1
|
Chero-Sandoval L, Higuera-Gómez A, Martínez-Urbistondo M, Castejón R, Mellor-Pita S, Moreno-Torres V, de Luis D, Cuevas-Sierra A, Martínez JA. Comparative assessment of phenotypic markers in patients with chronic inflammation: Differences on Bifidobacterium concerning liver status. Eur J Clin Invest 2024:e14339. [PMID: 39468772 DOI: 10.1111/eci.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The relationship between systemic lupus erythematosus (SLE) and low-grade metabolic inflammation (MI) with the microbiota is crucial for understanding the pathogenesis of these diseases and developing effective therapeutic interventions. In this context, it has been observed that the gut microbiota plays a key role in the immune regulation and inflammation contributing to the exacerbation through inflammatory mediators. This research aimed to describe similarities/differences in anthropometric, biochemical, inflammatory, and hepatic markers as well as to examine the putative role of gut microbiota concerning two inflammatory conditions: SLE and MI. METHODS Data were obtained from a cohort comprising adults with SLE and MI. Faecal samples were determined by 16S technique. Statistical analyses compared anthropometric and clinical variables, and LEfSe and MetagenomeSeq were used for metagenomic data. An interaction analysis was fitted to investigate associations of microbiota with fatty liver index (FLI) depending on the inflammatory condition. RESULTS Participants with low-grade MI showed worse values in anthropometry and biochemicals compared with patients with SLE. The liver profile of patients with MI was unhealthier, while no relevant differences were found in most of the inflammatory markers between groups. LEfSe analysis revealed an overrepresentation of Bifidobacteriaceae family in SLE group. An interactive association between gut Bifidobacterium abundance and type of disease was identified for FLI values, suggesting an effect modification of the gut microbiota concerning liver markers depending on the inflammatory condition. CONCLUSION This study found phenotypical and microbial similarities and disparities between these two inflammatory conditions, evidenced in clinical and hepatic markers, and showed the interactive interplay between gut Bifidobacterium and liver health (measured by FLI) that occur in a different manner depending on the type of inflammatory disease. These results underscore the importance of personalized approaches and individual microbiota in the screening of different inflammatory situations, considering unique hepatic and microbiota profiles.
Collapse
Affiliation(s)
- Lourdes Chero-Sandoval
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
- Department of Endocrinology and Nutrition, University Clinical Hospital, University of Valladolid, Valladolid, Spain
| | - Andrea Higuera-Gómez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
| | | | - Raquel Castejón
- Internal Medicine Service, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Susana Mellor-Pita
- Internal Medicine Service, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Víctor Moreno-Torres
- Internal Medicine Service, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
- Health Sciences School and Medical Centre, International University of the Rioja (UNIR), Madrid, Spain
| | - Daniel de Luis
- Department of Endocrinology and Nutrition, University Clinical Hospital, University of Valladolid, Valladolid, Spain
- Centre of Endocrinology and Nutrition, University of Valladolid, Valladolid, Spain
| | - Amanda Cuevas-Sierra
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
- Health Sciences School and Medical Centre, International University of the Rioja (UNIR), Madrid, Spain
| | - J Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
- Centre of Endocrinology and Nutrition, University of Valladolid, Valladolid, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Zhang L, Wang F, Wang R, Sun B, Liu PJ. Effects of probiotics, prebiotics, and synbiotics on cardiometabolic risk factors in children and adolescents with overweight or obesity: a systematic review and Bayesian network meta-analysis. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39340527 DOI: 10.1080/10408398.2024.2409956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
The efficacy of probiotics, prebiotics, or synbiotics in children and adolescents with overweight or obesity remains uncertain. This systematic review evaluates their intervention effects through a network meta-analysis of randomized clinical trials (RCTs). Searches of 4 electronic databases until January 7, 2024, yielded 17 papers reporting on 15 RCTs involving 820 participants. Multiple-strain probiotics (MSP) showed significant efficacy in reducing BMI (Mean Difference (MD) -2.13 kg/m2, 95% credible interval (CrI) [-2.7, -1.57]), waist circumference (MD -1.34 cm, 95% CrI [-2.33, -0.35]), total cholesterol (MD -6.55 mg/dL, 95% CrI [-10.61, -2.45]), triglycerides (MD -3.71 mg/dL, 95% CrI [-5.76, -1.67]), leptin (MD -3.99 ng/mL, 95% CrI [-4.68, -3.3]), and hypersensitive C-reactive protein (Hs-CRP) (MD -1.21 mg/L, 95% CrI [-1.45, -0.97]). Synbiotics were effective in reducing BMI-z score (MD -0.07, 95% CrI [-0.10, -0.04]) and LDL-C (MD -1.54 mg/dL, 95% CrI [-1.98, -1.09]) but led to a slight increase in fasting glucose (MD 1.12 mg/dL, 95% CrI [0.75, 1.49]). Single-ingredient prebiotics and single-strain probiotics also had some beneficial effects on BMI and Hs-CRP, respectively. Moderate to low evidence suggests MSP may be a potential choice for improving BMI and reducing lipids, leptin, and Hs-CRP levels, implying that MSP could aid in managing pediatric obesity and related metabolic issues by modulating the gut microbiota. Although synbiotics show their favorable effects on body metrics and lipid control, their potential impact on blood glucose currently prevents them from being an alternative to MSP for treating pediatric obesity. Further large-scale, well-designed studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Rehabilitation Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Fang Wang
- Department of Clinical Nutrition, Department of Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Rui Wang
- Department of Clinical Nutrition, Department of Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Bowen Sun
- Department of Linguistics, University of Manitoba, Winnipeg, Canada
| | - Peng Ju Liu
- Department of Clinical Nutrition, Department of Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
4
|
Li QQ, Yan JH, Zhou ZE, Geng X, Xiong JH. Enhanced anti-inflammatory activity of chlorogenic acid via folic acid-TPGS-modified liposomes encapsulation: characterization and In vivo evaluation on colitis mice. Front Pharmacol 2024; 15:1437773. [PMID: 39246657 PMCID: PMC11377334 DOI: 10.3389/fphar.2024.1437773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Chlorogenic acid (CGA) has been identified to possess salient anti-inflammatory, antioxidant, and anticancer attributes. However, its application is limited by its instability and low bioavailability. Liposomes have been considered effective pharmaceutical delivery vehicles due to their ability to continuously release loaded drugs, improve drug stability, and display good biocompatibility. They can be easily modified by other small molecules to acquire additional biological functions. In this study, we developed and characterized folic acid-TPGS-modified chlorogenic acid liposome (FTCLP) and evaluated its anti-inflammatory activity. Methods The successful encapsulation of CGA within FTCLP was confirmed through examination using electron microscopy, fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The in vitro release characteristics of FTCLP were evaluated using the dialysis bag membrane method. Meanwhile, a dextran sulfate sodium (DSS) -induced colitis model was employed to investigate the anti-inflammatory effect of FTCLP and its mechanism. Results The FTCLP exhibited an encapsulation efficiency (EE) of 84.85 ± 1.20% and a drug loading (DL) of 11.67 ± 0.04%. The particle size of FTCLP was determined to be 150.63 ± 0.71 nm, with a polydispersity index (PDI) of 0.198 ± 0.02 and a zeta potential of 2.61 ± 0.38 mV. The in vitro release profile followed the Higuchi model, indicating sustained-release characteristics. The in vivo study demonstrated that FTCLP treatment was effective in improving the symptoms of DSS-induced inflammatory response, as evidenced by mitigation of weight loss, reduction in the disease activity index (DAI) score, restoration of colon length, and attenuation of colon tissue damage. Furthermore, the levels of pro-inflammatory cytokines, including interferon-gamma (INF-γ), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), were markedly diminished in both the serum and colon tissue. FTCLP was also observed to suppress the expression of INF-γ, IL-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κB) p65, while concomitantly upregulating the expression of Janus kinase (JAK) and signal transducer and activator of transcription 3 (STAT3). Besides, the administration of FTCLP was found to result in an increase in the abundance of Lactobacillaceae and Peptostreptococcaceae, while decreasing the abundance of Bacteroidaceae, Rikenellaceae, and Helicobacteraceae. Conclusion Following encapsulation of CGA within liposomes, FTCLP revealed favorable stability and sustained release properties, and enhanced the anti-inflammatory effects by modulating multiple inflammation-related biomarkers. FTCLP has the potential to be a safe and effective drug for targeted therapy of colitis.
Collapse
Affiliation(s)
- Qing-Qing Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jia-Hui Yan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhi-E Zhou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiang Geng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jian-Hua Xiong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- Key Lab for Agricultural Product Processing and Quality Control of Nanchang City, Nanchang, China
| |
Collapse
|
5
|
Yuan T, Cheng X, Shen L, Liu Z, Ye X, Yan Z, Wei W, Wang X. Novel Human Milk Fat Substitutes Based on Medium- and Long-Chain Triacylglycerol Regulate Thermogenesis, Lipid Metabolism, and Gut Microbiota Diversity in C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6213-6225. [PMID: 38501388 DOI: 10.1021/acs.jafc.3c07902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Human milk is naturally rich in medium- and long-chain triacylglycerols (MLCT), accounting for approximately 30% of the total fat. However, infant formula fat is prepared using a physical blend of vegetable oils, which rarely contains MLCT, similar to human milk. The differences in MLCT between human milk and infant formulas may cause different lipid metabolisms and physiological effects on infants, which are unknown. This study aimed to analyze the metabolic characteristics of formula lipid containing novel human milk fat substitutes based on MLCT (FL-MLCT) and compare their effects with those of the physical blend of vegetable oils (FL-PB) on lipid metabolism and gut microbiota in mice. Compared with the FL-PB group, the FL-MLCT group showed increased energy expenditure, decreased serum triacylglycerol level, and significantly lower aspartate aminotransferase level, epididymal and perirenal fat weight, and adipocyte size. Moreover, the abundances of Firmicutes/Bacteroidota, Actinobacteriota, and Desulfovibrionaceae were significantly decreased in the FL-MLCT group. Novel human milk fat substitutes MLCT could inhibit visceral fat accumulation, improve liver function, and modulate the mice gut microbiota composition, which may contribute to controlling obesity.
Collapse
Affiliation(s)
- Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xinyi Cheng
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lingzhi Shen
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengdong Liu
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011517, China
- Yashili International Group Ltd., Guangzhou 510057, China
| | - Xingwang Ye
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011517, China
- Yashili International Group Ltd., Guangzhou 510057, China
| | - Zhiyuan Yan
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011517, China
- Yashili International Group Ltd., Guangzhou 510057, China
| | - Wei Wei
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
McMath AL, Aguilar-Lopez M, Cannavale CN, Khan NA, Donovan SM. A systematic review on the impact of gastrointestinal microbiota composition and function on cognition in healthy infants and children. Front Neurosci 2023; 17:1171970. [PMID: 37389363 PMCID: PMC10306408 DOI: 10.3389/fnins.2023.1171970] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Evidence from animal models or children with neurodevelopmental disorders has implicated the gut microbiome (GM) in neurocognitive development. However, even subclinical impairement of cognition can have negative consequences, as cognition serves as the foundation for skills necessary to succeed in school, vocation and socially. The present study aims to identify gut microbiome characteristics or changes in gut microbiome characteristics that consistently associate with cognitive outcomes in healthy, neurotypical infants and children. Of the 1,520 articles identified in the search, 23 were included in qualitative synthesis after applying exclusion criteria. Most studies were cross-sectional and focused on behavior or motor and language skills. Bifidobacterium, Bacteroides, Clostridia, Prevotella, and Roseburia were related to these aspects of cognition across several studies. While these results support the role of GM in cognitive development, higher quality studies focused on more complex cognition are needed to understand the extent to which the GM contributes to cognitive development.
Collapse
Affiliation(s)
- Arden L. McMath
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Miriam Aguilar-Lopez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Corinne N. Cannavale
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Naiman A. Khan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Sharon M. Donovan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
7
|
Giannini C, Mastromauro C, Scapaticci S, Gentile C, Chiarelli F. Role of bile acids in overweight and obese children and adolescents. Front Endocrinol (Lausanne) 2022; 13:1011994. [PMID: 36531484 PMCID: PMC9747777 DOI: 10.3389/fendo.2022.1011994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Bile acids (BAs) are amphipathic molecules synthetized in the liver. They are primarily involved in the digestion of nutrients. Apart from their role in dietary lipid absorption, BAs have progressively emerged as key regulators of systemic metabolism and inflammation. In the last decade, it became evident that BAs are particularly important for the regulation of glucose, lipid, and energy metabolism. Indeed, the interest in role of BA in metabolism homeostasis is further increased due to the global public health increase in obesity and related complications and a large number of research postulating that there is a close mutual relationship between BA and metabolic disorders. This strong relationship seems to derive from the role of BAs as signaling molecules involved in the regulation of a wide spectrum of metabolic pathways. These actions are mediated by different receptors, particularly nuclear farnesoid X receptor (FXR) and Takeda G protein coupled receptor 5 (TGR5), which are probably the major effectors of BA actions. These receptors activate transcriptional networks and signaling cascades controlling the expression and activity of genes involved in BA, lipid and carbohydrate metabolism, energy expenditure, and inflammation. The large correlation between BAs and metabolic disorders offers the possibility that modulation of BAs could be used as a therapeutic approach for the treatment of metabolic diseases, including obesity itself. The aim of this review is to describe the main physiological and metabolic actions of BA, focusing on its signaling pathways, which are important in the regulation of metabolism and might provide new BA -based treatments for metabolic diseases.
Collapse
Affiliation(s)
- Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | | | | |
Collapse
|
8
|
Calcaterra V, Verduci E, Vandoni M, Rossi V, Fiore G, Massini G, Berardo C, Gatti A, Baldassarre P, Bianchi A, Cordaro E, Cavallo C, Cereda C, Bosetti A, Zuccotti G. The Effect of Healthy Lifestyle Strategies on the Management of Insulin Resistance in Children and Adolescents with Obesity: A Narrative Review. Nutrients 2022; 14:4692. [PMID: 36364954 PMCID: PMC9657567 DOI: 10.3390/nu14214692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2023] Open
Abstract
Childhood obesity is characterized by an increased risk of several metabolic derangements including insulin resistance (IR). The strongest recommendations to prevent obesity and related complications are a balanced and adequate diet and practicing physical activity from early childhood. In this review, we propose to present the effects of healthy lifestyle strategies, including physical exercise and dietary approaches, on the management of IR and related metabolic derangements. All types of exercise (aerobic, resistance and combined training) effectively reduce IR in pediatric patients with obesity; it seems that aerobic and combined training stimulate greater improvements in IR compared to resistance training. Balanced normocaloric or hypocaloric dietary approaches are also valid strategies to address IR; it is not possible to assess the long-term impact of varying macronutrients on cardiometabolic risk. The glycemic index/load evaluation is a useful dietary approach to glucose metabolism control. Similarly, they should adopt the principle of the Mediterranean diet. Randomized studies with longer monitoring are needed to define the benefits of nutritional supplementation on IR. Considering that healthy style acquisition could track to later ages, programs of healthy lifestyle starting with children offer a better preventive strategy to preserve metabolic control and children's health.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Elvira Verduci
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
- Department of Health Sciences, University of Milano, 20142 Milan, Italy
| | - Matteo Vandoni
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy
| | - Virginia Rossi
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Giulia Fiore
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Giulia Massini
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Clarissa Berardo
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milan, Italy
| | - Alessandro Gatti
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy
| | - Paola Baldassarre
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Alice Bianchi
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Erika Cordaro
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Caterina Cavallo
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy
- LUNEX International University of Health, Exercise and Sports, 50, Avenue du Parc des Sports, 4671 Differdange, Luxembourg
| | - Cristina Cereda
- Neonatal Screening and Metabolic Disorders Unit, V. Buzzi Children’s Hospital, 20154 Milan, Italy
| | - Alessandra Bosetti
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milan, Italy
| |
Collapse
|
9
|
Li Y, Wu Y, Wu L, Qin L, Liu T. The effects of probiotic administration on patients with prediabetes: a meta-analysis and systematic review. J Transl Med 2022; 20:498. [PMID: 36324119 PMCID: PMC9632036 DOI: 10.1186/s12967-022-03695-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This paper aimed to examine the effects of probiotics on eight factors in the prediabetic population by meta-analysis, namely, fasting blood glucose (FBG), glycated haemoglobin A1c (HbA1c), homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), and the mechanisms of action are summarized from the existing studies. METHODS Seven databases (PubMed, Web of Science, Embase, Cochrane Library, SinoMed, CNKI, and Wanfang Med) were searched until March 2022. Review Manager 5.4 was used for meta-analysis. The data were analysed using weighted mean differences (WMDs) or standardized mean differences (SMDs) under a fixed effect model to observe the efficacy of probiotic supplementation on the included indicators. RESULTS Seven publications with a total of 460 patients were included. According to the meta-analysis, probiotics were able to significantly decrease the levels of HbA1c (WMD, -0.07; 95% CI -0.11, -0.03; P = 0.001), QUICKI (WMD, 0.01; 95% CI 0.00, 0.02; P = 0.04), TC (SMD, -0.28; 95% CI -0.53, -0.22; P = 0.03), TG (SMD, -0.26; 95% CI -0.52, -0.01; P = 0.04), and LDL-C (WMD, -8.94; 95% CI -14.91, -2.97; P = 0.003) compared to levels in the placebo group. The effects on FBG (WMD, -0.53; 95% CI -2.31, 1.25; P = 0.56), HOMA-IR (WMD, -0.21; 95% CI -0.45, 0.04; P = 0.10), and HDL-C (WMD, 2.05; 95% CI -0.28, 4.38; P = 0.08) were not different from those of the placebo group. CONCLUSION The present study clearly indicated that probiotics may fulfil an important role in the regulation of HbA1c, QUICKI, TC, TG and LDL-C in patients with prediabetes. In addition, based on existing studies, we concluded that probiotics may regulate blood glucose homeostasis in a variety of ways. TRIAL REGISTRATION This meta-analysis has been registered at PROSPERO with ID: CRD42022321995.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - You Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Lingling Qin
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
10
|
Drey E, Kok CR, Hutkins R. Role of Bifidobacterium pseudocatenulatum in Degradation and Consumption of Xylan-Derived Carbohydrates. Appl Environ Microbiol 2022; 88:e0129922. [PMID: 36200766 PMCID: PMC9599329 DOI: 10.1128/aem.01299-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Xylans, a family of xylose-based polysaccharides, are dietary fibers resistant to digestion. They therefore reach the large intestine intact; there, they are utilized by members of the gut microbiota. They are initially broken down by primary degraders that utilize extracellular xylanases to cleave xylan into smaller oligomers. The resulting xylooligosaccharides (XOS) can either be further metabolized directly by primary degraders or cross-feed secondary consumers, including Bifidobacterium. While several Bifidobacterium species have metabolic systems for XOS, most grow poorly on longer-chain XOS and xylan substrates. In this study, we isolated strains of Bifidobacterium pseudocatenulatum and observed that some, including B. pseudocatenulatum ED02, displayed growth on XOS with a high degree of polymerization (DP) and straight-chain xylan, suggesting a primary degrader phenotype that is rare in Bifidobacterium. In silico analyses revealed that only the genomes of these xylan-fermenting (xylan+) strains contained an extracellular GH10 endo-β-1.4 xylanase, a key enzyme for primary degradation of xylan. The presence of an extracellular xylanase was confirmed by the appearance of xylan hydrolysis products in cell-free supernatants. Extracellular xylanolytic activity was only detected in xylan+ strains, as indicated by the production of XOS fragments with a DP of 2 to 6, identified by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Additionally, in vitro fecal fermentations revealed that strains with a xylan+ phenotype can persist with xylan supplementation. These results indicate that xylan+ B. pseudocatenulatum strains may have a competitive advantage in the complex environment of the gastrointestinal tract, due to their ability to act as primary degraders of xylan through extracellular enzymatic degradation. IMPORTANCE The beneficial health effects of dietary fiber are now well established. Moreover, low fiber consumption is associated with increased risks of metabolic and systemic diseases. This so-called "fiber gap" also has a profound impact on the composition of the gut microbiome, leading to a disrupted or dysbiotic microbiota. Therefore, understanding the mechanisms by which keystone bacterial species in the gut utilize xylans and other dietary fibers may provide a basis for developing strategies to restore gut microbiome function. The results described here provide biochemical and genetic evidence for primary xylan utilization by human-derived Bifidobacterium pseudocatenulatum and show also that cooperative utilization of xylans occurs among other members of this species.
Collapse
Affiliation(s)
- Elizabeth Drey
- Department of Food Science and Technology, Food Innovation Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Car Reen Kok
- Nebraska Food for Health Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Complex Biosystems, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Robert Hutkins
- Department of Food Science and Technology, Food Innovation Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
11
|
Tian B, Yao JH, Lin X, Lv WQ, Jiang LD, Wang ZQ, Shen J, Xiao HM, Xu H, Xu LL, Cheng X, Shen H, Qiu C, Luo Z, Zhao LJ, Yan Q, Deng HW, Zhang LS. Metagenomic study of the gut microbiota associated with cow milk consumption in Chinese peri-/postmenopausal women. Front Microbiol 2022; 13:957885. [PMID: 36051762 PMCID: PMC9425034 DOI: 10.3389/fmicb.2022.957885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Cow milk consumption (CMC) and alterations of gut bacterial composition are proposed to be closely related to human health and disease. Our research aims to investigate the changes in human gut microbial composition in Chinese peri-/postmenopausal women with different CMC habits. A total of 517 subjects were recruited and questionnaires about their CMC status were collected; 394 subjects were included in the final analyses. Fecal samples were used for studying gut bacterial composition. All the subjects were divided into a control group (n = 248) and a CMC group (n = 146) according to their CMC status. Non-parametric tests and LEfSe at different taxonomic levels were used to reveal differentially abundant taxa and functional categories across different CMC groups. Relative abundance (RA) of one phylum (p_Actinobacteria), three genera (g_Bifidobacterium, g_Anaerostipes, and g_Bacteroides), and 28 species diversified significantly across groups. Specifically, taxa g_Anaerostipes (p < 0.01), g_Bacteroides (p < 0.05), s_Anaerostipes_hadrus (p < 0.01), and s_Bifidobacterium_pseudocatenulatum (p < 0.01) were positively correlated with CMC levels, but p_Actinobacteria (p < 0.01) and g_Bifidobacterium (p < 0.01) were negatively associated with CMC levels. KEGG module analysis revealed 48 gut microbiome functional modules significantly (p < 0.05) associated with CMC, including Vibrio cholerae pathogenicity signature, cholera toxins (p = 9.52e-04), and cephamycin C biosynthesis module (p = 0.0057), among others. In conclusion, CMC was associated with changes in gut microbiome patterns including beta diversity and richness of some gut microbiota. The alterations of certain bacteria including g_Anaerostipes and s_Bifidobacterium_pseudocatenulatum in the CMC group should be important for human health. This study further supports the biological value of habitual cow milk consumption.
Collapse
Affiliation(s)
- Bo Tian
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jia-Heng Yao
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wan-Qiang Lv
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Lin-Dong Jiang
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Zhuo-Qi Wang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China,Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hanli Xu
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lu-Lu Xu
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiyu Cheng
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hui Shen
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Chuan Qiu
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Zhe Luo
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Lan-Juan Zhao
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Qiong Yan
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hong-Wen Deng
- Tulane Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States,*Correspondence: Li-Shu Zhang,
| | - Li-Shu Zhang
- School of Physical Science and Engineering, College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China,Hong-Wen Deng,
| |
Collapse
|
12
|
Olmo R, Wetzels SU, Armanhi JSL, Arruda P, Berg G, Cernava T, Cotter PD, Araujo SC, de Souza RSC, Ferrocino I, Frisvad JC, Georgalaki M, Hansen HH, Kazou M, Kiran GS, Kostic T, Krauss-Etschmann S, Kriaa A, Lange L, Maguin E, Mitter B, Nielsen MO, Olivares M, Quijada NM, Romaní-Pérez M, Sanz Y, Schloter M, Schmitt-Kopplin P, Seaton SC, Selvin J, Sessitsch A, Wang M, Zwirzitz B, Selberherr E, Wagner M. Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Front Microbiol 2022; 13:834622. [PMID: 35903477 PMCID: PMC9315449 DOI: 10.3389/fmicb.2022.834622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing knowledge of the microbiome has led to significant advancements in the agrifood system. Case studies based on microbiome applications have been reported worldwide and, in this review, we have selected 14 success stories that showcase the importance of microbiome research in advancing the agrifood system. The selected case studies describe products, methodologies, applications, tools, and processes that created an economic and societal impact. Additionally, they cover a broad range of fields within the agrifood chain: the management of diseases and putative pathogens; the use of microorganism as soil fertilizers and plant strengtheners; the investigation of the microbial dynamics occurring during food fermentation; the presence of microorganisms and/or genes associated with hazards for animal and human health (e.g., mycotoxins, spoilage agents, or pathogens) in feeds, foods, and their processing environments; applications to improve HACCP systems; and the identification of novel probiotics and prebiotics to improve the animal gut microbiome or to prevent chronic non-communicable diseases in humans (e.g., obesity complications). The microbiomes of soil, plants, and animals are pivotal for ensuring human and environmental health and this review highlights the impact that microbiome applications have with this regard.
Collapse
Affiliation(s)
- Rocío Olmo
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Rocío Olmo,
| | - Stefanie Urimare Wetzels
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Jaderson Silveira Leite Armanhi
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Paul D. Cotter
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | - Solon Cordeiro Araujo
- SCA, Consultoria em Microbiologia Agrícola, Campinas, Brazil
- Brazil National Association of Inoculant Producers and Importers (ANPII), Campinas, Brazil
| | - Rafael Soares Correa de Souza
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science, University of Torino, Torino, Italy
| | - Jens C. Frisvad
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marina Georgalaki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Hanne Helene Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Tanja Kostic
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Aicha Kriaa
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Lene Lange
- BioEconomy, Research & Advisory, Copenhagen, Denmark
| | - Emmanuelle Maguin
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Birgit Mitter
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mette Olaf Nielsen
- Department of Animal Science, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Marta Olivares
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Narciso Martín Quijada
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | - Joseph Selvin
- School of Life Sciences, Pondicherry University, Puducherry, India
| | - Angela Sessitsch
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Benjamin Zwirzitz
- Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
13
|
Hagag S, Habib E, Tawfik S. Assessment of Knowledge and Practices toward Salt Intake among Adolescents. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background:High salt intake is linked to risk of development of renal disease, stomach cancer and osteoporosis.Raised BP typically present in adulthood but its origin commonly begins in childhood.The aim of this study is toassess of knowledge and practices towards salt intake among adolescents.Methods: This was a cross – sectional that carried out in Mansoura governorate. A convenience sample of 240 adolescents between 12 -17 years was taken from community recreation places and clubs. A Pre tested questionnaires were developed to assesssociodemographic characteristics, knowledge towards salt consumption, knowledge towards salt hazards and trials to control salt consumption.A modified food frequency questionnaire was used to assess their nutritional practices.Results:Nearly half of study group was aged 14-15 years(40.9%).Nearly two third of study participants was females (64.2%) and three quarter was from urban areas (75%).More than half of study group believed to consume moderate amount of salty food (57.1 %), and about half of them had good knowledge about salt harms and value of reduction of salt consumption (50.8% & 53.3% respectively),.Unfortunately majority of them did not attempt any trial of mentioned trials to control their salt intake. Only less than 50 % try to minimize outdoors food and processed food consumption.
Conclusion:Although study participants knew the harm of salt consumption, unfortunately majority of them did not attempt any trial of mentioned trials to control their salt intake.
Recommendations: These findings highlighted the importance of nutritional counseling among adolescents towards healthy eating practices
Key words
Salt Intake-Knowledge-Practices-Adolescents
Collapse
|
14
|
Zhang S, Dang Y. Roles of gut microbiota and metabolites in overweight and obesity of children. Front Endocrinol (Lausanne) 2022; 13:994930. [PMID: 36157438 PMCID: PMC9492854 DOI: 10.3389/fendo.2022.994930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of overweight and obesity in children and adolescents is an increasing public health problem. Pediatric overweight and obesity result from multiple factors, including genetic background, diet, and lifestyle. In addition, the gut microbiota and their metabolites play crucial roles in the progression of overweight and obesity of children. Therefore, we reviewed the roles of gut microbiota in overweight/obese children. The relationship between pediatric overweight/obesity and gut metabolites, such as short-chain fatty acids, medium-chain fatty acids, amino acids, amines, and bile acids, are also summarized. Targeting gut microbiota and metabolites might be a promising strategy for interventions aimed at reducing pediatric overweight/obesity.
Collapse
Affiliation(s)
- Shengan Zhang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yanqi Dang, ,
| |
Collapse
|
15
|
Chung The H, Nguyen Ngoc Minh C, Tran Thi Hong C, Nguyen Thi Nguyen T, Pike LJ, Zellmer C, Pham Duc T, Tran TA, Ha Thanh T, Van MP, Thwaites GE, Rabaa MA, Hall LJ, Baker S. Exploring the Genomic Diversity and Antimicrobial Susceptibility of Bifidobacterium pseudocatenulatum in a Vietnamese Population. Microbiol Spectr 2021; 9:e0052621. [PMID: 34523984 PMCID: PMC8557894 DOI: 10.1128/spectrum.00526-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 01/29/2023] Open
Abstract
Bifidobacterium pseudocatenulatum is a member of the human gut microbiota, and specific variants of B. pseudocatenulatum have been associated with health benefits such as improving gut integrity and reducing inflammatory responses. Here, we aimed to assess the genomic diversity and predicted metabolic profiles of B. pseudocatenulatum cells found colonizing the gut of healthy Vietnamese adults and children. We found that the population of B. pseudocatenulatum from each individual was distinct and highly diverse, with intraclonal variation attributed largely to a gain or loss of carbohydrate-utilizing enzymes. The B. pseudocatenulatum genomes were enriched with glycosyl hydrolases predicted to target plant-based nondigestible carbohydrates (GH13, GH43) but not host-derived glycans. Notably, the exopolysaccharide biosynthesis region from organisms isolated from healthy children showed extensive genetic diversity and was subject to a high degree of genetic modification. Antimicrobial susceptibility profiling revealed that the Vietnamese B. pseudocatenulatum cells were uniformly susceptible to beta-lactams but exhibited variable resistance to azithromycin, tetracycline, ciprofloxacin, and metronidazole. The genomic presence of ermX and tet variants conferred resistance against azithromycin and tetracycline, respectively; ciprofloxacin resistance was associated with a mutation(s) in the quinolone resistance-determining region (GyrA, S115, and/or D119). Our work provides the first detailed genomic and antimicrobial resistance characterization of B. pseudocatenulatum found in the Vietnamese population, which can be exploited for the rational design of probiotics. IMPORTANCE Bifidobacterium pseudocatenulatum is a beneficial member of the human gut microbiota. The organism can modulate inflammation and has probiotic potential, but its characteristics are largely strain dependent and associated with distinct genomic and biochemical features. Population-specific beneficial microbes represent a promising avenue for the development of potential probiotics, as they may exhibit a more suitable profile in the target population. This study investigates the underexplored diversity of B. pseudocatenulatum in Vietnam and provides more understanding of its genomic diversity, metabolic potential, and antimicrobial susceptibility. Such data from indigenous populations are essential for selecting probiotic candidates that can be accelerated into further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | - Lindsay J. Pike
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Caroline Zellmer
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Trung Pham Duc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuan-Anh Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuyen Ha Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Minh Pham Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Maia A. Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Lindsay J. Hall
- Quadram Institute Biosciences, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Stephen Baker
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
16
|
Koopen AM, Almeida EL, Attaye I, Witjes JJ, Rampanelli E, Majait S, Kemper M, Levels JHM, Schimmel AWM, Herrema H, Scheithauer TPM, Frei W, Dragsted L, Hartmann B, Holst JJ, O'Toole PW, Groen AK, Nieuwdorp M. Effect of Fecal Microbiota Transplantation Combined With Mediterranean Diet on Insulin Sensitivity in Subjects With Metabolic Syndrome. Front Microbiol 2021; 12:662159. [PMID: 34177842 PMCID: PMC8222733 DOI: 10.3389/fmicb.2021.662159] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Recent studies demonstrate that a Mediterranean diet has beneficial metabolic effects in metabolic syndrome subjects. Since we have shown that fecal microbiota transplantation (FMT) from lean donors exerts beneficial effects on insulin sensitivity, in the present trial, we investigated the potential synergistic effects on insulin sensitivity of combining a Mediterranean diet with donor FMT in subjects with metabolic syndrome. Design Twenty-four male subjects with metabolic syndrome were put on a Mediterranean diet and after a 2-week run-in phase, the subjects were randomized to either lean donor (n = 12) or autologous (n = 12) FMT. Changes in the gut microbiota composition and bacterial strain engraftment after the 2-week dietary regimens and 6 weeks post-FMT were the primary endpoints. The secondary objectives were changes in glucose fluxes (both hepatic and peripheral insulin sensitivity), postprandial plasma incretin (GLP-1) levels, subcutaneous adipose tissue inflammation, and plasma metabolites. Results Consumption of the Mediterranean diet resulted in a reduction in body weight, HOMA-IR, and lipid levels. However, no large synergistic effects of combining the diet with lean donor FMT were seen on the gut microbiota diversity after 6 weeks. Although we did observe changes in specific bacterial species and plasma metabolites, no significant beneficial effects on glucose fluxes, postprandial incretins, or subcutaneous adipose tissue inflammation were detected. Conclusions In this small pilot randomized controlled trial, no synergistic beneficial metabolic effects of combining a Mediterranean diet with lean donor FMT on glucose metabolism were achieved. However, we observed engraftment of specific bacterial species. Future trials are warranted to test the combination of other microbial interventions and diets in metabolic syndrome.
Collapse
Affiliation(s)
- Annefleur M Koopen
- Department of Internal Medicine and (Experimental) Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Eduardo L Almeida
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland
| | - Ilias Attaye
- Department of Internal Medicine and (Experimental) Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Julia J Witjes
- Department of Internal Medicine and (Experimental) Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Elena Rampanelli
- Department of Internal Medicine and (Experimental) Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Soumia Majait
- Department of Internal Medicine and (Experimental) Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Marleen Kemper
- Department of Internal Medicine and (Experimental) Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Johannes H M Levels
- Department of Internal Medicine and (Experimental) Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Alinda W M Schimmel
- Department of Internal Medicine and (Experimental) Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Internal Medicine and (Experimental) Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Torsten P M Scheithauer
- Department of Internal Medicine and (Experimental) Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Werner Frei
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland
| | - Lars Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul W O'Toole
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland
| | - Albert K Groen
- Department of Internal Medicine and (Experimental) Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Internal Medicine and (Experimental) Vascular Medicine, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, Netherlands.,Department of Internal Medicine, Diabetes Center, Amsterdam University Medical Center, Location VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
17
|
Dubinski P, Czarzasta K, Cudnoch-Jedrzejewska A. The Influence of Gut Microbiota on the Cardiovascular System Under Conditions of Obesity and Chronic Stress. Curr Hypertens Rep 2021; 23:31. [PMID: 34014393 PMCID: PMC8137478 DOI: 10.1007/s11906-021-01144-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Based on the available data, it can be assumed that microbiota is an integral part of the human body. The most heavily colonized area of the human body is the gut, with bacterial accumulation ranging from 101-103 cells/g in the upper intestine to 1011-1012 cells/g in the colon. However, colonization of the gut is not the same throughout, as it was shown that there are differences between the composition of the microbiota in the intestine lumen and in the proximity of the mucus layer. RECENT FINDINGS Gut microbiota gradient can be differentially regulated by factors such as obesity and chronic stress. In particular, a high fat diet influences the gut microbial composition. It was also found that chronic stress may cause the development of obesity and thus change the organization of the intestinal barrier. Recent research has shown the significant effect of intestinal microflora on cardiovascular function. Enhanced absorption of bacterial fragments, such as lipopolysaccharide (LPS), promotes the onset of "metabolic endotoxemia," which could activate toll-like receptors, which mediates an inflammatory response and in severe cases could cause cardiovascular diseases. It is presumed that the intestinal microbiota, and especially its metabolites (LPS and trimethylamine N-oxide (TMAO)), may play an important role in the pathogenesis of arterial hypertension, atherosclerosis, and heart failure. This review focuses on how gut microbiota can change the morphological and functional activity of the cardiovascular system in the course of obesity and in conditions of chronic stress.
Collapse
Affiliation(s)
- Piotr Dubinski
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Katarzyna Czarzasta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
18
|
Wang Y, Ye X, Ding D, Lu Y. Characteristics of the intestinal flora in patients with peripheral neuropathy associated with type 2 diabetes. J Int Med Res 2021; 48:300060520936806. [PMID: 32938282 PMCID: PMC7503028 DOI: 10.1177/0300060520936806] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To study the characteristics of the intestinal flora in patients with diabetic peripheral neuropathy (DPN) and analyze the association between the intestinal flora and clinical indicators. METHODS We classified 80 subjects into three groups: patients with DPN (n = 45), patients type 2 diabetes without DPN (n = 21), and healthy controls (n = 14). The intestinal flora composition was compared among the three groups, and the correlation between the intestinal flora and clinical indicators was analyzed. RESULTS At the phylum level, the richness of Firmicutes and Actinobacteria was elevated in the DN group, and that of Bacteroidetes was decreased. At the genus level, the richness of Bacteroides and Faecalibacterium was significantly decreased in the DPN group, whereas that of Escherichia-Shigella, Lachnoclostridium, Blautia, Megasphaera, and Ruminococcus torques group was increased. The homeostasis model assessment insulin resistance index was positively correlated with Megasphaera richness. Glycine ursodeoxycholic acid was positively correlated with Ruminococcus gnavus group and Phascolarctobacterium richness. Tauroursodeoxycholic acid was positively correlated with Ruminococcus gnavus group and Parabacteroides richness. CONCLUSION There was obvious intestinal microbiota disorder in patients with DPN, which may be related to insulin resistance. These changes may have important roles in the development of DPN.
Collapse
Affiliation(s)
- Yayun Wang
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaolong Ye
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dafa Ding
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yibing Lu
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Verduci E, Calcaterra V, Di Profio E, Fiore G, Rey F, Magenes VC, Todisco CF, Carelli S, Zuccotti GV. Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review. Nutrients 2021; 13:nu13051450. [PMID: 33923364 PMCID: PMC8145569 DOI: 10.3390/nu13051450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we revised preclinical and clinical works on factors that may promote BAT or browning of white adipose tissue (WAT) from fetal age to adolescence. Maternal lifestyle, type of breastfeeding and healthy microbiota can affect the thermogenic activity of BAT. Environmental factors such as exposure to cold or physical activity also play a role in promoting and activating BAT. Most of the evidence is preclinical, although in clinic there is some evidence on the role of omega-3 PUFAs (EPA and DHA) supplementation on BAT activation. Clinical studies are needed to dissect the early factors and their modulation to allow proper BAT development and functions and to prevent onset of childhood obesity.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Correspondence: (E.V.); (S.C.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Carolina Federica Todisco
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
- Correspondence: (E.V.); (S.C.)
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| |
Collapse
|
20
|
Kanazawa A, Aida M, Yoshida Y, Kaga H, Katahira T, Suzuki L, Tamaki S, Sato J, Goto H, Azuma K, Shimizu T, Takahashi T, Yamashiro Y, Watada H. Effects of Synbiotic Supplementation on Chronic Inflammation and the Gut Microbiota in Obese Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Study. Nutrients 2021; 13:nu13020558. [PMID: 33567701 PMCID: PMC7914668 DOI: 10.3390/nu13020558] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the effects of 24-week synbiotic supplementation on chronic inflammation and the gut microbiota in obese patients with type 2 diabetes. We randomized 88 obese patients with type 2 diabetes to one of two groups for 24 weeks: control or synbiotic (Lacticaseibacillus paracasei strain Shirota (previously Lactobacillus casei strain Shirota) and Bifidobacterium breve strain Yakult, and galactooligosaccharides). The primary endpoint was the change in interleukin-6 from baseline to 24 weeks. Secondary endpoints were evaluation of the gut microbiota in feces and blood, fecal organic acids, high-sensitivity C-reactive protein, lipopolysaccharide-binding protein, and glycemic control. Synbiotic administration for 24 weeks did not significantly affect changes in interleukin-6 from baseline to 24 weeks (0.35 ± 1.99 vs. −0.24 ± 1.75 pg/mL, respectively). Relative to baseline, however, at 24 weeks after synbiotic administration there were positive changes in the counts of Bifidobacterium and total lactobacilli, the relative abundances of Bifidobacterium species such as Bifidobacterium adolescentis and Bifidobacterium pseudocatenulatum, and the concentrations of acetic and butyric acids in feces. No significant changes in inflammatory markers were found in the synbiotic group compared to the control group. However, synbiotic administration at least partially improved the gut environment in obese patients with type 2 diabetes.
Collapse
Affiliation(s)
- Akio Kanazawa
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
- Correspondence: ; Tel.: +81-3-5802-1579
| | - Masanori Aida
- Food Research Department, Yakult Central Institute, Tokyo 186-8650, Japan; (M.A.); (Y.Y.)
| | - Yasuto Yoshida
- Food Research Department, Yakult Central Institute, Tokyo 186-8650, Japan; (M.A.); (Y.Y.)
| | - Hideyoshi Kaga
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Takehiro Katahira
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Luka Suzuki
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Shoko Tamaki
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Junko Sato
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Hiromasa Goto
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Kosuke Azuma
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Tomoaki Shimizu
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Takuya Takahashi
- Yakult Honsha European Research Center for Microbiology, 9052 Gent-Zwijnaarde, Belgium;
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
- Center for Therapeutic Innovations in Diabetes, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Center for Identification of Diabetic Therapeutic Targets, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
21
|
Obesity and gut microbiome: review of potential role of probiotics. Porto Biomed J 2021; 6:e111. [PMID: 33490703 PMCID: PMC7817278 DOI: 10.1097/j.pbj.0000000000000111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity prevalence has increased worldwide over the years, with pandemic levels being already reached, besides to its huge economic and health impacts. The multifactorial pathogenesis of obesity partly explains the important challenge posed to health policy regarding its clinical treatment, with increasing evidences have shown that obesity and metabolic disturbances are closely linked to variations in gut microbiota (GM) function and composition. Indeed, GM play a key contribution in energy metabolism, with GM modulation being increasingly linked to changes in body weight and body mass index. In such matter, probiotics have been proposed as a promising new therapeutic strategy to treat/prevent obesity. Thus, this review aims to provide an overview on the clinical impact and effectiveness of probiotics in obese individuals.
Collapse
|
22
|
Tomé-Castro XM, Rodriguez-Arrastia M, Cardona D, Rueda-Ruzafa L, Molina-Torres G, Roman P. Probiotics as a therapeutic strategy in obesity and overweight: a systematic review. Benef Microbes 2021; 12:5-15. [PMID: 33459204 DOI: 10.3920/bm2020.0111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity and overweight are two of the most health challenges with an increasing prevalence in recent years, in which several complications have been identified to have a high impact in patients' health conditions. In this vein, an increasing interest in the gut microbiota has emerged as a target for therapeutic strategies in obesity and overweight due to its direct relation with the aforementioned health conditions and complications. Thus, the aim of this study was to evaluate the efficacy of probiotics as a therapeutic strategy in the management of obesity and overweight. A systematic review of randomised controlled trials was carried out in 6 databases until May 2019 to assess the use of probiotics in obesity and overweight patients. The Jadad Scale was used to assess the quality of the clinical trials. Twenty-three clinical trials published between 2000 and 2019 met the inclusion criteria. The role of probiotics in reducing body mass index and weight as well as changing the visceral abdominal fat area, waist and hip circumference were shown in 14 of 23 trials (60.87%); 14 trials (60.87%) showed changes on patients' fatty acids and biomarkers; and 4 trials (17.39%) studied the role of the gut microbiota in obese and overweight patients. Some probiotics strains are shown to be effective in reducing body mass index and hip circumference. This review provides evidence of successful results in weight loss using probiotic groups.
Collapse
Affiliation(s)
- X M Tomé-Castro
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain
| | - M Rodriguez-Arrastia
- Faculty of Health Sciences, Pre-Department of Nursing, Jaume I University, Av. Sos Baynat, 12071 Castello de la Plana, Spain.,Research Group CYS, Faculty of Health Sciences, Jaume I University, Av. Sos Baynat, 12071 Castello de la Plana, Spain
| | - D Cardona
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain.,Health Research Centre, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain
| | - L Rueda-Ruzafa
- Research Group CTS-451 Health Sciences, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain
| | - G Molina-Torres
- Faculty of Health Sciences, Department of Physiotherapy, University of Granada, C/Santander 1, 52071 Melilla, Spain
| | - P Roman
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain.,Health Research Centre, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain.,Research Group CTS-451 Health Sciences, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain
| |
Collapse
|
23
|
Wiciński M, Gębalski J, Gołębiewski J, Malinowski B. Probiotics for the Treatment of Overweight and Obesity in Humans-A Review of Clinical Trials. Microorganisms 2020; 8:microorganisms8081148. [PMID: 32751306 PMCID: PMC7465252 DOI: 10.3390/microorganisms8081148] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
The World Health Organization (WHO) reports that 400 million people are obese, and over 1.6 billion adults are overweight worldwide. Annually, over 2.8 million people die from obesity-related diseases. The incidence of overweight and obesity is steadily increasing, and this phenomenon is referred to as a 21st-century pandemic. The main reason for this phenomenon is an easy access to high-energy, processed foods, and a low-activity lifestyle. These changes lead to an energy imbalance and, as a consequence, to the development of body fat. Weight gain contributes to the development of heart diseases, skeletal system disorders, metabolic disorders such as diabetes, and certain types of cancer. In recent years, there have been many works linking obesity with intestinal microbiota. Experiments on germ-free animals (GFs) have provided much evidence for the contribution of bacteria to obesity. The composition of the gut microbiota (GM) changes in obese people. These changes affect the degree of energy obtained from food, the composition and secretory functions of adipose tissue, carbohydrate, and lipid metabolism in the liver, and the activity of centers in the brain. The study aimed to present the current state of knowledge about the role of intestinal microbiota in the development of obesity and the impact of supplementation with probiotic bacteria on the health of overweight and obese patients.
Collapse
|
24
|
Mukorako P, Lopez C, Baraboi ED, Roy MC, Plamondon J, Lemoine N, Biertho L, Varin TV, Marette A, Richard D. Alterations of Gut Microbiota After Biliopancreatic Diversion with Duodenal Switch in Wistar Rats. Obes Surg 2020; 29:2831-2842. [PMID: 31165976 DOI: 10.1007/s11695-019-03911-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The biliopancreatic diversion with duodenal switch (BPD/DS) represents the most effective surgical procedure for the treatment of severe obesity and associated type 2 diabetes. The mechanisms whereby BPD/DS exerts its positive metabolic effects have however yet to be fully delineated. The objective of this study was to distinguish the effects of the two components of BPD/DS, namely the sleeve gastrectomy (SG) and the DS derivation, on gut microbiota, and to appraise whether changes in microbial composition are linked with surgery-induced metabolic benefits. METHODS BPD/DS, DS, and SG were performed in Wistar rats fed a standard chow diet. Body weight and energy intake were measured daily during 8 weeks post-surgery, at which time glucagon-like peptide 1 (GLP-1), peptide tyrosine tyrosine (PYY), insulin, and glucose were measured. Fecal samples were collected prior to surgery and at 2 and 8 weeks post-surgery. Intraluminal contents of the alimentary, biliopancreatic, and common limbs (resulting from BPD/DS) were taken from the proximal portion of each limb. Fecal and small intestinal limb samples were analyzed by 16S ribosomal RNA gene sequencing. RESULTS BPD/DS and DS led to lower digestible energy intake (P = 0.0007 and P = 0.0002, respectively), reduced weight gain (P < 0.0001) and body fat mass (P < 0.0001), improved glucose metabolism, and increased GLP-1 (P = 0.0437, SHAM versus DS) and PYY levels (P < 0.0001). These effects were associated with major alterations of both the fecal and small intestinal microbiota, as revealed by significant decrease in bacterial richness and diversity at 2 (P < 0.0001, Chao1 index; P < 0.0001, Shannon index) and 8 weeks (P = 0.0159, SHAM versus DS, Chao1 index; P = 0.0219, SHAM versus DS, P = 0.0472, SHAM versus BPD/DS, Shannon index) post-surgery in BPD/DS and DS, and increased proportions of Bifidobacteriales (a 60% increase in both groups) but reduced Clostridiales (a 50% decrease and a 90% decrease respectively), which were mostly accounted at the genus level by higher relative abundance of Bifidobacterium in both the fecal and intestinal limb samples, as well as reduced abundance of Peptostreptococcaceae and Clostridiaceae in the small intestine. Those effects were not seen in SG rats. CONCLUSION The metabolic benefits following BPD/DS are seemingly due to the DS component of the surgery. Furthermore, BPD/DS causes marked alterations in fecal and small intestinal microbiota resulting in reduced bacterial diversity and richness. Our data further suggest that increased abundance of Bifidobacterium and reduced level of two Clostridiales species in the gut microbiota might contribute to the positive metabolic outcomes of BPD/DS.
Collapse
Affiliation(s)
- Paulette Mukorako
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Carlos Lopez
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Elena-Dana Baraboi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Marie-Claude Roy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Julie Plamondon
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Natacha Lemoine
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Laurent Biertho
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Thibault V Varin
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - André Marette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada.
| |
Collapse
|
25
|
Green M, Arora K, Prakash S. Microbial Medicine: Prebiotic and Probiotic Functional Foods to Target Obesity and Metabolic Syndrome. Int J Mol Sci 2020; 21:ijms21082890. [PMID: 32326175 PMCID: PMC7215979 DOI: 10.3390/ijms21082890] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity has become a global epidemic and a public health crisis in the Western World, experiencing a threefold increase in prevalence since 1975. High-caloric diets and sedentary lifestyles have been identified as significant contributors to this widespread issue, although the role of genetic, social, and environmental factors in obesity's pathogenesis remain incompletely understood. In recent years, much attention has been drawn to the contribution of the gut microbiota in the development of obesity. Indeed, research has shown that in contrast to their healthier counterparts the microbiomes of obese individuals are structurally and functionally distinct, strongly suggesting microbiome as a potential target for obesity therapeutics. In particular, pre and probiotics have emerged as effective and integrative means of modulating the microbiome, in order to reverse the microbial dysbiosis associated with an obese phenotype. The following review brings forth animal and human research supporting the myriad of mechanisms by which the microbiome affects obesity, as well as the strengths and limitations of probiotic or prebiotic supplementation for the prevention and treatment of obesity. Finally, we set forth a roadmap for the comprehensive development of functional food solutions in combatting obesity, to capitalize on the potential of pre/probiotic therapies in optimizing host health.
Collapse
Affiliation(s)
- Miranda Green
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada; (M.G.); (K.A.)
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada; (M.G.); (K.A.)
- Department of Bioengineering, Faculty of Engineering, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada
- Biena Inc., 2955 Rue Cartier, Saint-Hyacinthe, QC J2S 1L4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada; (M.G.); (K.A.)
- Correspondence:
| |
Collapse
|
26
|
Yong SJ, Tong T, Chew J, Lim WL. Antidepressive Mechanisms of Probiotics and Their Therapeutic Potential. Front Neurosci 2020; 13:1361. [PMID: 32009871 PMCID: PMC6971226 DOI: 10.3389/fnins.2019.01361] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
The accumulating knowledge of the host-microbiota interplay gives rise to the microbiota-gut-brain (MGB) axis. The MGB axis depicts the interkingdom communication between the gut microbiota and the brain. This communication process involves the endocrine, immune and neurotransmitters systems. Dysfunction of these systems, along with the presence of gut dysbiosis, have been detected among clinically depressed patients. This implicates the involvement of a maladaptive MGB axis in the pathophysiology of depression. Depression refers to symptoms that characterize major depressive disorder (MDD), a mood disorder with a disease burden that rivals that of heart diseases. The use of probiotics to treat depression has gained attention in recent years, as evidenced by increasing numbers of animal and human studies that have supported the antidepressive efficacy of probiotics. Physiological changes observed in these studies allow for the elucidation of probiotics antidepressive mechanisms, which ultimately aim to restore proper functioning of the MGB axis. However, the understanding of mechanisms does not yet complete the endeavor in applying probiotics to treat MDD. Other challenges remain which include the heterogeneous nature of both the gut microbiota composition and depressive symptoms in the clinical setting. Nevertheless, probiotics offer some advantages over standard pharmaceutical antidepressants, in terms of residual symptoms, side effects and stigma involved. This review outlines antidepressive mechanisms of probiotics based on the currently available literature and discusses therapeutic potentials of probiotics for depression.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Tommy Tong
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
27
|
Kim B, Choi HN, Yim JE. Effect of Diet on the Gut Microbiota Associated with Obesity. J Obes Metab Syndr 2019; 28:216-224. [PMID: 31909364 PMCID: PMC6939700 DOI: 10.7570/jomes.2019.28.4.216] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/24/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is abnormal or excessive fat accumulation that is associated with progression of metabolic diseases including type 2 diabetes mellitus, cardiovascular disease, nonalcoholic fatty liver disease, and cancer. Gut microbiota (GM) have received much attention as essential factors in development and progression of obesity. The diversity, composition, and metabolic activity of GM are closely associated with nutrient intake and dietary pattern. Scientific evidence supports the idea that dietary pattern directly changes the GM profile; therefore, diet is a crucial component related to interactions between GM and obesity progression. A literature review showed that dietary factors such as probiotics, prebiotics, fat, fatty acids, and fiber dramatically alter the GM profile related to obesity. Furthermore, different dietary patterns result in different GM composition and activity that can contribute to amelioration of obesity.
Collapse
Affiliation(s)
- Bohkyung Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Korea
| | - Ha-Neul Choi
- Department of Food and Nutrition, Changwon National University, Changwon, Korea
| | - Jung-Eun Yim
- Department of Food and Nutrition, Changwon National University, Changwon, Korea
| |
Collapse
|
28
|
Gut Microbiota and Obesity: A Role for Probiotics. Nutrients 2019; 11:nu11112690. [PMID: 31703257 PMCID: PMC6893459 DOI: 10.3390/nu11112690] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Nowadays, obesity is one of the most prevalent human health problems. Research from the last 30 years has clarified the role of the imbalance between energy intake and expenditure, unhealthy lifestyle, and genetic variability in the development of obesity. More recently, the composition and metabolic functions of gut microbiota have been proposed as being able to affect obesity development. Here, we will report the current knowledge on the definition, composition, and functions of intestinal microbiota. We have performed an extensive review of the literature, searching for the following keywords: metabolism, gut microbiota, dysbiosis, obesity. There is evidence for the association between gut bacteria and obesity both in infancy and in adults. There are several genetic, metabolic, and inflammatory pathophysiological mechanisms involved in the interplay between gut microbes and obesity. Microbial changes in the human gut can be considered a factor involved in obesity development in humans. The modulation of the bacterial strains in the digestive tract can help to reshape the metabolic profile in the human obese host as suggested by several data from animal and human studies. Thus, a deep revision of the evidence pertaining to the use probiotics, prebiotics, and antibiotics in obese patients is conceivable
Collapse
|
29
|
A Review on Role of Microbiome in Obesity and Antiobesity Properties of Probiotic Supplements. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3291367. [PMID: 31211135 PMCID: PMC6532319 DOI: 10.1155/2019/3291367] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Probiotics are now recognized for several health benefits and they have been recommended as a complementary therapeutic agent for metabolic disorders. Obesity is an altered health condition, which is a resultant of irregular energy intake and energy balance, changes in gut microbiota, and improper diet with the influence of genetic makeup and environmental factors. Several studies revealed the influence of probiotic supplementation on obesity-associated consequences in vitro, in vivo, and in human clinical studies. The current manuscript discussed the factors influencing the occurrence of obesity, the interplay between microbiome and obesity, the effect of the probiotic intervention on the health status of obese people, and possible mechanism of antiobesity activity of probiotics. The literature survey revealed that the antiobese activity of probiotics might be associated with their ability to alter the intestinal microbiota, remodeling of energy metabolism, alter the expression of genes related to thermogenesis, glucose metabolism, and lipid metabolism, and change the parasympathetic nerve activity. Further intense research is necessary to figure out the best probiotic or synbiotic mixture and optimum dosage and duration of the intervention to reduce obesity and prevent the recurring of obese condition.
Collapse
|
30
|
Core Fucosylation of Maternal Milk N-Glycan Evokes B Cell Activation by Selectively Promoting the l-Fucose Metabolism of Gut Bifidobacterium spp. and Lactobacillus spp. mBio 2019; 10:mBio.00128-19. [PMID: 30940702 PMCID: PMC6445936 DOI: 10.1128/mbio.00128-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This study provides novel evidence for the critical role of maternal milk protein glycosylation in shaping early-life gut microbiota and promoting B cell activation of neonates. The special core-fucosylated oligosaccharides might be promising prebiotics for the personalized nutrition of infants. The maternal milk glycobiome is crucial for shaping the gut microbiota of infants. Although high core fucosylation catalyzed by fucosyltransferase 8 (Fut8) is a general feature of human milk glycoproteins, its role in the formation of a healthy microbiota has not been evaluated. In this study, we found that the core-fucosylated N-glycans in milk of Chinese mothers selectively promoted the colonization of specific gut microbial groups, such as Bifidobacterium spp. and Lactobacillus spp. in their breast-fed infants during lactation. Compared with Fut8+/+ (WT) mouse-fed neonates, the offspring fed by Fut8+/− maternal mice had a distinct gut microbial profile, which was featured by a significant reduction of Lactobacillus spp., Bacteroides spp., and Bifidobacterium spp. and increased abundance of members of the Lachnospiraceae NK4A136 group and Akkermansia spp. Moreover, these offspring mice showed a lower proportion of splenic CD19+ CD69+ B lymphocytes and attenuated humoral immune responses upon ovalbumin (OVA) immunization. In vitro studies demonstrated that the chemically synthesized core-fucosylated oligosaccharides possessed the ability to promote the growth of tested Bifidobacterium and Lactobacillus strains in minimal medium. The resulting L-fucose metabolites, lactate and 1,2-propanediol, could promote the activation of B cells via the B cell receptor (BCR)-mediated signaling pathway.
Collapse
|
31
|
Cerdó T, García-Santos JA, G Bermúdez M, Campoy C. The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients 2019; 11:E635. [PMID: 30875987 PMCID: PMC6470608 DOI: 10.3390/nu11030635] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is a global pandemic complex to treat due to its multifactorial pathogenesis-an unhealthy lifestyle, neuronal and hormonal mechanisms, and genetic and epigenetic factors are involved. Scientific evidence supports the idea that obesity and metabolic consequences are strongly related to changes in both the function and composition of gut microbiota, which exert an essential role in modulating energy metabolism. Modifications of gut microbiota composition have been associated with variations in body weight and body mass index. Lifestyle modifications remain as primary therapy for obesity and related metabolic disorders. New therapeutic strategies to treat/prevent obesity have been proposed, based on pre- and/or probiotic modulation of gut microbiota to mimic that found in healthy non-obese subjects. Based on human and animal studies, this review aimed to discuss mechanisms through which gut microbiota could act as a key modifier of obesity and related metabolic complications. Evidence from animal studies and human clinical trials suggesting potential beneficial effects of prebiotic and various probiotic strains on those physical, biochemical, and metabolic parameters related to obesity is presented. As a conclusion, a deeper knowledge about pre-/probiotic mechanisms of action, in combination with adequately powered, randomized controlled follow-up studies, will facilitate the clinical application and development of personalized healthcare strategies.
Collapse
Affiliation(s)
- Tomás Cerdó
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
| | - José Antonio García-Santos
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
| | - Mercedes G Bermúdez
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
| | - Cristina Campoy
- Department of Pediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs, GRANADA, Health Sciences Technological Park, 18012 Granada, Spain.
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Carlos III Health Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
32
|
Stefani S, Ngatidjan S, Paotiana M, Sitompul KA, Abdullah M, Sulistianingsih DP, Shankar AH, Agustina R. Dietary quality of predominantly traditional diets is associated with blood glucose profiles, but not with total fecal Bifidobacterium in Indonesian women. PLoS One 2018; 13:e0208815. [PMID: 30576336 PMCID: PMC6303024 DOI: 10.1371/journal.pone.0208815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/25/2018] [Indexed: 12/15/2022] Open
Abstract
Background A high quality modern diet is associated with reduced risk of metabolic disease and diabetes. However, it remains unclear whether the quality of predominantly traditional ethnic diets is associated with such conditions. Moreover, the relationship between dietary quality and microbiota, a potential mediator of metabolic disease, has not been studied. Objective We investigated the relationship of dietary quality of traditional ethnic diets in Indonesia with fasting blood glucose (FBG), HbA1c, and the number of fecal Bifidobacterium. Design A cross-sectional study was conducted in selected districts with predominantly animal- or plant-based traditional diets of West Sumatera and West Java provinces, respectively. A total of 240 apparently healthy women aged 19–50 years were randomly selected from 360 women screened by a cluster sampling design. Dietary quality was assessed by 2-day repeated 24-hour food recall, and scored using the Healthy Eating Index (HEI) 2010. FBG was quantified with the enzymatic colorimetric method, and HbA1c by using hexokinase and high-performance liquid chromatography, and total fecal Bifidobacterium by real-time quantitative polymerase chain reaction. Results The HEI scores of 99% of women were <51, indicating a low-quality diet. In adjusted multivariate regression, HEI was inversely associated with FBG (ß = -0.403; 95% CI = -0.789 to -0.016; p = 0.041) and HbA1c (ß = -0.018; 95% CI = -0.036 to 0.000; p = 0.048) but was not significantly associated with total levels of Bifidobacterium (ß = -0.007, p = 0.275). Bifidobacterium count was not significantly associated with either FBG or HbA1c levels. Conclusion Low dietary quality is clearly associated with risk of increased markers of blood glucose. However, any mediating role of Bifidobacterium between dietary quality and glucose outcomes was not apparent. Innovative interventions for healthy eating should be implemented to increase dietary quality of populations transitioning from predominantly traditional to modern diets, to reduce the risk of diabetes, especially in women.
Collapse
Affiliation(s)
- Shiela Stefani
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Sanny Ngatidjan
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Monica Paotiana
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Kurnia A. Sitompul
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Murdani Abdullah
- Department of Internal Medicine, Faculty of Medicine Universitas Indonesia—Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- Human Nutrition Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Dyah P. Sulistianingsih
- Department of Internal Medicine, Faculty of Medicine Universitas Indonesia—Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Anuraj H. Shankar
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States of America
| | - Rina Agustina
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia—Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- Human Nutrition Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Southeast Asian Ministers of Education Organization Regional Centre for Food and Nutrition (SEAMEO RECFON)/ Pusat Kajian Gizi Regional (PKGR), Universitas Indonesia, Jakarta, Indonesia
- * E-mail: ,
| |
Collapse
|