1
|
Lu J, Gong Y, Gao Y, Yang Y, Zhang Y, Zhang Z, Shi X. Wolfberry, Yam, and Chrysanthemum polysaccharides increased intestinal Akkermansia muciniphila abundance and hepatic YAP1 expression to alleviate DILI. FASEB J 2023; 37:e23286. [PMID: 37950623 DOI: 10.1096/fj.202301388r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/13/2023]
Abstract
Drug-induced liver injury (DILI) is frequently induced by high dose of acetaminophen (APAP) and is concomitant with disturbances of gut flora. Akkermansia muciniphila is beneficial for the repair of liver injury. Lycium barbarum polysaccharide, yam polysaccharide, and chrysanthemum polysaccharide all have anti-inflammatory and antioxidation effects. The objective of this study is to investigate the potential of lycium barbarum polysaccharide, yam polysaccharide, and chrysanthemum polysaccharide (LYC) in improving DILI by increasing the abundance of A. muciniphila. Initially, screening for the optimal concentrations of wolfberry, yam, and chrysanthemum (WYC) or LYC to promote A. muciniphila proliferation in vitro and validated in antibiotic (ATB)-treated KM mice. Subsequently, APAP-induced DILI model in BALB/c mice were constructed to examine the treatment effects of LYC. Our findings indicate that the optimal concentration ratio of WYC was 2:3:2, and LYC was 1:1:1. WYC increased A. muciniphila proliferation in vitro and in ATB-treated mice under this ratio. Meanwhile, LYC increased A. muciniphila abundance in vitro and the combination LYC with A. muciniphila promoted the proliferation of A. muciniphila in ATB-treated mice. The overdose of APAP resulted in the impairment of the intestinal barrier function and subsequent leakage of lipopolysaccharide (LPS). Moreover, LYC increased A. muciniphila abundance, reduced intestinal inflammation and permeability, and upregulated the expression of the tight junction protein zonula occludens protein 1 (ZO-1) and occludin contents in the gut. Lastly, LYC inhibited LPS leakage and upregulated hepatic YAP1 expression, ultimately leading to the repair of DILI.
Collapse
Affiliation(s)
- Junlan Lu
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yi Gong
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuting Gao
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yanguang Yang
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuman Zhang
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
2
|
Bogea EG, Martins MLB, França AKTDC, da Silva AAM. Dietary Patterns, Nutritional Status and Inflammatory Biomarkers in Adolescents from the RPS Birth Cohort Consortium. Nutrients 2023; 15:4640. [PMID: 37960293 PMCID: PMC10648275 DOI: 10.3390/nu15214640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
This study aimed to identify the dietary patterns (DPs) of adolescents and assess indicators of subclinical inflammation. It was a cross-sectional study aligned with the RPS cohort with data from São Luís, Maranhão, Brazil. We evaluated 511 adolescents between 18-19 years old. DPs were identified with a factor analysis of the principal components. Nutritional status was assessed with body mass index and body fat percentages. Hierarchical modeling was performed using a linear regression to estimate the beta coefficient (β) of the independent variables with the dependent variables interleukin-6 and high-sensitivity C-reactive protein (hs-CRP). Five DPs were identified: energy-dense, sugar-sweetened beverages and breakfast cereals, prudent, traditional Brazilian and alcoholic and energy beverages. Greater adherence to the prudent DP was associated with a lower concentration of interleukin-6 (β = -0.11; p value = 0.040). Greater adherence to the DP "traditional Brazilian" and "alcoholic and energy beverages" were associated with increased IL-6, mediated by the nutritional status. A higher BMI (β = 0.36; p value = <0.001) and %BF (β = 0.02; p value = 0.014) were associated with higher hs-CRP concentrations. The nutritional status and "prudent" pattern were associated with inflammatory biomarkers. These findings show that a higher consumption of fresh and minimally processed foods and the adequacy of the nutritional status are protective factors for the inflammatory process.
Collapse
Affiliation(s)
- Eduarda Gomes Bogea
- Postgraduate Programme in Collective Health, Federal University of Maranhão, São Luís 65020-070, Brazil; (M.L.B.M.); (A.K.T.d.C.F.); (A.A.M.d.S.)
| | | | | | | |
Collapse
|
3
|
Li X, An S, Luo Z, Zhou P, Wang L, Feng R. Polysaccharides from the hard shells of Juglans regia L. modulate intestinal function and gut microbiota in vivo. Food Chem 2023; 412:135592. [PMID: 36736188 DOI: 10.1016/j.foodchem.2023.135592] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 12/25/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
This study aimed to investigate the modulatory effects of polysaccharides from the hard shells ofJuglans regiaL. (JRP) on intestinal function and gut microbiota of mice. The results showed that JRP could increase the colonic length and colonic index, and ameliorate the histological characteristics of colon. JRP had a positive effect on immunity of mice by improving immune organ indexes. Owing to enhancement of intestinal peristalsis and increase of colonic fecal moisture by JRP, the defecation time was significantly reduced. After gastrointestinal digestion and absorption, JRP was metabolized by intestinal microorganisms to produce short chain fatty acids, thereby lowering the pH of intestine. Through microbial community analysis, the composition of gut microbiota was modulated by JRPvia increasing theabundances of beneficial bacteriaand decreasing the richness of harmful bacteria. This study suggests that JRP can be served as an excellent prebiotic to promote intestinal health.
Collapse
Affiliation(s)
- Xiaoyu Li
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siying An
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhen Luo
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Peng Zhou
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Ru Feng
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| |
Collapse
|
4
|
Fuke N, Yamashita T, Shimizu S, Matsumoto M, Sawada K, Jung S, Tokuda I, Misawa M, Suzuki S, Ushida Y, Mikami T, Itoh K, Suganuma H. Association of Plasma Lipopolysaccharide-Binding Protein Concentration with Dietary Factors, Gut Microbiota, and Health Status in the Japanese General Adult Population: A Cross-Sectional Study. Metabolites 2023; 13:metabo13020250. [PMID: 36837869 PMCID: PMC9965710 DOI: 10.3390/metabo13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The influx of intestinal bacteria-derived lipopolysaccharide (LPS) into the blood has attracted attention as a cause of diseases. The aim of this study is investigating the associations between the influx of LPS, dietary factors, gut microbiota, and health status in the general adult population. Food/nutrient intake, gut microbiota, health status and plasma LPS-binding protein (LBP; LPS exposure indicator) were measured in 896 residents (58.1% female, mean age 54.7 years) of the rural Iwaki district of Japan, and each correlation was analyzed. As the results, plasma LBP concentration correlated with physical (right/left arms' muscle mass [β = -0.02, -0.03]), renal (plasma renin activity [β = 0.27], urine albumin creatinine ratio [β = 0.50]), adrenal cortical (cortisol [β = 0.14]), and thyroid function (free thyroxine [β = 0.05]), iron metabolism (serum iron [β = -0.14]), and markers of lifestyle-related diseases (all Qs < 0.20). Plasma LBP concentration were mainly negatively correlated with vegetables/their nutrients intake (all βs ≤ -0.004, Qs < 0.20). Plasma LBP concentration was positively correlated with the proportion of Prevotella (β = 0.32), Megamonas (β = 0.56), and Streptococcus (β = 0.65); and negatively correlated with Roseburia (β = -0.57) (all Qs < 0.20). Dietary factors correlated with plasma LBP concentration correlated with positively (all βs ≥ 0.07) or negatively (all βs ≤ -0.07) the proportion of these bacteria (all Qs < 0.20). Our results suggested that plasma LBP concentration in the Japanese general adult population was associated with various health issues, and that dietary habit was associated with plasma LBP concentration in relation to the intestinal bacteria.
Collapse
Affiliation(s)
- Nobuo Fuke
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Correspondence: ; Tel.: +81-80-1573-5815
| | - Takahiro Yamashita
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Sunao Shimizu
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mai Matsumoto
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Kaori Sawada
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Songee Jung
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Digital Nutrition and Health Sciences, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Itoyo Tokuda
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mina Misawa
- Center of Innovation Research Initiatives Organization, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Shigenori Suzuki
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Ken Itoh
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Hiroyuki Suganuma
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| |
Collapse
|
5
|
Herfindal AM, Rocha SDC, Papoutsis D, Bøhn SK, Carlsen H. The ROS-generating enzyme NADPH oxidase 1 modulates the colonic microbiota but offers minor protection against dextran sulfate sodium-induced low-grade colon inflammation in mice. Free Radic Biol Med 2022; 188:298-311. [PMID: 35752373 DOI: 10.1016/j.freeradbiomed.2022.06.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
The enzyme NADPH oxidase 1 (NOX1) is a major producer of superoxide which together with other reactive oxygen and nitrogen species (ROS/RNS) are implicated in maintaining a healthy epithelial barrier in the gut. While previous studies have indicated NOX1's involvement in microbial modulation in the small intestine, less is known about the effects of NOX1-dependent ROS/RNS formation in the colon. We investigated the role of NOX1 in the colon of NOX1 knockout (KO) and wild type (WT) mice, under mild and subclinical low-grade colon inflammation induced by 1% dextran sulfate sodium (DSS). Ex vivo imaging of ROS/RNS in the colon revealed that absence of NOX1 strongly decreased ROS/RNS production, particularly during DSS treatment. Furthermore, while absence of NOX1 did not affect disease activity, some markers of inflammation (mRNA: Tnfa, Il6, Ptgs2; protein: lipocalin 2) in the colonic mucosa tended to be higher in NOX1 KO than in WT mice following DSS treatment. Lack of NOX1 also extensively modulated the bacterial community in the colon (16S rRNA gene sequencing), where NOX1 KO mice were characterized mainly by lower α-diversity (richness and evenness), higher abundance of Firmicutes, Akkermansia, and Oscillibacter, and lower abundance of Bacteroidetes and Alistipes. Together, our data suggest that NOX1 is pivotal for colonic ROS/RNS production in mice both during steady-state (i.e., no DSS treatment) and during 1% DSS-induced low-grade inflammation and for modulation of the colonic microbiota, with potential beneficial consequences for intestinal health.
Collapse
Affiliation(s)
- Anne Mari Herfindal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| | - Sérgio Domingos Cardoso Rocha
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway; Faculty of Biosciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| | - Dimitrios Papoutsis
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| | - Siv Kjølsrud Bøhn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| |
Collapse
|
6
|
Kimble R, Gouinguenet P, Ashor A, Stewart C, Deighton K, Matu J, Griffiths A, Malcomson FC, Joel A, Houghton D, Stevenson E, Minihane AM, Siervo M, Shannon OM, Mathers JC. Effects of a mediterranean diet on the gut microbiota and microbial metabolites: A systematic review of randomized controlled trials and observational studies. Crit Rev Food Sci Nutr 2022; 63:8698-8719. [PMID: 35361035 DOI: 10.1080/10408398.2022.2057416] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumption of the Mediterranean dietary pattern (MedDiet) is associated with reduced risk of numerous non-communicable diseases. Modulation of the composition and metabolism of the gut microbiota represents a potential mechanism through which the MedDiet elicits these effects. We conducted a systematic literature search (Prospero registration: CRD42020168977) using PubMed, The Cochrane Library, MEDLINE, SPORTDiscuss, Scopus and CINAHL databases for randomized controlled trials (RCTs) and observational studies exploring the impact of a MedDiet on gut microbiota composition (i.e., relative abundance of bacteria or diversity metrics) and metabolites (e.g., short chain fatty acids). Seventeen RCTs and 17 observational studies were eligible for inclusion in this review. Risk of bias across the studies was mixed but mainly identified as low and unclear. Overall, RCTs and observational studies provided no clear evidence of a consistent effect of a MedDiet on composition or metabolism of the gut microbiota. These findings may be related to the diverse methods across studies (e.g., MedDiet classification and analytical techniques), cohort characteristics, and variable quality of studies. Further, well-designed studies are warranted to advance understanding of the potential effects of the MedDiet using more detailed examination of microbiota and microbial metabolites with reference to emerging characteristics of a healthy gut microbiome.
Collapse
Affiliation(s)
- Rachel Kimble
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Phebee Gouinguenet
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Nutrition & Food Sciences, University of Bordeaux, Bordeaux, France
| | - Ammar Ashor
- Department of Pharmacology, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Christopher Stewart
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Jamie Matu
- School of Clinical Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Alex Griffiths
- Institute for Sport, Physical Activity & Leisure, Leeds Beckett University, Leeds, UK
| | - Fiona C Malcomson
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Abraham Joel
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David Houghton
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emma Stevenson
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia (UEA), Norwich, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Oliver M Shannon
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Jung SY, Yu H, Pellegrini M, Papp JC, Sobel EM, Zhang ZF. Genetically determined elevated C-reactive protein associated with primary colorectal cancer risk: Mendelian randomization with lifestyle interactions. Am J Cancer Res 2021; 11:1733-1753. [PMID: 33948386 PMCID: PMC8085861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023] Open
Abstract
Systemic inflammation-related etiologic pathways via inflammatory cytokines in the development of colorectal cancer (CRC) have not been convincingly determined and may be confounded by lifestyle factors or reverse causality. We investigated the genetically predicted C-reactive protein (CRP) phenotype in the potential causal pathway of primary CRC risk in postmenopausal women in a Mendelian randomization (MR) framework. We employed individual-level data of the Women's Health Initiative Database for Genotypes and Phenotypes Study, which consists of 5 genome-wide association (GWA) studies, including 10,142 women, 737 of whom developed primary CRC. We examined 61 GWA single-nucleotide polymorphisms (SNPs) associated with CRP by using weighted/penalized MR weighted-medians and MR gene-environment interactions that allow some relaxation of the strict variable requirements and attenuate the heterogeneous estimates of outlying SNPs. In lifestyle-stratification analyses, genetically determined CRP exhibited its effects on the decreased CRC risk in non-viscerally obese and high-fat diet subgroups. In contrast, genetically driven CRP was associated with an increased risk for CRC in women who smoked ≥ 15 cigarettes/day, with significant interaction of the gene-smoking relationship. Further, a substantially increased risk of CRC induced by CRP was observed in relatively short-term users (< 5 years) of estrogen (E)-only and also longer-term users (5 to > 10 years) of E plus progestin. Our findings may provide novel evidence on immune-related etiologic pathways connected to CRC risk and suggest the possible use of CRP as a CRC-predictive biomarker in women with particular behaviors and CRP marker-informed interventions to reduce CRC risk.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of CaliforniaLos Angeles, CA 90095, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer CenterHonolulu, HI 96813, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of CaliforniaLos Angeles, CA 90095, USA
| | - Jeanette C Papp
- Department of Human Genetics, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA 90095, USA
| | - Eric M Sobel
- Department of Human Genetics, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA 90095, USA
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of CaliforniaLos Angeles, CA 90095, USA
- Center for Human Nutrition, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA 90095, USA
| |
Collapse
|
8
|
Gradisteanu Pircalabioru G, Corcionivoschi N, Gundogdu O, Chifiriuc MC, Marutescu LG, Ispas B, Savu O. Dysbiosis in the Development of Type I Diabetes and Associated Complications: From Mechanisms to Targeted Gut Microbes Manipulation Therapies. Int J Mol Sci 2021; 22:2763. [PMID: 33803255 PMCID: PMC7967220 DOI: 10.3390/ijms22052763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Globally, we are facing a worrying increase in type 1 diabetes mellitus (T1DM) incidence, with onset at younger age shedding light on the need to better understand the mechanisms of disease and step-up prevention. Given its implication in immune system development and regulation of metabolism, there is no surprise that the gut microbiota is a possible culprit behind T1DM pathogenesis. Additionally, microbiota manipulation by probiotics, prebiotics, dietary factors and microbiota transplantation can all modulate early host-microbiota interactions by enabling beneficial microbes with protective potential for individuals with T1DM or at high risk of developing T1DM. In this review, we discuss the challenges and perspectives of translating microbiome data into clinical practice. Nevertheless, this progress will only be possible if we focus our interest on developing numerous longitudinal, multicenter, interventional and double-blind randomized clinical trials to confirm their efficacy and safety of these therapeutic approaches.
Collapse
Affiliation(s)
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK;
| | - Ozan Gundogdu
- Faculty of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK;
| | - Mariana-Carmen Chifiriuc
- Research Institute of University of Bucharest (ICUB), 300645 Bucharest, Romania; (G.G.P.); (L.G.M.); (B.I.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | | | - Bogdan Ispas
- Research Institute of University of Bucharest (ICUB), 300645 Bucharest, Romania; (G.G.P.); (L.G.M.); (B.I.)
| | - Octavian Savu
- “N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 2nd District, 020042 Bucharest, Romania;
- Department of Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 5th District, 050474 Bucharest, Romania
| |
Collapse
|
9
|
Kessoku T, Kobayashi T, Imajo K, Tanaka K, Yamamoto A, Takahashi K, Kasai Y, Ozaki A, Iwaki M, Nogami A, Honda Y, Ogawa Y, Kato S, Higurashi T, Hosono K, Yoneda M, Okamoto T, Usuda H, Wada K, Kobayashi N, Saito S, Nakajima A. Endotoxins and Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2021; 12:770986. [PMID: 34777261 PMCID: PMC8586459 DOI: 10.3389/fendo.2021.770986] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. It occurs with a prevalence of up to 25%, of which 10-20% cases progress to nonalcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. The histopathology of NASH is characterized by neutrophilic infiltration, and endotoxins from gram-negative rods have been postulated as a contributing factor. Elevations in endotoxin levels in the blood can be classified as intestinal and hepatic factors. In recent years, leaky gut syndrome, which is characterized by impaired intestinal barrier function, has become a significant issue. A leaky gut may prompt intestinal bacteria dysbiosis and increase the amount of endotoxin that enters the liver from the portal vein. These contribute to persistent chronic inflammation and progressive liver damage. In addition, hepatic factors suggest that liver damage can be induced by low-dose endotoxins, which does not occur in healthy individuals. In particular, increased expression of CD14, an endotoxin co-receptor in the liver, may result in leptin-induced endotoxin hyper-responsiveness in obese individuals. Thus, elevated blood endotoxin levels contribute to the progression of NASH. The current therapeutic targets for NASH treat steatosis and liver inflammation and fibrosis. While many clinical trials are underway, no studies have been performed on therapeutic agents that target the intestinal barrier. Recently, a randomized placebo-controlled trial examined the role of the intestinal barrier in patients with NAFLD. To our knowledge, this study was the first of its kind and study suggested that the intestinal barrier may be a novel target in the future treatment of NAFLD.
Collapse
Affiliation(s)
- Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan
- *Correspondence: Takaomi Kessoku,
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kosuke Tanaka
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Yamamoto
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Takahashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Kasai
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna Ozaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shingo Kato
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kunihiro Hosono
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takayuki Okamoto
- Department of Pharmacology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Noritoshi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Oncology, Yokohama City University Hospital, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
10
|
Ferro D, Baratta F, Pastori D, Cocomello N, Colantoni A, Angelico F, Del Ben M. New Insights into the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Gut-Derived Lipopolysaccharides and Oxidative Stress. Nutrients 2020; 12:nu12092762. [PMID: 32927776 PMCID: PMC7551294 DOI: 10.3390/nu12092762] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. The intricate NAFLD pathogenesis is summarized by the multiple-hits hypothesis, which combines all the environmental and genetic factors that promote the development of NAFLD into a single scenario. Among these, bacterial lipopolysaccharides (LPS) are derived from the overgrowth of Gram-negative bacteria and translocated mainly as a consequence of enhanced intestinal permeability. Furthermore, oxidative stress is increased in NAFLD as a consequence of reactive oxygen species (ROS) overproduction and a shortage of endogenous antioxidant molecules, and it is promoted by the interaction between LPS and the Toll-like receptor 4 system. Interestingly, oxidative stress, which has previously been described as being overexpressed in cardiovascular disease, could represent the link between LPS and the increased cardiovascular risk in NAFLD subjects. To date, the only effective strategy for the treatment of NAFLD and non-alcoholic steatohepatitis (NASH) is the loss of at least 5% body weight in overweight and/or obese subjects. However, the dose-dependent effects of multispecies probiotic supplementation on the serum LPS level and cardiometabolic profile in obese postmenopausal women were demonstrated. In addition, many antibiotics have regulatory effects on intestinal microbiota and were able to reduce serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and tumor necrosis factor alpha (TNF-α) in NASH animal models. Regarding the oxidant status, a Mediterranean diet has been reported to reduce oxidant stress, while vitamin E at high daily dosages induced the resolution of NASH in 36% of treated patients. Silymarin had the positive effect of reducing transaminase levels in NAFLD patients and long-term treatment may also decrease fibrosis and slow liver disease progression in NASH. Finally, the influence of nutraceuticals on gut microbiota and oxidant stress in NAFLD patients has not yet been well elucidated and there are insufficient data either to support or refuse their use in these subjects.
Collapse
Affiliation(s)
- Domenico Ferro
- I Clinica Medica, Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.F.); (D.P.); (N.C.); (A.C.); (M.D.B.)
| | - Francesco Baratta
- I Clinica Medica, Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.F.); (D.P.); (N.C.); (A.C.); (M.D.B.)
- Correspondence: ; Tel.: +39-0649972249
| | - Daniele Pastori
- I Clinica Medica, Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.F.); (D.P.); (N.C.); (A.C.); (M.D.B.)
| | - Nicholas Cocomello
- I Clinica Medica, Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.F.); (D.P.); (N.C.); (A.C.); (M.D.B.)
| | - Alessandra Colantoni
- I Clinica Medica, Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.F.); (D.P.); (N.C.); (A.C.); (M.D.B.)
| | - Francesco Angelico
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Del Ben
- I Clinica Medica, Department of Clinical, Internal, Anesthetic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (D.F.); (D.P.); (N.C.); (A.C.); (M.D.B.)
| |
Collapse
|
11
|
Laugerette F, Vors C, Alligier M, Pineau G, Drai J, Knibbe C, Morio B, Lambert-Porcheron S, Laville M, Vidal H, Michalski MC. Postprandial Endotoxin Transporters LBP and sCD14 Differ in Obese vs. Overweight and Normal Weight Men during Fat-Rich Meal Digestion. Nutrients 2020; 12:nu12061820. [PMID: 32570947 PMCID: PMC7353369 DOI: 10.3390/nu12061820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Circulating levels of lipopolysaccharide-binding protein (LBP) and soluble cluster of differentiation 14 (sCD14) are recognized as clinical markers of endotoxemia. In obese men, postprandial endotoxemia is modulated by the amount of fat ingested, being higher compared to normal-weight (NW) subjects. Relative variations of LBP/sCD14 ratio in response to overfeeding are also considered important in the inflammation set-up, as measured through IL-6 concentration. We tested the hypothesis that postprandial LBP and sCD14 circulating concentrations differed in obese vs. overweight and NW men after a fat-rich meal. We thus analyzed the postprandial kinetics of LBP and sCD14 in the context of two clinical trials involving postprandial tests in normal-, over-weight and obese men. In the first clinical trial eight NW and 8 obese men ingested breakfasts containing 10 vs. 40 g of fat. In the second clinical trial, 18 healthy men were overfed during 8 weeks. sCD14, LBP and Il-6 were measured in all subjects during 5 h after test meal. Obese men presented a higher fasting and postprandial LBP concentration in plasma than NW men regardless of fat load, while postprandial sCD14 was similar in both groups. Irrespective of the overfeeding treatment, we observed postprandial increase of sCD14 and decrease of LBP before and after OF. In obese individuals receiving a 10 g fat load, whereas IL-6 increased 5h after meal, LBP and sCD14 did not increase. No direct association between the postprandial kinetics of endotoxemia markers sCD14 and LBP and of inflammation in obese men was observed in this study.
Collapse
Affiliation(s)
- Fabienne Laugerette
- Univ Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France; (C.V.); (M.A.); (G.P.); (J.D.); (C.K.); (B.M.); (M.L.); (H.V.); (M.-C.M.)
- Correspondence: ; Tel.: +33-4-26-23-61-74
| | - Cécile Vors
- Univ Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France; (C.V.); (M.A.); (G.P.); (J.D.); (C.K.); (B.M.); (M.L.); (H.V.); (M.-C.M.)
| | - Maud Alligier
- Univ Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France; (C.V.); (M.A.); (G.P.); (J.D.); (C.K.); (B.M.); (M.L.); (H.V.); (M.-C.M.)
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310 Pierre-Bénite, France;
| | - Gaëlle Pineau
- Univ Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France; (C.V.); (M.A.); (G.P.); (J.D.); (C.K.); (B.M.); (M.L.); (H.V.); (M.-C.M.)
| | - Jocelyne Drai
- Univ Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France; (C.V.); (M.A.); (G.P.); (J.D.); (C.K.); (B.M.); (M.L.); (H.V.); (M.-C.M.)
- Laboratoire de Biochimie, Centre Hospitalier Lyon Sud, 69600 Oullins, France
| | - Carole Knibbe
- Univ Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France; (C.V.); (M.A.); (G.P.); (J.D.); (C.K.); (B.M.); (M.L.); (H.V.); (M.-C.M.)
| | - Béatrice Morio
- Univ Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France; (C.V.); (M.A.); (G.P.); (J.D.); (C.K.); (B.M.); (M.L.); (H.V.); (M.-C.M.)
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310 Pierre-Bénite, France;
| | - Stéphanie Lambert-Porcheron
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310 Pierre-Bénite, France;
- Hospices Civils de Lyon, 69000 Lyon, France
| | - Martine Laville
- Univ Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France; (C.V.); (M.A.); (G.P.); (J.D.); (C.K.); (B.M.); (M.L.); (H.V.); (M.-C.M.)
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310 Pierre-Bénite, France;
- Hospices Civils de Lyon, 69000 Lyon, France
| | - Hubert Vidal
- Univ Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France; (C.V.); (M.A.); (G.P.); (J.D.); (C.K.); (B.M.); (M.L.); (H.V.); (M.-C.M.)
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310 Pierre-Bénite, France;
- Hospices Civils de Lyon, 69000 Lyon, France
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN Laboratory, INRAE, UMR1397, INSERM, UMR1060, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France; (C.V.); (M.A.); (G.P.); (J.D.); (C.K.); (B.M.); (M.L.); (H.V.); (M.-C.M.)
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310 Pierre-Bénite, France;
| |
Collapse
|
12
|
Abstract
The gut microbiota has been implicated in the pathogenesis and progression of kidney disease. However, little is known about the gut microbiota in hemodialysis (HD) patients. We assessed the gut microbiota and its relationship with clinical variables in ten HD patients. We found that the Firmicutes-to-Bacteroidetes ratio was positively associated with traditional risk factors for cardiovascular disease. Furthermore, Faecalibacterium was positively associated with carbohydrate intake and negatively associated with arterial stiffness. Finally, endotoxemia was inversely associated with butyrate producers. Future studies should assess if targeting the gut microbiota result in a lower burden for cardiovascular disease in HD patients.
Collapse
|
13
|
Djuric Z, Bassis CM, Plegue MA, Sen A, Turgeon DK, Herman K, Young VB, Brenner DE, Ruffin MT. Increases in Colonic Bacterial Diversity after ω-3 Fatty Acid Supplementation Predict Decreased Colonic Prostaglandin E2 Concentrations in Healthy Adults. J Nutr 2019; 149:1170-1179. [PMID: 31051496 PMCID: PMC6602899 DOI: 10.1093/jn/nxy255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The intestinal microbiome is an important determinant of inflammatory balance in the colon that may affect response to dietary agents. OBJECTIVE This is a secondary analysis of a clinical trial, the Fish Oil Study, to determine whether interindividual differences in colonic bacteria are associated with variability in the reduction of colonic prostaglandin E2 (PGE2) concentrations after personalized supplementation with ω-3 (n-3) fatty acids. METHODS Forty-seven healthy adults (17 men, 30 women, ages 26-75 y) provided biopsy samples of colonic mucosa and luminal stool brushings before and after personalized ω-3 fatty acid supplementation that was based on blood fatty acid responses. Samples were analyzed using 16S ribosomal RNA sequencing. The data analyses focused on changes in bacterial community diversity. Linear regression was used to evaluate factors that predict a reduction in colonic PGE2. RESULTS At baseline, increased bacterial diversity, as measured by the Shannon and Inverse Simpson indexes in both biopsy and luminal brushing samples, was positively correlated with dietary fiber intakes and negatively correlated with fat intakes. Dietary supplementation with ω-3 fatty acids increased the Yue and Clayton community dis-similarity index between the microbiome in luminal brushings and colon biopsy samples post-supplementation (P = 0.015). In addition, there was a small group of individuals with relatively high Prevotella abundance who were resistant to the anti-inflammatory effects of ω-3 fatty acid supplementation. In linear regression analyses, increases in diversity of the bacteria in the luminal brushing samples, but not in the biopsy samples, were significant predictors of lower colonic PGE2 concentrations post-supplementation in models that included baseline PGE2, baseline body mass index, and changes in colonic eicosapentaenoic acid-to-arachidonic acid ratios. The changes in bacterial diversity contributed to 6-8% of the interindividual variance in change in colonic PGE2 (P = 0.001). CONCLUSIONS Dietary supplementation with ω-3 fatty acids had little effect on intestinal bacteria in healthy humans; however, an increase in diversity in the luminal brushings significantly predicted reductions in colonic PGE2. This trial was registered at www.clinicaltrials.gov as NCT01860352.
Collapse
Affiliation(s)
- Zora Djuric
- Departments of Family Medicine
- Nutritional Sciences
| | | | | | - Ananda Sen
- Departments of Family Medicine
- Biostatistics
| | | | | | | | - Dean E Brenner
- Internal Medicine
- Pharmacology, University of Michigan, Ann Arbor, MI
| | - Mack T Ruffin
- Family and Community Medicine, Penn State Health, Milton S Hershey Medical Center, Hershey, PA
| |
Collapse
|
14
|
Effects of dietary intervention and n-3 PUFA supplementation on markers of gut-related inflammation and their association with cardiovascular events in a high-risk population. Atherosclerosis 2019; 286:53-59. [PMID: 31100620 DOI: 10.1016/j.atherosclerosis.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/16/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Dysbiosis of the gut microbiota is associated with increased levels of circulating lipopolysaccharide (LPS) and subsequent activation of systemic inflammation. Diet is an important modulator of the gut microbiome. We aimed to investigate whether circulating markers of gut-related inflammation, LPS binding protein (LBP) and soluble CD14 (sCD14) can be modulated by n-3 PUFA supplementation and/or diet counselling, and whether these markers are related to cardiovascular (CV) outcome. METHODS 484 men aged 65-75 years, at high CV-risk, were included and randomized in a 2 × 2 factorial design to 36-month intervention with dietary counselling, n-3 PUFA supplementation, or both. N-3 PUFA supplementation was placebo-controlled. ELISAs were used for determination of the biomarkers measured at baseline and study-end. A composite endpoint was defined as new CV-events and CV-mortality after 36 months. RESULTS There were no significant differences in changes of either LBP or sCD14 in the intervention groups compared to their respective controls (n-3 PUFA vs. placebo: p = 0.58, p = 0.15, diet vs. no-diet: p = 0.53, p = 0.59, respectively). The group with LBP levels above median had about 2-fold unadjusted risk of suffering an endpoint compared to the group below (HR 2.22, 95% CI 1.25-3.96; p = 0.01). A similar tendency was seen for sCD14 (HR 1.72, 95% CI 0.97-3.03; p = 0.06). After adjusting for covariates, LBP remained significantly associated with a two-fold CV-risk, whereas sCD14 gained statistical significance, however, lost when hsCRP was added to the model. CONCLUSIONS In our population, markers of gut-related inflammation associated with 36-month CV outcome. However, neither n-3 PUFA nor diet intervention had an effect on these markers.
Collapse
|
15
|
Griffin LE, Djuric Z, Angiletta CJ, Mitchell CM, Baugh ME, Davy KP, Neilson AP. A Mediterranean diet does not alter plasma trimethylamine N-oxide concentrations in healthy adults at risk for colon cancer. Food Funct 2019; 10:2138-2147. [PMID: 30938383 PMCID: PMC6552673 DOI: 10.1039/c9fo00333a] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An elevated circulating level of trimethylamine N-oxide (TMAO) has been identified as a risk factor for numerous diseases, including cardiovascular disease (CVD) and colon cancer. TMAO is formed from trimethylamine (TMA)-precursors such as choline via the combined action of the gut microbiota and liver. We conducted a Mediterranean diet intervention that increased intakes of fiber and changed intakes of many other foods containing fat to increase the relative amount of mono-unsaturated fats in the diet. The Mediterranean diet is associated with reduced risks of chronic diseases and might counteract the pro-inflammatory effects of increased TMAO formation. Therefore, the purpose of this study was to determine if the Mediterranean diet would reduce TMAO concentrations. Fasting TMAO concentrations were measured before and after six-months of dietary intervention in 115 healthy people at increased risk for colon cancer. No significant changes in plasma TMAO or in the ratios of TMAO to precursor compounds were found in either the Mediterranean group or the comparison group that followed a Healthy Eating diet. TMAO concentrations exhibited positive correlations with age and markers of metabolic health. TMAO concentrations were not associated with circulating cytokines, but the relative abundance of Akkermansia mucinophilia in colon biopsies was modestly and inversely correlated with baseline TMAO, choline, and betaine serum concentrations. These results suggest that broad dietary pattern intervention over six months may not be sufficient for reducing TMAO concentrations in an otherwise healthy population. Disruption of the conversion of dietary TMA to TMAO should be the focus of future studies.
Collapse
Affiliation(s)
- Laura E Griffin
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA.
| | - Zora Djuric
- Departments of Family Medicine and Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Chris J Angiletta
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Cassie M Mitchell
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Mary E Baugh
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Kevin P Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Andrew P Neilson
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Telle-Hansen VH, Holven KB, Ulven SM. Impact of a Healthy Dietary Pattern on Gut Microbiota and Systemic Inflammation in Humans. Nutrients 2018; 10:E1783. [PMID: 30453534 PMCID: PMC6267105 DOI: 10.3390/nu10111783] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota have recently been suggested to play a part in low-grade systemic inflammation, which is considered a key risk factor for cardiometabolic disorders. Diet is known to affect gut microbiota; however, the effects of diet and dietary components on gut microbiota and inflammation are not fully understood. In the present review, we summarize recent research on human dietary intervention studies, investigating the effects of healthy diets or dietary components on gut microbiota and systemic inflammation. We included 18 studies that reported how different dietary components altered gut microbiota composition, short-chain fatty acid levels, and/or inflammatory markers. However, the heterogeneity among the intervention studies makes it difficult to conclude whether diets or dietary components affect gut microbiota homeostasis and inflammation. More appropriately designed studies are needed to better understand the effects of diet on the gut microbiota, systemic inflammation, and risk of cardiometabolic disorders.
Collapse
Affiliation(s)
- Vibeke H Telle-Hansen
- Faculty of Health Sciences, Oslo Metropolitan University, P.O. Box 4, St. Olavsplass, 0130 Oslo, Norway.
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway.
- National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Rikshospitalet, P.O. Box 4950, Nydalen, 0424 Oslo, Norway.
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway.
| |
Collapse
|
17
|
Ducatelle R, Goossens E, De Meyer F, Eeckhaut V, Antonissen G, Haesebrouck F, Van Immerseel F. Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Vet Res 2018; 49:43. [PMID: 29739469 PMCID: PMC5941335 DOI: 10.1186/s13567-018-0538-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
Intestinal health is determined by host (immunity, mucosal barrier), nutritional, microbial and environmental factors. Deficiencies in intestinal health are associated with shifts in the composition of the intestinal microbiome (dysbiosis), leakage of the mucosal barrier and/or inflammation. Since the ban on growth promoting antimicrobials in animal feed, these dysbiosis-related problems have become a major issue, especially in intensive animal farming. The economical and animal welfare consequences are considerable. Consequently, there is a need for continuous monitoring of the intestinal health status, particularly in intensively reared animals, where the intestinal function is often pushed to the limit. In the current review, the recent advances in the field of intestinal health biomarkers, both in human and veterinary medicine are discussed, trying to identify present and future markers of intestinal health in poultry. The most promising new biomarkers will be stable molecules ending up in the feces and litter that can be quantified, preferably using rapid and simple pen-side tests. It is unlikely, however, that a single biomarker will be sufficient to follow up all aspects of intestinal health. Combinations of multiple biomarkers and/or metabarcoding, metagenomic, metatranscriptomic, metaproteomic and metabolomic approaches will be the way to go in the future. Candidate biomarkers currently are being investigated by many research groups, but the validation will be a major challenge, due to the complexity of intestinal health in the field.
Collapse
Affiliation(s)
- Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Evy Goossens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Fien De Meyer
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Venessa Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Gunther Antonissen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.,Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
18
|
Christensen R, Heitmann BL, Andersen KW, Nielsen OH, Sørensen SB, Jawhara M, Bygum A, Hvid L, Grauslund J, Wied J, Glerup H, Fredberg U, Villadsen JA, Kjær SG, Fallingborg J, Moghadd SAGR, Knudsen T, Brodersen J, Frøjk J, Dahlerup JF, Bojesen AB, Sorensen GL, Thiel S, Færgeman NJ, Brandslund I, Bennike TB, Stensballe A, Schmidt EB, Franke A, Ellinghaus D, Rosenstiel P, Raes J, Boye M, Werner L, Nielsen CL, Munk HL, Nexøe AB, Ellingsen T, Holmskov U, Kjeldsen J, Andersen V. Impact of red and processed meat and fibre intake on treatment outcomes among patients with chronic inflammatory diseases: protocol for a prospective cohort study of prognostic factors and personalised medicine. BMJ Open 2018; 8:e018166. [PMID: 29439003 PMCID: PMC5829767 DOI: 10.1136/bmjopen-2017-018166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Chronic inflammatory diseases (CIDs) are frequently treated with biological medications, specifically tumour necrosis factor inhibitors (TNFi)). These medications inhibit the pro-inflammatory molecule TNF alpha, which has been strongly implicated in the aetiology of these diseases. Up to one-third of patients do not, however, respond to biologics, and lifestyle factors are assumed to affect treatment outcomes. Little is known about the effects of dietary lifestyle as a prognostic factor that may enable personalised medicine. The primary outcome of this multidisciplinary collaborative study will be to identify dietary lifestyle factors that support optimal treatment outcomes. METHODS AND ANALYSIS This prospective cohort study will enrol 320 patients with CID who are prescribed a TNFi between June 2017 and March 2019. Included among the patients with CID will be patients with inflammatory bowel disease (Crohn's disease and ulcerative colitis), rheumatic disorders (rheumatoid arthritis, axial spondyloarthritis, psoriatic arthritis), inflammatory skin diseases (psoriasis, hidradenitis suppurativa) and non-infectious uveitis. At baseline (pretreatment), patient characteristics will be assessed using patient-reported outcome measures, clinical assessments of disease activity, quality of life and lifestyle, in addition to registry data on comorbidity and concomitant medication(s). In accordance with current Danish standards, follow-up will be conducted 14-16 weeks after treatment initiation. For each disease, evaluation of successful treatment response will be based on established primary and secondary endpoints, including disease-specific core outcome sets. The major outcome of the analyses will be to detect variability in treatment effectiveness between patients with different lifestyle characteristics. ETHICS AND DISSEMINATION The principle goal of this project is to improve the quality of life of patients suffering from CID by providing evidence to support dietary and other lifestyle recommendations that may improve clinical outcomes. The study is approved by the Ethics Committee (S-20160124) and the Danish Data Protecting Agency (2008-58-035). Study findings will be disseminated through peer-reviewed journals, patient associations and presentations at international conferences. TRIAL REGISTRATION NUMBER NCT03173144; Pre-results.
Collapse
Affiliation(s)
- Robin Christensen
- Musculoskeletal Statistics Unit, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Denmark
| | - Berit L Heitmann
- Research Unit for Dietary Studies, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Denmark
- Section for General Medicine, Department of Public Health, University of Copenhagen, Denmark
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Karina Winther Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
- Organ Centre, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology D112, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Signe Bek Sørensen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mohamad Jawhara
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
- Organ Centre, Hospital of Southern Jutland, Aabenraa, Denmark
- institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Anette Bygum
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Lone Hvid
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Jakob Grauslund
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
| | - Jimmi Wied
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
| | - Henning Glerup
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Ulrich Fredberg
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | | | - Søren Geill Kjær
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Jan Fallingborg
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Seyed A G R Moghadd
- Department of Internal Medicine, Herning Regional Hospital, Herning, Denmark
| | - Torben Knudsen
- Department of Gastroenterology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | - Jacob Brodersen
- Department of Gastroenterology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | - Jesper Frøjk
- Department of Gastroenterology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Bo Bojesen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ivan Brandslund
- institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Erik Berg Schmidt
- Department of Cardiology, Aalborg University Hospital, Ålborg, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jeroen Raes
- Departmentof Microbiology and Immunology, Rega Institute, KU Leuven—University of Leuven, Leuven, Belgium
- VIB, Center for the Biology of Disease, Leuven, Belgium
| | - Mette Boye
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Lars Werner
- The Danish Psoriasis Association, The Danish Psoriasis Association, Tåstrup, Denmark
| | | | - Heidi Lausten Munk
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | | | - Torkell Ellingsen
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Uffe Holmskov
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jens Kjeldsen
- Department of Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Vibeke Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- OPEN, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Djuric Z, Bassis CM, Plegue MA, Ren J, Chan R, Sidahmed E, Turgeon DK, Ruffin MT, Kato I, Sen A. Colonic Mucosal Bacteria Are Associated with Inter-Individual Variability in Serum Carotenoid Concentrations. J Acad Nutr Diet 2017; 118:606-616.e3. [PMID: 29274690 DOI: 10.1016/j.jand.2017.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Relatively high serum carotenoid levels are associated with reduced risks of chronic diseases, but inter-individual variability in serum carotenoid concentrations is modestly explained by diet. The bacterial community in the colon could contribute to the bioaccessibility of carotenoids by completing digestion of plant cells walls and by modulating intestinal permeability. OBJECTIVE To evaluate whether colonic bacterial composition is associated with serum and colon carotenoid concentrations. DESIGN The study was a randomized dietary intervention trial in healthy individuals who were at increased risk of colon cancer. Colon mucosal biopsy samples were obtained before and after 6 months of intervention without prior preparation of the bowels. PARTICIPANTS/SETTING Participants were recruited from Ann Arbor, MI, and nearby areas from July 2007 to November 2010. Biopsy data were available from 88 participants at baseline and 82 participants after 6 months. METHODS Study participants were randomized to counseling for either a Mediterranean diet or a Healthy Eating diet for 6 months. RESULTS At baseline, bacterial communities in biopsy samples from study participants in the highest vs the lowest tertile of total serum carotenoid levels differed by several parameters. Linear discriminant analysis effect size identified 11 operational taxonomic units that were significantly associated with higher serum carotenoid levels. In linear regression analyses, three of these accounted for an additional 12% of the variance in serum total carotenoid concentrations after including body mass index, smoking, and dietary intakes in the model. These factors together explained 36% of the inter-individual variance in serum total carotenoid concentrations. The bacterial community in the colonic mucosa, however, was resistant to change after dietary intervention with either a Mediterranean diet or Healthy Eating diet, each of which doubled fruit and vegetable intakes. CONCLUSIONS The colonic mucosal bacterial community was associated with serum carotenoid concentrations at baseline but was not appreciably changed by dietary intervention.
Collapse
|
20
|
Dietary patterns reflecting healthy food choices are associated with lower serum LPS activity. Sci Rep 2017; 7:6511. [PMID: 28747701 PMCID: PMC5529547 DOI: 10.1038/s41598-017-06885-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Gram-negative bacteria-derived lipopolysaccharides (LPS) are associated with various negative health effects. Whether diet is associated with LPS, is an understudied phenomenon. We investigated the association between diet and serum LPS activity in 668 individuals with type 1 diabetes in the FinnDiane Study. Serum LPS activity was determined using the Limulus Amoebocyte Lysate assay. Diet was assessed with a food frequency questionnaire (FFQ) section of a diet questionnaire and a food record. The food record was used to calculate energy, macronutrient, and fibre intake. In a multivariable model, energy, macronutrient, or fibre intake was not associated with the LPS activity. Using factor analysis, we identified seven dietary patterns from the FFQ data (“Sweet”, “Cheese”, “Fish”, “Healthy snack”, “Vegetable”, “Traditional”, and “Modern”). In a multivariable model, higher factor scores of the Fish, Healthy snack, and Modern patterns predicted lower LPS activity. The validity of the diet questionnaire was also investigated. The questionnaire showed reasonable relative validity against a 6-day food record. The two methods classified participants into the dietary patterns better than expected by chance. In conclusion, healthy dietary choices, such as consumption of fish, fresh vegetables, and fruits and berries may be associated with positive health outcomes by reducing systemic endotoxaemia.
Collapse
|
21
|
Nien HC, Hsu SJ, Su TH, Yang PJ, Sheu JC, Wang JT, Chow LP, Chen CL, Kao JH, Yang WS. High Serum Lipopolysaccharide-Binding Protein Level in Chronic Hepatitis C Viral Infection Is Reduced by Anti-Viral Treatments. PLoS One 2017; 12:e0170028. [PMID: 28107471 PMCID: PMC5249206 DOI: 10.1371/journal.pone.0170028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/26/2016] [Indexed: 12/22/2022] Open
Abstract
Background Lipopolysaccharide-binding protein (LBP) has been reported to associate with metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease. Since chronic hepatitis C virus (HCV) infection is associated with metabolic derangements, the relationship between LBP and HCV deserves additional studies. This study aimed to determine the serum LBP level in subjects with or without HCV infection and investigate the change of its level after anti-viral treatments with or without interferon. Methods and Findings We recruited 120 non-HCV subjects, 42 and 17 HCV-infected subjects respectively treated with peginterferon α-2a/ribavirin and direct-acting antiviral drugs. Basic information, clinical data, serum LBP level and abdominal ultrasonography were collected. All the subjects provided written informed consent before being enrolled approved by the Research Ethics Committee of the National Taiwan University Hospital. Serum LBP level was significantly higher in HCV-infected subjects than non-HCV subjects (31.0 ± 8.8 versus 20.0 ± 6.4 μg/mL; p-value < 0.001). After multivariate analyses, LBP at baseline was independently associated with body mass index, hemoglobin A1c, alanine aminotransferase (ALT) and HCV infection. Moreover, the baseline LBP was only significantly positively associated with ALT and inversely with fatty liver in HCV-infected subjects. The LBP level significantly decreased at sustained virologic response (27.4 ± 6.6 versus 34.6 ± 7.3 μg/mL, p-value < 0.001; 15.9 ± 4.4 versus 22.2 ± 5.7 μg/mL, p-value = 0.001), regardless of interferon-based or -free therapy. Conclusions LBP, an endotoxemia associated protein might be used as an inflammatory biomarker of both infectious and non-infectious origins in HCV-infected subjects.
Collapse
Affiliation(s)
- Hsiao-Ching Nien
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Jer Hsu
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Tung-Hung Su
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Jen Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (WSY); (JHK)
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (WSY); (JHK)
| |
Collapse
|
22
|
Djuric Z. Obesity-associated cancer risk: the role of intestinal microbiota in the etiology of the host proinflammatory state. Transl Res 2017; 179:155-167. [PMID: 27522986 PMCID: PMC5164980 DOI: 10.1016/j.trsl.2016.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/10/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023]
Abstract
Obesity increases the risks of many cancers. One important mechanism behind this association is the obesity-associated proinflammatory state. Although the composition of the intestinal microbiome undoubtedly can contribute to the proinflammatory state, perhaps the most important aspect of host-microbiome interactions is host exposure to components of intestinal bacteria that stimulate inflammatory reactions. Systemic exposures to intestinal bacteria can be modulated by dietary factors through altering both the composition of the intestinal microbiota and the absorption of bacterial products from the intestinal lumen. In particular, high-fat and high-energy diets have been shown to facilitate absorption of bacterial lipopolysaccharide (LPS) from intestinal bacteria. Biomarkers of bacterial exposures that have been measured in blood include LPS-binding protein, sCD14, fatty acids characteristic of intestinal bacteria, and immunoglobulins specific for bacterial LPS and flagellin. The optimal strategies to reduce these proinflammatory exposures, whether by altering diet composition, avoiding a positive energy balance, or reducing adipose stores, likely differ in each individual. Biomarkers that assess systemic bacterial exposures therefore should be useful to (1) optimize and personalize preventive approaches for individuals and groups with specific characteristics and to (2) gain insight into the possible mechanisms involved with different preventive approaches.
Collapse
Affiliation(s)
- Zora Djuric
- Department of Family Medicine, University of Michigan, Ann Arbor, Mich; Department of Nutritional Sciences, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|