1
|
Talib N, Mohamad NE, Yeap SK, Ho CL, Masarudin MJ, Abd-Aziz S, Izham MNM, Kumar MR, Hussin Y, Alitheen NB. Anti-Diabetic Effect of Lactobacillus Paracasei Isolated from Malaysian Water Kefir Grains. Probiotics Antimicrob Proteins 2024; 16:2161-2180. [PMID: 37755545 DOI: 10.1007/s12602-023-10159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is alarming because it is always linked to the increase in chronic diseases, mortality, and socioeconomic burden. Water kefir has a wide range of functional and probiotic characteristics attributed to the microorganisms present in the kefir grains. The present study aims to evaluate the in vivo anti-diabetic potential of the isolated Lactobacillus paracasei from Malaysian water kefir grains (MWKG) which was reported to have excellent probiotic properties and high antioxidant activities as reported previously. High-fat diet/streptozotocin (HFD/STZ) induction was used to obtain a T2DM model followed by treatment with the isolated L. paracasei from MWKG. The levels of glucose, insulin, and in vivo liver antioxidants were quantified after 14 weeks. Gene expression analysis of the liver was also carried out using microarray analysis, and several genes were selected for validation using quantitative real-time PCR. Insulin tolerance test demonstrated that the L. paracasei isolated from the MWKG alleviated T2DM by improving the area under the curve of the insulin tolerance test whereby low-dose and high-dose concentrations treated groups showed 2424.50 ± 437.02 mmol/L·min and 2017.50 ± 347.09 mmol/L·min, respectively, compared to untreated diabetic mice which was 3884.50 ± 39.36 mmol/L·min. Additionally, treatment with the isolated L. paracasei from MWKG regulated the expression of several genes related to glucose homeostasis and lipid metabolism in diabetic mice. These results suggested that the isolated L. paracasei from MWKG could be a potential dietary supplement for T2DM.
Collapse
Affiliation(s)
- Noorshafadzilah Talib
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Nurul Elyani Mohamad
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Mira Nadiah Mohd Izham
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Muganti Rajah Kumar
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Yazmin Hussin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Gu Y, Niu Q, Zhang Q, Zhao Y. Ameliorative Effects of Curcumin on Type 2 Diabetes Mellitus. Molecules 2024; 29:2934. [PMID: 38930998 PMCID: PMC11206386 DOI: 10.3390/molecules29122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), a multifactorial and complicated metabolic disorder, is a growing public health problem. Numerous studies have indicated that bioactive compounds from herbal medicine have beneficial effects on T2DM prevention and treatment, owing to their numerous biological properties. Curcumin, the major curcuminoid of turmeric, is one of the most studied bioactive components of herbal supplements, and has a variety of biological activities. Clinical trials and preclinical research have recently produced compelling data to demonstrate the crucial functions of curcumin against T2DM via several routes. Accordingly, this review systematically summarizes the antidiabetic activity of curcumin, along with various mechanisms. Results showed that effectiveness of curcumin on T2DM is due to it being anti-inflammatory, anti-oxidant, antihyperglycemic, anti-apoptotic, and antihyperlipidemic, among other activities. In light of these results, curcumin may be a promising prevention/treatment choice for T2DM.
Collapse
Affiliation(s)
- Yujin Gu
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhang Dian District, Zibo 255000, China;
| | - Qun Niu
- Institute of Xinhua Pharmaceutical, Shandong Xinhua Pharmaceutical Co., Ltd., Lutai Avenue 1, Gaoxin District, Zibo 255000, China;
| | - Qili Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhang Dian District, Zibo 255000, China;
| | - Yanfang Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhang Dian District, Zibo 255000, China;
| |
Collapse
|
3
|
Gupta A, Choudhary N, Gupta N. Prediabetes in children and adolescents: A ticking bomb! World J Clin Pediatr 2024; 13:92127. [PMID: 38947990 PMCID: PMC11212763 DOI: 10.5409/wjcp.v13.i2.92127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/12/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Prediabetes in children and adolescents is on the rise which has drawn significant attention over the past decade. It is an early warning sign of the underlying pathophysiological changes which in due course of time might compound into type II diabetes mellitus. The incidence of prediabetes in adolescents ranges from 4%-23% which is alarmingly high and requires active intervention from the system. We have discussed early identification of high-risk patients, prompt screening and active intervention to manage this growing problem.
Collapse
Affiliation(s)
- Anju Gupta
- Department of Anesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Science, New Delhi 110076, India
| | - Nitin Choudhary
- Department of Anesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Science, New Delhi 110076, India
| | - Nishkarsh Gupta
- Department of Onco-Anesthesiology and Palliative Medicine, All India Institute of Medical Science, New Delhi 110029, India
| |
Collapse
|
4
|
Kuramitsu K, Kadota Y, Watanabe A, Endo A, Shimomura Y, Kitaura Y. The Effects of 1-Kestose on the Abundance of Inflammation-Related Gene mRNA in Adipose Tissue and the Gut Microbiota Composition in Rats Fed a High-Fat Diet. J Nutr Sci Vitaminol (Tokyo) 2024; 70:311-317. [PMID: 39218692 DOI: 10.3177/jnsv.70.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chronic inflammation in adipose tissue is thought to contribute to insulin resistance, which involves the gut microbiota. Our previous studies have demonstrated that ingestion of 1-kestose can alter the gut microbiota composition, increase cecal butyrate levels, and improve insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Additionally, we found that 1-kestose supplementation ameliorated insulin resistance in obese rat models fed a high-fat diet (HFD), although the effects of 1-kestose on the abundance of inflammation-related gene in adipose tissue and gut microbiota composition in these rats were not explored. This study aimed to investigate the impact of 1-kestose on these parameters in HFD-fed rats, compared to OLETF rats. Male Sprague-Dawley rats were divided into two dietary groups, control or HFD, for 19 wk. Each group was further subdivided to receive either tap water or tap water supplemented with 2% (w/v) 1-kestose throughout the study. We evaluated gene expression in adipose tissue, as well as short-chain fatty acids (SCFAs) levels and microbial composition in the cecum contents. 1-Kestose intake restored the increased relative abundance of tumor necrosis factor (Tnf) mRNA in adipose tissue and the reduced level of butyrate in the cecum contents of HFD-fed rats to those observed in control diet-fed rats. Additionally, 1-kestose consumption changed the composition of the gut microbiota, increasing Butyricicoccus spp., decreasing UGC-005 and Streptococcus spp., in the cecum contents of HFD-fed rats. Our findings suggest that 1-kestose supplementation reduces adipose tissue inflammation and increases butyrate levels in the gut of HFD-fed rats, associated with changes in the gut microbiota composition, distinct from those seen in OLETF rats.
Collapse
Affiliation(s)
- Kento Kuramitsu
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | | | - Ayako Watanabe
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Akihito Endo
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | | | - Yasuyuki Kitaura
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
5
|
Rostami M, Kolahi Azar H, Salehi M, Abedin Dargoush S, Rostamani H, Jahed-Khaniki G, Alikord M, Aghabeigi R, Ahmadi A, Beheshtizadeh N, Webster TJ, Rezaei N. The food and biomedical applications of curcumin-loaded electrospun nanofibers: A comprehensive review. Crit Rev Food Sci Nutr 2023; 64:12383-12410. [PMID: 37691403 DOI: 10.1080/10408398.2023.2251584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Encapsulating curcumin (CUR) in nanocarriers such as liposomes, polymeric micelles, silica nanoparticles, protein-based nanocarriers, solid lipid nanoparticles, and nanocrystals could be efficient for a variety of industrial and biomedical applications. Nanofibers containing CUR represent a stable polymer-drug carrier with excellent surface-to-volume ratios for loading and cell interactions, tailored porosity for controlled CUR release, and diverse properties that fit the requirements for numerous applications. Despite the mentioned benefits, electrospinning is not capable of producing fibers from multiple polymers and biopolymers, and the product's effectiveness might be affected by various machine- and material-dependent parameters like the voltage and the flow rate of the electrospinning process. This review delves into the current and innovative recent research on nanofibers containing CUR and their various applications.
Collapse
Affiliation(s)
- Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojdeh Salehi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hosein Rostamani
- Department of Biomedical Engineering-Biomaterials, Islamic Azad University, Mashhad, Iran
| | - Gholamreza Jahed-Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Alikord
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Aghabeigi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Ahmadi
- Department of Food Sciences and Technology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, Teresina, Brazil
- School of Engineering, Saveetha University, Chennai, India
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
6
|
Hu J, Xie H, Lin N, Yang Y. Penthorum chinense Pursh improves type 2 diabetes mellitus via modulating gut microbiota in db/db mice. BMC Complement Med Ther 2023; 23:314. [PMID: 37689643 PMCID: PMC10492416 DOI: 10.1186/s12906-023-04136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023] Open
Abstract
Penthorum chinense Pursh (P. chinense) has been traditionally used as hepatoprotective food and medicine for hundreds of years due to its significant antioxidant and anti-inflammatory activities. However, the efficacy and mechanisms of action of P. chinense in type 2 diabetes mellitus were not fully understood. In this study, we found that P. chinense extract (PCP) supplementation resulted in reduced body weight and hyperglycemia, improved pancreatic tissue injury and insulin sensitivity, and decreased inflammatory cytokines expression in spontaneously diabetic db/db mice. 16S rRNA gene sequencing of fecal samples showed that PCP administration decreased the abundance of Firmicutes and increased the proportion of Bacteroidetes at the phylum level. Moreover, Muribaculum, Barnesiella, Prevotella, and Mucinivorans were enriched, with Desulfovibrio and Lactobacillus lowered at the genus level in db/db mice with PCP supplementation. These results suggested that PCP may ameliorate hyperglycemia, insulin resistance, and inflammation by remodeling the gut microbiota in db/db mice.
Collapse
Affiliation(s)
- Jilei Hu
- Clinical Nutrition, The General Hospital of Western Theater Command, Chengdu, 610083, P. R. China
- School of Public Health, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Huibo Xie
- School of Public Health, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Ning Lin
- Clinical Nutrition, The General Hospital of Western Theater Command, Chengdu, 610083, P. R. China.
| | - Yan Yang
- School of Public Health, Southwest Medical University, Luzhou, 646000, P. R. China.
- Environmental health effects and risk assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, P. R. China.
| |
Collapse
|
7
|
Kriger-Sharabi O, Malnick SDH, Fisher D. Manipulation of the intestinal microbiome-a slow journey to primetime. World J Clin Cases 2023; 11:4975-4988. [PMID: 37583860 PMCID: PMC10424025 DOI: 10.12998/wjcc.v11.i21.4975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
The gut microbiota has important functions in the regulation of normal body functions. Alterations of the microbiota are being increasingly linked to various disease states. The microbiome has been manipulated via the administration of stool from animals or humans, for more than 1000 years. Currently, fecal microbiota transplantation can be performed via endoscopic administration of fecal matter to the duodenum or colon or via capsules of lyophilized stools. More recently fecal microbial transplantation has been shown to be very effective for recurrent Clostridoides difficile infection (CDI). In addition there is some evidence of efficacy in the metabolic syndrome and its hepatic manifestation, metabolic associated fatty liver disease (MAFLD), irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). We review the current literature regarding the microbiome and the pathogenesis and treatment of CDI, MAFLD, IBS and IBD.
Collapse
Affiliation(s)
- Ofra Kriger-Sharabi
- Institute of Gastroenterology, Assuta Medical Center, Ashdod 7747629, Israel
| | - Stephen D H Malnick
- Department of Internal Medicine, Kaplan Medical Center, Rehovot 76100, Israel
| | - David Fisher
- Department of Endocrinology, Soroka Medical Center, Beer Sheva POB 151, Israel
| |
Collapse
|
8
|
Ojo O, Jiang Y, Ojo OO, Wang X. The Association of Planetary Health Diet with the Risk of Type 2 Diabetes and Related Complications: A Systematic Review. Healthcare (Basel) 2023; 11:healthcare11081120. [PMID: 37107955 PMCID: PMC10138355 DOI: 10.3390/healthcare11081120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Nutritional interventions such as the planetary health diet, which the EAT-Lancet commission proposed, may be an effective strategy for reducing type 2 diabetes risks and its associated complications. The planetary health diet demonstrates the significant role of diet in associating human health with environmental sustainability and the significance of transforming food systems in order to ensure that the UN's Sustainable Development Goals and the Paris Agreement are achieved. Therefore, the aim of this review is to examine the association of the planetary health diet (PHD) with the risk of type 2 diabetes and its related complications. METHOD The systematic review was conducted in line with established guidelines. The searches were carried out in health sciences research databases through EBSCOHost. The population, intervention, comparator and outcomes framework was used in order to define the research question and the search terms. The searches were carried out from the inception of the databases to 15 November 2022. Search terms including synonyms and medical subject headings were combined using Boolean operators (OR/AND). RESULTS Seven studies were included in the review and four themes were identified, including incidence of diabetes; cardiovascular risk factors and other disease risks; indicators of obesity and indicators of environmental sustainability. Two studies examined the association between the PHD and the incidence of type 2 diabetes and found that high adherence to the reference diet (EAT-Lancet reference diet) was correlated with a lower incidence of type 2 diabetes. High adherence to the PHD was also associated with some cardiovascular risk factors and environmental sustainability. CONCLUSION This systematic review has shown that high adherence to the PHD is associated with a reduced risk of type 2 diabetes and may be associated with a lower risk of subarachnoid stroke. In addition, an inverse relationship was found between adherence to the PHD and markers of obesity and environmental sustainability. Adherence to the reference diet was also associated with lower values of some markers of cardiovascular risk. More studies are needed to fully examine the relationship between the planetary health diet, type 2 diabetes and its related conditions.
Collapse
Affiliation(s)
- Omorogieva Ojo
- School of Health Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London SE9 2UG, UK
| | - Yiqing Jiang
- The School of Nursing, Soochow University, Suzhou 215006, China
| | - Osarhumwese Osaretin Ojo
- Smoking Cessation Department, University Hospital, South London and Maudsley NHS Foundation Trust, Lewisham High Street, London SE13 6LH, UK
| | - Xiaohua Wang
- The School of Nursing, Soochow University, Suzhou 215006, China
| |
Collapse
|
9
|
Xu Y, Guo J, Liu Y, Guan F, Li Z, Yao Q, Bao D. Dual-stimuli responsive skin-core structural fibers with an in situ crosslinked alginate ester for hydrophobic drug delivery. J Mater Chem B 2023; 11:2762-2769. [PMID: 36880839 DOI: 10.1039/d2tb02623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
To solve the problems of low bioavailability and low intestinal release efficiency of curcumin as a hydrophobic drug in the treatment of diabetes, a novel alginate ester/Antarctic krill protein/2-formylphenylboronic acid (AE/AKP/2-FPBA) skin-core structural fiber with pH and glucose stimulation responsiveness was prepared by an acid-catalyzed polyol in situ crosslinked phase separation method as a drug delivery system. The reaction mechanism and apparent morphology of the fiber were studied. The controlled release ability of the fiber in simulated liquids was evaluated. AE targeted the release of curcumin by pH stimulation; the release amount in the simulated colonic fluid reached 100%, while the release amount in the simulated digestive fluid was less than 12%. 2-FPBA controlled the release rate of curcumin by glucose stimulation, which increases with the increase of 2-FPBA content. Moreover, the cytotoxicity test confirmed that the skin-core structural fiber was non-toxic. These results suggest that skin-core structural fibers have great potential as curcumin delivery systems.
Collapse
Affiliation(s)
- Yi Xu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
- Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian, 116034, China
| | - Yuanfa Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
- Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian, 116034, China
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
- Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian, 116034, China
| | - Zheng Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Qiang Yao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Da Bao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
10
|
Ding YY, Fang Y, Pan Y, Lan J, Xu T, Zhang W, Mao H, Gu Z, Chen X, Shen Q. Orally administered octacosanol improves liver insulin resistance in high-fat diet-fed mice through the reconstruction of the gut microbiota structure and inhibition of the TLR4/NF-κB inflammatory pathway. Food Funct 2023; 14:769-786. [PMID: 36594412 DOI: 10.1039/d2fo02463b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1-Octacosanol (Octa) is reported to possess many physiological properties. However, its relative mechanism has not been illustrated yet. Herein, we aimed to investigate the effect of Octa on insulin resistance in mice fed with a high fat diet (HFD) and used an in vitro simulated gastrointestinal tract to analyze its digestive behavior. The effects of Octa on the gut microbiota were verified by in vitro fermentation using the mouse fecal microbiota. As a result, the Octa monomer was digested into shortened saturated and unsaturated fatty acids (C10-C24) in the simulated gastrointestinal tract. Octa improved the fasting blood glucose (FBG), insulin resistance (IR), plasma lipids, and inflammatory response in HFD-fed mice in a dose-dependent manner. This study also suggested that a high-dose of Octa effectively decreased the levels of toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in the plasma of HFD-fed mice. Octa improved the oxidative stress induced by a HFD and increased the expression of the Nrf2/ARE signaling pathway. Importantly, Octa reshaped gut microbiota through decreasing Firmicutes content and increasing Bacteroidota and Verrucomicrobiota contents at the phylum level, and the changes of intestinal flora structure caused by Octa were significantly correlated with the changes of inflammatory biomarkers. In conclusion, the effects of Octa on insulin resistance might be attributed to the reconstruction of the gut microbiota structure and inhibition of the TLR4/NF-κB inflammatory pathway in HFD-induced obese individuals.
Collapse
Affiliation(s)
- Yin-Yi Ding
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. .,Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yumeng Fang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Yuxiang Pan
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Jinchi Lan
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Tao Xu
- Huzhou Shengtao Biotechnology LLC, Huzhou, 313000, China
| | - Wanyue Zhang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Huijuan Mao
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Zhejiang, 311106, China.
| | - Zhenyu Gu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Xi Chen
- Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Qing Shen
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. .,Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China, 310018
| |
Collapse
|
11
|
Zhou W, Weng Y, Liu Q, Wang C, Zhang YQ, Zhang X, Ye A. Dietary administration with hydrolyzed silk sericin improves the intestinal health of diabetic rats. Front Microbiol 2023; 14:1074892. [PMID: 36960285 PMCID: PMC10027739 DOI: 10.3389/fmicb.2023.1074892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
Type II diabetes (T2D) is a global epidemic disease with an increased incidence and prevalence. Gut microbiota plays an important role in controlling T2D development. Dietary administration of prebiotics, probiotics, and drugs, including metformin, showed the regulatory impact on the change of gut microbiota, which is associated with the improvement of glucose tolerance. In this study, silk sericin was manufactured into hydrolyzed sericin peptide (HSP) powders as a dietary additive to investigate the effect on the gut microbiota of T2D model rats. The results indicated that the HSP-augmented dietary administration lowers the fast glucose level of diabetic rats, and HSP augmentation induces a change in the gut microbiota composition of T2D model rats toward the normal rats. Some key taxa, including Lactobacillus gasseri, were suggested to be involved in controlling T2D development. This finding provides new insight into developing sericin as functional food or therapeutic prebiotics against T2D in clinical practice.
Collapse
Affiliation(s)
- Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yujie Weng
- Department of Biological Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qian Liu
- Department of Biological Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chonglong Wang
- Department of Biological Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yu-Qing Zhang
- Department of Biological Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xing Zhang
- Department of Biological Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Xing Zhang
| | - Aihong Ye
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Aihong Ye
| |
Collapse
|
12
|
Ojo O, Wang X, Ojo OO, Brooke J, Jiang Y, Dong Q, Thompson T. The Effect of Prebiotics and Oral Anti-Diabetic Agents on Gut Microbiome in Patients with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis of Randomised Controlled Trials. Nutrients 2022; 14:nu14235139. [PMID: 36501168 PMCID: PMC9739188 DOI: 10.3390/nu14235139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Nutritional interventions such as the use of prebiotics can promote eubiosis of gut microbiome and maintain glucose homeostasis in patients with type 2 diabetes (T2D). However, it would appear that results of the effects of prebiotics on the community of microbes in the gut are not consistent. Aim: To examine the effect of prebiotics and oral antidiabetic agents on gut microbiome in patients with T2D. Methods: The PRISMA Extension Statement for Systematic Reviews and Network Meta-analyses was used to conduct this review. Searches were carried out in EMBASE, EBSCO-host databases, Google Scholar and the reference lists of articles for studies that are relevant to the research question, from database inception to 15 August 2022. The search strategy was based on PICOS framework. Network Meta-analysis which allows the estimation of relative treatment effects by combing both direct trial evidence (e.g., treatment A vs. treatment B) and indirect evidence was conducted. Furthermore, pairwise meta-analysis was also carried out to estimate effect sizes based on head-to-head comparisons of treatments and/or control conditions. Results: Findings of the Network meta-analysis revealed that prebiotics significantly reduced HbA1c compared with control and the SMD was −0.43 [95% CI, −0.77, −0.08; p = 0.02], whereas there was no significant difference (p > 0.05) between the other treatments and control. In addition, anti-diabetic agents including glipizide and metformin also reduced HbA1C, although these were not significantly different (p > 0.05) from control. While prebiotics promoted Bifidobacterium and Akkermansia, the improvements were not significantly different (p > 0.05) from control. On the other hand, metformin decreased the relative abundance of Bifidobacterium, but increased Lactobacillus and Akkermansia, although the differences were not significant (p > 0.05) compared with control. With respect to fasting blood glucose and BMI, the effects of prebiotics and oral antidiabetic agents did not differ significantly (p > 0.05) from controls. Conclusions: The findings of the systematic review and Network meta-analysis demonstrated prebiotics were significantly (p < 0.05) more effective in reducing HbA1c than control in patients with T2D. However, the effects of prebiotics and oral antidiabetic agents did not differ significantly (p > 0.05) from the controls in relation to fasting blood glucose, post-prandial blood glucose, body mass index and the genera of gut bacteria examined. More studies are required to fully investigate the effects of prebiotics and oral antidiabetic agents in patients with T2D
Collapse
Affiliation(s)
- Omorogieva Ojo
- School of Health Sciences, Avery Hill Campus, University of Greenwich, London SE9 2UG, UK
- Correspondence:
| | - Xiaohua Wang
- The School of Nursing, Soochow University, Suzhou 215006, China
| | | | - Joanne Brooke
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
| | - Yiqing Jiang
- The School of Nursing, Soochow University, Suzhou 215006, China
| | - Qingqing Dong
- The School of Nursing, Soochow University, Suzhou 215006, China
| | - Trevor Thompson
- School of Human Sciences, Avery Hill Campus, University of Greenwich, London SE9 2UG, UK
| |
Collapse
|
13
|
Luck ME, Tao J, Lake EP. The Skin and Gut Microbiome in Hidradenitis Suppurativa: Current Understanding and Future Considerations for Research and Treatment. Am J Clin Dermatol 2022; 23:841-852. [DOI: 10.1007/s40257-022-00724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
|
14
|
Xu B, Ye Z, Tian T, Zhu R, Liu C, Fang X, Zhang D, Fu M, Gao S, Zhao D. Loganin regulates glycolipid metabolism by influencing intestinal microbiota and AMPK signaling in obese mice. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Xiao R, Wang R, Li S, Kang X, Ren Y, Sun E, Wang C, He J, Zhan J. Preliminary Evaluation of Potential Properties of Three Probiotics and Their Combination with Prebiotics on GLP-1 Secretion and Type 2 Diabetes Alleviation. J FOOD QUALITY 2022; 2022:1-9. [DOI: 10.1155/2022/8586843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease of global concern characterized by hyperglycemia and insulin resistance. Many studies found that glucagonlike peptide-1 (GLP-1) is an incretin hormone that can alleviate hyperglycemia and T2D. Recently, probiotics and their combination with prebiotics have been found to show great potentials of blood glucose regulation and T2D alleviation. Given the important role of GLP-1 in T2D, screening probiotics with the capacity of promoting GLP-1 secretion is of great help for providing a novel application of T2D treatment. In the current study, we evaluated the effects of three probiotics, namely, Lactobacillus paracasei LC-37 (LC-37), Bifidobacterium animals MN-Gup (MN-Gup), and Bifidobacterium longum BBMN68 (BBMN68), and their combination with prebiotics on promoting GLP-1 secretion using NCI-H716 cells. The results showed that LC-37 and MN-Gup could stimulate more GLP-1 secretion in NCI-H716 cells, but BBMN68 had no significant effect. Further evaluation suggested that the two combinations of LC-37 with isomaltooligosaccharide (IMO) and MN-Gup with galactooligosaccharide (GOS) had the best performance on promoting GLP-1 secretion in vitro. Subsequently, the effects of the two combinations on promoting GLP-1 secretion and alleviating T2D were investigated in vivo using high fat diet (HFD) and streptozotocin (STZ) treated rats. The results showed that the two combinations could significantly reduce fasting blood glucose levels, improve insulin resistance, and modulate serum lipid profiles in HFD/STZ-treated rats. These results will help understand the potential of promoting GLP-1 secretion of LC-37 and MN-Gup and provide theoretical basis for their applications in fermented milk or other foods.
Collapse
Affiliation(s)
- Ran Xiao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Mengniu Hi-Tech Dairy Product Beijing Co. Ltd., Beijing 101100, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Shusen Li
- Mengniu Hi-Tech Dairy Product Beijing Co. Ltd., Beijing 101100, China
| | - Xiaohong Kang
- Mengniu Hi-Tech Dairy Product Beijing Co. Ltd., Beijing 101100, China
| | - Yimei Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Erna Sun
- Mengniu Hi-Tech Dairy Product Beijing Co. Ltd., Beijing 101100, China
| | - Chenyuan Wang
- Mengniu Hi-Tech Dairy Product Beijing Co. Ltd., Beijing 101100, China
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Zhang ZJ, Lehmann CJ, Cole CG, Pamer EG. Translating Microbiome Research From and To the Clinic. Annu Rev Microbiol 2022; 76:435-460. [DOI: 10.1146/annurev-micro-041020-022206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extensive research has elucidated the influence of the gut microbiota on human health and disease susceptibility and resistance. We review recent clinical and laboratory-based experimental studies associating the gut microbiota with certain human diseases. We also highlight ongoing translational advances that manipulate the gut microbiota to treat human diseases and discuss opportunities and challenges in translating microbiome research from and to the bedside. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zhenrun J. Zhang
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Cody G. Cole
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Eric G. Pamer
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
- Department of Medicine and Pathology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
17
|
Liu W, Luo Z, Zhou J, Sun B. Gut Microbiota and Antidiabetic Drugs: Perspectives of Personalized Treatment in Type 2 Diabetes Mellitus. Front Cell Infect Microbiol 2022; 12:853771. [PMID: 35711668 PMCID: PMC9194476 DOI: 10.3389/fcimb.2022.853771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
Alterations in the composition and function of the gut microbiota have been reported in patients with type 2 diabetes mellitus (T2DM). Emerging studies show that prescribed antidiabetic drugs distort the gut microbiota signature associated with T2DM. Even more importantly, accumulated evidence provides support for the notion that gut microbiota, in turn, mediates the efficacy and safety of antidiabetic drugs. In this review, we highlight the current state-of-the-art knowledge on the crosstalk and interactions between gut microbiota and antidiabetic drugs, including metformin, α-glucosidase inhibitors, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, sodium-glucose cotransporter 2 inhibitors, traditional Chinese medicines and other antidiabetic drugs, as well as address corresponding microbial-based therapeutics, aiming to provide novel preventative strategies and personalized therapeutic targets in T2DM.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Zhiying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jiecan Zhou
- Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Bao Sun,
| |
Collapse
|
18
|
Bongers KS, McDonald RA, Winner KM, Falkowski NR, Brown CA, Baker JM, Hinkle KJ, Fergle DJ, Dickson RP. Antibiotics cause metabolic changes in mice primarily through microbiome modulation rather than behavioral changes. PLoS One 2022; 17:e0265023. [PMID: 35298489 PMCID: PMC8929607 DOI: 10.1371/journal.pone.0265023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/20/2022] [Indexed: 12/15/2022] Open
Abstract
Background The microbiome is an important and increasingly-studied mediator of organismal metabolism, although how the microbiome affects metabolism remains incompletely understood. Many investigators use antibiotics to experimentally perturb the microbiome. However, antibiotics have poorly understood yet profound off-target effects on behavior and diet, including food and water aversion, that can confound experiments and limit their applicability. We thus sought to determine the relative influence of microbiome modulation and off-target antibiotic effects on the behavior and metabolic activity of mice. Results Mice treated with oral antibiotics via drinking water exhibited significant weight loss in fat, liver, and muscle tissue. These mice also exhibited a reduction in water and food consumption, with marked variability across antibiotic regimens. While administration of bitter-tasting but antimicrobially-inert compounds caused a similar reduction in water consumption, this did not cause tissue weight loss or reduced food consumption. Mice administered intraperitoneal antibiotics (bypassing the gastrointestinal tract) exhibited reduced tissue weights and oral intake, comparable to the effects of oral antibiotics. Antibiotic-treated germ-free mice did not have reduced tissue weights, providing further evidence that direct microbiome modulation (rather than behavioral effects) mediates these metabolic changes. Conclusions While oral antibiotics cause profound effects on food and water consumption, antibiotic effects on organismal metabolism are primarily mediated by microbiome modulation. We demonstrate that tissue-specific weight loss following antibiotic administration is due primarily to microbiome effects rather than food and water aversion, and identify antibiotic regimens that effectively modulate gut microbiota while minimizing off-target behavioral effects.
Collapse
Affiliation(s)
- Kale S. Bongers
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Roderick A. McDonald
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Katherine M. Winner
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Nicole R. Falkowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Christopher A. Brown
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
- Institute for Research on Innovation and Science, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer M. Baker
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kevin J. Hinkle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Daniel J. Fergle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
19
|
Wolosowicz M, Prokopiuk S, Kaminski TW. Recent Advances in the Treatment of Insulin Resistance Targeting Molecular and Metabolic Pathways: Fighting a Losing Battle? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:472. [PMID: 35454311 PMCID: PMC9029454 DOI: 10.3390/medicina58040472] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
Abstract
Diabetes Mellitus (DM) is amongst the most notable causes of years of life lost worldwide and its prevalence increases perpetually. The disease is characterized as multisystemic dysfunctions attributed to hyperglycemia resulting directly from insulin resistance (IR), inadequate insulin secretion, or enormous glucagon secretion. Insulin is a highly anabolic peptide hormone that regulates blood glucose levels by hastening cellular glucose uptake as well as controlling carbohydrate, protein, and lipid metabolism. In the course of Type 2 Diabetes Mellitus (T2DM), which accounts for nearly 90% of all cases of diabetes, the insulin response is inadequate, and this condition is defined as Insulin Resistance. IR sequela include, but are not limited to, hyperglycemia, cardiovascular system impairment, chronic inflammation, disbalance in oxidative stress status, and metabolic syndrome occurrence. Despite the substantial progress in understanding the molecular and metabolic pathways accounting for injurious effects of IR towards multiple body organs, IR still is recognized as a ferocious enigma. The number of widely available therapeutic approaches is growing, however, the demand for precise, safe, and effective therapy is also increasing. A literature search was carried out using the MEDLINE/PubMed, Google Scholar, SCOPUS and Clinical Trials Registry databases with a combination of keywords and MeSH terms, and papers published from February 2021 to March 2022 were selected as recently published papers. This review paper aims to provide critical, concise, but comprehensive insights into the advances in the treatment of IR that were achieved in the last months.
Collapse
Affiliation(s)
- Marta Wolosowicz
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Slawomir Prokopiuk
- Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland;
| | - Tomasz W. Kaminski
- Department of Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
20
|
Sun RX, Huang WJ, Xiao Y, Wang DD, Mu GH, Nan H, Ni BR, Huang XQ, Wang HC, Liu YF, Fu Q, Zhao JX. Shenlian (SL) Decoction, a Traditional Chinese Medicine Compound, May Ameliorate Blood Glucose via Mediating the Gut Microbiota in db/db Mice. J Diabetes Res 2022; 2022:7802107. [PMID: 35187178 PMCID: PMC8855168 DOI: 10.1155/2022/7802107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Shenlian (SL) decoction is a herbal formula composed of Coptis and ginseng, of which berberine and ginsenoside are the main constituents. Even though SL decoction is widely used in treating diabetes in China, the mechanism of its antidiabetes function still needs further study. Gut microbiota disorder is one of the important factors that cause diabetes. To explore the effect of SL decoction on intestinal microbiota, gut microbiota of mice was analyzed by sequencing the gut bacterial 16S rRNA V3+V4 region and metagenomics. In this study, results demonstrated that SL decoction had a better hypoglycemic effect and β cell protection effect than either ginseng or Coptis chinensis. Alpha diversity analysis showed that all interventions with ginseng, Coptis, and SL decoction could reverse the increased diversity and richness of gut microbiota in db/db mice. PCoA analysis showed oral SL decoction significantly alters gut microbiota composition in db/db mice. 395 OTUs showed significant differences after SL treatment, of which 37 OTUs enriched by SL decoction showed a significant negative correlation with FBG, and 204 OTUs decreased by SL decoction showed a significant positive correlation with FBG. Results of KEGG analysis and metagenomic sequencing showed that SL decoction could reduce the Prevotellaceae, Rikenellaceae, and Helicobacteraceae, which were related to lipopolysaccharide biosynthesis, riboflavin metabolism, and peroxisome, respectively. It could also upregulate the abundance of Bacteroidaceae, which contributed to the metabolism of starch and sucrose as well as pentose-glucuronate interconversions. In the species level, SL decoction significantly upregulates the relative abundance of Bacteroides_acidifaciens which showed a significant negative correlation with FBG and was reported to be a potential agent for modulating metabolic disorders such as diabetes and obesity. In conclusion, SL decoction was effective in hypoglycemia and its mechanism may be related to regulating gut microbiota via upregulating Bacteroides_acidifaciens.
Collapse
Affiliation(s)
- Rui-xi Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Wei-jun Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Xiao
- Nephropathy Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dou-dou Wang
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guo-hua Mu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - He Nan
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-ran Ni
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-qiang Huang
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hsuan-chuan Wang
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-fan Liu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Fu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-xi Zhao
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Pasiakos SM, Karl JP, Margolis LM. Challenging traditional carbohydrate intake recommendations for optimizing performance at high altitude. Curr Opin Clin Nutr Metab Care 2021; 24:483-489. [PMID: 34284412 DOI: 10.1097/mco.0000000000000782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To highlight emerging evidence challenging traditional recommendations to increase carbohydrate intake to optimize performance at high altitude. RECENT FINDINGS Several studies have now clearly demonstrated that, compared with sea level, exogenous carbohydrate oxidation during aerobic exercise is blunted in lowlanders during initial exposure to high altitude. There is also no apparent ergogenic effect of ingesting carbohydrate during aerobic exercise on subsequent performance at high altitude, either initially after arriving or even after up to 22 days of acclimatization. The inability to oxidize and functionally benefit from exogenous carbohydrate intake during exercise after arriving at high altitude coincides with hyperinsulinemia, accelerated glycogenolysis, and reduced peripheral glucose uptake. Collectively, these responses are consistent with a hypoxia-mediated metabolic dysregulation reflective of insulin resistance. Parallel lines of evidence have also recently demonstrated roles for the gut microbiome in host metabolism, bioenergetics, and physiologic responses to high altitude, implicating the gut microbiome as one potential mediator of hypoxia-mediated metabolic dysregulation. SUMMARY Identification of novel and well tolerated nutrition and/or pharmacological approaches for alleviating hypoxia-mediated metabolic dysregulation and enhancing exogenous carbohydrate oxidation may be more effective for optimizing performance of lowlanders newly arrived at high altitude than traditional carbohydrate recommendations.
Collapse
Affiliation(s)
- Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | | | | |
Collapse
|
22
|
Supplementation of 1-Kestose Modulates the Gut Microbiota Composition to Ameliorate Glucose Metabolism in Obesity-Prone Hosts. Nutrients 2021; 13:nu13092983. [PMID: 34578862 PMCID: PMC8470827 DOI: 10.3390/nu13092983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
Insulin resistance leads to the onset of medical conditions such as type 2 diabetes, and its development is associated with the alteration in the gut microbiota. Although it has been demonstrated that supplementation with prebiotics modulates the gut microbiota, limited evidence is available for effects of prebiotics on insulin resistance, especially for humans. We investigated the prebiotic effect of 1-kestose supplementation on fasting insulin concentration in obesity-prone humans and rats. In the preliminary study using rats, the hyperinsulinemia induced by high-fat diet was suppressed by intake of water with 2% (w/v) 1-kestose. In the clinical study using obese-prone volunteers, the fasting serum insulin level was significantly reduced from 6.5 µU/mL (95% CI, 5.5–7.6) to 5.3 (4.6–6.0) by the 12-week intervention with supplementation of 10 g 1-kestose/day, whereas it was not changed by the intervention with placebo (6.2 µU/mL (5.4–7.1) and 6.5 (5.5–7.6) before and after intervention, respectively). The relative abundance of fecal Bifidobacterium was significantly increased to 0.3244 (SD, 0.1526) in 1-kestose-supplemented participants compared to that in control participants (0.1971 (0.1158)). These results suggest that prebiotic intervention using 1–kestose may potentially ameliorate insulin resistance in overweight humans via the modulation of the gut microbiota. UMIN 000028824.
Collapse
|
23
|
Li XX, Zhang XX, Zhang R, Ni ZJ, Elam E, Thakur K, Cespedes-Acuña CL, Zhang JG, Wei ZJ. Gut modulation based anti-diabetic effects of carboxymethylated wheat bran dietary fiber in high-fat diet/streptozotocin-induced diabetic mice and their potential mechanisms. Food Chem Toxicol 2021; 152:112235. [PMID: 33894295 DOI: 10.1016/j.fct.2021.112235] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023]
Abstract
We explored the effect of carboxymethylated wheat bran dietary fibers (DFs) on mice with type 2 diabetes (T2D) (induced by HFD combined with STZ) and their possible hypoglycemic mechanism. After feeding the diabetic mice with modified DFs for four weeks, the DFs had lipid lowering and anti-hyperglycemic effect, via increasing the levels of insulin, GLP-1, PYY, and SCFAs in diabetic mice, and improving the histopathology of liver and pancreas. qRT-PCR results showed that the intake of DFs up-regulated the expression levels of G6Pase and Prkce, and down regulated the expression levels of Glut2 and InsR in the liver of diabetic mice. It is suggested that DFs may play a role by inhibiting 1,2-DAG-PKCε pathway, improving insulin receptor activity and insulin signal transduction. 16 S rDNA high-throughput sequencing results showed that the DFs significantly improved the relative abundance of Akkermansia muciniphila, increased the diversity of gut microbiota and reduced the ratio of Firmicutes to Bacteroidetes, thus promoting the hypoglycemic and hypolipidemic effect on diabetic mice. Our study can foster the further understanding of the gut modulatory biomarkers and related metabolites, and may extend the basis for DFs as a potential dietary intervention to prevent or treat the T2D.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Xiu-Xiu Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Rui Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Zhi-Jing Ni
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Elnur Elam
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | | | - Jian-Guo Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
24
|
Marton LT, Pescinini-e-Salzedas LM, Camargo MEC, Barbalho SM, Haber JFDS, Sinatora RV, Detregiachi CRP, Girio RJS, Buchaim DV, Cincotto dos Santos Bueno P. The Effects of Curcumin on Diabetes Mellitus: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:669448. [PMID: 34012421 PMCID: PMC8126655 DOI: 10.3389/fendo.2021.669448] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is an ensemble of metabolic conditions that have reached pandemic proportions worldwide. Pathology's multifactorial nature makes patient management, including lifelong drug therapy and lifestyle modification, extremely challenging. Currently, there is growing evidence about the effectiveness of using herbal supplements in preventing and controlling DM. Curcumin is a bioactive component found Curcuma longa, which exhibits several physiological and pharmacological properties such as antioxidant, anti-inflammatory, anticancer, neuroprotective, and anti-diabetic activities. For these reasons, our objective is to systematically review the effects of Curcuma longa or curcumin on DM. Databases such as PUBMED and EMBASE were searched, and the final selection included sixteen studies that fulfilled the inclusion criteria. The results showed that curcumin's anti-diabetic activity might be due to its capacity to suppress oxidative stress and inflammatory process. Also, it significantly reduces fasting blood glucose, glycated hemoglobin, and body mass index. Nanocurcumin is also associated with a significant reduction in triglycerides, VLDL-c, total cholesterol, LDL-c, HDL-c, serum C reactive protein, and plasma malonaldehyde. Therefore, it can be considered in the therapeutic approach of patients with DM.
Collapse
Affiliation(s)
- Ledyane Taynara Marton
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| | | | - Maria Eduarda Côrtes Camargo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| | - Sandra M. Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation-UNIMAR, Marília, Brazil
- Department of Biochemistry, School of Food and Technology of Marilia (FATEC), Marília, Brazil
- *Correspondence: Sandra M. Barbalho,
| | | | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| | | | - Raul J. S. Girio
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| | - Daniela Vieira Buchaim
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation-UNIMAR, Marília, Brazil
| | | |
Collapse
|
25
|
Esquivel Zuniga R, DeBoer MD. Prediabetes in Adolescents: Prevalence, Management and Diabetes Prevention Strategies. Diabetes Metab Syndr Obes 2021; 14:4609-4619. [PMID: 34858039 PMCID: PMC8629936 DOI: 10.2147/dmso.s284401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
The ongoing obesity epidemic in children and adolescents has greatly increased the prevalence of related comorbidities. Prediabetes is defined based on levels of fasting glucose, oral glucose tolerance tests or hemoglobin A1c, that are intermediate between normal levels and thresholds that define type 2 diabetes mellitus (T2DM). As such, prediabetes represents a sign of early pathophysiology preceding T2DM development. Recent analyses of data from US adolescents estimate prediabetes to be present in 4-23% of adolescents, depending on criteria used, with other studies finding an 8% risk of progression from prediabetes to T2DM over a 3-year period. These data support the importance of intervention to avoid long-term sequelae, focusing on reducing degree of obesity and insulin resistance. Lifestyle modification, with increases in physical activity and dietary improvements, remains the first-line approach. Other interventions are based on additional long-term risks and range from metformin treatment for more moderate cases of prediabetes to bariatric surgery for adolescents with severe obesity and comorbidities. As data accumulate regarding sequelae of T2DM in adolescents, there remains a critical need for prevention of obesity and T2DM throughout childhood, and prediabetes should be a trigger for improving this risk profile.
Collapse
Affiliation(s)
- Rebeca Esquivel Zuniga
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Mark D DeBoer
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
- Correspondence: Mark D DeBoer Division of Pediatric Endocrinology, University of Virginia, PO Box 800386, Charlottesville, VA, 22903, USATel +1 434-924-5956Fax +1 434-924-9181 Email
| |
Collapse
|