R., J.v.S., A.F.S., F.W.A.)
- Netherlands Heart Institute, Utrecht, the Netherlands (A.S.J.M.t.R)
| | - Annette F. Baas
- Dept of Genetics, Univ Medical Center Utrecht, Utrecht Univ, Utrecht, the Netherlands (D.D., J.P.v.T., A.F.B.)
| | - Folkert W. Asselbergs
- Dept of Cardiology, Univ Medical Center Utrecht, Utrecht Univ, Utrecht, the Netherlands (M.B., M.v.V., A.I.A., A.S.J.M.t.R., B.R., J.v.S., A.F.S., F.W.A.)
- Faculty of Population Health Sciences Institute of Cardiovascular Science, London, London, United Kingdom (A.F.S., F.W.A.)
- Health Data Research UK & Institute of Health Informatics, Univ College London, London, United Kingdom (F.W.A.)
| |
Collapse
|
37
|
Lennermann DC, Pepin ME, Grosch M, Konrad L, Kemmling E, Hartmann J, Nolte JL, Clauder-Münster S, Kayvanpour E, Sedaghat-Hamedani F, Haas J, Meder B, van den Boogaard M, Amin AS, Dewenter M, Krüger M, Steinmetz LM, Backs J, van den Hoogenhof MMG. Deep phenotyping of two preclinical mouse models and a cohort of RBM20 mutation carriers reveals no sex-dependent disease severity in RBM20 cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 323:H1296-H1310. [PMID: 36367695 DOI: 10.1152/ajpheart.00328.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RBM20 cardiomyopathy is an arrhythmogenic form of dilated cardiomyopathy caused by mutations in the splicing factor RBM20. A recent study found a more severe phenotype in male patients with RBM20 cardiomyopathy patients than in female patients. Here, we aim to determine sex differences in an animal model of RBM20 cardiomyopathy and investigate potential underlying mechanisms. In addition, we aim to determine sex and gender differences in clinical parameters in a novel RBM20 cardiomyopathy patient cohort. We characterized an Rbm20 knockout (KO) mouse model, and show that splicing of key RBM20 targets, cardiac function, and arrhythmia susceptibility do not differ between sexes. Next, we performed deep phenotyping of these mice, and show that male and female Rbm20-KO mice possess transcriptomic and phosphoproteomic differences. Hypothesizing that these differences may influence the heart's ability to compensate for stress, we exposed Rbm20-KO mice to acute catecholaminergic stimulation and again found no functional differences. We also replicate the lack of functional differences in a mouse model with the Rbm20-R636Q mutation. Lastly, we present a patient cohort of 33 RBM20 cardiomyopathy patients and show that these patients do not possess sex and gender differences in disease severity. Current mouse models of RBM20 cardiomyopathy show more pronounced changes in gene expression and phosphorylation of cardiac proteins in male mice, but no sex differences in cardiac morphology and function. Moreover, other than reported before, male RBM20 cardiomyopathy patients do not present with worse cardiac function in a patient cohort from Germany and the Netherlands.NEW & NOTEWORTHY Optimal management of the cardiac disease is increasingly personalized, partly because of differences in outcomes between sexes. RBM20 cardiomyopathy has been described to be more severe in male patients, and this carries the risk that male patients are more scrutinized in the clinic than female patients. Our findings do not support this observation and suggest that treatment should not differ between male and female RBM20 cardiomyopathy patients, but instead should focus on the underlying disease mechanism.
Collapse
Affiliation(s)
- David C Lennermann
- Institute of Experimental Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mark E Pepin
- Institute of Experimental Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Markus Grosch
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Laura Konrad
- Institute of Experimental Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Elena Kemmling
- Institute of Experimental Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Joshua Hartmann
- Institute of Experimental Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Janica L Nolte
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | | | - Elham Kayvanpour
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Cardiology, Angiology, and Pneumology, Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Cardiology, Angiology, and Pneumology, Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Haas
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Cardiology, Angiology, and Pneumology, Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Benjamin Meder
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Cardiology, Angiology, and Pneumology, Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Malou van den Boogaard
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Ahmad S Amin
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias Dewenter
- Institute of Experimental Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Lars M Steinmetz
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Johannes Backs
- Institute of Experimental Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Institute of Experimental Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
38
|
Zeppenfeld K, Tfelt-Hansen J, de Riva M, Winkel BG, Behr ER, Blom NA, Charron P, Corrado D, Dagres N, de Chillou C, Eckardt L, Friede T, Haugaa KH, Hocini M, Lambiase PD, Marijon E, Merino JL, Peichl P, Priori SG, Reichlin T, Schulz-Menger J, Sticherling C, Tzeis S, Verstrael A, Volterrani M. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 2022; 43:3997-4126. [PMID: 36017572 DOI: 10.1093/eurheartj/ehac262] [Citation(s) in RCA: 947] [Impact Index Per Article: 473.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
39
|
Sedaghat-Hamedani F, Rebs S, Kayvanpour E, Zhu C, Amr A, Müller M, Haas J, Wu J, Steinmetz LM, Ehlermann P, Streckfuss-Bömeke K, Frey N, Meder B. Genotype Complements the Phenotype: Identification of the Pathogenicity of an LMNA Splice Variant by Nanopore Long-Read Sequencing in a Large DCM Family. Int J Mol Sci 2022; 23:ijms232012230. [PMID: 36293084 PMCID: PMC9602549 DOI: 10.3390/ijms232012230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure (HF) and is of familial origin in 20−40% of cases. Genetic testing by next-generation sequencing (NGS) has yielded a definite diagnosis in many cases; however, some remain elusive. In this study, we used a combination of NGS, human-induced pluripotent-stem-cell-derived cardiomyocytes (iPSC-CMs) and nanopore long-read sequencing to identify the causal variant in a multi-generational pedigree of DCM. A four-generation family with familial DCM was investigated. Next-generation sequencing (NGS) was performed on 22 family members. Skin biopsies from two affected family members were used to generate iPSCs, which were then differentiated into iPSC-CMs. Short-read RNA sequencing was used for the evaluation of the target gene expression, and long-read RNA nanopore sequencing was used to evaluate the relevance of the splice variants. The pedigree suggested a highly penetrant, autosomal dominant mode of inheritance. The phenotype of the family was suggestive of laminopathy, but previous genetic testing using both Sanger and panel sequencing only yielded conflicting evidence for LMNA p.R644C (rs142000963), which was not fully segregated. By re-sequencing four additional affected family members, further non-coding LMNA variants could be detected: rs149339264, rs199686967, rs201379016, and rs794728589. To explore the roles of these variants, iPSC-CMs were generated. RNA sequencing showed the LMNA expression levels to be significantly lower in the iPSC-CMs of the LMNA variant carriers. We demonstrated a dysregulated sarcomeric structure and altered calcium homeostasis in the iPSC-CMs of the LMNA variant carriers. Using targeted nanopore long-read sequencing, we revealed the biological significance of the variant c.356+1G>A, which generates a novel 5′ splice site in exon 1 of the cardiac isomer of LMNA, causing a nonsense mRNA product with almost complete RNA decay and haploinsufficiency. Using novel molecular analysis and nanopore technology, we demonstrated the pathogenesis of the rs794728589 (c.356+1G>A) splice variant in LMNA. This study highlights the importance of precise diagnostics in the clinical management and workup of cardiomyopathies.
Collapse
Affiliation(s)
- Farbod Sedaghat-Hamedani
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sabine Rebs
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, 37073 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Department of Pharmacology and Toxicology, University of Würzburg, 97070 Würzburg, Germany
| | - Elham Kayvanpour
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Chenchen Zhu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ali Amr
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marion Müller
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jingyan Wu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lars M. Steinmetz
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Philipp Ehlermann
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Katrin Streckfuss-Bömeke
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, 37073 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Department of Pharmacology and Toxicology, University of Würzburg, 97070 Würzburg, Germany
| | - Norbert Frey
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg and Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
40
|
A Splice Variant of the MYH7 Gene Is Causative in a Family with Isolated Left Ventricular Noncompaction Cardiomyopathy. Genes (Basel) 2022; 13:genes13101750. [PMID: 36292635 PMCID: PMC9602094 DOI: 10.3390/genes13101750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
Variants of the MYH7 gene have been associated with a number of primary cardiac conditions, including left ventricular noncompaction cardiomyopathy (LVNC). Most cases of MYH7-related diseases are associated with such variant types as missense substitutions and in-frame indels. Thus, truncating variants in MYH7 (MYH7tv) and associated mechanism of haploinsufficiency are usually considered not pathogenic in these disorders. However, recent large-scale studies demonstrated evidence of the significance of MYH7tv for LVNC and gave rise to an assumption that haploinsufficiency may be the causal mechanism for LVNC. In this article, we present a family with isolated LVNC and a heterozygous splice variant of the MYH7 gene, analyze possible consequences of this variant and conclude that not all variants that are predicted truncating really act through haploinsufficiency. This study can highlight the importance of a precise assessment of MYH7 splicing variants and their participation in the development of LVNC.
Collapse
|
41
|
Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace 2022; 24:1307-1367. [PMID: 35373836 PMCID: PMC9435643 DOI: 10.1093/europace/euac030] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische
Centra, Amsterdam, location AMC, The Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute,
University of Sydney, Sydney, Australia
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de
México, Mexico
- Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine,
and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm
Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and
Windland Smith Rice Sudden Death Genomics Laboratory, Mayo
Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University,
Stanford, California, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute,
Minas Gerais, Brazil; and
Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Héctor Barajas-Martinez
- Cardiovascular Research, Lankenau Institute of Medical
Research, Wynnewood, PA, USA; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical
Sciences, St. George’s, University of London; St. George’s University Hospitals NHS
Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental
Cardiology, Amsterdam, The
Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven,
Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques
Héréditaires, ICAN, Inserm UMR1166, Hôpital
Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin,
Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital,
Istituto Auxologico Italiano, IRCCS, Milan,
Italy
- Department of Medicine and Surgery, University of
Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology,
University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard
Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research
Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular
Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A
Coruña, Spain; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP,
Faculdade de Medicina, Universidade de Sao Paulo, Sao
Paulo, Brazil; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital
Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon
Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of
Medicine, University of Washington, Seattle, WA,
USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart
Institute, Université de Montréal, Montreal,
Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical
Sciences, Imperial College London, London,
UK
- Royal Brompton & Harefield Hospitals, Guy’s
and St. Thomas’ NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of
Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University,
Cleveland, OH, USA
| |
Collapse
|
42
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick Eduardo B, Barajas‐Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz‐Genga M, Sacilotto L, Schulze‐Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi J, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, Mac Intyre C, Mackall JA, Mont L, Napolitano C, Ochoa Juan P, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt‐Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. J Arrhythm 2022; 38:491-553. [PMID: 35936045 PMCID: PMC9347209 DOI: 10.1002/joa3.12717] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur A. M. Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische CentraAmsterdamThe Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary InstituteUniversity of SydneySydneyAustralia
| | - Manlio F. Márquez
- Instituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMexico
| | | | - Michael J. Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo ClinicRochesterMNUSA
| | - Euan A. Ashley
- Department of Cardiovascular MedicineStanford UniversityStanfordCAUSA
| | | | | | - Elijah R. Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George’sUniversity of London; St. George’s University Hospitals NHS Foundation TrustLondonUKMayo Clinic HealthcareLondon
| | - Connie R. Bezzina
- Amsterdam UMC Heart Center, Department of Experimental CardiologyAmsterdamThe Netherlands
| | - Jeroen Breckpot
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | | | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCSMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Michael H. Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of CardiologyUniversity of TorontoTorontoONCanada
| | - Steven Lubitz
- Cardiac Arrhythmia ServiceMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Naomasa Makita
- National Cerebral and Cardiovascular CenterResearch InstituteSuitaJapan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular CenterSuitaJapan
| | | | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao PauloBrazil
| | - Eric Schulze‐Bahr
- Institute for Genetics of Heart DiseasesUniversity Hospital MünsterMünsterGermany
| | - Wataru Shimizu
- Department of Cardiovascular MedicineGraduate School of MedicineTokyoJapan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | - James S. Ware
- National Heart and Lung Institute and MRC London Institute of Medical SciencesImperial College LondonLondonUK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation TrustLondonUK
| | - David S. Winlaw
- Cincinnati Children's Hospital Medical CentreUniversity of CincinnatiCincinnatiOHUSA
| | | | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, SuitaOsakaJapan
| | - Andreas Bollmann
- Department of ElectrophysiologyHeart Center Leipzig at University of LeipzigLeipzigGermany
- Leipzig Heart InstituteLeipzigGermany
| | - Jong‐Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam HospitalKorea University College of MedicineSeoulRepublic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of CardiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloBrazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo ClinicRochesterMNUSA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos AiresBuenos AiresArgentina
| | - Kui Hong
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Andrew D. Krahn
- Division of CardiologyUniversity of British ColumbiaVancouverCanada
| | - Ciorsti Mac Intyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo ClinicRochesterMNUSA
| | - Judith A. Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - Lluís Mont
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS). Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), MadridSpain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCSPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pablo Ochoa Juan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), MadridSpain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de HierroMadridSpain
- Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), MadridSpain
| | - Petr Peichl
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
- Hipercol Brasil ProgramSão PauloBrazil
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
| | - Jon Skinner
- Sydney Childrens Hospital NetworkUniversity of SydneySydneyAustralia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care MedicineUniversity Hospital Campus Klinikum BielefeldBielefeldGermany
| | - Jacob Tfelt‐Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of genetics, Department of Forensic Medicine, Faculty of Medical SciencesUniversity of CopenhagenDenmark
| | - Thomas Deneke
- Heart Center Bad NeustadtBad Neustadt a.d. SaaleGermany
| |
Collapse
|
43
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi JI, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, MacIntyre C, Mackall JA, Mont L, Napolitano C, Ochoa JP, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt-Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm 2022; 19:e1-e60. [PMID: 35390533 DOI: 10.1016/j.hrthm.2022.03.1225] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, location AMC, The Netherlands.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia.
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; and Member of the Latin American Heart Rhythm Society (LAHRS).
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute, Minas Gerais, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George's, University of London; St. George's University Hospitals NHS Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental Cardiology, Amsterdam, The Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques Héréditaires, ICAN, Inserm UMR1166, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A Coruña, Spain; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany; Leipzig Heart Institute, Leipzig Heart Digital, Leipzig, Germany
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, Canada
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Judith A Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lluís Mont
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), Madrid, Spain
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo 05403-000, Brazil; Hipercol Brasil Program, São Paulo, Brazil
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Jon Skinner
- Sydney Childrens Hospital Network, University of Sydney, Sydney, Australia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care Medicine, University Hospital Campus Klinikum Bielefeld, Bielefeld, Germany
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Deneke
- Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| |
Collapse
|
44
|
Tabata T, Kuramoto Y, Ohtani T, Miyawaki H, Miyashita Y, Sera F, Kioka H, Higo S, Asano Y, Hikoso S, Sakata Y. Phospholamban p.Arg14del Cardiomyopathy: A Japanese Case Series. Intern Med 2022; 61:1987-1993. [PMID: 34924461 PMCID: PMC9334245 DOI: 10.2169/internalmedicine.8594-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phospholamban p.Arg14del is reported to cause hereditary cardiomyopathy with malignant ventricular tachycardia (VT) and advanced heart failure. However, the clinical courses of Japanese cardiomyopathy patients with phospholamban p.Arg14del remain uncharacterized. We identified five patients with this variant. All patients were diagnosed with dilated cardiomyopathy (DCM), developed end-stage heart failure and experienced VT requiring implantable cardioverter defibrillator discharge. Four patients survived after implantation of a left ventricular assist device (LVAD), while one patient who refused LVAD implantation died of heart failure. Based on the severe course of the disease, we propose genetic screening for phospholamban p.Arg14del in DCM patients.
Collapse
Affiliation(s)
- Tomoka Tabata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Tomohito Ohtani
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Hiroshi Miyawaki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Yohei Miyashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Fusako Sera
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
45
|
Stava TT, Leren TP, Bogsrud MP. Molecular genetics in 4 408 cardiomyopathy probands and 3 008 relatives in Norway: 17 years of genetic testing in a national laboratory. Eur J Prev Cardiol 2022; 29:1789-1799. [PMID: 35653365 DOI: 10.1093/eurjpc/zwac102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/13/2022] [Accepted: 05/14/2022] [Indexed: 11/14/2022]
Abstract
Whenever a patient presents with cardiomyopathy, it is important to determine the underlying cause in order to provide the best possible follow-up and treatment. Determining an underlying genetic cause of the disease is also important in order to provide family testing and follow-up of relatives at risk. Unit for Cardiac and Cardiovascular Genetics at Oslo University Hospital has been a national laboratory for genetic testing for cardiomyopathies in Norway since 2003. Data from 4408 probands and 3008 relatives were available. Three probands had two variants, nine had incidental findings of variants not related to their cardiomyopathy diagnosis. Of the remaining 4396 probands, 65.1% were male, age at genetic testing was 50.9 (±18.1) years and 6.1% were under the age of 18. A likely pathogenic or pathogenic variant (216 different variants including 67 novel) was detected in 574 probands. Of the 3008 relatives, 47.6% were male, age at genetic testing was 39.3 (±20.5) years, 17.9% were under the age of 18, and 43.2% were positive for the variant found in their family. Probands and relatives combined, 1/2809 persons in Norway were found to be heterozygous for a cardiomyopathy variant. Next Generation Sequencing provided more findings in dilated cardiomyopathy, especially in TTN. Otherwise, the majority of variants were found in the classical sarcomeric and desmosomal genes. In conclusion, genetic testing provided a genetic basis of the cardiomyopathy in 13.1% of probands, and subsequent family testing identified almost three times as many variant-positive relatives which could be offered preventive follow-up.
Collapse
Affiliation(s)
- Tonje Talsnes Stava
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, P. O. Box 4956 Nydalen, N-0424 Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, P. O. Box 4956 Nydalen, N-0424 Oslo, Norway
| | - Martin Prøven Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, P. O. Box 4956 Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
46
|
Willemars MMA, Nabben M, Verdonschot JAJ, Hoes MF. Evaluation of the Interaction of Sex Hormones and Cardiovascular Function and Health. Curr Heart Fail Rep 2022; 19:200-212. [PMID: 35624387 PMCID: PMC9329157 DOI: 10.1007/s11897-022-00555-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 12/02/2022]
Abstract
Purpose of Review Sex hormones drive development and function of reproductive organs or the development of secondary sex characteristics but their effects on the cardiovascular system are poorly understood. In this review, we identify the gaps in our understanding of the interaction between sex hormones and the cardiovascular system. Recent Findings Studies are progressively elucidating molecular functions of sex hormones in specific cell types in parallel with the initiation of crucial large randomized controlled trials aimed at improving therapies for cardiovascular diseases (CVDs) associated with aberrant levels of sex hormones. Summary In contrast with historical assumptions, we now understand that men and women show different symptoms and progression of CVDs. Abnormal levels of sex hormones pose an independent risk for CVD, which is apparent in conditions like Klinefelter syndrome, androgen insensitivity syndrome, and menopause. Moreover, sex hormone–based therapies remain understudied and may not be beneficial for cardiovascular health.
Collapse
Affiliation(s)
- Myrthe M A Willemars
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Job A J Verdonschot
- CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Martijn F Hoes
- CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands. .,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands. .,Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
47
|
Lukas Laws J, Lancaster MC, Ben Shoemaker M, Stevenson WG, Hung RR, Wells Q, Marshall Brinkley D, Hughes S, Anderson K, Roden D, Stevenson LW. Arrhythmias as Presentation of Genetic Cardiomyopathy. Circ Res 2022; 130:1698-1722. [PMID: 35617362 PMCID: PMC9205615 DOI: 10.1161/circresaha.122.319835] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is increasing evidence regarding the prevalence of genetic cardiomyopathies, for which arrhythmias may be the first presentation. Ventricular and atrial arrhythmias presenting in the absence of known myocardial disease are often labelled as idiopathic, or lone. While ventricular arrhythmias are well-recognized as presentation for arrhythmogenic cardiomyopathy in the right ventricle, the scope of arrhythmogenic cardiomyopathy has broadened to include those with dominant left ventricular involvement, usually with a phenotype of dilated cardiomyopathy. In addition, careful evaluation for genetic cardiomyopathy is also warranted for patients presenting with frequent premature ventricular contractions, conduction system disease, and early onset atrial fibrillation, in which most detected genes are in the cardiomyopathy panels. Sudden death can occur early in the course of these genetic cardiomyopathies, for which risk is not adequately tracked by left ventricular ejection fraction. Only a few of the cardiomyopathy genotypes implicated in early sudden death are recognized in current indications for implantable cardioverter defibrillators which otherwise rely upon a left ventricular ejection fraction ≤0.35 in dilated cardiomyopathy. The genetic diagnoses impact other aspects of clinical management such as exercise prescription and pharmacological therapy of arrhythmias, and new therapies are coming into clinical investigation for specific genetic cardiomyopathies. The expansion of available genetic information and implications raises new challenges for genetic counseling, particularly with the family member who has no evidence of a cardiomyopathy phenotype and may face a potentially negative impact of a genetic diagnosis. Discussions of risk for both probands and relatives need to be tailored to their numeric literacy during shared decision-making. For patients presenting with arrhythmias or cardiomyopathy, extension of genetic testing and its implications will enable cascade screening, intervention to change the trajectory for specific genotype-phenotype profiles, and enable further development and evaluation of emerging targeted therapies.
Collapse
Affiliation(s)
- J Lukas Laws
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Megan C Lancaster
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - M Ben Shoemaker
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - William G Stevenson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Rebecca R Hung
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Quinn Wells
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - D Marshall Brinkley
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Sean Hughes
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Katherine Anderson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Dan Roden
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Lynne W Stevenson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
48
|
Manoharan A, Sambandam R, Ballambattu VB. Genetics of atrial fibrillation-an update of recent findings. Mol Biol Rep 2022; 49:8121-8129. [PMID: 35587846 DOI: 10.1007/s11033-022-07420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia and a major risk factor for stroke, heart failure, and premature death. AF has a strong genetic predisposition. This review highlights the recent findings on the genetics of AF from genome-wide association studies (GWAS) and high-throughput sequencing studies. The consensus from GWAS implies that AF is both polygenic and pleiotropic in nature. With the advent of whole-genome sequencing and whole-exome sequencing, rare variants associated with AF pathogenesis have been identified. The recent studies have contributed towards better understanding of AF pathogenesis.
Collapse
Affiliation(s)
- Aarthi Manoharan
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India
| | - Ravikumar Sambandam
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India.
| | - Vishnu Bhat Ballambattu
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India
| |
Collapse
|
49
|
Wang LJ, Qiu BQ, Yuan MM, Zou HX, Gong CW, Huang H, Lai SQ, Liu JC. Identification and Validation of Dilated Cardiomyopathy-Related Genes via Bioinformatics Analysis. Int J Gen Med 2022; 15:3663-3676. [PMID: 35411175 PMCID: PMC8994656 DOI: 10.2147/ijgm.s350954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Dilated cardiomyopathy (DCM) is a type of cardiomyopathy that can easily cause heart failure and has a high mortality rate. Therefore, there is an urgent need to study the underlying mechanism of action of dilated cardiomyopathy. In the present study, we aimed to explore potential miRNA–mRNA pairs and drugs related to DCM. Methods The Microarray data were collected from the Gene Expression Omnibus (GEO) database. Bioinformatics analysis differentially expressed miRNAs and mRNAs in each microarray were obtained. The target genes of miRNAs were obtained from the miRWalk 2.0 database, and the intersection of these two gene sets (miRNA target genes and differentially expressed mRNAs in the microarray) was obtained. Pathway and Gene Ontology (GO) enrichment analyses were performed in the KOBAS database. Cytoscape software was used to construct the miRNA–mRNA network, and the final hub genes were obtained. Furthermore, we predicted several candidate drugs related to hub genes using DSigDB database. To confirm the abnormal expression of hub genes, qRT-PCR was performed. Results In total, eight differentially expressed miRNAs and 92 differentially expressed mRNAs were identified. In addition, 47 differentially expressed miRNA target genes were identified. According to the analysis results of the miRNA-mRNA network, we identified hsa-miR-551b-3p, hsa-miR-770-5p, hsa-miR-363-3p, PIK3R1, DDIT4, and CXCR4 as hub genes in DCM. Several candidate drugs, which are related to the hug genes, were identified. Conclusion In conclusion, in our study, we identified several hub genes that may be involved in the pathogenesis of DCM. Several drugs related to these hub genes may be used as clinical therapeutic candidates.
Collapse
Affiliation(s)
- Li-Jun Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ming-Ming Yuan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Hua-Xi Zou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Cheng-Wu Gong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Huang Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Song-Qing Lai
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Song-Qing Lai, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China, Tel +86 13699562160, Email
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Correspondence: Ji-Chun Liu, Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China, Tel +86 13907913502, Email
| |
Collapse
|
50
|
Clinical Profile, Arrhythmias, and Adverse Cardiac Outcomes in Emery–Dreifuss Muscular Dystrophies: A Systematic Review of the Literature. BIOLOGY 2022; 11:biology11040530. [PMID: 35453731 PMCID: PMC9031530 DOI: 10.3390/biology11040530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
Cardiolaminopathies are a heterogeneous group of disorders which are due to mutations in the genes encoding for nuclear lamins or their binding proteins. The whole spectrum of cardiac manifestations encompasses atrial arrhythmias, conduction disturbances, progressive systolic dysfunction, and malignant ventricular arrhythmias. Despite the prognostic significance of cardiac involvement in this setting, the current recommendations lack strong evidence. The aim of our work was to systematically review the current data on the main cardiovascular outcomes in cardiolaminopathies. We searched PubMed/Embase for studies focusing on cardiovascular outcomes in LMNA mutation carriers (atrial arrhythmias, ventricular arrhythmias, sudden cardiac death, conduction disturbances, thromboembolic events, systolic dysfunction, heart transplantation, and all-cause and cardiovascular mortality). In total, 11 studies were included (1070 patients, mean age between 26–45 years, with follow-up periods ranging from 2.5 years up to 45 ± 12). When available, data on the EMD-mutated population were separately reported (40 patients). The incidence rates (IR) were individually assessed for the outcomes of interest. The IR for atrial fibrillation/atrial flutter/atrial tachycardia ranged between 6.1 and 13.9 events/100 pts–year. The IR of atrial standstill ranged between 0 and 2 events/100 pts-year. The IR for malignant ventricular arrhythmias reached 10.2 events/100 pts–year and 15.6 events/100 pts–year for appropriate implantable cardioverter–defibrillator (ICD) interventions. The IR for advanced conduction disturbances ranged between 3.2 and 7.7 events/100 pts–year. The IR of thromboembolic events reached up to 8.9 events/100 pts–year. Our results strengthen the need for periodic cardiological evaluation focusing on the early recognition of atrial arrhythmias, and possibly for the choice of preventive strategies for thromboembolic events. The frequent need for cardiac pacing due to advanced conduction disturbances should be counterbalanced with the high risk of malignant ventricular arrhythmias that would justify ICD over pacemaker implantation.
Collapse
|