1
|
Tkaczyńska A, Sendra E, Jiménez-Redondo N, Rytel E. Studying the Stability of Anthocyanin Pigments Isolated from Juices of Colored-Fleshed Potatoes. Int J Mol Sci 2024; 25:11116. [PMID: 39456898 PMCID: PMC11507568 DOI: 10.3390/ijms252011116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of this study was to obtain extracts of anthocyanin pigments from red and purple-fleshed potato juices characterized by stable color. For this purpose, potato juices were pasteurized at different temperatures or fruit and vegetable concentrates were added to them. Color stability tests of the obtained pigments were carried out in model pH and temperature conditions and after adding to natural yogurt. Both the pasteurization process and the addition of fruit and vegetable concentrates to the potato juices positively affected their color and its stability in time. However, the pasteurization of the potato juices had a negative effect on the content of biologically active compounds, in contrast to the juices stabilized with the addition of fruit and vegetable concentrates. Anthocyanin pigments from red-fleshed potato juices were more stable than those isolated from the purple-fleshed potato juices. The results of model tests of the anthocyanin pigment concentrates from the colored-flesh potatoes and natural yoghurts with their addition confirmed the high stability of the tested concentrates.
Collapse
Affiliation(s)
- Agnieszka Tkaczyńska
- Department of Food Storage and Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| | - Esther Sendra
- Institute on Agrofood and Agroenvironmental Research and Innovation (CIAGRO-UMH), Miguel Hernandez University of Elche, Carretera de Beniel, km 3.2, 03312 Orihuela, Spain; (E.S.); (N.J.-R.)
| | - Nuria Jiménez-Redondo
- Institute on Agrofood and Agroenvironmental Research and Innovation (CIAGRO-UMH), Miguel Hernandez University of Elche, Carretera de Beniel, km 3.2, 03312 Orihuela, Spain; (E.S.); (N.J.-R.)
| | - Elżbieta Rytel
- Department of Food Storage and Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| |
Collapse
|
2
|
Li Q, Huang J, Zhao T, Wang Y, Cai F, McClements DJ, Fu Y, Shen P, Xu J. Impact of thermal treatment on proanthocyanidin-pectin binary complexes: Insights from structural, rheological, antioxidant, and astringent properties. Food Chem 2024; 442:138490. [PMID: 38245989 DOI: 10.1016/j.foodchem.2024.138490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/31/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
In this study, the effects of thermal treatments on the structural, rheological, water mobility, antioxidant, and astringency properties of proanthocyanidin (PA)-pectin binary complexes were investigated. Thermal treatments (25, 63, or 85 °C) significantly decreased the particle size but increased the molecular weight of PA-pectin complexes, which indicated that heating altered the intermolecular and intramolecular interactions between PA and pectin. The thermal treatments reduced the apparent viscosity of both pectin and PA-pectin complexes, but the presence of proanthocyanidins (PAs) increased the apparent viscosity and water mobility of the PA-pectin complexes. Antioxidant activity analysis showed that the presence of pectin slightly reduced the antioxidant activity of the PAs, but there were no significant changes in the total phenolic content and antioxidant activity after thermal treatment. Finally, we found that pectin reduced the astringency of the PAs by forming PA-pectin complexes. Moreover, the thermal treatments also significantly reduced the astringency of the PA-pectin complexes.
Collapse
Affiliation(s)
- Qian Li
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jialu Huang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Tiantian Zhao
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yuli Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Fengjiao Cai
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | - Yinxin Fu
- Wuhan Fourth Hospital, Wuhan, Hubei 430000, China
| | - Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Jian Xu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
3
|
Ruggieri F, Maggi MA, Rossi M, Consonni R. Comprehensive Extraction and Chemical Characterization of Bioactive Compounds in Tepals of Crocus sativus L. Molecules 2023; 28:5976. [PMID: 37630227 PMCID: PMC10458886 DOI: 10.3390/molecules28165976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Crocus sativus L. is largely cultivated because it is the source of saffron, a well-appreciated and valued spice, not only for its culinary use but also because of its significant biological activities. Stigmas are the main product obtained from flowers, but in addition, tepals, largely considered a waste product, represent a big source of flavonoids and anthocyanins. This study aimed to delve into the phytochemical composition of saffron tepals and investigate whether the composition was influenced by the extraction technique while investigating the main analytical techniques most suitable for the characterization of tepal extracts. The research focuses on flavonoids, a class of secondary metabolites, and their health benefits, including antioxidant, anti-inflammatory, and anticancer properties. Flavonoids occur as aglycones and glycosides and are classified into various classes, such as flavones, flavonols, and flavanones. The most abundant flavonoids in tepals are kaempferol glycosides, followed by quercetin and isorhamnetin glycosides. Overall, this review provides valuable insights into the potential uses of tepals as a source of bioactive compounds and their applications in various fields, promoting a circular and sustainable economy in saffron cultivation and processing.
Collapse
Affiliation(s)
- Fabrizio Ruggieri
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (F.R.); (M.A.M.)
| | - Maria Anna Maggi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (F.R.); (M.A.M.)
| | - Michela Rossi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (F.R.); (M.A.M.)
| | - Roberto Consonni
- National Research Council, Institute of Chemical Sciences and Technologies “G. Natta” (SCITEC), Via Corti 12, 20133 Milan, Italy
| |
Collapse
|
4
|
Das T, Chatterjee N, Capanoglu E, Lorenzo JM, Das AK, Dhar P. The synergistic ramification of insoluble dietary fiber and associated non-extractable polyphenols on gut microbial population escorting alleviation of lifestyle diseases. Food Chem X 2023; 18:100697. [PMID: 37206320 PMCID: PMC10189415 DOI: 10.1016/j.fochx.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Most of the pertinent research which aims at exploring the therapeutic effects of polyphenols usually misapprehends a large fraction of non-extractable polyphenols due to their poor aqueous-organic solvent extractability. These polymeric polyphenols (i.e., proanthocyanins, hydrolysable tannins and phenolic acids) possess a unique property to adhere to the food matrix polysaccharides and protein sowing to their structural complexity with high glycosylation, degree of polymerization, and plenty of hydroxyl groups. Surprisingly resistance to intestinal absorption does not hinder its bioactivity but accelerates its functionality manifolds due to the colonic microbial catabolism in the gastrointestinal tract, thereby protecting the body from local and systemic inflammatory diseases. This review highlights not only the chemistry, digestion, colonic metabolism of non-extractable polyphenols (NEPP) but also summarises the synergistic effect of matrix-bound NEPP exerting local as well as systemic health benefits.
Collapse
Affiliation(s)
- Trina Das
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, India
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical & Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| |
Collapse
|
5
|
Yang C, Han Y, Tian X, Sajid M, Mehmood S, Wang H, Li H. Phenolic composition of grape pomace and its metabolism. Crit Rev Food Sci Nutr 2022; 64:4865-4881. [PMID: 36398354 DOI: 10.1080/10408398.2022.2146048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Grape pomace is the most important residual after wine making, and it is considered to be a very abundant source for the extraction of a wide range of polyphenols. These polyphenols exhibit a variety of bioactivities, such as antioxidant, anti-inflammatory, and anti-cancer. They are also beneficial in alleviating metabolic syndrome and regulating intestinal flora, etc. These health effects are most likely contributed by polyphenol metabolite, which are formed by the grape pomace phenolics after a complex metabolic process in vivo. Therefore, understanding the phenolic composition of grape pomace and its metabolism is the basis for an in-depth study of the biological activity of grape pomace polyphenols. In this paper, we first summarize the composition of phenolics in grape pomace, then review the recent studies on the metabolism of grape pomace phenolics, including changes in phenolics in the gastrointestinal tract, their pharmacokinetics in the systemic circulation, the tissue distribution of phenolic metabolites, and the beneficial effects of metabolites on intestinal health, and finally summarize the effects of human health status and dietary fiber on the metabolism of grape polyphenols. It is expected to provide help for the in-depth research on the metabolism and biological activity of grape pomace polyphenol extracts, and to provide theoretical support for the development and utilization of grape pomace.
Collapse
Affiliation(s)
- Chenlu Yang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yulei Han
- College of Enology, Northwest A&F University, Yangling, China
| | - Xuelin Tian
- College of Enology, Northwest A&F University, Yangling, China
| | - Marina Sajid
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajid Mehmood
- College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
6
|
Shen N, Ren J, Liu Y, Sun W, Li Y, Xin H, Cui Y. Natural edible pigments: a comprehensive review of resource, chemical classification, biosynthesis pathway, separated methods and application. Food Chem 2022; 403:134422. [PMID: 36194934 DOI: 10.1016/j.foodchem.2022.134422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/03/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
7
|
O'Farrell C, Stamatopoulos K, Simmons M, Batchelor H. In vitro models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 178:113924. [PMID: 34390774 DOI: 10.1016/j.addr.2021.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orally ingestible medical devices offer significant opportunity in the diagnosis and treatment of gastrointestinal conditions. Their development necessitates the use of models that simulate the gastrointestinal environment on both a macro and micro scale. An evolution in scientific technology has enabled a wide range of in vitro, ex vivo and in vivo models to be developed that replicate the gastrointestinal tract. This review describes the landscape of the existing range of in vitro tools that are available to characterize ingestible devices. Models are presented with details on their benefits and limitations with regards to the evaluation of ingestible devices and examples of their use in the evaluation of such devices is presented where available. The multitude of models available provides a suite of tools that can be used in the evaluation of ingestible devices that should be selected on the functionality of the device and the mechanism of its function.
Collapse
Affiliation(s)
- Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
8
|
Mezhibovsky E, Knowles KA, He Q, Sui K, Tveter KM, Duran RM, Roopchand DE. Grape Polyphenols Attenuate Diet-Induced Obesity and Hepatic Steatosis in Mice in Association With Reduced Butyrate and Increased Markers of Intestinal Carbohydrate Oxidation. Front Nutr 2021; 8:675267. [PMID: 34195217 PMCID: PMC8238044 DOI: 10.3389/fnut.2021.675267] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
A Western Diet (WD) low in fiber but high in fats and sugars contributes to obesity and non-alcoholic fatty liver disease (NAFLD). Supplementation with grape polyphenols (GPs) rich in B-type proanthocyanidins (PACs) can attenuate symptoms of cardiometabolic disease and alter the gut microbiota and its metabolites. We hypothesized that GP-mediated metabolic improvements would correlate with altered microbial metabolites such as short chain fatty acids (SCFAs). To more closely mimic a WD, C57BL/6J male mice were fed a low-fiber diet high in sucrose and butterfat along with 20% sucrose water to represent sugary beverages. This WD was supplemented with 1% GPs (WD-GP) to investigate the impact of GPs on energy balance, SCFA profile, and intestinal metabolism. Compared to WD-fed mice, the WD-GP group had higher lean mass along with lower fat mass, body weight, and hepatic steatosis despite consuming more calories from sucrose water. Indirect and direct calorimetry revealed that reduced adiposity in GP-supplemented mice was likely due to their greater energy expenditure, which resulted in lower energy efficiency compared to WD-fed mice. GP-supplemented mice had higher abundance of Akkermansia muciniphila, a gut microbe reported to increase energy expenditure. Short chain fatty acid measurements in colon content revealed that GP-supplemented mice had lower concentrations of butyrate, a major energy substrate of the distal intestine, and reduced valerate, a putrefactive SCFA. GP-supplementation also resulted in a lower acetate:propionate ratio suggesting reduced hepatic lipogenesis. Considering the higher sucrose consumption and reduced butyrate levels in GP-supplemented mice, we hypothesized that enterocytes would metabolize glucose and fructose as a replacement energy source. Ileal mRNA levels of glucose transporter-2 (GLUT2, SLC2A2) were increased indicating higher glucose and fructose uptake. Expression of ketohexokinase (KHK) was increased in ileum tissue suggesting increased fructolysis. A GP-induced increase in intestinal carbohydrate oxidation was supported by: (1) increased gene expression of duodenal pyruvate dehydrogenase (PDH), (2) a decreased ratio of lactate dehydrogenase a (LDHa): LDHb in jejunum and colon tissues, and (3) decreased duodenal and colonic lactate concentrations. These data indicate that GPs protect against WD-induced obesity and hepatic steatosis by diminishing portal delivery of lipogenic butyrate and sugars due to their increased intestinal utilization.
Collapse
Affiliation(s)
- Esther Mezhibovsky
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
- Department of Nutritional Sciences Graduate Program, Rutgers University, New Brunswick, NJ, United States
| | - Kim A. Knowles
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Qiyue He
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Ke Sui
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Kevin M. Tveter
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Rocio M. Duran
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Diana E. Roopchand
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| |
Collapse
|
9
|
Decrypting bacterial polyphenol metabolism in an anoxic wetland soil. Nat Commun 2021; 12:2466. [PMID: 33927199 PMCID: PMC8084988 DOI: 10.1038/s41467-021-22765-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
Microorganisms play vital roles in modulating organic matter decomposition and nutrient cycling in soil ecosystems. The enzyme latch paradigm posits microbial degradation of polyphenols is hindered in anoxic peat leading to polyphenol accumulation, and consequently diminished microbial activity. This model assumes that polyphenols are microbially unavailable under anoxia, a supposition that has not been thoroughly investigated in any soil type. Here, we use anoxic soil reactors amended with and without a chemically defined polyphenol to test this hypothesis, employing metabolomics and genome-resolved metaproteomics to interrogate soil microbial polyphenol metabolism. Challenging the idea that polyphenols are not bioavailable under anoxia, we provide metabolite evidence that polyphenols are depolymerized, resulting in monomer accumulation, followed by the generation of small phenolic degradation products. Further, we show that soil microbiome function is maintained, and possibly enhanced, with polyphenol addition. In summary, this study provides chemical and enzymatic evidence that some soil microbiota can degrade polyphenols under anoxia and subvert the assumed polyphenol lock on soil microbial metabolism.
Collapse
|
10
|
Alappat B, Alappat J. Anthocyanin Pigments: Beyond Aesthetics. Molecules 2020; 25:E5500. [PMID: 33255297 PMCID: PMC7727665 DOI: 10.3390/molecules25235500] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Anthocyanins are polyphenol compounds that render various hues of pink, red, purple, and blue in flowers, vegetables, and fruits. Anthocyanins also play significant roles in plant propagation, ecophysiology, and plant defense mechanisms. Structurally, anthocyanins are anthocyanidins modified by sugars and acyl acids. Anthocyanin colors are susceptible to pH, light, temperatures, and metal ions. The stability of anthocyanins is controlled by various factors, including inter and intramolecular complexations. Chromatographic and spectrometric methods have been extensively used for the extraction, isolation, and identification of anthocyanins. Anthocyanins play a major role in the pharmaceutical; nutraceutical; and food coloring, flavoring, and preserving industries. Research in these areas has not satisfied the urge for natural and sustainable colors and supplemental products. The lability of anthocyanins under various formulated conditions is the primary reason for this delay. New gene editing technologies to modify anthocyanin structures in vivo and the structural modification of anthocyanin via semi-synthetic methods offer new opportunities in this area. This review focusses on the biogenetics of anthocyanins; their colors, structural modifications, and stability; their various applications in human health and welfare; and advances in the field.
Collapse
|
11
|
Liu X, Le Bourvellec C, Renard CMGC. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr Rev Food Sci Food Saf 2020; 19:3574-3617. [PMID: 33337054 DOI: 10.1111/1541-4337.12632] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Cell wall polysaccharides (CPSs) and polyphenols are major constituents of the dietary fiber complex in plant-based foods. Their digestion (by gut microbiota) and bioefficacy depend not only on their structure and quantity, but also on their intermolecular interactions. The composition and structure of these compounds vary with their dietary source (i.e., fruit or vegetable of origin) and can be further modified by food processing. Various components and structures of CPSs and polyphenols have been observed to demonstrate common and characteristic behaviors during interactions. However, at a fundamental level, the mechanisms that ultimately drive these interactions are still not fully understood. This review summarizes the current state of knowledge on the internal factors that influence CPS-polyphenol interactions, describes the different ways in which these interactions can be mediated by molecular composition or structure, and introduces the main methods for the analysis of these interactions, as well as the mechanisms involved. Furthermore, a comprehensive overview is provided of recent key findings in the area of CPS-polyphenol interactions. It is becoming clear that these interactions are shaped by a multitude of factors, the most important of which are the physicochemical properties of the partners: their morphology (surface area and porosity/pore shape), chemical composition (sugar ratio, solubility, and non-sugar components), and molecular architecture (molecular weight, degree of esterification, functional groups, and conformation). An improved understanding of the molecular mechanisms that drive interactions between CPSs and polyphenols may allow us to better establish a bridge between food processing and the bioavailability of colonic fermentation products from CPSs and antioxidant polyphenols, which could ultimately lead to the development of new guidelines for the design of healthier and more nutritious foods.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France
| | | | - Catherine M G C Renard
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France.,INRAE, TRANSFORM, F-44000, Nantes, France
| |
Collapse
|
12
|
Farag MA, Hegazi NM, Donia MS. Molecular networking based LC/MS reveals novel biotransformation products of green coffee by ex vivo cultures of the human gut microbiome. Metabolomics 2020; 16:86. [PMID: 32748036 DOI: 10.1007/s11306-020-01704-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Unroasted green coffee bean is an increasingly popular beverage and weight loss supplement that contains higher levels of chlorogenic acid derivatives and lower alkaloid levels than roasted beans. Nonetheless, how the gut microbiome metabolizes green coffee constituents has not been studied. OBJECTIVES To identify possible biotransformation products of green coffee extract by the human gut microbiome, and the potential implications of this process on its biological effects or fate inside the body. METHODS Molecular networking via the GNPS platform was employed for the visualization of green coffee metabolite profiles acquired using LC-tandem mass spectrometry post-incubation with an ex vivo culture of the human gut microbiome. RESULTS 36 Metabolites were annotated including four unreported alkyl cinnamate esters in green coffee along with six novel biotransformation products. CONCLUSION Our finding reveals new biotransformation products of cinnamate esters by the gut microbiome mediated via oxidative reactions such as dehydrogenation and hydroxylation, along with methylation, decarboxylation, and deglycosylation. These findings reveal potential interactions between the gut microbiome and green coffee constituents, and paves the way towards studying the effects of these interactions on both microbiome and the human host.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt.
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo, 11835, Egypt.
| | - Nesrine M Hegazi
- Department of Phytochemistry and Plant Systematics, Division of Pharmaceutical Industries, National Research Centre, Cairo, 12622, Egypt
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
13
|
Molino S, Casanova NA, Rufián Henares JÁ, Fernandez Miyakawa ME. Natural Tannin Wood Extracts as a Potential Food Ingredient in the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2836-2848. [PMID: 31117489 DOI: 10.1021/acs.jafc.9b00590] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wood extracts are one of the most important natural sources of industrially obtained tannins. Their use in the food industry could be one of the biggest (most important) recent innovations in food science as a result of their multiple (many) possible applications. The use of tannin wood extracts (TWEs) as additives directly added in foods or in their packaging meets an ever-increasing consumer demand for innovative approaches to sustainability. The latest research is focusing on new ways to include them directly in food, to take advantage of their specific actions to prevent individual pathological conditions. The present review begins with the biology of TWEs and then explores their chemistry, specific sensorial properties, and current application in food production. Moreover, this review is intended to cover recent studies dealing with the potential use of TWEs as a starting point for novel food ingredients.
Collapse
Affiliation(s)
- Silvia Molino
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
| | - Natalia Andrea Casanova
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires C1033AAE, Argentina
| | - José Ángel Rufián Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Universidad de Granada, 18071 Granada, Spain
| | - Mariano Enrique Fernandez Miyakawa
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires C1033AAE, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1425FQB, Argentina
| |
Collapse
|
14
|
Plant-polyphenols based second-generation synbiotics: Emerging concepts, challenges, and opportunities. Nutrition 2020; 77:110785. [PMID: 32283341 DOI: 10.1016/j.nut.2020.110785] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
There is a growing interest in identifying alternatives to traditional oligosaccharide-based prebiotic agents owing to their undesirable attributes, such as a lack of microbial growth specificity and limited inherent bioactivity. In addition, a novel concept of second-generation synbiotic agents is currently emerging, which argues that prebiotic agents could be best defined on the basis of their physiological effects or functional capacities in the host rather than their specific microbial targets. Plant polyphenols are rapidly emerging as suitable prebiotic and synbiotic candidates that may fulfil these criteria. As we begin to understand the intricate interrelationship between dietary polyphenols and the gut microbiome, a functional synergy can be observed that suggests the appropriateness of the amalgamation of polyphenols and probiotic agents to develop second-generation synbiotic agents. In the present review, we study evidence pertaining to the prebiotic and synbiotic attributes of polyphenols, as well as their relationship with probiotic bacteria, and discuss their efficacy, suitability, and strategies to develop second-generation synbiotic agents. We provide a perspective that polyphenol-based synbiotic agents are fundamentally superior to the traditional carbohydrate-based synbiotic agents and could therefore offer health benefits of both polyphenols and probiotic agents in a synergistic manner.
Collapse
|
15
|
Phan ADT, Williams BA, Netzel G, Mikkelsen D, D'Arcy BR, Gidley MJ. Independent fermentation and metabolism of dietary polyphenols associated with a plant cell wall model. Food Funct 2020; 11:2218-2230. [DOI: 10.1039/c9fo02987g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The metabolic pathways of polyphenol degradation are not influenced by the presence of plant cell walls during in vitro fermentation, but co-fermentation of cell walls may lead to faster microbial metabolism of polyphenols.
Collapse
Affiliation(s)
- A. D. T. Phan
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - B. A. Williams
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - G. Netzel
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - D. Mikkelsen
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - B. R. D'Arcy
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| | - M. J. Gidley
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St. Lucia
- Australia
| |
Collapse
|
16
|
Interactions of arabinan-rich pectic polysaccharides with polyphenols. Carbohydr Polym 2019; 230:115644. [PMID: 31887907 DOI: 10.1016/j.carbpol.2019.115644] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022]
Abstract
Given the high prevalence of arabinan side chains in pectic polysaccharides, this work aims to unveil the impact of their structural diversity on pectic polysaccharides-polyphenol interactions. To assess the effect of arabinan branching degree, sugar beet arabinans (branched and debranched) were used and compared to the well-known structure of apple arabinan and other pectic polysaccharides. Furthermore, arabinans contribution to pectic polysaccharides/polyphenol interactions was assessed. The interactions were evaluated using chlorogenic acid, phloridzin and procyanidins (degree of polymerization of 9). Linear arabinans had 8-fold and 2-fold higher retention for chlorogenic acid and phloridzin, respectively, than branched arabinans. This trend was also observed for the interaction of arabinans with procyanidins. However, arabinans with covalently linked polyphenols showed lower interactions. The interactions involved between arabinans and polyphenols explained 1-28 % of the interactions of pectic polysaccharides, allowing us to conclude that the whole polysaccharide structure is more relevant for polyphenol interactions than each part.
Collapse
|
17
|
Maurer LH, Cazarin CBB, Quatrin A, Minuzzi NM, Costa EL, Morari J, Velloso LA, Leal RF, Rodrigues E, Bochi VC, Júnior MRM, Emanuelli T. Grape peel powder promotes intestinal barrier homeostasis in acute TNBS-colitis: A major role for dietary fiber and fiber-bound polyphenols. Food Res Int 2019; 123:425-439. [PMID: 31284994 DOI: 10.1016/j.foodres.2019.04.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases are characterized by impaired intestinal barrier function. This study aimed to evaluate the effects of grape peel powder (GPP) and its bioactive rich-fractions on the barrier function and colonic injury in a model of colitis induced by 2,4,6 trinitrobenzene sulfonic acid (TNBS). Wistar rats received diets supplemented with either GPP (8%), extractable polyphenols (EP), non-extractable polyphenols-rich fraction (NEP-F), or polyphenols-poor, fiber-rich fraction (F) from grapes at amounts equivalent to the GPP group during 15 days before and for 7 days after colitis induction. NEP-F has decreased the extension of colonic lesion but the other grape peel bioactive fractions did not protect against macroscopic or microscopic colonic damage, EP diet increased macroscopic colonic damage. GPP, EP, and NEP-F reduced claudin-2 mRNA expression, whereas GPP and F fraction increased occludin and ZO-1 mRNA expression. All experimental diets reduced the colitis-triggered increase of MMP-9 mRNA expression. Colitis reduced by 30% the production of cecal short-chain fatty acids (SCFA). GPP and NEP-F completely protected against this effect, whereas F fraction was ineffective. Only GPP and NEP-F were able to decrease the upregulation of GRP94 mRNA triggered by colitis. Dietary fiber seems to reestablish the intestinal barrier function, whereas fiber-bound phenolics were able to restore cecal metabolism to produce beneficial metabolites like SCFA and to reduce the activation of the unfolded protein response.
Collapse
Affiliation(s)
- Luana Haselein Maurer
- Graduate Program on Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil; Federal Institute of Education, Science, and Technology Farroupilha, 97555-000 Alegrete, Rio Grande do Sul, Brazil
| | - Cinthia Baú Betim Cazarin
- School of Food Engineering, Department of Food and Nutrition, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Andréia Quatrin
- Federal Institute of Education, Science, and Technology Farroupilha, 97555-000 Alegrete, Rio Grande do Sul, Brazil
| | - Natália Machado Minuzzi
- Integrated Center for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Eduarda Lasch Costa
- Integrated Center for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Joseane Morari
- School of Medical Sciences, Laboratory of Cell Signaling, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Lício Augusto Velloso
- School of Medical Sciences, Laboratory of Cell Signaling, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Raquel Franco Leal
- School of Medical Sciences, Department of Surgery, University of Campinas, Campinas, São Paulo 13083-887, Brazil
| | - Eliseu Rodrigues
- Federal University of Rio Grande do Sul, Institute of Food Science and Technology, 91501-970 Porto Alegre, RS, Brazil
| | - Vivian Caetano Bochi
- Federal University of Health Sciences of Porto Alegre, Department of Nutrition, 90050-170 Porto Alegre, RS, Brazil
| | - Mário Roberto Maróstica Júnior
- School of Food Engineering, Department of Food and Nutrition, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Tatiana Emanuelli
- Graduate Program on Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil; Integrated Center for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
18
|
Le Bourvellec C, Bagano Vilas Boas P, Lepercq P, Comtet-Marre S, Auffret P, Ruiz P, Bott R, Renard CMGC, Dufour C, Chatel JM, Mosoni P. Procyanidin-Cell Wall Interactions within Apple Matrices Decrease the Metabolization of Procyanidins by the Human Gut Microbiota and the Anti-Inflammatory Effect of the Resulting Microbial Metabolome In Vitro. Nutrients 2019; 11:E664. [PMID: 30893845 PMCID: PMC6471247 DOI: 10.3390/nu11030664] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022] Open
Abstract
B-type oligomeric procyanidins in apples constitute an important source of polyphenols in the human diet. Their role in health is not known, although it is suggested that they generate beneficial bioactive compounds upon metabolization by the gut microbiota. During apple processing, procyanidins interact with cell-wall polysaccharides and form stable complexes. These interactions need to be taken into consideration in order to better assess the biological effects of fruit constituents. Our objectives were to evaluate the impact of these interactions on the microbial metabolization of cell walls and procyanidins, and to investigate the potential anti-inflammatory activity of the resulting metabolome, in addition to analyzing the taxonomical changes which the microbiota undergo. In vitro fermentation of three model apple matrices with microbiota from 4 healthy donors showed that the binding of procyanidins to cell-wall polysaccharides, whether covalently or non-covalently, substantially reduced procyanidin degradation. Although cell wall-unbound procyanidins negatively affected carbohydrate fermentation, they generated more hydroxyphenylvaleric acid than bound procyanidins, and increased the abundance of Adlercreutzia and Gordonibacter genera. The best results in terms of production of anti-inflammatory bioactive metabolites were observed from the apple matrix with no bonds between procyanidins and cell wall polysaccharides, although the matrix with non-covalent bonds was not far behind.
Collapse
Affiliation(s)
- Carine Le Bourvellec
- UMR408 SQPOV «Sécurité et Qualité des Produits d'Origine Végétale», INRA, Avignon Université, F-84000 Avignon, France.
| | | | - Pascale Lepercq
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
| | - Sophie Comtet-Marre
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
| | - Pauline Auffret
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
- Ifremer, UMR 241 EIO, F-98702 Tahiti, French Polynesia.
| | - Philippe Ruiz
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
| | - Romain Bott
- UMR408 SQPOV «Sécurité et Qualité des Produits d'Origine Végétale», INRA, Avignon Université, F-84000 Avignon, France.
| | - Catherine M G C Renard
- UMR408 SQPOV «Sécurité et Qualité des Produits d'Origine Végétale», INRA, Avignon Université, F-84000 Avignon, France.
| | - Claire Dufour
- UMR408 SQPOV «Sécurité et Qualité des Produits d'Origine Végétale», INRA, Avignon Université, F-84000 Avignon, France.
| | - Jean-Marc Chatel
- Micalis, INRA, AgroParisTech, Université Paris-Saclay, F-7800 Jouy-en-Josas, France.
| | - Pascale Mosoni
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
19
|
Zheng F, Han M, He Y, Zhang Y, Liu S, Yue H, Wen L. Biotransformation of anthocyanins from Vitis amurensis Rupr of “Beibinghong” extract by human intestinal microbiota. Xenobiotica 2019; 49:1025-1032. [DOI: 10.1080/00498254.2018.1532132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Fei Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingxin Han
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yan Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Hao Yue
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
20
|
Keppler EAH, Jenkins CL, Davis TJ, Bean HD. Advances in the application of comprehensive two-dimensional gas chromatography in metabolomics. Trends Analyt Chem 2018; 109:275-286. [PMID: 30662103 PMCID: PMC6333419 DOI: 10.1016/j.trac.2018.10.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to excellent separation capacity for complex mixtures of chemicals, comprehensive two-dimensional gas chromatography (GC × GC) is being utilized with increasing frequency for metabolomics analyses. This review describes recent advances in GC × GC method development for metabolomics, organismal sampling techniques compatible with GC × GC, metabolomic discoveries made using GC × GC, and recommendations and best practices for collecting and reporting GC × GC metabolomics data.
Collapse
Affiliation(s)
| | - Carrie L Jenkins
- School of Life Sciences, Arizona State University, Tempe, AZ, 85283, USA
| | - Trenton J Davis
- School of Life Sciences, Arizona State University, Tempe, AZ, 85283, USA
| | - Heather D Bean
- School of Life Sciences, Arizona State University, Tempe, AZ, 85283, USA
| |
Collapse
|
21
|
Molino S, Fernández-Miyakawa M, Giovando S, Rufián-Henares JÁ. Study of antioxidant capacity and metabolization of quebracho and chestnut tannins through in vitro gastrointestinal digestion-fermentation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
22
|
Naranjo Pinta M, Montoliu I, Aura AM, Seppänen-Laakso T, Barron D, Moco S. In Vitro Gut Metabolism of [U-13C]-Quinic Acid, The Other Hydrolysis Product of Chlorogenic Acid. Mol Nutr Food Res 2018; 62:e1800396. [DOI: 10.1002/mnfr.201800396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/23/2018] [Indexed: 01/06/2023]
Affiliation(s)
| | - Ivan Montoliu
- Nestle Institute of Health Sciences; Lausanne Switzerland
| | | | | | - Denis Barron
- Nestle Institute of Health Sciences; Lausanne Switzerland
| | - Sofia Moco
- Nestle Institute of Health Sciences; Lausanne Switzerland
| |
Collapse
|
23
|
Belinato JR, Dias FFG, Caliman JD, Augusto F, Hantao LW. Opportunities for green microextractions in comprehensive two-dimensional gas chromatography / mass spectrometry-based metabolomics - A review. Anal Chim Acta 2018; 1040:1-18. [PMID: 30327098 DOI: 10.1016/j.aca.2018.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Microextractions have become an attractive class of techniques for metabolomics. The most popular technique is solid-phase microextraction that revolutionized the field of modern sample preparation in the early nineties. Ever since this milestone, microextractions have taken on many principles and formats comprising droplets, fibers, membranes, needles, and blades. Sampling devices may be customized to impart exhaustive or equilibrium-based characteristics to the extraction method. Equilibrium-based approaches may rely on additional methods for calibration, such as diffusion-based or on-fiber kinetic calibration to improve bioanalysis. In addition, microextraction-based methods may enable minimally invasive sampling protocols and measure the average free concentration of analytes in heterogeneous multiphasic biological systems. On-fiber derivatization has evidenced new opportunities for targeted and untargeted analysis in metabolomics. All these advantages have highlighted the potential of microextraction techniques for in vivo and on-site sampling and sample preparation, while many opportunities are still available for laboratory protocols. In this review, we outline and discuss some of the most recent applications using microextractions techniques for comprehensive two-dimensional gas chromatography-based metabolomics, including potential research opportunities.
Collapse
Affiliation(s)
- João R Belinato
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Fernanda F G Dias
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Jaqueline D Caliman
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Fabio Augusto
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, SP, 13083-970, Brazil
| | - Leandro W Hantao
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
24
|
Lozoya-Agullo I, González-Álvarez I, Merino-Sanjuán M, Bermejo M, González-Álvarez M. Preclinical models for colonic absorption, application to controlled release formulation development. Eur J Pharm Biopharm 2018; 130:247-259. [PMID: 30064699 DOI: 10.1016/j.ejpb.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Oral controlled release (CR) formulations have many benefits and have become a valuable resource for the local and systemic administration of drugs. The most important characteristic of these pharmaceutical products is that drug absorption occurs mainly in the colon. Therefore, this review analyses the physiological and physicochemical features that may affect an orally administered CR product, as well as the different strategies to develop a CR dosage form and the methods used to evaluate the formulation efficacy. The models available to study the intestinal permeability and their applicability to colonic permeability determinations are also discussed.
Collapse
Affiliation(s)
- Isabel Lozoya-Agullo
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Spain; Pharmacokinetics, Pharmaceutical Technology and Parasitology, University of Valencia, Spain
| | | | - Matilde Merino-Sanjuán
- Pharmacokinetics, Pharmaceutical Technology and Parasitology, University of Valencia, Spain; Molecular Recognition and Technological Development, Polytechnic University-University of Valencia, Valencia, Spain
| | - Marival Bermejo
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Spain
| | | |
Collapse
|
25
|
Gil-Sánchez I, Esteban-Fernández A, González de Llano D, Sanz-Buenhombre M, Guadarrana A, Salazar N, Gueimonde M, de los Reyes-Gavilánc CG, Martín Gómez L, García Bermejo ML, Bartolomé B, Moreno-Arribas MV. Supplementation with grape pomace in healthy women: Changes in biochemical parameters, gut microbiota and related metabolic biomarkers. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
26
|
Yang P, Yuan C, Wang H, Han F, Liu Y, Wang L, Liu Y. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions. Molecules 2018; 23:E354. [PMID: 29414926 PMCID: PMC6017626 DOI: 10.3390/molecules23020354] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins' structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3-O-glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3-O-glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p-coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.
Collapse
Affiliation(s)
- Ping Yang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China.
- Heyang Viticulture Experimental Station, Northwest A&F University, Heyang 715300, China.
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China.
- Heyang Viticulture Experimental Station, Northwest A&F University, Heyang 715300, China.
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China.
- Heyang Viticulture Experimental Station, Northwest A&F University, Heyang 715300, China.
| | - Yangjie Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Lin Wang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Yang Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
27
|
Dymerski T. Two-Dimensional Gas Chromatography Coupled With Mass Spectrometry in Food Analysis. Crit Rev Anal Chem 2018; 48:252-278. [PMID: 29185796 DOI: 10.1080/10408347.2017.1411248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of instrumental analytical techniques provided the opportunity for in-depth characterization of many food matrices. In particular, the use of gas chromatography coupled with mass spectrometry gives impressive results in terms of quality and authenticity testing, conducting food freshness evaluations and contamination assessments. A new variant of gas chromatography, namely two-dimensional gas chromatography (GC × GC), and various versions of mass spectrometry have been developed since last 15 years, and they still remain at the time of their renaissance. The present critical review is focused on the use of GC × GC coupled with mass spectrometry for qualitative and quantitative reasons in food analysis. It is explained how powerful analytical tool is above-mentioned technical solution. Special attention is devoted to the issues related to the development of this technique during last years in terms of key construction elements, such as modulators and MS detectors. Finally, the critical discussion on many various aspects including advantages and more important disadvantages, caused probable moderate interest of this solution, in food analytics is concerned.
Collapse
Affiliation(s)
- Tomasz Dymerski
- a Faculty of Chemistry, Department of Analytical Chemistry , Gdańsk University of Technology , Gdańsk , Poland
| |
Collapse
|
28
|
Pasinetti GM, Singh R, Westfall S, Herman F, Faith J, Ho L. The Role of the Gut Microbiota in the Metabolism of Polyphenols as Characterized by Gnotobiotic Mice. J Alzheimers Dis 2018; 63:409-421. [PMID: 29660942 PMCID: PMC6021178 DOI: 10.3233/jad-171151] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing body of experimental data suggests that microbes in the gut influence behavior and can alter brain physiology and neurochemistry. Although promising, researchers are only starting to understand the potential of the gut microbiota for use in neurological disease. Recent evidence demonstrated that gastrointestinal activities are linked to mood disorders such as anxiety, depression, and most recently, cognitive functions in age-related neurodegenerative disorders. Studies from our group and others are uncovering new evidence suggesting that the gut microbiota plays a crucial role in the metabolism and bioavailability of certain dietary compounds and synthetic drugs. Based on this evidence, this review article will discuss the implications of the gut microbiota in mechanisms of bioavailability and biotransformation with an emphasis on dietary polyphenol compounds. This will be followed by a survey of ongoing innovative research identifying the ability of individual gut bacteria to enhance the bioavailability of gut-derived, brain-penetrating, bioactive polyphenol metabolites that ultimately influence mechanisms associated with the promotion of resilience against psychological and cognitive impairment in response to stress. Lastly, current research initiatives aimed at promoting the generation of brain bioactive polyphenol metabolites by specialized gut microbes will be discussed, specifically the use of gnotobiotic mice to develop bioengineered second generation probiotics. We propose that leveraging the gut microbial ecosystem to generate brain targeted bioactive metabolites from dietary polyphenols can attenuate lifestyle risk factors and promote resilience against age-related cognitive decline.
Collapse
Affiliation(s)
- Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Risham Singh
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susan Westfall
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Francis Herman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah Faith
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lap Ho
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
29
|
Alba C MA, Daya M, Franck C. Tart Cherries and health: Current knowledge and need for a better understanding of the fate of phytochemicals in the human gastrointestinal tract. Crit Rev Food Sci Nutr 2017; 59:626-638. [PMID: 28956621 DOI: 10.1080/10408398.2017.1384918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tart cherries are increasingly popular due to purported health benefits. This Prunus cesarus species is cultivated worldwide, and its market has increased significantly in the last two decades due to improvements in agricultural practices and food processing technology. Tart cherries are rich in polyphenols, with a very specific profile combining anthocyanins and flavonols (berries-like) and chlorogenic acid (coffee-like). Tart cherries have been suggested to exert several potentially beneficial health effects including: lowering blood pressure, modulating blood glucose, enhancing cognitive function, protecting against oxidative stress and reducing inflammation. Studies focusing on tart cherry consumption have demonstrated particular benefits in recovery from exercise-induced muscle damage and diabetes associated parameters. However, the bioconversion of tart cherry polyphenols by resident colonic microbiota has never been considered, considerably reducing the impact of in vitro studies that have relied on fruit polyphenol extracts. In vitro and in vivo gut microbiota and metabolome studies are necessary to reinforce health claims linked to tart cherries consumption.
Collapse
Affiliation(s)
- Mayta-Apaza Alba C
- a Department of Food Science and Center for Human Nutrition , University of Arkansas , Fayetteville , AR , United States
| | - Marasini Daya
- a Department of Food Science and Center for Human Nutrition , University of Arkansas , Fayetteville , AR , United States
| | - Carbonero Franck
- a Department of Food Science and Center for Human Nutrition , University of Arkansas , Fayetteville , AR , United States
| |
Collapse
|
30
|
Maukonen J, Aura AM, Niemi P, Raza GS, Niemelä K, Walkowiak J, Mattila I, Poutanen K, Buchert J, Herzig KH. Interactions of Insoluble Residue from Enzymatic Hydrolysis of Brewer's Spent Grain with Intestinal Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3748-3756. [PMID: 28441866 DOI: 10.1021/acs.jafc.6b05552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Brewer's spent grain (BSG) is the major side-stream from brewing. As BSG is rich in dietary fiber and protein, it could be used in more valuable applications, such as nutritional additives for foods. Our aim was to elucidate whether an insoluble lignin-rich fraction (INS) from BSG is metabolized by mice gut microbiota and how it affects the microbiota. Our results indicated that lignin was partially degraded by the gut microbiota, degradation products were absorbed, and finally excreted in urine. Therefore, they contribute to the phenolic pool circulating in the mammalian body, and may have systemic effects on health. In addition, the effects of the test diets on the microbiota were significant. Most interestingly, diversities of predominant cecal and fecal bacteria were higher after the intervention diet containing INS than after the intervention diet containing cellulose. Since low fecal bacterial diversity has been linked with numerous diseases and disorders, the diversity increasing ability opens very interesting perspectives for the future.
Collapse
Affiliation(s)
- Johanna Maukonen
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Anna-Marja Aura
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Piritta Niemi
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Gulam Shere Raza
- Institute of Biomedicine and Biocenter of Oulu, Medical Research Centre Oulu, Oulu University Hospital , 90220 Oulu, Finland
| | - Klaus Niemelä
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Jaroslaw Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences , 61-701 Poznan, Poland
| | - Ismo Mattila
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Kaisa Poutanen
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Johanna Buchert
- VTT Technical Research Centre of Finland Ltd , P.O. Box 1000, Tietotie 2, Espoo FI-02044 VTT, Finland
| | - Karl-Heinz Herzig
- Institute of Biomedicine and Biocenter of Oulu, Medical Research Centre Oulu, Oulu University Hospital , 90220 Oulu, Finland
| |
Collapse
|
31
|
Wang LL, Guo HH, Huang S, Feng CL, Han YX, Jiang JD. Comprehensive evaluation of SCFA production in the intestinal bacteria regulated by berberine using gas-chromatography combined with polymerase chain reaction. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1057:70-80. [PMID: 28505492 DOI: 10.1016/j.jchromb.2017.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 12/25/2022]
Abstract
Short-chain fatty acids (SCFAs) of intestine microbial have caught accumulating attention for their beneficial effects on human health. Botanic compounds with low bioavailability such as berberine (BBR) and resveratrol might interact with intestinal microbial ecosystem and promote gut bacteria to produce SCFA, which contribute to their biological effects. In the present study, a comprehensive assay system was built to detect SCFAs production in intestinal bacteria, in which stringent anaerobic culture was applied for in vitro bacterial fermentation, followed by direct-injection GC detection (chemical detection) in combination with real time polymerase chain reaction (RT-PCR, biological detection). BBR was used as positive reference. The direct injection GC method was calibrated and successfully applied to analyze the concentration of SCFAs in gut microbiota and BBR was proved to be effective in the dose- and time-dependent up-regulation of SCFAs production. As compared to the saline group, the concentration of acetic acid, propionate acid and butyric acid (the main SCFAs in gut microbiota) were increased by 17.7%, 11.1% and 30.5%, respectively, after incubating intestinal bacteria with 20μg/mL BBR for 24h. The increase reached to 34.9%, 22.4% and 51.6%, respectively when the BBR was 50μg/mL. Additionally, consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) were designed for the detection of acetate kinase (ACK), Methylmalonyl-CoA decarboxylase (MMD) and butyryl-CoA: acetate-CoA transferase (BUT), as they are the key enzymes in the synthetic pathway for acetic acid, propionate acid and butyric acid, respectively. After 24hr's incubation, BBR was shown to promote the gene expression of ACK, MMD and BUT significantly (86.5%, 27.2% and 60.4%, respectively, with 20μg/mL BBR; 130.2%, 84.2% and 98.4%, respectively, with 50μg/mL BBR), showing a solid biological support for the chemical detection. This comprehensive assay system might be useful in identifying SCFAs promoting agents with information on their mechanism.
Collapse
Affiliation(s)
- Lu-Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuai Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Chen-Lin Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China.
| |
Collapse
|
32
|
Koistinen VM, Nordlund E, Katina K, Mattila I, Poutanen K, Hanhineva K, Aura AM. Effect of Bioprocessing on the In Vitro Colonic Microbial Metabolism of Phenolic Acids from Rye Bran Fortified Breads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1854-1864. [PMID: 28206756 DOI: 10.1021/acs.jafc.6b05110] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cereal bran is an important source of dietary fiber and bioactive compounds, such as phenolic acids. We aimed to study the phenolic acid metabolism of native and bioprocessed rye bran fortified refined wheat bread and to elucidate the microbial metabolic route of phenolic acids. After incubation in an in vitro colon model, the metabolites were analyzed using two different methods applying mass spectrometry. While phenolic acids were released more extensively from the bioprocessed bran bread and ferulic acid had consistently higher concentrations in the bread type during fermentation, there were only minor differences in the appearance of microbial metabolites, including the diminished levels of certain phenylacetic acids in the bioprocessed bran. This may be due to rye matrix properties, saturation of ferulic acid metabolism, or a rapid formation of intermediary metabolites left undetected. In addition, we provide expansion to the known metabolic pathways of phenolic acids.
Collapse
Affiliation(s)
- Ville M Koistinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland , Post Office Box 1627, FI-70211 Kuopio, Finland
| | - Emilia Nordlund
- Technical Research Centre of Finland (VTT) , Post Office Box 1000, Tietotie 2, FI-02044 Espoo, Finland
| | - Kati Katina
- Technical Research Centre of Finland (VTT) , Post Office Box 1000, Tietotie 2, FI-02044 Espoo, Finland
- Department of Food and Environmental Sciences, University of Helsinki , Post Office Box 66, Agnes Sjöbergin Katu 2, FI-00014 Helsinki, Finland
| | - Ismo Mattila
- Technical Research Centre of Finland (VTT) , Post Office Box 1000, Tietotie 2, FI-02044 Espoo, Finland
- Steno Diabetes Center , Niels Steensens Vej 2, DK-2820 Gentofte, Denmark
| | - Kaisa Poutanen
- Technical Research Centre of Finland (VTT) , Post Office Box 1000, Tietotie 2, FI-02044 Espoo, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland , Post Office Box 1627, FI-70211 Kuopio, Finland
| | - Anna-Marja Aura
- Technical Research Centre of Finland (VTT) , Post Office Box 1000, Tietotie 2, FI-02044 Espoo, Finland
| |
Collapse
|
33
|
Renard CM, Watrelot AA, Le Bourvellec C. Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.10.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Del Pino-García R, Rivero-Pérez MD, González-SanJosé ML, Ortega-Heras M, García Lomillo J, Muñiz P. Chemopreventive Potential of Powdered Red Wine Pomace Seasonings against Colorectal Cancer in HT-29 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:66-73. [PMID: 27957845 DOI: 10.1021/acs.jafc.6b04561] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study evaluates the antiproliferative and antigenotoxic actions of powdered red wine pomace seasonings (Sk-S, seedless; W-S, whole; Sd-S, seeds). In vitro gastrointestinal digested and colonic fermented fractions of the seasonings were used as cell treatments. Phenolic acids from Sk-S showed the highest bioaccessibility in the small intestine, whereas polyphenols contained in Sd-S might be the most fermentable in the colon. Dietary fiber from Sk-S was the best substrate for short chain fatty acids production by gut microbiota. Colon cancerous (HT-29) cell viability was inhibited by 50% (IC50 values) at treatment concentrations ranging from 845 (Sk-S) to 1085 (Sd-S) μg/mL prior digestion, but all digested fractions exhibited similar antiproliferative activities (mean IC50 = 814 μg/mL). Oxidative DNA damage in cells was also attenuated by the treatments (200 μg/mL, 24 h preincubation), with all colonic fermented fractions displaying similar genoprotective action. These results suggest the potential of red wine pomace seasonings as chemopreventive agents in colorectal cancer.
Collapse
Affiliation(s)
- Raquel Del Pino-García
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos , Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - María D Rivero-Pérez
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos , Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - María L González-SanJosé
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos , Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Miriam Ortega-Heras
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos , Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Javier García Lomillo
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos , Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Pilar Muñiz
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos , Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| |
Collapse
|
35
|
Figueira I, Menezes R, Macedo D, Costa I, Nunes dos Santos C. Polyphenols Beyond Barriers: A Glimpse into the Brain. Curr Neuropharmacol 2017; 15:562-594. [PMID: 27784225 PMCID: PMC5543676 DOI: 10.2174/1570159x14666161026151545] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 08/02/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ageing can be simply defined as the process of becoming older, which is genetically determined but also environmentally modulated. With the continuous increase of life expectancy, quality of life during ageing has become one of the biggest challenges of developed countries. The quest for a healthy ageing has led to the extensive study of plant polyphenols with the aim to prevent age-associated deterioration and diseases, including neurodegenerative diseases. The world of polyphenols has fascinated researchers over the past decades, and in vitro, cell-based, animal and human studies have attempted to unravel the mechanisms behind dietary polyphenols neuroprotection. METHODS In this review, we compiled some of the extensive and ever-growing research in the field, highlighting some of the most recent trends in the area. RESULTS The main findings regarding polypolyphenols neuroprotective potential performed using in vitro, cellular and animal studies, as well as human trials are covered in this review. Concepts like bioavailability, polyphenols biotransformation, transport of dietary polyphenols across barriers, including the blood-brain barrier, are here explored. CONCLUSION The diversity and holistic properties of polypolyphenol present them as an attractive alternative for the treatment of multifactorial diseases, where a multitude of cellular pathways are disrupted. The underlying mechanisms of polypolyphenols for nutrition or therapeutic applications must be further consolidated, however there is strong evidence of their beneficial impact on brain function during ageing. Nevertheless, only the tip of the iceberg of nutritional and pharmacological potential of dietary polyphenols is hitherto understood and further research needs to be done to fill the gaps in pursuing a healthy ageing.
Collapse
Affiliation(s)
- Inês Figueira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
| | - Regina Menezes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Diana Macedo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Inês Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| | - Cláudia Nunes dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras
| |
Collapse
|
36
|
Kamiloglu S, Capanoglu E, Bilen FD, Gonzales GB, Grootaert C, Van de Wiele T, Van Camp J. Bioaccessibility of Polyphenols from Plant-Processing Byproducts of Black Carrot (Daucus carota L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2450-2458. [PMID: 26262673 DOI: 10.1021/acs.jafc.5b02640] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plant-processing byproducts of black carrot represent an important disposal problem for the industry; however, they are also promising sources of polyphenols, especially anthocyanins. The present study focused on the changes in polyphenols from black carrot, peel, and pomace during in vitro gastrointestinal digestion. Total phenolic content (TPC), total monomeric anthocyanin content (TMAC), and total antioxidant capacity (TAC) were determined using spectrophotometric methods, whereas identification and quantification of polyphenols were carried out using UPLC-ESI-MS(E) and HPLC-DAD, respectively. TPC, TMAC, and TAC significantly decreased (23-82%) as a result of in vitro gastrointestinal digestion. Nevertheless, the amount of pomace anthocyanins released at all stages of in vitro gastrointestinal digestion was higher than black carrot anthocyanins, suggesting that pomace may be a better source of bioaccessible anthocyanins. Overall, the current study highlighted black carrot byproducts as substantial sources of polyphenols, which may be used to enrich food products.
Collapse
Affiliation(s)
- Senem Kamiloglu
- Laboratory of Food Chemistry and Human Nutrition (nutriFOODchem), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University , 34469 Maslak, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University , 34469 Maslak, Istanbul, Turkey
| | - Fatma Damla Bilen
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University , 34469 Maslak, Istanbul, Turkey
| | - Gerard Bryan Gonzales
- Laboratory of Food Chemistry and Human Nutrition (nutriFOODchem), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition (nutriFOODchem), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Tom Van de Wiele
- Laboratory Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition (nutriFOODchem), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
37
|
Vetrani C, Rivellese AA, Annuzzi G, Adiels M, Borén J, Mattila I, Orešič M, Aura AM. Metabolic transformations of dietary polyphenols: comparison between in vitro colonic and hepatic models and in vivo urinary metabolites. J Nutr Biochem 2016; 33:111-8. [PMID: 27155917 DOI: 10.1016/j.jnutbio.2016.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
Abstract
Studies on metabolism of polyphenols have revealed extensive transformations in the carbon backbone by colonic microbiota; however, the influence of microbial and hepatic transformations on human urinary metabolites has not been explored. Therefore, the aims of this study were (1) to compare the in vitro microbial phenolic metabolite profile of foods and beverages with that excreted in urine of subjects consuming the same foodstuff and (2) to explore the role of liver on postcolonic metabolism of polyphenols by using in vitro hepatic models. A 24-h urinary phenolic metabolite profile was evaluated in 72 subjects participating in an 8-week clinical trial during which they were randomly assigned to diets differing for polyphenol content. Polyphenol-rich foods and beverages used in the clinical trial were subjected to human fecal microbiota in the in vitro colon model. Metabolites from green tea, one of the main components of the polyphenol-rich diet, were incubated with primary hepatocytes to highlight hepatic conversion of polyphenols. The analyses were performed using targeted gas chromatography with mass spectrometer (GCxGC-TOFMS:colon model; GC-MS: urine and hepatocytes). A significant correlation was found between urinary and colonic metabolites with C1-C3 side chain (P=.040). However, considerably higher amounts of hippuric acid, 3-hydroxybenzoic acid and ferulic acid were detected in urine than in the colon model. The hepatic conversion showed additional amounts of these metabolites complementing the gap between in vitro colon model and the in vivo urinary excretion. Therefore, combining in vitro colon and hepatic models may better elucidate the metabolism of polyphenols from dietary exposure to urinary metabolites.
Collapse
Affiliation(s)
- Claudia Vetrani
- Department of Clinical Medicine and Surgery, "Federico II" University, Naples, Italy.
| | - Angela A Rivellese
- Department of Clinical Medicine and Surgery, "Federico II" University, Naples, Italy
| | - Giovanni Annuzzi
- Department of Clinical Medicine and Surgery, "Federico II" University, Naples, Italy
| | - Martin Adiels
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
38
|
Ohra-aho T, Niemi P, Aura AM, Orlandi M, Poutanen K, Buchert J, Tamminen T. Structure of Brewer's Spent Grain Lignin and Its Interactions with Gut Microbiota in Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:812-20. [PMID: 26751846 DOI: 10.1021/acs.jafc.5b05535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lignin is part of dietary fiber, but its conversion in the gastrointestinal tract is not well understood. The aim of this work was to obtain structural information on brewer's spent grain (BSG) lignin and to understand the behavior of the polymeric part of lignin exposed to fecal microbiota. The original BSG and different lignin fractions were characterized by pyrolysis-GC/MS with and without methylation. Methylation pyrolysis proved that the ratio between guaiacyl and syringyl units was similar in all lignin samples, but the ratio between p-coumaric and ferulic acids varied by the isolation method. Combined pyrolysis results indicated higher acylation of γ-OH groups in syringyl than in guaiacyl lignin units. The polymeric lignin structure in the alkali-soluble fraction after enzymatic hydrolysis was slightly altered in the in vitro colon fermentation, whereas lignin in the insoluble residue after enzymatic treatments remained intact.
Collapse
Affiliation(s)
- Taina Ohra-aho
- VTT Technical Research Centre of Finland Ltd. , P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Piritta Niemi
- VTT Technical Research Centre of Finland Ltd. , P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Anna-Marja Aura
- VTT Technical Research Centre of Finland Ltd. , P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Marco Orlandi
- Department of Environmental and Earth Sciences, University of Milano-Bicocca , Piazza della Scienza 1, Milan, I-20126 Italy
| | - Kaisa Poutanen
- VTT Technical Research Centre of Finland Ltd. , P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Johanna Buchert
- Natural Resources Institute Finland , Viikinkaari 4, FI-00790 Helsinki, Finland
| | - Tarja Tamminen
- VTT Technical Research Centre of Finland Ltd. , P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
39
|
Shiratake K, Suzuki M. Omics studies of citrus, grape and rosaceae fruit trees. BREEDING SCIENCE 2016; 66:122-38. [PMID: 27069397 PMCID: PMC4780796 DOI: 10.1270/jsbbs.66.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/01/2015] [Indexed: 05/06/2023]
Abstract
Recent advance of bioinformatics and analytical apparatuses such as next generation DNA sequencer (NGS) and mass spectrometer (MS) has brought a big wave of comprehensive study to biology. Comprehensive study targeting all genes, transcripts (RNAs), proteins, metabolites, hormones, ions or phenotypes is called genomics, transcriptomics, proteomics, metabolomics, hormonomics, ionomics or phenomics, respectively. These omics are powerful approaches to identify key genes for important traits, to clarify events of physiological mechanisms and to reveal unknown metabolic pathways in crops. Recently, the use of omics approach has increased dramatically in fruit tree research. Although the most reported omics studies on fruit trees are transcriptomics, proteomics and metabolomics, and a few is reported on hormonomics and ionomics. In this article, we reviewed recent omics studies of major fruit trees, i.e. citrus, grapevine and rosaceae fruit trees. The effectiveness and prospects of omics in fruit tree research will as well be highlighted.
Collapse
Affiliation(s)
- Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
- Corresponding author (e-mail: )
| | - Mami Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
| |
Collapse
|
40
|
Aura AM, Holopainen-Mantila U, Sibakov J, Kössö T, Mokkila M, Kaisa P. Bilberry and bilberry press cake as sources of dietary fibre. Food Nutr Res 2015; 59:28367. [PMID: 26652738 PMCID: PMC4677278 DOI: 10.3402/fnr.v59.28367] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Dietary recommendations for Nordic countries urge the use of plant foods as a basis for healthy nutrition. Currently, the level of dietary fibre (DF) intake is not adequate. Berries are an elementary part of the recommended Nordic healthy diet and could be consumed in higher amounts. MATERIALS AND METHODS Finnish bilberries and a bilberry press cake from juice processing were studied for DF content, carbohydrate composition, and non-carbohydrate fibre content, which was analysed as sulphuric acid insoluble and soluble material. The microstructure of all samples was also studied using light microscopy and toluidine blue O, calcofluor, and acid fuchsin staining. RESULTS The total DF contents of fresh and freeze-dried bilberries and the press cake were 3.0, 24.1, and 58.9%, respectively. Most of the DF was insoluble. Only about half of it was carbohydrate, the rest being mostly sulphuric acid-insoluble material, waxy cutin from skins, and resilient seeds. Bilberry seeds represented over half of the press cake fraction, and in addition to skin, they were the major DF sources. Microscopy revealed that skins in the press cake were intact and the surface of the seeds had thick-walled cells. CONCLUSIONS Bilberry press cake is thus a good source of insoluble non-carbohydrate DF, and could be used to provide DF-rich foods to contribute to versatile intake of DF.
Collapse
Affiliation(s)
- Anna-Marja Aura
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland;
| | | | - Juhani Sibakov
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Tuija Kössö
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Mirja Mokkila
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Poutanen Kaisa
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|
41
|
Bohn T, McDougall GJ, Alegría A, Alminger M, Arrigoni E, Aura A, Brito C, Cilla A, El SN, Karakaya S, Martínez‐Cuesta MC, Santos CN. Mind the gap-deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites--a position paper focusing on carotenoids and polyphenols. Mol Nutr Food Res 2015; 59:1307-23. [PMID: 25988374 PMCID: PMC5033009 DOI: 10.1002/mnfr.201400745] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/27/2015] [Accepted: 04/29/2015] [Indexed: 12/22/2022]
Abstract
Various secondary plant metabolites or phytochemicals, including polyphenols and carotenoids, have been associated with a variety of health benefits, such as reduced incidence of type 2 diabetes, cardiovascular diseases, and several types of cancer, most likely due to their involvement in ameliorating inflammation and oxidative stress. However, discrepancies exist between their putative effects when comparing observational and intervention studies, especially when using pure compounds. These discrepancies may in part be explained by differences in intake levels and their bioavailability. Prior to exerting their bioactivity, these compounds must be made bioavailable, and considerable differences may arise due to their matrix release, changes during digestion, uptake, metabolism, and biodistribution, even before considering dose- and host-related factors. Though many insights have been gained on factors affecting secondary plant metabolite bioavailability, many gaps still exist in our knowledge. In this position paper, we highlight several major gaps in our understanding of phytochemical bioavailability, including effects of food processing, changes during digestion, involvement of cellular transporters in influx/efflux through the gastrointestinal epithelium, changes during colonic fermentation, and their phase I and phase II metabolism following absorption.
Collapse
Affiliation(s)
- Torsten Bohn
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyBelvauxLuxembourg
| | | | - Amparo Alegría
- Nutrition and Food Science AreaFaculty of Pharmacy, University of ValenciaAv. Vicente Andrés Estellés s/nBurjassotValenciaSpain
| | - Marie Alminger
- Department of Chemical and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Eva Arrigoni
- Agroscope, Institute for Food Sciences (IFS)WädenswilSwitzerland
| | | | - Catarina Brito
- IBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Antonio Cilla
- Nutrition and Food Science AreaFaculty of Pharmacy, University of ValenciaAv. Vicente Andrés Estellés s/nBurjassotValenciaSpain
| | - Sedef N. El
- Ege UniversityEngineering Faculty, Food Engineering DepartmentIzmirTurkey
| | - Sibel Karakaya
- Ege UniversityEngineering Faculty, Food Engineering DepartmentIzmirTurkey
| | | | - Claudia N. Santos
- IBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
42
|
Bohn T, McDougall GJ, Alegría A, Alminger M, Arrigoni E, Aura A, Brito C, Cilla A, El SN, Karakaya S, Martínez‐Cuesta MC, Santos CN. Mind the gap—deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites—a position paper focusing on carotenoids and polyphenols. Mol Nutr Food Res 2015. [DOI: 10.1002/mnfr.201400745 pmid: 25988374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Torsten Bohn
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology Belvaux Luxembourg
| | | | - Amparo Alegría
- Nutrition and Food Science Area Faculty of Pharmacy, University of Valencia Av. Vicente Andrés Estellés s/n Burjassot Valencia Spain
| | - Marie Alminger
- Department of Chemical and Biological Engineering Chalmers University of Technology Gothenburg Sweden
| | - Eva Arrigoni
- Agroscope, Institute for Food Sciences (IFS) Wädenswil Switzerland
| | | | - Catarina Brito
- IBET, Instituto de Biologia Experimental e Tecnológica Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras Portugal
| | - Antonio Cilla
- Nutrition and Food Science Area Faculty of Pharmacy, University of Valencia Av. Vicente Andrés Estellés s/n Burjassot Valencia Spain
| | - Sedef N. El
- Ege University Engineering Faculty, Food Engineering Department Izmir Turkey
| | - Sibel Karakaya
- Ege University Engineering Faculty, Food Engineering Department Izmir Turkey
| | | | - Claudia N. Santos
- IBET, Instituto de Biologia Experimental e Tecnológica Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Oeiras Portugal
| |
Collapse
|
43
|
Barroso E, Cueva C, Peláez C, Martínez-Cuesta MC, Requena T. Development of human colonic microbiota in the computer-controlled dynamic SIMulator of the GastroIntestinal tract SIMGI. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Towards the fecal metabolome derived from moderate red wine intake. Metabolites 2014; 4:1101-18. [PMID: 25532710 PMCID: PMC4279160 DOI: 10.3390/metabo4041101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/28/2014] [Accepted: 12/15/2014] [Indexed: 12/25/2022] Open
Abstract
Dietary polyphenols, including red wine phenolic compounds, are extensively metabolized during their passage through the gastrointestinal tract; and their biological effects at the gut level (i.e., anti-inflammatory activity, microbiota modulation, interaction with cells, among others) seem to be due more to their microbial-derived metabolites rather than to the original forms found in food. In an effort to improve our understanding of the biological effects that phenolic compounds exert at the gut level, this paper summarizes the changes observed in the human fecal metabolome after an intervention study consisting of a daily consumption of 250 mL of wine during four weeks by healthy volunteers (n = 33). It assembles data from two analytical approaches: (1) UPLC-ESI-MS/MS analysis of phenolic metabolites in fecal solutions (targeted analysis); and (2) UHPLC-TOF MS analysis of the fecal solutions (non-targeted analysis). Both approaches revealed statistically-significant changes in the concentration of several metabolites as a consequence of the wine intake. Similarity and complementarity between targeted and non-targeted approaches in the analysis of the fecal metabolome are discussed. Both strategies allowed the definition of a complex metabolic profile derived from wine intake. Likewise, the identification of endogenous markers could lead to new hypotheses to unravel the relationship between moderate wine consumption and the metabolic functionality of gut microbiota.
Collapse
|
45
|
Snelders J, Olaerts H, Dornez E, Van de Wiele T, Aura AM, Vanhaecke L, Delcour JA, Courtin CM. Structural features and feruloylation modulate the fermentability and evolution of antioxidant properties of arabinoxylanoligosaccharides during in vitro fermentation by human gut derived microbiota. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
46
|
Phenolic metabolites as compliance biomarker for polyphenol intake in a randomized controlled human intervention. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.01.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Alminger M, Aura AM, Bohn T, Dufour C, El S, Gomes A, Karakaya S, Martínez-Cuesta M, McDougall G, Requena T, Santos C. In VitroModels for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr Rev Food Sci Food Saf 2014; 13:413-436. [DOI: 10.1111/1541-4337.12081] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/28/2014] [Indexed: 12/18/2022]
Affiliation(s)
- M. Alminger
- Dept. of Chemical and Biological Engineering; Chalmers Univ. of Technology; SE 412 96 Gothenburg Sweden
| | - A.-M. Aura
- VTT Technical Research Centre of Finland; P.O.Box 1000 Tietotie 2 Espoo FI-02044 VTT Finland
| | - T. Bohn
- Environment and Agro-biotechnologies Dept; Centre de Recherche Public - Gabriel Lippmann; 4422 Belvaux Luxembourg
| | - C. Dufour
- INRA, UMR408 Safety and Quality of Plant Products F-84000 Avignon; France
- Univ. of Avignon; UMR408 Safety and Quality of Plant Products F-84000 Avignon; France
| | - S.N. El
- Engineering Faculty Dept. of Food Engineering; Ege Univ. 35100 Izmir Turkey
| | - A. Gomes
- Inst. de Biologia Experimental e Tecnológica; Apartado 12, 2781-901 Oeiras Portugal
- Inst. de Tecnologia Química e Biológica; Univ. Nova de Lisboa; Av. da República, EAN, 2781-901 Oeiras Portugal
| | - S. Karakaya
- Engineering Faculty Dept. of Food Engineering; Ege Univ. 35100 Izmir Turkey
| | - M.C. Martínez-Cuesta
- Inst. de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM); Nicolás Cabrera 9, 28049 Madrid Spain
| | - G.J. McDougall
- The James Hutton Inst., Invergowrie; DD2 5DA; Dundee United Kingdom
| | - T. Requena
- Inst. de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM); Nicolás Cabrera 9, 28049 Madrid Spain
| | - C.N. Santos
- Inst. de Biologia Experimental e Tecnológica; Apartado 12, 2781-901 Oeiras Portugal
- Inst. de Tecnologia Química e Biológica; Univ. Nova de Lisboa; Av. da República, EAN, 2781-901 Oeiras Portugal
| |
Collapse
|
48
|
Hamauzu Y, Nakamura K. Changes in Plasma Phenolic Metabolites of Rats Administered Different Molecular-Weight Polyphenol Fractions from Chinese Quince Fruit Extracts. J Food Biochem 2014. [DOI: 10.1111/jfbc.12067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yasunori Hamauzu
- Department of Sciences of Functional Foods; Graduate School of Agriculture; Shinshu University; 8304 Minamiminowa Kamiina-gun Nagano 399-4598 Japan
| | - Kazutoshi Nakamura
- Department of Sciences of Functional Foods; Graduate School of Agriculture; Shinshu University; 8304 Minamiminowa Kamiina-gun Nagano 399-4598 Japan
| |
Collapse
|
49
|
Interaction of plant phenols with food macronutrients: characterisation and nutritional-physiological consequences. Nutr Res Rev 2013; 27:1-15. [PMID: 24169001 DOI: 10.1017/s095442241300019x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Polyphenols are dietary constituents of plants associated with health-promoting effects. In the human diet, polyphenols are generally consumed in foods along with macronutrients. Because the health benefits of polyphenols are critically determined by their bioavailability, the effect of interactions between plant phenols and food macronutrients is a very important topic. In the present review, we summarise current knowledge, with a special focus on the in vitro and in vivo effects of food macronutrients on the bioavailability and bioactivity of polyphenols. The mechanisms of interactions between polyphenols and food macronutrients are also discussed. The evidence collected in the present review suggests that when plant phenols are consumed along with food macronutrients, the bioavailability and bioactivity of polyphenols can be significantly affected. The protein-polyphenol complexes can significantly change the plasma kinetics profile but do not affect the absorption of polyphenols. Carbohydrates can enhance the absorption and extend the time needed to reach a maximal plasma concentration of polyphenols, and fats can enhance the absorption and change the absorption kinetics of polyphenols. Moreover, as highlighted in the present review, not only a nutrient alone but also certain synergisms between food macronutrients have a significant effect on the bioavailability and biological activity of polyphenols. The review emphasises the need for formulations that optimise the bioavailability and in vivo activities of polyphenols.
Collapse
|
50
|
Muñoz-González I, Jiménez-Girón A, Martín-Álvarez PJ, Bartolomé B, Moreno-Arribas MV. Profiling of microbial-derived phenolic metabolites in human feces after moderate red wine intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9470-9479. [PMID: 24010549 DOI: 10.1021/jf4025135] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A controlled and randomized trial study involving 41 healthy volunteers (33 intervention and 8 control subjects) was performed in order to establish changes in the microbial-derived phenolic metabolite profile of feces after moderate consumption of red wine (250 mL/day, 4 weeks). Out of the 35 phenolic metabolites identified, 10 compounds (mainly benzoic and 4-hydroxyvaleric acids) showed statistically significant increases (P < 0.05) after the wine intake. Also, the total phenolic metabolites content was significantly (P < 0.05) higher in the samples after the wine intake (625 ± 380 μg/g feces) in comparison to the samples before (358 ± 270 μg/g feces), and a tentative distribution of the volunteers into three groups could be established: <500, 500-1000, and >1000 μg/g feces. These results suggest that a different gut microbial capacity to metabolize wine polyphenols exists among the human population, as observed for polyphenols from other sources.
Collapse
Affiliation(s)
- Irene Muñoz-González
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC , c/Nicolás Cabrera 9, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|