1
|
Dimitriadis K, Theofilis P, Koutsopoulos G, Pyrpyris N, Beneki E, Tatakis F, Tsioufis P, Chrysohoou C, Fragkoulis C, Tsioufis K. The role of coronary microcirculation in heart failure with preserved ejection fraction: An unceasing odyssey. Heart Fail Rev 2024:10.1007/s10741-024-10445-3. [PMID: 39358622 DOI: 10.1007/s10741-024-10445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents an entity with complex pathophysiologic pathways, among which coronary microvascular dysfunction (CMD) is believed to be an important orchestrator. Research in the field of CMD has highlighted impaired vasoreactivity, capillary rarefaction, and inflammation as potential mediators of its development. CMD can be diagnosed via several noninvasive methods including transthoracic echocardiography, cardiac magnetic resonance, and positron emission tomography. Moreover, invasive methods such as coronary flow reserve and index of microcirculatory resistance are commonly employed in the assessment of CMD. As far as the association between CMD and HFpEF is concerned, numerous studies have highlighted the coexistence of CMD in the majority of HFpEF patients. Additionally, patients affected by both conditions may be facing an adverse prognosis. Finally, there is limited evidence suggesting a beneficial effect of renin-angiotensin-aldosterone system blockers, ranolazine, and sodium-glucose cotransporter-2 inhibitors in CMD, with further evidence being awaited regarding the impact of other pharmacotherapies such as anti-inflammatory agents.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece.
| | - Panagiotis Theofilis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Georgios Koutsopoulos
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Fotis Tatakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Panagiotis Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Christina Chrysohoou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| |
Collapse
|
2
|
Nayfeh M, DiGregorio H, Saad JM, Al-Mallah M, Al Rifai M. The Emerging Specialty of Cardio-Rheumatology. Curr Atheroscler Rep 2024; 26:499-509. [PMID: 38913292 DOI: 10.1007/s11883-024-01221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE OF REVIEW In this review, we aimed to summarize the different aspects of the field of cardio-rheumatology, the role of the cardio-rheumatologist, and future research in the field. RECENT FINDINGS Cardio-rheumatology is an emerging subspecialty within cardiology that focuses on addressing the intricate relationship between systemic inflammation and cardiovascular diseases. It involves understanding the cardiovascular impact of immune-mediated inflammatory diseases on the heart and vascular system. A cardio-rheumatologist's role is multifaceted. First, they should understand the cardiac manifestations of rheumatological diseases. They should also be knowledgeable about the different immunotherapies available and side effects. Additionally, they should know how to utilize imaging modalities, either for diagnosis, prognosis, or treatment monitoring. This field is constantly evolving with new research on both treatment and imaging of the effects of inflammation on the cardiovascular system.
Collapse
Affiliation(s)
- Malek Nayfeh
- Houston Methodist Academic Institute, Houston Methodist DeBakey Heart & Vascular Center, 6550 Fannin Street, Smith Tower - Suite 1801, Houston, TX, 77030, USA
| | | | | | - Mouaz Al-Mallah
- Houston Methodist Academic Institute, Houston Methodist DeBakey Heart & Vascular Center, 6550 Fannin Street, Smith Tower - Suite 1801, Houston, TX, 77030, USA
| | - Mahmoud Al Rifai
- Houston Methodist Academic Institute, Houston Methodist DeBakey Heart & Vascular Center, 6550 Fannin Street, Smith Tower - Suite 1801, Houston, TX, 77030, USA.
- Weill Cornell Medicine, Houston Methodist DeBakey Heart and Vascular Center, 6550 Fannin Street, Smith Tower - Suite 1801, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Rios FJ, de Ciuceis C, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Lopreiato M, Mavraganis G, Mengozzi A, Montezano AC, Stavropoulos K, Winklewski PJ, Wolf J, Costantino S, Doumas M, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Virdis A. Mechanisms of Vascular Inflammation and Potential Therapeutic Targets: A Position Paper From the ESH Working Group on Small Arteries. Hypertension 2024; 81:1218-1232. [PMID: 38511317 DOI: 10.1161/hypertensionaha.123.22483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory responses in small vessels play an important role in the development of cardiovascular diseases, including hypertension, stroke, and small vessel disease. This involves various complex molecular processes including oxidative stress, inflammasome activation, immune-mediated responses, and protein misfolding, which together contribute to microvascular damage. In addition, epigenetic factors, including DNA methylation, histone modifications, and microRNAs influence vascular inflammation and injury. These phenomena may be acquired during the aging process or due to environmental factors. Activation of proinflammatory signaling pathways and molecular events induce low-grade and chronic inflammation with consequent cardiovascular damage. Identifying mechanism-specific targets might provide opportunities in the development of novel therapeutic approaches. Monoclonal antibodies targeting inflammatory cytokines and epigenetic drugs, show promise in reducing microvascular inflammation and associated cardiovascular diseases. In this article, we provide a comprehensive discussion of the complex mechanisms underlying microvascular inflammation and offer insights into innovative therapeutic strategies that may ameliorate vascular injury in cardiovascular disease.
Collapse
Affiliation(s)
- Francisco J Rios
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - George Pavlidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
| | - Claudia Agabiti-Rosei
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Marcin Hellmann
- Cardiac Diagnostics (M.H.), Medical University of Gdansk, Poland
| | - Stefano Masi
- Institute of Cardiovascular Science, University College London, United Kingdom (S.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Mariarosaria Lopreiato
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa (A.M.)
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Konstantinos Stavropoulos
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Greece (K. Stavropoulos)
| | - Pawel J Winklewski
- Departments of Human Physiology (P.J.W.), Medical University of Gdansk, Poland
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Sarah Costantino
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
| | - Michael Doumas
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - Ignatios Ikonomidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
- Department of Research and Education (F.P.), University Hospital Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
- Division of Medicine, Spedali Civili di Brescia, Italy (D.R.)
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim (K. Stellos), Heidelberg University, Germany
- Department of Cardiology, University Hospital Mannheim (K. Stellos), Heidelberg University, Germany
- German Centre for Cardiovascular Research, Heidelberg/Mannheim Partner Site (K. Stellos)
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| |
Collapse
|
4
|
Jouabadi SM, Ataabadi EA, Golshiri K, Bos D, Stricker BHC, Danser AHJ, Mattace-Raso F, Roks AJM. Clinical Impact and Mechanisms of Nonatherosclerotic Vascular Aging: The New Kid to Be Blocked. Can J Cardiol 2023; 39:1839-1858. [PMID: 37495207 DOI: 10.1016/j.cjca.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Ischemic cardiovascular disease and stroke remain the leading cause of global morbidity and mortality. During aging, protective mechanisms in the body gradually deteriorate, resulting in functional, structural, and morphologic changes that affect the vascular system. Because atherosclerotic plaques are not always present along with these alterations, we refer to this kind of vascular aging as nonatherosclerotic vascular aging (NAVA). To maintain proper vascular function during NAVA, it is important to preserve intracellular signalling, prevent inflammation, and block the development of senescent cells. Pharmacologic interventions targeting these components are potential therapeutic approaches for NAVA, with a particular emphasis on inflammation and senescence. This review provides an overview of the pathophysiology of vascular aging and explores potential pharmacotherapies that can improve the function of aged vasculature, focusing on NAVA.
Collapse
Affiliation(s)
- Soroush Mohammadi Jouabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ehsan Ataei Ataabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Keivan Golshiri
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Bruno H C Stricker
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Francesco Mattace-Raso
- Division of Geriatric Medicine, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Hassan M, Shahzadi S, Yasir M, Chun W, Kloczkowski A. Computational prognostic evaluation of Alzheimer's drugs from FDA-approved database through structural conformational dynamics and drug repositioning approaches. Sci Rep 2023; 13:18022. [PMID: 37865690 PMCID: PMC10590448 DOI: 10.1038/s41598-023-45347-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
Drug designing is high-priced and time taking process with low success rate. To overcome this obligation, computational drug repositioning technique is being promptly used to predict the possible therapeutic effects of FDA approved drugs against multiple diseases. In this computational study, protein modeling, shape-based screening, molecular docking, pharmacogenomics, and molecular dynamic simulation approaches have been utilized to retrieve the FDA approved drugs against AD. The predicted MADD protein structure was designed by homology modeling and characterized through different computational resources. Donepezil and galantamine were implanted as standard drugs and drugs were screened out based on structural similarities. Furthermore, these drugs were evaluated and based on binding energy (Kcal/mol) profiles against MADD through PyRx tool. Moreover, pharmacogenomics analysis showed good possible associations with AD mediated genes and confirmed through detail literature survey. The best 6 drug (darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar) further docked and analyzed their interaction behavior through hydrogen binding. Finally, MD simulation study were carried out on these drugs and evaluated their stability behavior by generating root mean square deviation and fluctuations (RMSD/F), radius of gyration (Rg) and soluble accessible surface area (SASA) graphs. Taken together, darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar displayed good lead like profile as compared with standard and can be used as possible therapeutic agent in the treatment of AD after in-vitro and in-vivo assessment.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA.
| |
Collapse
|
6
|
Mengozzi A, de Ciuceis C, Dell'oro R, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Anyfanti P, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Mavraganis G, Montezano AC, Rios FJ, Winklewski PJ, Wolf J, Costantino S, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Triantafyllou A, Virdis A. The importance of microvascular inflammation in ageing and age-related diseases: a position paper from the ESH working group on small arteries, section of microvascular inflammation. J Hypertens 2023; 41:1521-1543. [PMID: 37382158 DOI: 10.1097/hjh.0000000000003503] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Microcirculation is pervasive and orchestrates a profound regulatory cross-talk with the surrounding tissue and organs. Similarly, it is one of the earliest biological systems targeted by environmental stressors and consequently involved in the development and progression of ageing and age-related disease. Microvascular dysfunction, if not targeted, leads to a steady derangement of the phenotype, which cumulates comorbidities and eventually results in a nonrescuable, very high-cardiovascular risk. Along the broad spectrum of pathologies, both shared and distinct molecular pathways and pathophysiological alteration are involved in the disruption of microvascular homeostasis, all pointing to microvascular inflammation as the putative primary culprit. This position paper explores the presence and the detrimental contribution of microvascular inflammation across the whole spectrum of chronic age-related diseases, which characterise the 21st-century healthcare landscape. The manuscript aims to strongly affirm the centrality of microvascular inflammation by recapitulating the current evidence and providing a clear synoptic view of the whole cardiometabolic derangement. Indeed, there is an urgent need for further mechanistic exploration to identify clear, very early or disease-specific molecular targets to provide an effective therapeutic strategy against the otherwise unstoppable rising prevalence of age-related diseases.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | - Raffaella Dell'oro
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - George Pavlidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Panagiota Anyfanti
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine
- Center of Translational Medicine
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University, Gdansk, Poland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Cardiovascular Science, University College London, London, UK
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Francesco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | | | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Ignatios Ikonomidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
- Division of Medicine, Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site
- Department of Cardiology, University Hospital Mannheim, Heidelberg University, Manheim, Germany
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Gerganov G, Georgiev T, Dimova M, Shivacheva T. Vascular effects of biologic and targeted synthetic antirheumatic drugs approved for rheumatoid arthritis: a systematic review. Clin Rheumatol 2023; 42:2651-2676. [PMID: 36991244 DOI: 10.1007/s10067-023-06587-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) increases the risk of cardiovascular disease (CVD), with inflammation playing a key role. Biologic and targeted synthetic drugs used to treat RA can induce systemic immunomodulation and may have pleiotropic effects on vascular function, making it crucial to investigate their impact on CVD risk in RA patients. METHODS A systematic review of the literature was conducted to investigate the impact of biologic and targeted synthetic treatments approved for RA on various cardiovascular markers, including endothelial function, arterial stiffness, and subclinical atherosclerosis. Our analysis included a search of the MedLine (via PubMed) and Web of Science databases using a pre-determined search strategy. We conducted a narrative synthesis of the included studies due to heterogeneity in study design and outcome measures. RESULTS From an initial pool of 647 records, we excluded 327 studies based on their titles and abstracts, and we selected 182 studies for final examination. Ultimately, 58 articles met our inclusion criteria and were included in our systematic review. Our analysis of these studies revealed a positive effect of biologic and targeted synthetic therapies on vascular dysfunction associated with RA. However, the impact of these treatments on subclinical atherosclerosis was inconsistent. CONCLUSION Overall, our systematic review provides important insights into the potential cardiovascular benefits of biologic and targeted synthetic treatments for RA by a still unknown mechanism. These findings can inform clinical practice and contribute to our understanding of their possible effects on early vascular pathology. Key Points • Great heterogeneity of methods are used to evaluate the endothelial function and arterial stiffness in patients with RA on biologic and targeted synthetic antirheumatic drugs. • Most studies have shown a considerable improvement in endothelial function and arterial stiffness with TNFi, despite some studies reporting only transient or no improvement. • Anakinra and tocilizumab may have a beneficial effect on vascular function and endothelial injury, as indicated by increased FMD, coronary flow reserve, and reduced levels of biomarkers of endothelial function, while the overall impact of JAKi and rituximab remains inconclusive based on the reviewed studies. • To fully comprehend the distinctions between biologic therapies, more long-term, well-designed clinical trials are necessary using a homogeneous methodology.
Collapse
Affiliation(s)
- Georgi Gerganov
- Department of Propedeutics of Internal Medicine, Faculty of Medicine, Medical University - Varna, 9002, Varna, Bulgaria
- Clinic of Rheumatology, University Hospital St. Marina - Varna, 9010, Varna, Bulgaria
| | - Tsvetoslav Georgiev
- Clinic of Rheumatology, University Hospital St. Marina - Varna, 9010, Varna, Bulgaria.
- First Department of Internal Medicine, Faculty of Medicine, Medical University - Varna, 9002, Varna, Bulgaria.
| | - Maria Dimova
- Department of Propedeutics of Internal Medicine, Faculty of Medicine, Medical University - Varna, 9002, Varna, Bulgaria
- Clinic of Internal Medicine, University Hospital St. Marina - Varna, 9010, Varna, Bulgaria
| | - Tanya Shivacheva
- Clinic of Rheumatology, University Hospital St. Marina - Varna, 9010, Varna, Bulgaria
- First Department of Internal Medicine, Faculty of Medicine, Medical University - Varna, 9002, Varna, Bulgaria
| |
Collapse
|
8
|
Smilowitz NR, Prasad M, Widmer RJ, Toleva O, Quesada O, Sutton NR, Lerman A, Reynolds HR, Kesarwani M, Savage MP, Sweeny JM, Janaszek KB, Barseghian El-Farra A, Holoshitz N, Park K, Albadri A, Blair JA, Jeremias A, Kearney KE, Kobayashi Y, Miner SES, Samuels BA, Shah SM, Taqueti VR, Wei J, Fearon WF, Moses JW, Henry TD, Tremmel JA. Comprehensive Management of ANOCA, Part 2-Program Development, Treatment, and Research Initiatives: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:1264-1279. [PMID: 37704316 DOI: 10.1016/j.jacc.2023.06.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 09/15/2023]
Abstract
Centers specializing in coronary function testing are critical to ensure a systematic approach to the diagnosis and treatment of angina with nonobstructive coronary arteries (ANOCA). Management leveraging lifestyle, pharmacology, and device-based therapeutic options for ANOCA can improve angina burden and quality of life in affected patients. Multidisciplinary care teams that can tailor and titrate therapies based on individual patient needs are critical to the success of comprehensive programs. As coronary function testing for ANOCA is more widely adopted, collaborative research initiatives will be fundamental to improve ANOCA care. These efforts will require standardized symptom assessments and data collection, which will propel future large-scale clinical trials.
Collapse
Affiliation(s)
- Nathaniel R Smilowitz
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA; Cardiology Section, Department of Medicine, VA New York Harbor Healthcare System, New York, New York, USA
| | - Megha Prasad
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York, USA
| | | | - Olga Toleva
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Odayme Quesada
- Women's Heart Center, The Christ Hospital Heart and Vascular Institute, Cincinnati, Ohio, USA; The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital, Cincinnati, Ohio, USA
| | - Nadia R Sutton
- Department of Internal Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Harmony R Reynolds
- Sarah Ross Soter Center for Women's Cardiovascular Research, Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Manoj Kesarwani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Michael P Savage
- Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joseph M Sweeny
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Noa Holoshitz
- Ascension Columbia St Mary's, Milwaukee, Wisconsin, USA
| | - Ki Park
- Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida, USA
| | - Ahmed Albadri
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - John A Blair
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| | - Allen Jeremias
- St Francis Hospital & Heart Center, Roslyn, New York, USA
| | - Kathleen E Kearney
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Yuhei Kobayashi
- New York Presbyterian Brooklyn Methodist Hospital/Weill Cornell Medical College, New York, New York, USA
| | - Steven E S Miner
- Southlake Regional Medical Centre, Newmarket, Ontario, Canada, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bruce A Samuels
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Samit M Shah
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut USA
| | - Viviany R Taqueti
- Cardiovascular Imaging Program, Departments of Radiology and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janet Wei
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - William F Fearon
- Division of Cardiovascular Medicine and Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Jeffery W Moses
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York, USA; St Francis Hospital & Heart Center, Roslyn, New York, USA
| | - Timothy D Henry
- Carl and Edyth Lindner Center for Research and Education, The Christ Hospital Heart and Vascular Institute, Cincinnati, Ohio, USA
| | - Jennifer A Tremmel
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
9
|
Amezcua-Castillo E, González-Pacheco H, Sáenz-San Martín A, Méndez-Ocampo P, Gutierrez-Moctezuma I, Massó F, Sierra-Lara D, Springall R, Rodríguez E, Arias-Mendoza A, Amezcua-Guerra LM. C-Reactive Protein: The Quintessential Marker of Systemic Inflammation in Coronary Artery Disease-Advancing toward Precision Medicine. Biomedicines 2023; 11:2444. [PMID: 37760885 PMCID: PMC10525787 DOI: 10.3390/biomedicines11092444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Atherosclerotic cardiovascular disease (CVD) remains the leading cause of mortality worldwide. While conventional risk factors have been studied and managed, CVD continues to pose a global threat. Risk scoring systems based on these factors have been developed to predict acute coronary syndromes and guide therapeutic interventions. However, traditional risk algorithms may not fully capture the complexities of individual patients. Recent research highlights the role of inflammation, particularly chronic low-grade inflammation, in the pathogenesis of coronary artery disease (CAD). C-reactive protein (CRP) is an inflammatory molecule that has demonstrated value as a predictive marker for cardiovascular risk assessment, both independently and in conjunction with other parameters. It has been incorporated into risk assessment algorithms, enhancing risk prediction and guiding therapeutic decisions. Pharmacological interventions with anti-inflammatory properties, such as statins, glucagon-like peptide-1 agonists, and interleukin-1 inhibitors, have shown promising effects in reducing both cardiovascular risks and CRP levels. This manuscript provides a comprehensive review of CRP as a marker of systemic inflammation in CAD. By exploring the current knowledge surrounding CRP and its implications for risk prediction and therapeutic interventions, this review contributes to the advancement of personalized cardiology and the optimization of patient care.
Collapse
Affiliation(s)
- Emanuel Amezcua-Castillo
- Escuela Nacional Preparatoria No. 6 Antonio Caso, Universidad Nacional Autónoma de México, Mexico City 04100, Mexico;
| | - Héctor González-Pacheco
- Coronary Care Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.G.-P.); (D.S.-L.); (A.A.-M.)
| | - Arturo Sáenz-San Martín
- School of Medicine, Universidad Autónoma Metropolitana–Xochimilco, Mexico City 14387, Mexico; (A.S.-S.M.); (P.M.-O.); (I.G.-M.)
| | - Pablo Méndez-Ocampo
- School of Medicine, Universidad Autónoma Metropolitana–Xochimilco, Mexico City 14387, Mexico; (A.S.-S.M.); (P.M.-O.); (I.G.-M.)
| | - Iván Gutierrez-Moctezuma
- School of Medicine, Universidad Autónoma Metropolitana–Xochimilco, Mexico City 14387, Mexico; (A.S.-S.M.); (P.M.-O.); (I.G.-M.)
| | - Felipe Massó
- Translational Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (F.M.); (E.R.)
| | - Daniel Sierra-Lara
- Coronary Care Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.G.-P.); (D.S.-L.); (A.A.-M.)
| | - Rashidi Springall
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Emma Rodríguez
- Translational Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (F.M.); (E.R.)
| | - Alexandra Arias-Mendoza
- Coronary Care Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.G.-P.); (D.S.-L.); (A.A.-M.)
| | - Luis M. Amezcua-Guerra
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
- Health Care Department, Universidad Autónoma Metropolitana–Xochimilco, Mexico City 14387, Mexico
| |
Collapse
|
10
|
Weber BN, Giles JT, Liao KP. Shared inflammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease. Nat Rev Rheumatol 2023; 19:417-428. [PMID: 37231248 PMCID: PMC10330911 DOI: 10.1038/s41584-023-00969-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
The association between chronic inflammation and increased risk of cardiovascular disease in rheumatoid arthritis (RA) is well established. In the general population, inflammation is an established independent risk factor for cardiovascular disease, and much interest is placed on controlling inflammation to reduce cardiovascular events. As inflammation encompasses numerous pathways, the development of targeted therapies in RA provides an opportunity to understand the downstream effect of inhibiting specific pathways on cardiovascular risk. Data from these studies can inform cardiovascular risk management in patients with RA, and in the general population. This Review focuses on pro-inflammatory pathways targeted by existing therapies in RA and with mechanistic data from the general population on cardiovascular risk. Specifically, the discussions include the IL-1, IL-6 and TNF pathways, as well as the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signalling pathway, and the role of these pathways in RA pathogenesis in the joint alongside the development of atherosclerotic cardiovascular disease. Overall, some robust data support inhibition of IL-1 and IL-6 in decreasing the risk of cardiovascular disease, with growing data supporting IL-6 inhibition in both patients with RA and the general population to reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Brittany N Weber
- Division of Cardiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jon T Giles
- Columbia University, Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Katherine P Liao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA.
- Rheumatology Section, VA Boston Medical Center, Boston, MA, USA.
| |
Collapse
|
11
|
Affiliation(s)
- Jesse Cochran
- Hematovascular Biology Center, Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
12
|
Dimosiari A, Patoulias D, Kitas GD, Dimitroulas T. Do Interleukin-1 and Interleukin-6 Antagonists Hold Any Place in the Treatment of Atherosclerotic Cardiovascular Disease and Related Co-Morbidities? An Overview of Available Clinical Evidence. J Clin Med 2023; 12:jcm12041302. [PMID: 36835838 PMCID: PMC9962740 DOI: 10.3390/jcm12041302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Cardiovascular disease (CVD) constitutes a real pandemic of the 21st century. According to data from the Centers for Disease Control and Prevention, one person dies every 34 min due to some form of CVD in the United States. Apart from the extremely high morbidity and mortality accompanying CVD, the economic burden seems to be unbearable even for developed countries in the Western World. The role of inflammation in the development and progression of CVD appears to be crucial, while, various inflammatory pathways, such as the Nod-like receptor protein 3 (NLRP3) inflammasome-interleukin (IL)-1/IL-6 pathway of the innate immunity, have attracted scientific interest during the last decade, as a potential treatment target in primary and/or secondary prevention of CVD. Whereas there is a significant amount of evidence, stemming mainly from observational studies, concerning the cardiovascular safety of IL-1 and IL-6 antagonists in patients with rheumatic diseases, evidence from relevant randomized controlled trials (RCTs) is rather scarce and conflicting, especially for patients without underlying rheumatic disease. In this review, we summarize and critically present the currently available evidence, both from RCTs and observational studies, concerning the place that IL-1 and IL-6 antagonists may hold in the treatment of CVD.
Collapse
Affiliation(s)
- Athina Dimosiari
- Second Department of Internal Medicine, European Interbalkan Medical Center, 57001 Thessaloniki, Greece
| | - Dimitrios Patoulias
- Second Department of Internal Medicine, European Interbalkan Medical Center, 57001 Thessaloniki, Greece
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, General Hospital Hippokration, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Correspondence:
| | - George D. Kitas
- Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
| | - Theodoros Dimitroulas
- Fourth Department of Internal Medicine, General Hospital Hippokration, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
13
|
Endothelial glycocalyx and microvascular perfusion are associated with carotid intima-media thickness and impaired myocardial deformation in psoriatic disease. J Hum Hypertens 2022; 36:1113-1120. [PMID: 34819613 DOI: 10.1038/s41371-021-00640-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
Psoriatic disease is associated with vascular and myocardial dysfunction. We aimed to evaluate endothelial glycocalyx barrier properties and microvascular perfusion in psoriatic patients, as well as their correlation with carotid intima-media thickness (cIMT) and markers of left ventricular (LV) myocardial deformation. We examined 297 psoriatic patients and 150 controls, adjusted for age, sex, and atherosclerotic risk factors. The severity of psoriatic disease was estimated using the psoriasis area and severity index (PASI). Perfused boundary region (PBR), a marker of glycocalyx barrier function, was measured non-invasively in sublingual microvessels with a diameter 5-25 μm using Sidestream Dark Field camera (Microscan, GlycoCheck). Increased PBR indicates reduced glycocalyx thickness. Indexes of microvascular perfusion, including red blood cells filling (RBCF) and functional microvascular density, were also calculated. We measured cIMT, coronary flow reserve (CFR) and markers of myocardial deformation by speckle-tracking imaging, namely global longitudinal strain (GLS) and percentage changes between peak twisting and untwisting at mitral valve opening (%dpTw-UtwMVO). Compared to controls, psoriatic patients had higher PBR5-25μm (2.13 ± 0.29μm versus 1.78 ± 0.25μm, p < 0.001) and lower RBCF and functional microvascular density (p < 0.001). Increased PASI was associated with elevated PBR and more impaired cIMT and GLS (p < 0.05). There was an inverse association of PBR with RBCF and functional microvascular density (p < 0.001). In psoriatic population, increased PBR was related to increased cIMT, reduced CFR, impaired GLS and decreased %dpTw-UtwMVO (p < 0.001). Glycocalyx thickness is reduced in psoriatic patients, which in turn impairs microvascular perfusion, and is associated with carotid IMT and impaired coronary and myocardial function.Clinical Trial Registration-URL: http://www.clinicaltrials.gov . Unique identifier: NCT02144857.
Collapse
|
14
|
Giachi A, Cugno M, Gualtierotti R. Disease-modifying anti-rheumatic drugs improve the cardiovascular profile in patients with rheumatoid arthritis. Front Cardiovasc Med 2022; 9:1012661. [PMID: 36352850 PMCID: PMC9637771 DOI: 10.3389/fcvm.2022.1012661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting about 0. 5–1% of the adult population and manifesting as persistent synovitis, systemic inflammation and production of autoantibodies. Patients affected by RA not only experience chronic disease progression, but are also burdened by a 1.5-fold increased cardiovascular (CV) risk, which is comparable to the risk experienced by patients with type 2 diabetes mellitus. RA patients also have a higher incidence and prevalence of coronary artery disease (CAD). Although RA patients frequently present traditional CV risk factors such as insulin resistance and active smoking, previous studies have clarified the pivotal role of chronic inflammation–driven by proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha)–in accelerating the process of atherosclerosis and impairing the coagulation system. Over the last years, a number of studies have shown that disease-modifying anti-rheumatic drugs (DMARDs) reducing the inflammatory state in general improve the CV risk, however some drugs may carry some apparent negative effects. Thus, RA is a model of disease in which targeting inflammation may counteract the progression of atherosclerosis and reduce CV risk. Clinical and experimental evidence indicates that the management of RA patients should be tailored based on the positive and negative effects of DMARDs on CV risk together with the individual traditional CV risk profile. The identification of genetic, biochemical and clinical biomarkers, predictive of evolution and response to treatment, will be the next challenge for a precision approach to reduce the burden of the disease.
Collapse
Affiliation(s)
- Andrea Giachi
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Cugno
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
- *Correspondence: Massimo Cugno
| | - Roberta Gualtierotti
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
15
|
Pavlidis G. Oxidative Stress and Antioxidant Therapy in Cardiovascular Diseases—Clinical Challenge. J Clin Med 2022; 11:jcm11133784. [PMID: 35807069 PMCID: PMC9267581 DOI: 10.3390/jcm11133784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023] Open
Abstract
Oxidative stress reflects an imbalance between the production of reactive oxygen species (ROS) and the biological systems’ antioxidant mechanisms [...]
Collapse
Affiliation(s)
- George Pavlidis
- 2nd Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
16
|
Sagris M, Theofilis P, Antonopoulos AS, Oikonomou E, Paschaliori C, Galiatsatos N, Tsioufis K, Tousoulis D. Inflammation in Coronary Microvascular Dysfunction. Int J Mol Sci 2021; 22:ijms222413471. [PMID: 34948272 PMCID: PMC8703507 DOI: 10.3390/ijms222413471] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic low-grade inflammation is involved in coronary atherosclerosis, presenting multiple clinical manifestations ranging from asymptomatic to stable angina, acute coronary syndrome, heart failure and sudden cardiac death. Coronary microvasculature consists of vessels with a diameter less than 500 μm, whose potential structural and functional abnormalities can lead to inappropriate dilatation and an inability to meet the required myocardium oxygen demands. This review focuses on the pathogenesis of coronary microvascular dysfunction and the capability of non-invasive screening methods to detect the phenomenon. Anti-inflammatory agents, such as statins and immunomodulators, including anakinra, tocilizumab, and tumor necrosis factor-alpha inhibitors, have been assessed recently and may constitute additional or alternative treatment approaches to reduce cardiovascular events in atherosclerotic heart disease characterized by coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Marios Sagris
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
- Correspondence: ; Tel.:+30-213-2088099; Fax: +30-213-2088676
| | - Panagiotis Theofilis
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Alexios S. Antonopoulos
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Evangelos Oikonomou
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
- Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, University of Athens Medical School, 11527 Athens, Greece
| | - Christina Paschaliori
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Nikolaos Galiatsatos
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Kostas Tsioufis
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| | - Dimitris Tousoulis
- Cardiology Clinic, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (A.S.A.); (E.O.); (C.P.); (N.G.); (K.T.); (D.T.)
| |
Collapse
|
17
|
Parikh RR, Folsom AR, Poudel K, Lutsey PL, Demmer RT, Pankow JS, Chen LY, Tang W. Association of Differential Leukocyte Count With Incident Abdominal Aortic Aneurysm Over 22.5 Years: The ARIC Study. Arterioscler Thromb Vasc Biol 2021; 41:2342-2351. [PMID: 34134517 PMCID: PMC9612423 DOI: 10.1161/atvbaha.121.315903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE: Leukocytes contribute to the development of abdominal aortic aneurysm (AAA). We evaluated whether associations of differential leukocyte counts with AAA persist after accounting for traditional risk factors of AAA. APPROACH AND RESULTS: Among 11 217 adults from the Atherosclerosis Risk in Communities Study, we evaluated associations of differential leukocyte counts at baseline (1987–1989) with incident AAAs over a median follow-up of 22.5 years, using Cox proportional hazards regression. Each differential leukocyte count was categorized into 5 groups—below normal, tertiles within the normal range, and above normal, with the first tertile serving as the referent. We identified 377 incident AAAs through 2011, using hospital discharge diagnoses, linked Medicare records, or death certificates. At baseline, higher neutrophil, monocyte, and eosinophil counts were associated with higher risk of AAA, independent of smoking, other differential leukocyte counts, and other traditional risk factors. The association with incident AAA was the strongest for above normal neutrophil count, with an adjusted hazard ratio (95% CI) of 2.17 (1.29–3.64). Below normal neutrophil, lymphocyte, eosinophil and basophil counts were associated with higher risk of AAA with adjusted hazard ratio (95% CI) between 1.86 (1.04–3.35) and 1.62 (1.10–2.39). CONCLUSIONS: Higher neutrophil, monocyte, and eosinophil counts in midlife are associated with higher risk of AAA, even after accounting for traditional risk factors such as smoking, obesity, and atherosclerosis. This suggests the need to identify nontraditional risk factors and treatment strategies to mitigate the residual risk of AAA conferred by midlife inflammation. Whether immunosuppression is associated with higher risk of AAA needs further investigation.
Collapse
Affiliation(s)
- Romil R. Parikh
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Aaron R. Folsom
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kripa Poudel
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Pamela L. Lutsey
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Ryan T. Demmer
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - James S. Pankow
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Lin Y. Chen
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Weihong Tang
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Peppa M, Pavlidis G, Mavroeidi I, Katogiannis K, Varoudi M, Thymis J, Kostelli G, Vlastos D, Plotas P, Bamias A, Parissis J, Ikonomidis I. Effects of hormone replacement therapy on endothelial function, arterial stiffness and myocardial deformation in women with Turner syndrome. J Hypertens 2021; 39:2051-2057. [PMID: 34102661 DOI: 10.1097/hjh.0000000000002903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Turner syndrome (TS) is associated with increased cardiovascular risk. We investigated whether hormone replacement therapy (HRT) affects endothelial function, arterial stiffness and myocardial deformation in women with TS. METHODS Twenty-five women with TS were studied in the estrogen phase of the HRT and two months after discontinuation of HRT. The following measurements were made: flow-mediated dilation (FMD) of the brachial artery, pulse wave velocity (PWV-Complior) and central systolic blood pressure (cSBP), carotid intima-media thickness (cIMT), aortic (Ao) elastic indexes - namely Ao strain, distensibility, stiffness index and pressure strain modulus (Ep) - and left ventricular (LV) global longitudinal strain (GLS) using speckle-tracking echocardiography. Ten healthy female of similar age and BMI served as a control group. RESULTS Compared to controls, women with TS on HRT had higher PWV (9.1 ± 2.4 vs. 7.5 ± 0.5 m/s), cSBP (130 ± 15 vs. 121 ± 6 mmHg), cIMT (0.66 ± 0.06 vs. 0.55 ± 0.05 mm), aortic stiffness index, Ep and LA strain, and lower FMD (7.2 ± 4 vs. 10.5 ± 2.3%), Ao strain, Ao distensibility and GLS (-18.8 ± 2.7 vs. -21.9 ± 1.5%) (P < 0.05 for all comparisons). Two months after discontinuation of HRT, all women increased FMD (11.7 ± 6 vs. 7.2 ± 4%) and reduced PWV (7.8 ± 1.7 vs. 9.1 ± 2.4 m/s) and cSBP (123 ± 14 vs. 130 ± 15 mmHg). There were no statistically significant changes in BMI, cIMT and GLS (P > 0.05 for all comparisons). The percentage decrease of cSBP was associated with the percentage decrease of PWV (r = 0.54) and reversely related with the percentage increase of FMD (r = -0.57; P < 0.05 for all comparisons). CONCLUSIONS HRT in women with TS may deteriorate endothelial function contributing to increased arterial stiffness and central arterial blood pressure.
Collapse
Affiliation(s)
- Melpomeni Peppa
- Endocrine Unit, 2nd Department of Internal Medicine Propaedeutic, Research Institute and Diabetes Center
| | | | - Ioanna Mavroeidi
- Endocrine Unit, 2nd Department of Internal Medicine Propaedeutic, Research Institute and Diabetes Center
| | | | | | | | | | | | | | - Aristotelis Bamias
- 2nd Department of Internal Medicine Propaedeutic, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | | |
Collapse
|
19
|
De Lorenzo A, Estato V, Castro-Faria-Neto HC, Tibirica E. Obesity-Related Inflammation and Endothelial Dysfunction in COVID-19: Impact on Disease Severity. J Inflamm Res 2021; 14:2267-2276. [PMID: 34079332 PMCID: PMC8166352 DOI: 10.2147/jir.s282710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has put into evidence another pandemic – obesity. Currently, several studies have documented the association between obesity and COVID-19 severity. The mechanisms underlying the increased risk of complications and mortality in obese patients with COVID-19 are of diverse nature. Inflammation plays a central role in obesity. Metabolic alterations seen in obese patients are related to an inflammatory response, and several studies report elevated levels of circulating inflammatory cytokines in obese patients. Also, deregulated expression of adipokines, such as leptin and resistin, increase the expression of vascular adhesion molecule 1 and intercellular adhesion molecule 1 that contribute to increased vascular leukocyte adhesiveness and additional oxidative stress. Additionally, it is now recognized that the chronic impairment of systemic vascular endothelial function in patients with cardiovascular and metabolic disorders, including obesity, when intensified by the detrimental effects of SARS-CoV-2 over the endothelium, may explain their worse outcomes in COVID-19. In fact, vascular endothelial dysfunction may contribute to a unfavorable response of the endothelium to the infection by SARS-CoV-2, whereas alterations in cardiac structure and function and the prothrombotic environment in obesity may also provide a link to the increased cardiovascular events in these patients.
Collapse
Affiliation(s)
| | - Vanessa Estato
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brail
| | | | | |
Collapse
|
20
|
Kerola AM, Rollefstad S, Semb AG. Atherosclerotic Cardiovascular Disease in Rheumatoid Arthritis: Impact of Inflammation and Antirheumatic Treatment. Eur Cardiol 2021; 16:e18. [PMID: 34040652 PMCID: PMC8145075 DOI: 10.15420/ecr.2020.44] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Patients with rheumatoid arthritis (RA) are at approximately 1.5-fold risk of atherosclerotic cardiovascular disease (CVD) compared with the general population, a phenomenon resulting from combined effects of traditional CVD risk factors and systemic inflammation. Rheumatoid synovitis and unstable atherosclerotic plaques share common inflammatory mechanisms, such as expression of proinflammatory cytokines interleukin (IL)-1, tumour necrosis factor (TNF)-α and IL-6. RA patients are undertreated in terms of CVD prevention, and structured CVD prevention programmes are warranted. Alongside management of traditional risk factors, suppressing systemic inflammation with antirheumatic medication is fundamental for the reduction of CVD risk among this high-risk patient group. Many antirheumatic drugs, especially methotrexate, TNF-α-inhibitors and IL-6-inhibitors are associated with reduced risk of CVD in observational studies among RA patients, but randomised controlled trials with hard CVD endpoints are lacking. In patients without rheumatic disease, anti-inflammatory therapies targeting nucleotide-binding oligomerisation domain, leucine-rich repeat and pyrin domain-containing protein 3 inflammasome and the IL-1/IL-6 pathway arise as potential therapies after an atherosclerotic CVD event.
Collapse
Affiliation(s)
- Anne Mirjam Kerola
- Preventive Cardio-Rheuma Clinic, Division of Rheumatology and Research, Diakonhjemmet Hospital Oslo, Norway.,Department of Rheumatology, Päijät-Häme Joint Authority for Health and Wellbeing Lahti, Finland
| | - Silvia Rollefstad
- Preventive Cardio-Rheuma Clinic, Division of Rheumatology and Research, Diakonhjemmet Hospital Oslo, Norway
| | - Anne Grete Semb
- Preventive Cardio-Rheuma Clinic, Division of Rheumatology and Research, Diakonhjemmet Hospital Oslo, Norway
| |
Collapse
|
21
|
He DD, Zhang XK, Zhu XY, Huang FF, Wang Z, Tu JC. Network pharmacology and RNA-sequencing reveal the molecular mechanism of Xuebijing injection on COVID-19-induced cardiac dysfunction. Comput Biol Med 2021; 131:104293. [PMID: 33662681 PMCID: PMC7899014 DOI: 10.1016/j.compbiomed.2021.104293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is an emerging infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Up to 20%-30% of patients hospitalized with COVID-19 have evidence of cardiac dysfunction. Xuebijing injection is a compound injection containing five traditional Chinese medicine ingredients, which can protect cells from SARS-CoV-2-induced cell death and improve cardiac function. However, the specific protective mechanism of Xuebijing injection on COVID-19-induced cardiac dysfunction remains unclear. METHODS The therapeutic effect of Xuebijing injection on COVID-19 was validated by the TCM Anti COVID-19 (TCMATCOV) platform. RNA-sequencing (RNA-seq) data from GSE150392 was used to find differentially expressed genes (DEGs) from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2. Data from GSE151879 was used to verify the expression of Angiotensin I Converting Enzyme 2 (ACE2) and central hub genes in both human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) and adult human CMs with SARS-CoV-2 infection. RESULTS A total of 97 proteins were identified as the therapeutic targets of Xuebijing injection for COVID-19. There were 22 DEGs in SARS-CoV-2 infected hiPSC-CMs overlapped with the 97 therapeutic targets, which might be the therapeutic targets of Xuebijing injection on COVID-19-induced cardiac dysfunction. Based on the bioinformatics analysis, 7 genes (CCL2, CXCL8, FOS, IFNB1, IL-1A, IL-1B, SERPINE1) were identified as central hub genes and enriched in pathways including cytokines, inflammation, cell senescence and oxidative stress. ACE2, the receptor of SARS-CoV-2, and the 7 central hub genes were differentially expressed in at least two kinds of SARS-CoV-2 infected CMs. Besides, FOS and quercetin exhibited the tightest binding by molecular docking analysis. CONCLUSION Our study indicated the underlying protective effect of Xuebijing injection on COVID-19, especially on COVID19-induced cardiac dysfunction, which provided the theoretical basis for exploring the potential protective mechanism of Xuebijing injection on COVID19-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Ding-Dong He
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Xiao-Kang Zhang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Xin-Yu Zhu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Fang-Fang Huang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Zi Wang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Jian-Cheng Tu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
22
|
Kotyla PJ, Engelmann M, Giemza-Stokłosa J, Wnuk B, Islam MA. Thromboembolic Adverse Drug Reactions in Janus Kinase (JAK) Inhibitors: Does the Inhibitor Specificity Play a Role? Int J Mol Sci 2021; 22:2449. [PMID: 33671049 PMCID: PMC7957632 DOI: 10.3390/ijms22052449] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Recent advances in immunology enabled the characterization of several signal transmitting pathways responsible for proper cytokine and chemokine signaling. Among them, Janus kinases (JAKs) are essential components of receptor activation systems. The discovery of JAK kinases enabled the synthesis of JAK kinase inhibitors (JAKi or Jakinibs), which have proven to be efficacious in the treatment of hematologic malignancies and several rheumatological disorders and continue to be investigated in many clinical indications. Blocking multiple cytokines belonging to several cytokine families with a single small molecule may, however, create a potential risk for the patients. Recently, a higher risk of thromboembolic complications, namely, deep vein thrombosis and pulmonary embolism, has been recognized as the main concern during treatment with Jakinibs. At present, it is not entirely clear whether this increased risk is related to direct cytokine blockade, the presence of concomitant diseases in treated patients or other unknown circumstances that work together to increase the risk of this side effect. In this review, we discuss data on the risk of thromboembolic side effects, with special emphasis on the mechanism that may be responsible for this increased risk. Many indirect data indicate that higher thromboembolic risk may be related to the specificity of JAK inhibitor action, such that preferentially blocking one signaling pathway upsets the balance between pro and anti-thrombotic activities.
Collapse
Affiliation(s)
- Przemysław J. Kotyla
- Department of Internal Medicine, Rheumatology and Clinical Immunology, Faculty in Katowice, Medical University of Silesia, 40-635 Katowice, Poland
| | - Małgorzata Engelmann
- Department of Physiotherapy in Internal Medicine, Academy of Physical Education in Katowice, 40-065 Katowice, Poland;
| | | | - Bartosz Wnuk
- Department of Rehabilitation, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
23
|
Thwaites RS, Unterberger S, Chamberlain G, Gray H, Jordan K, Davies KA, Harrison NA, Sacre S. Expression of sterile-α and armadillo motif in rheumatoid arthritis monocytes correlates with TLR2 induced IL-1β and disease activity. Rheumatology (Oxford) 2021; 60:5843-5853. [PMID: 33605409 PMCID: PMC8645275 DOI: 10.1093/rheumatology/keab162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Cartilage and bone damage in rheumatoid arthritis (RA) are associated with elevated IL-1β. The effects of IL-1β can be reduced by biological therapies that target IL-1β or TNFα. However, the mechanisms responsible for increased IL-1β and the effect of anti-TNFα have not been fully elucidated. Recently, sterile-α and armadillo motif-containing protein (SARM) was identified as a negative regulator of toll-like receptor (TLR) induced IL-1β secretion through an interaction with the inflammasome. This study set out to investigate SARM during TLR induced IL-1β secretion in RA peripheral blood monocytes and in patients commencing anti-TNFα treatment. METHODS Monocytes were isolated from RA patients and healthy controls; disease activity was measured by DAS28. IL-1β secretion was measured by ELISA following TLR1/2, TLR4 and TLR7/8 stimulation. The mRNA expression of SARM, IL-1β and the components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome were measured by quantitative PCR. SARM protein expression was measured by western blotting. RESULTS TLR1/2 activation induced elevated IL-1β in RA monocytes compared with heathy controls (p= 0.0009), which negatively correlated with SARM expression (p = 0.0086). Lower SARM expression also correlated with higher disease activity (p = 0.0246). Additionally, patients responding to anti-TNFα treatment demonstrated a rapid upregulation of SARM, which was not observed in non-responders. CONCLUSION Together, these data highlight a potential contribution from SARM to RA pathophysiology where decreased SARM may lead to elevated IL-1β associated with RA pathogenesis. Furthermore, the data additionally present a potential mechanism by which TNFα blockade can modify IL-1β secretion.
Collapse
Affiliation(s)
- Ryan S Thwaites
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, U.K
| | - Sarah Unterberger
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, U.K
| | - Giselle Chamberlain
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, U.K
| | - Henry Gray
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, U.K
| | - Kelsey Jordan
- Rheumatology Department, The Royal Sussex County Hospital, Brighton and Sussex University Hospitals NHS Trust, Brighton, BN2 5BE, U.K
| | - Kevin A Davies
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, U.K
| | - Neil A Harrison
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, U.K
| | - Sandra Sacre
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, U.K
| |
Collapse
|
24
|
Xu Y, Thakur A, Zhang Y, Foged C. Inhaled RNA Therapeutics for Obstructive Airway Diseases: Recent Advances and Future Prospects. Pharmaceutics 2021; 13:pharmaceutics13020177. [PMID: 33525500 PMCID: PMC7912103 DOI: 10.3390/pharmaceutics13020177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Obstructive airway diseases, e.g., chronic obstructive pulmonary disease (COPD) and asthma, represent leading causes of morbidity and mortality worldwide. However, the efficacy of currently available inhaled therapeutics is not sufficient for arresting disease progression and decreasing mortality, hence providing an urgent need for development of novel therapeutics. Local delivery to the airways via inhalation is promising for novel drugs, because it allows for delivery directly to the target site of action and minimizes systemic drug exposure. In addition, novel drug modalities like RNA therapeutics provide entirely new opportunities for highly specific treatment of airway diseases. Here, we review state of the art of conventional inhaled drugs used for the treatment of COPD and asthma with focus on quality attributes of inhaled medicines, and we outline the therapeutic potential and safety of novel drugs. Subsequently, we present recent advances in manufacturing of thermostable solid dosage forms for pulmonary administration, important quality attributes of inhalable dry powder formulations, and obstacles for the translation of inhalable solid dosage forms to the clinic. Delivery challenges for inhaled RNA therapeutics and delivery technologies used to overcome them are also discussed. Finally, we present future prospects of novel inhaled RNA-based therapeutics for treatment of obstructive airways diseases, and highlight major knowledge gaps, which require further investigation to advance RNA-based medicine towards the bedside.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
| | - Yibang Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
- Correspondence: ; Tel.: +45-3533-6402
| |
Collapse
|
25
|
Lambadiari V, Kousathana F, Raptis A, Katogiannis K, Kokkinos A, Ikonomidis I. Pre-Existing Cytokine and NLRP3 Inflammasome Activation and Increased Vascular Permeability in Diabetes: A Possible Fatal Link With Worst COVID-19 Infection Outcomes? Front Immunol 2020; 11:557235. [PMID: 33329516 PMCID: PMC7719832 DOI: 10.3389/fimmu.2020.557235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Vaia Lambadiari
- 2Department of Internal Medicine, Research Unit and Diabetes Center, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Kousathana
- 2Department of Internal Medicine, Research Unit and Diabetes Center, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Raptis
- 2Department of Internal Medicine, Research Unit and Diabetes Center, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Katogiannis
- 2Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- 1Department of Propaedeutic Internal Medicine, Medical School, Diabetes Center, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ignatios Ikonomidis
- 2Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
26
|
Campbell CM, Guha A, Haque T, Neilan TG, Addison D. Repurposing Immunomodulatory Therapies against Coronavirus Disease 2019 (COVID-19) in the Era of Cardiac Vigilance: A Systematic Review. J Clin Med 2020; 9:E2935. [PMID: 32932930 PMCID: PMC7565788 DOI: 10.3390/jcm9092935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has resulted in efforts to identify therapies to ameliorate adverse clinical outcomes. The recognition of the key role for increased inflammation in COVID-19 has led to a proliferation of clinical trials targeting inflammation. The purpose of this review is to characterize the current state of immunotherapy trials in COVID-19, and focuses on associated cardiotoxicities, given the importance of pharmacovigilance. The search terms related to COVID-19 were queried in ClinicalTrials.gov. A total of 1621 trials were identified and screened for interventional trials directed at inflammation. Trials (n = 226) were fully assessed for the use of a repurposed drug, identifying a total of 141 therapeutic trials using a repurposed drug to target inflammation in COVID-19 infection. Building on the results of the Randomized Evaluation of COVID-19 Therapy (RECOVERY) trial demonstrating the benefit of low dose dexamethasone in COVID-19, repurposed drugs targeting inflammation are promising. Repurposed drugs directed at inflammation in COVID-19 primarily have been drawn from cancer therapies and immunomodulatory therapies, specifically targeted anti-inflammatory, anti-complement, and anti-rejection agents. The proposed mechanisms for many cytokine-directed and anti-rejection drugs are focused on evidence of efficacy in cytokine release syndromes in humans or animal models. Anti-complement-based therapies have the potential to decrease both inflammation and microvascular thrombosis. Cancer therapies are hypothesized to decrease vascular permeability and inflammation. Few publications to date describe using these drugs in COVID-19. Early COVID-19 intervention trials have re-emphasized the subtle, but important cardiotoxic sequelae of potential therapies on outcomes. The volume of trials targeting the COVID-19 hyper-inflammatory phase continues to grow rapidly with the evaluation of repurposed drugs and late-stage investigational agents. Leveraging known clinical safety profiles and pharmacodynamics allows swift investigation in clinical trials for a novel indication. Physicians should remain vigilant for cardiotoxicity, often not fully appreciated in small trials or in short time frames.
Collapse
Affiliation(s)
- Courtney M. Campbell
- Cardio-Oncology Program, Division of Cardiology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA;
| | - Avirup Guha
- Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Tamanna Haque
- Division of Hematology/Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA;
| | - Tomas G. Neilan
- Cardio-Oncology Program, Division of Cardiology, Department of Internal Medicine, Massachusetts General Hospital, Boston, MA 02144, USA;
| | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA;
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Vrettou AR, Parissis J, Ikonomidis I. The Dual Role of Echocardiography in the Diagnosis of Acute Cardiac Complications and Treatment Monitoring for Coronavirus Disease 2019 (COVID-19). Front Cardiovasc Med 2020; 7:129. [PMID: 32984405 PMCID: PMC7492803 DOI: 10.3389/fcvm.2020.00129] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic, being caused by an easily and rapidly spreading novel betacoronavirus, has created a state of emergency for people, the scientific community, healthcare systems and states, while the global financial consequences are still unfolding. Cardiovascular complications have been reported for COVID-19-infected patients and are associated with a worse prognosis. ECG and biomarkers may raise suspicion of cardiac involvement. However, transthoracic echocardiography is a fast and reliable bedside method to establish the diagnosis of cardiac complications, including acute coronary syndromes, pericarditis, myocarditis, and pulmonary embolism. Early detection of cardiac dysfunction by speckle tracking echocardiography during off-line analysis may be used to identify a high-risk population for development of heart failure in the acute setting. Precautionary measures are mandatory for operators and equipment to avoid viral dispersion. No specific treatment is yet available for severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2), and a variety of antiviral, immune-modifying, and antioxidant agents are therefore under intense investigation. Echocardiography, including assessment of myocardial deformation, may provide a useful tool to monitor the effects of the various treatment regimens on cardiac function both acutely and in the midterm.
Collapse
Affiliation(s)
| | | | - Ignatios Ikonomidis
- 2nd Department of Cardiology, COVID-19 Infection Reference Center, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Makavos G, Varoudi M, Papangelopoulou K, Kapniari E, Plotas P, Ikonomidis I, Papadavid E. Echocardiography in Autoimmune Rheumatic Diseases for Diagnosis and Prognosis of Cardiovascular Complications. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:medicina56090445. [PMID: 32883041 PMCID: PMC7558642 DOI: 10.3390/medicina56090445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022]
Abstract
Autoimmune rheumatic diseases are systemic diseases frequently affecting the heart and vessels. The main cardiovascular complications are pericarditis, myocarditis, valvular disease, obstructive coronary artery disease and coronary microcirculatory dysfunction, cardiac failure and pulmonary hypertension. Echocardiography, including transthoracic two and three-dimensional echocardiography, Doppler imaging, myocardial deformation and transesophageal echo, is an established and widely available imaging technique for the identification of cardiovascular manifestations that are crucial for prognosis in rheumatic diseases. Echocardiography is also important for monitoring the impact of drug treatment on cardiac function, coronary microcirculatory function, valvular function and pulmonary artery pressures. In this article we summarize established and evolving knowledge on the role of echocardiography for diagnosis and prognosis of cardiovascular abnormalities in rheumatic diseases.
Collapse
Affiliation(s)
- George Makavos
- Second Cardiology Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.V.); (K.P.); (P.P.); (I.I.)
- Correspondence: ; Tel.: +30-210-5832187
| | - Maria Varoudi
- Second Cardiology Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.V.); (K.P.); (P.P.); (I.I.)
| | - Konstantina Papangelopoulou
- Second Cardiology Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.V.); (K.P.); (P.P.); (I.I.)
| | - Eirini Kapniari
- Second Department of Dermatology and Venereology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (E.K.); (E.P.)
| | - Panagiotis Plotas
- Second Cardiology Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.V.); (K.P.); (P.P.); (I.I.)
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (M.V.); (K.P.); (P.P.); (I.I.)
| | - Evangelia Papadavid
- Second Department of Dermatology and Venereology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (E.K.); (E.P.)
| |
Collapse
|
29
|
Bertocchi I, Foglietta F, Collotta D, Eva C, Brancaleone V, Thiemermann C, Collino M. The hidden role of NLRP3 inflammasome in obesity-related COVID-19 exacerbations: Lessons for drug repurposing. Br J Pharmacol 2020; 177:4921-4930. [PMID: 32776354 PMCID: PMC7436458 DOI: 10.1111/bph.15229] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
COVID-19, the illness caused by SARS-CoV-2, has a wide-ranging clinical spectrum that, in the worst-case scenario, involves a rapid progression to severe acute respiratory syndrome and death. Epidemiological data show that obesity and diabetes are among the main risk factors associated with high morbidity and mortality. The increased susceptibility to SARS-CoV-2 infection documented in obesity-related metabolic derangements argues for initial defects in defence mechanisms, most likely due to an elevated systemic metabolic inflammation ("metaflammation"). The NLRP3 inflammasome is a master regulator of metaflammation and has a pivotal role in the pathophysiology of either obesity or diabetes. Here, we discuss the most recent findings suggesting contribution of NLRP3 inflammasome to the increase in complications in COVID-19 patients with diabesity. We also review current pharmacological strategies for COVID-19, focusing on treatments whose efficacy could be due, at least in part, to interference with the activation of the NLRP3 inflammasome. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy.,University of Turin, Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Orbassano (TORINO), Italy
| | - Federica Foglietta
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Carola Eva
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy.,University of Turin, Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Orbassano (TORINO), Italy
| | | | - Christoph Thiemermann
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
30
|
Ikonomidis I, Pavlidis G, Katsimbri P, Lambadiari V, Parissis J, Andreadou I, Tsoumani M, Boumpas D, Kouretas D, Iliodromitis E. Tocilizumab improves oxidative stress and endothelial glycocalyx: A mechanism that may explain the effects of biological treatment on COVID-19. Food Chem Toxicol 2020; 145:111694. [PMID: 32822775 PMCID: PMC7434461 DOI: 10.1016/j.fct.2020.111694] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
We investigated the effects of tocilizumab on endothelial glycocalyx, a determinant of vascular permeability, and myocardial function in rheumatoid arthritis (RA). Eighty RA patients were randomized to tocilizumab (n = 40) or conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) and glucocorticoids (GC) (n = 40) for 3 months. Forty healthy subjects with similar age and sex served as controls. We measured: (a)perfused boundary region (PBR) of the sublingual arterial microvessels (increased PBR indicates reduced glycocalyx thickness), (b)pulse wave velocity (PWV), (c)global LV longitudinal strain (GLS), (d)global work index (GWI) using speckle tracking echocardiography and e)C-reactive protein (CRP), malondialdehyde (MDA) and protein carbonyls (PCs) as oxidative stress markers at baseline and post-treatment. Compared to controls, RA patients had impaired glycocalyx and myocardial deformation markers (P < 0.05). Compared with baseline, tocilizumab reduced PBR(2.14 ± 0.2 versus 1.97 ± 0.2 μm; P < 0.05) while no significant differences were observed post-csDMARDs + GC(P > 0.05). Compared with csDMARDs + GC, tocilizumab achieved a greater increase of GLS, GWI and reduction of MDA, PCs and CRP(P < 0.05). The percent improvement of glycocalyx thickness (PBR) was associated with the percent decrease of PWV, MDA, PCs and the percent improvement of GLS and GWI(P < 0.05). Tocilizumab improves endothelial function leading to a greater increase of effective myocardial work than csDMARDs + GC through a profound reduction of inflammatory burden and oxidative stress. This mechanism may explain the effects of tocilizumab on COVID-19. Clinical trial registration url: https://www.clinicaltrials.gov. Unique identifier: NCT03288584. Tocilizumab improves endothelial glycocalyx and increases effective myocardial work. IL-6 inhibition significantly reduces the inflammatory burden and oxidative stress. Tocilizumab may have favorable effects on diseases with excess IL-6 release.
Collapse
Affiliation(s)
- Ignatios Ikonomidis
- 2nd Department of Cardiology, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece.
| | - George Pavlidis
- 2nd Department of Cardiology, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece
| | - Pelagia Katsimbri
- 4th Department of Internal Medicine, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine, Research Unit and Diabetes Center, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece
| | - John Parissis
- 2nd Department of Cardiology, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15741, Athens, Greece
| | - Maria Tsoumani
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15741, Athens, Greece
| | - Dimitrios Boumpas
- 4th Department of Internal Medicine, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Efstathios Iliodromitis
- 2nd Department of Cardiology, Attikon Hospital, National and Kapodistrian University of Athens, Medical School, 12462, Athens, Greece
| |
Collapse
|
31
|
Immunotherapy for the rheumatoid arthritis-associated coronary artery disease: promise and future. Chin Med J (Engl) 2020; 132:2972-2983. [PMID: 31855971 PMCID: PMC6964948 DOI: 10.1097/cm9.0000000000000530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Objective: To review the latest progress on the pathogenic mechanism and management of rheumatoid arthritis (RA)-associated coronary artery disease (CAD), and propose advice on future management optimization as well as prospects for research and development of new therapeutic regimen. Data sources: This study was based on data obtained from PubMed up to May 2019 using various search terms and their combinations, including coronary artery disease, myocardial ischemia, cardiovascular diseases, RA, rheumatic diseases, treatment, therapy, strategies, immunotherapy, inflammation, and anti-inflammation. Study selection: All retrieved literature was scrutinized, most relevant articles about the pathogenic mechanism and clinical management, especially anti-inflammatory therapy of RA-associated CAD were reviewed. Results: RA is an immune-mediated chronic inflammatory disease which has a great social disease burden. In addition to typical arthritic manifestations, RA also affects extra-articular tissues and organs, within which the involvement of the cardiovascular system, especially incorporating CAD, is the leading cause of death for patients with RA. Recently, numerous basic and clinical studies have been carried out on the mechanism of CAD development and progression under the inflammatory cascade of RA. The effect of traditional RA drugs on CAD risk management has been gradually clarified, and more emerging biologic agents are being explored and studied, which have also achieved satisfactory outcomes. Furthermore, with the success of the CANTOS clinical trial, novel anti-inflammatory therapy for the prevention of cardiovascular disease is believed to have a broad prospect. Conclusions: RA is an independent risk factor for CAD, which mainly results from the underlying inflammatory cascade; therefore, anti-inflammatory therapy, especially the emerging novel biologic drugs, is important for CAD management in patients with RA and may also be a promising approach among the general population.
Collapse
|
32
|
Korakas E, Ikonomidis I, Kousathana F, Balampanis K, Kountouri A, Raptis A, Palaiodimou L, Kokkinos A, Lambadiari V. Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. Am J Physiol Endocrinol Metab 2020; 319:E105-E109. [PMID: 32459524 PMCID: PMC7322508 DOI: 10.1152/ajpendo.00198.2020] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 01/05/2023]
Abstract
Recent reports have shown a strong association between obesity and the severity of COVID-19 infection, even in the absence of other comorbidities. After infecting the host cells, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause a hyperinflammatory reaction through the excessive release of cytokines, a condition known as "cytokine storm," while inducing lymphopenia and a disrupted immune response. Obesity is associated with chronic low-grade inflammation and immune dysregulation, but the exact mechanisms through which it exacerbates COVID-19 infection are not fully clarified. The production of increased amounts of cytokines such as TNFα, IL-1, IL-6, and monocyte chemoattractant protein (MCP-1) lead to oxidative stress and defective function of innate and adaptive immunity, whereas the activation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome seems to play a crucial role in the pathogenesis of the infection. Endothelial dysfunction and arterial stiffness could favor the recently discovered infection of the endothelium by SARS-CoV-2, whereas alterations in cardiac structure and function and the prothrombotic microenvironment in obesity could provide a link for the increased cardiovascular events in these patients. The successful use of anti-inflammatory agents such as IL-1 and IL-6 blockers in similar hyperinflammatory settings, like that of rheumatoid arthritis, has triggered the discussion of whether such agents could be administrated in selected patients with COVID-19 disease.
Collapse
Affiliation(s)
- Emmanouil Korakas
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Kousathana
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Balampanis
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Kountouri
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Raptis
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lina Palaiodimou
- Second Department of Neurology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
33
|
Impaired cardiac function is associated with mortality in patients with acute COVID-19 infection. Clin Res Cardiol 2020; 109:1491-1499. [PMID: 32537662 PMCID: PMC7293880 DOI: 10.1007/s00392-020-01683-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
Abstract
Background COVID-19 infection may cause severe respiratory distress and is associated with increased morbidity and mortality. Impaired cardiac function and/or pre-existing cardiovascular disease may be associated with poor prognosis. In the present study, we report a comprehensive cardiovascular characterization in the first consecutive collective of patients that was admitted and treated at the University Hospital of Tübingen, Germany. Methods 123 consecutive patients with COVID-19 were included. Routine blood sampling, transthoracic echocardiography and electrocardiography were performed at hospital admission. Results We found that impaired left-ventricular and right-ventricular function as well as tricuspid regurgitation > grade 1 were significantly associated with higher mortality. Furthermore, elevated levels of myocardial distress markers (troponin-I and NT pro-BNP) were associated with poor prognosis in this patient collective. Conclusion Impaired cardiac function is associated with poor prognosis in COVID-19 positive patients. Consequently, treatment of these patients should include careful guideline-conform cardiovascular evaluation and treatment. Thus, formation of a competent Cardio-COVID-19 team may represent a major clinical measure to optimize therapy of cardiovascular patients during this pandemic.
Collapse
|
34
|
Urwyler SA, Ebrahimi F, Burkard T, Schuetz P, Poglitsch M, Mueller B, Donath MY, Christ-Crain M. IL (Interleukin)-1 Receptor Antagonist Increases Ang (Angiotensin [1–7]) and Decreases Blood Pressure in Obese Individuals. Hypertension 2020; 75:1455-1463. [DOI: 10.1161/hypertensionaha.119.13982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IL (Interleukin)-1 antagonism decreases blood pressure in obese individuals. The underlying mechanisms are unknown. Based on experimental data, we hypothesized an effect of IL-1 antagonism via modulation of the renin-angiotensin-aldosterone system. In this explorative study, we examined shorter- (2 days) and longer-term effects (4 weeks) of IL-1 antagonism (anakinra/Kineret) on renin-angiotensin system peptide profiles and on hemodynamic parameters assessed by noninvasive measurement in obese (body mass index ≥30 kg/m
2
) individuals from 2 interventional trials (a prospective interventional trial [n=73] and a placebo controlled-double blinded interventional trial [n=67]). A total of 140 patients were included. Systolic blood pressure decreased after short-term (absolute difference −5.2 mm Hg [95% CI, −8.5 to −1.8];
P
=0.0006) and after longer-term treatment with anakinra (absolute difference −3.9 mm Hg [95% CI, −7.59 to −0.21];
P
=0.04), with no change in blood pressure in the placebo group. Upon IL-1 antagonism, equilibrium levels of Ang II (angiotensin II), Ang I, aldosterone, and renin remained unchanged. In contrast, Ang (1–7) peptide levels increased after 4 weeks (between-group difference 16.35 pmol/L [95% CI, 1.22–30.17],
P
=0.03), as well as the Ang (1–7)/Ang II ratio (between-group difference 0.42 [95% CI, 0.17–0.67],
P
=0.02) in comparison to placebo. Consistently, the stroke systemic vascular resistance index significantly decreased in the anakinra group (between-group difference of −62.65 dyn/sec per cm
−5
per m
2
[95% CI, −116.94 to −18.36],
P
=0.008, consistent with a 25% decrease). IL-1 antagonism increased the vasodilatory Ang (1–7) peptide after 4 weeks of treatment in obese individuals, paralleled by a decrease in peripheral vascular resistance. These findings point to an IL-1 mediated blood pressure-lowering mechanism via modulation of Ang (1–7).
Registration—
URL:
https://www.clinicaltrials.gov
. Unique identifiers: NCT02227420 and NCT02672592.
Collapse
Affiliation(s)
- Sandrine Andrea Urwyler
- From the Department of Endocrinology, Diabetology and Metabolism (S.A.U., F.E., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
| | - Fahim Ebrahimi
- From the Department of Endocrinology, Diabetology and Metabolism (S.A.U., F.E., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
| | - Thilo Burkard
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Internal Medicine, Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence (T.B.), University Hospital Basel, Switzerland
| | - Philipp Schuetz
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of General Internal and Emergency Medicine, Medical University Clinic, Kantonsspital Aarau, Switzerland (P.S.)
| | - Marko Poglitsch
- Attoquant Diagnostics GmbH, Campus-Vienna-Biocenter, Vienna, Austria (M.P.)
| | - Beat Mueller
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Endocrinology, Diabetes and Metabolism, Medical University Clinic, Kantonsspital Aarau, Switzerland (B.M.)
| | - Marc Y. Donath
- From the Department of Endocrinology, Diabetology and Metabolism (S.A.U., F.E., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
| | - Mirjam Christ-Crain
- From the Department of Endocrinology, Diabetology and Metabolism (S.A.U., F.E., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
| |
Collapse
|
35
|
Renal AA amyloidosis leading to early diagnosis and treatment of takayasu arteritis: a case report and review of the literature. Clin Res Cardiol 2020; 109:1438-1441. [PMID: 32346768 PMCID: PMC7588381 DOI: 10.1007/s00392-020-01655-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
|
36
|
Lazou A, Ikonomidis I, Bartekova M, Benedek T, Makavos G, Palioura D, Cabrera Fuentes H, Andreadou I. Chronic inflammatory diseases, myocardial function and cardioprotection. Br J Pharmacol 2020; 177:5357-5374. [PMID: 31943142 DOI: 10.1111/bph.14975] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
The association between chronic inflammatory diseases (CIDs) and increased cardiovascular (CV) risk is well documented and can be a most threatening complication in these patients. However, the pathogenetic mechanisms underlying increased CV risk remain elusive, especially in their cellular and biochemical pathways. Using animal models to understand mechanisms underlying cardiac involvement are limited. Additionally, treatments may influence cardiovascular events through different outcomes. Some drugs used to treat CIDs can negatively affect cardiac function by a direct toxicity, whereas others may protect the myocardium. In the present article, we focus on the cardiac manifestations and risk factors, the pathogenetic mechanisms, and the effect of treatments on myocardial function and cardioprotection for five common worldwide CIDs (rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, psoriasis and inflammatory bowel disease). We also give recommendations in order to evaluate common targets between CID and CV disease (CVD) and to design therapies to alleviate CID-related CVD. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Theodora Benedek
- Clinic of Cardiology, Cardiac Critical Care Unit, University of Medicine and Pharmacy, Târgu Mureş, Romania
| | - George Makavos
- Second Cardiology Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Palioura
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hector Cabrera Fuentes
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme and Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore.,Institute of Physiology, Medical School, Justus-Liebig University, Giessen, Germany.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey, NL, Mexico.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Ioanna Andreadou
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Novikova DS, Udachkina HV, Kirillova IG, Popkova TV. Chronic Heart Failure in Rheumatoid Arthritis Patients (Part III): Effects of Antirheumatic Drugs. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2020. [DOI: 10.20996/1819-6446-2019-15-6-820-830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic autoimmune inflammation is one of the leading risk factors for the development of chronic heart failure (CHF) in rheumatoid arthritis (RA). The purpose of the review is to analyze the results of investigations on the effects of conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs), biological disease-modifying anti-rheumatic drugs (bDMARDs), and targeted csDMARDs on cardiac function and the risk of developing CHF in patients with RA. Methotrexate may reduce the CHF risk and have a positive effect on the course of this condition in patients with RA. Despite the data on the presence of leflunomide effects that impede myocardial remodeling, there is no evidence of the role of the drug in the prevention of CHF in RA patients. Hydroxychloroquine may contribute to the prevention of CHF, but the risk of developing severe cardiotoxicity should be considered when taking the drug for a long time. Most studies have not revealed the negative effect of tumor necrosis factor inhibitors on the prevalence and incidence of new cases of CHF in RA patients, and an improvement in the structure and function of the heart during therapy has been shown. Inhibitors of interleukin (IL) -1, inhibitors of IL-6, inhibitors of T-cell co-stimulation, anti-B-cell therapy, targeted csDMARDs do not increase the risk of CHF and may have cardioprotective effects, including slowing the progression of left ventricle myocardial dysfunction. Due to the high risk of CHF and CHF-associated mortality in RA patients, early diagnosis of cardiac dysfunction, development of a prevention and treatment strategies are needed, including high-quality prospective studies to assess the effect of anti-rheumatic therapy on myocardial function, risk of developing and decompensation of CHF in RA patients. It is possible that some drugs may possess protective effects on cardiomyocytes so they could become the first-line drugs in patients with CHF or the risk of its development.
Collapse
|
38
|
Makavos G, Ikonomidis I, Andreadou I, Varoudi M, Kapniari I, Loukeri E, Theodoropoulos K, Pavlidis G, Triantafyllidi H, Thymis J, Parissis J, Tsoumani M, Rafouli-Stergiou P, Katsimbri P, Papadavid E. Effects of Interleukin 17A Inhibition on Myocardial Deformation and Vascular Function in Psoriasis. Can J Cardiol 2020; 36:100-111. [DOI: 10.1016/j.cjca.2019.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022] Open
|
39
|
FIFA World Cup 2018: effect of emotional stress on conventional heart rate variability metrics. Clin Res Cardiol 2019; 109:266-270. [PMID: 31388740 DOI: 10.1007/s00392-019-01533-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
|