1
|
Silva JM, Nobre MSC, Albino SL, Lócio LL, Nascimento APS, Scotti L, Scotti MT, Oshiro-Junior JA, Lima MCA, Mendonça-Junior FJB, Moura RO. Secondary Metabolites with Antioxidant Activities for the Putative Treatment of Amyotrophic Lateral Sclerosis (ALS): "Experimental Evidences". OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5642029. [PMID: 33299526 PMCID: PMC7707995 DOI: 10.1155/2020/5642029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that is characterized by progressive loss of the upper and lower motor neurons at the spinal or bulbar level. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain are factors that contribute to neurodegeneration and perform a potential role in the pathogenesis of ALS. Natural antioxidant molecules have been proposed as an alternative form of treatment for the prevention of age-related neurological diseases, in which ALS is included. Researches support that regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in this disease, and antioxidant drugs are aimed at a promising pathway to treatment. Among the strategies used for obtaining new drugs, we can highlight the isolation of secondary metabolite compounds from natural sources that, along with semisynthetic derivatives, correspond to approximately 40% of the drugs found on the market. Among these compounds, we emphasize oxygenated and nitrogenous compounds, such as flavonoids, coumarins, and alkaloids, in addition to the fatty acids, that already stand out in the literature for their antioxidant properties, consisting in a part of the diets of millions of people worldwide. Therefore, this review is aimed at presenting and summarizing the main articles published within the last years, which represent the therapeutic potential of antioxidant compounds of natural origin for the treatment of ALS.
Collapse
Affiliation(s)
- Jamire M. Silva
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Michelangela S. C. Nobre
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Sonaly L. Albino
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Lucas L. Lócio
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Agnis P. S. Nascimento
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Graduate Program in Chemistry-PPGQ, Department of Chemistry, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa PB, Brazil
| | - Marcus T. Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa PB, Brazil
| | - João A. Oshiro-Junior
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Maria C. A. Lima
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
| | - Francisco J. B. Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, 58071-160 João Pessoa PB, Brazil
| | - Ricardo O. Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Graduate Program in Chemistry-PPGQ, Department of Chemistry, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| |
Collapse
|
2
|
Polyphenols and Other Bioactive Compounds of Sideritis Plants and Their Potential Biological Activity. Molecules 2020; 25:molecules25163763. [PMID: 32824863 PMCID: PMC7464829 DOI: 10.3390/molecules25163763] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023] Open
Abstract
Due to the growing problem of obesity associated with type 2 diabetes and cardiovascular diseases, causes of obesity are extensively investigated. In addition to a high caloric diet and low physical activity, gut microbiota disturbance may have a potential impact on excessive weight gain. Some reports indicate differences in the composition of the intestinal microflora of obese people in comparison to lean. Bioactive compounds of natural origin with beneficial and multifaceted effects on the body are more frequently used in prevention and treatment of many metabolic diseases including obesity. Sideritis scardica is traditionally consumed as mountain tea in the Balkans to strengthen the body and improve mood. Many reports indicate a positive effect on digestive system, weight loss, and prevention of insulin resistance. Additionally, it exhibits antioxidant activity and anti-inflammatory effects. The positive effect of Sideritis scardica extracts on memory and general cognitive abilities is indicated as well. The multilevel positive effect on the body appears to originate from the abundant occurrence of phenolic compounds, especially phenolic acids in Sideritis scardica extracts. However, mechanisms underlying their action require careful discussion and further research. Therefore, the objective of this review is to summarize the available knowledge on the role and mechanism of action of biologically active compounds of Sideritis scardica and other related species from the genus Sideritis.
Collapse
|
3
|
Boonyong C, Vardhanabhuti N, Jianmongkol S. Natural polyphenols prevent indomethacin-induced and diclofenac-induced Caco-2 cell death by reducing endoplasmic reticulum stress regardless of their direct reactive oxygen species scavenging capacity. J Pharm Pharmacol 2020; 72:583-591. [DOI: 10.1111/jphp.13227] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Objectives
Indomethacin (INDO) and diclofenac (DIC) can induce intestinal cell death through induction of oxidative stress-mediated ER stress and mitochondrial dysfunction. This study investigated the cytoprotective potential of 11 polyphenols, namely caffeic acid (CAF), curcumin (CUR), epigallocatechin gallate (EGCG), gallic acid (GAL), hypophyllanthin (HYPO), naringenin (NAR), phyllanthin (PHY), piperine (PIP), quercetin (QUE), rutin (RUT) and silymarin (SLY) against these two NSAIDs in Caco-2 cells.
Methods
Reactive oxygen species (ROS) production was determined with fluorescence spectroscopy using specific probes (DHE, DCFH-DA, HPF). Cell viability and mitochondrial function were assessed by MTT and TMRE assays. The mRNA levels of Bax, Bcl-2 and CHOP proteins were determined by quantitative real-time polymerase chain reaction technique.
Key findings
All test polyphenols reduced NSAIDs-mediated ROS production. Only EGCG, QUE and RUT protected INDO-/DIC-induced cell death. These three polyphenols suppressed Bax/Bcl-2 mRNA ratio, CHOP up-regulation and MMP disruption in NSAIDs-treated cells. CAF and NAR prevented cytotoxicity from INDO, but not DIC. The cytoprotective effect of NAR, but not CAF, involved alteration of Bax/Bcl-2 mRNA ratio or MMP disruption, but not CHOP transcription.
Conclusion
The cytoprotective activity of polyphenols against NSAIDs-induced toxicity stemmed from either suppression of CHOP-related ER and mitochondria stresses or other CHOP-independent pathways, but not from the intrinsic ROS scavenging capacity.
Collapse
Affiliation(s)
- Cherdsak Boonyong
- Inter-Department Program of Pharmacology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nontima Vardhanabhuti
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suree Jianmongkol
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Phenolic acids and quercetin from Korean black raspberry seed protected against acetaminophen-induced oxidative stress in mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
5
|
Kızıl G, Kızıl M, Çeken B, Yavuz M, Demir H. Protective Ability of Ethanol Extracts ofHypericum ScabrumL. andHypericum RetusumAucher Against the Protein Oxidation and DNA Damage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2011. [DOI: 10.1080/10942910903491181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Yoo YJ, Saliba AJ, Prenzler PD. Should Red Wine Be Considered a Functional Food? Compr Rev Food Sci Food Saf 2010; 9:530-551. [PMID: 33467832 DOI: 10.1111/j.1541-4337.2010.00125.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional foods may be regarded as foods that have nutritional value, but in particular, they also have beneficial effects on one or more body functions. Thus, functional foods may improve health and/or reduce the risk of developing certain diseases when taken in amounts that can be consumed in a normal diet. Based on nearly 2 decades of research since the term "French paradox" was first coined in 1992, wine would appear to fit this definition. Yet there seems to be reluctance to consider wine as a functional food. In this review, we present an overview of the accumulated evidence for the health benefits of wine-and its key phenolic components such as resveratrol, quercetin, catechin-and show that these alone are not enough to firmly establish wine as a functional food. What is required is to create clearly defined products based on wine that are targeted to consumers' needs and expectations when it comes to purchasing functional foods. Moreover, the crucial question of alcohol and health also needs to be addressed by the functional food industry. Suggestions are presented for working through this issue, but in many regards, wine is like any other food-it should be consumed sensibly and in amounts that are beneficial to health. Overindulgence of any kind does not promote good health.
Collapse
Affiliation(s)
- Yung J Yoo
- Authors are with Natl. Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt Univ., Wagga Wagga New South Wales, Australia. Direct inquiries to author Saliba (E-mail: )
| | - Anthony J Saliba
- Authors are with Natl. Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt Univ., Wagga Wagga New South Wales, Australia. Direct inquiries to author Saliba (E-mail: )
| | - Paul D Prenzler
- Authors are with Natl. Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt Univ., Wagga Wagga New South Wales, Australia. Direct inquiries to author Saliba (E-mail: )
| |
Collapse
|
7
|
Cooke MS, Evans MD, Mistry N, Lunec J. Role of dietary antioxidants in the prevention of in vivo oxidative DNA damage. Nutr Res Rev 2009; 15:19-42. [PMID: 19087397 DOI: 10.1079/nrr200132] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological evidence consistently shows that diets high in fresh fruit and vegetables significantly lower cancer risk. Given the postulated role of oxidative DNA damage in carcinogenesis, the assumption has been made that it is the antioxidant properties of food constituents, such as vitamin C, E and carotenoids, which confer protection. However, epidemiological studies with specific antioxidants, either singly or in combination, have not, on the whole, supported this hypothesis. In contrast, studies examining the in vitro effect of antioxidants upon oxidative DNA damage have generally been supportive, in terms of preventing damage induction. The same, however, cannot be said for the in vivo intervention studies where overall the results have been equivocal. Nevertheless, recent work has suggested that some dietary antioxidants may confer protective properties through a novel mechanism, unrelated to their conventional free-radical scavenging abilities. Upregulation of antioxidant defence, xenobiotic metabolism, or DNA-repair genes may all limit cellular damage and hence promote maintenance of cell integrity. However, until further work has clarified whether dietary supplementation with antioxidants confers a reduced risk of cancer and the mechanism by which this effect is exerted, the recommendation for a diet rich in fruit and vegetables remains valid empirically.
Collapse
Affiliation(s)
- M S Cooke
- Oxidative Stress Group, Division of Chemical Pathology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester LE2 7LX, UK.
| | | | | | | |
Collapse
|
8
|
Duthie GG, Duthie SJ, Kyle JA. Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr Res Rev 2009; 13:79-106. [PMID: 19087434 DOI: 10.1079/095442200108729016] [Citation(s) in RCA: 412] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Certain dietary antioxidants such as vitamin E and vitamin C are important for maintaining optimum health. There is now much interest in polyphenolic products of the plant phenylpropanoid pathway as they have considerable antioxidant activity in vitro and are ubiquitous in our diet. Rich sources include tea, wine, fruits and vegetables although levels are affected by species, light, degree of ripeness, processing and storage. This confounds the formulation of databases for the estimation of dietary intakes. Most attention to date has focused on the flavonoids, a generic term which includes chalcones, flavones, flavanones, flavanols and anthocyanins. There is little convincing epidemiological evidence that intakes of polyphenols are inversely related to the incidence of cancer whereas a number of studies suggest that high intakes of flavonoids may be protective against CHD. In contrast, numerous cell culture and animal models indicate potent anticarcinogenic activity by certain polyphenols mediated through a range of mechanisms including antioxidant activity, enzyme modulation, gene expression, apoptosis, upregulation of gap junction communication and P-glycoprotein activation. Possible protective effects against heart disease may be due to the ability of some polyphenols to prevent the oxidation of LDL to an atherogenic form although anti-platelet aggregation activity and vasodilatory properties are also reported. However, some polyphenols are toxic in mammalian cells. Thus, until more is known about their bioavailability, metabolism and intracellular location, increasing intakes of polyphenols by supplements or food fortification may be unwise.
Collapse
Affiliation(s)
- G G Duthie
- Division of Cellular Integrity, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK.
| | | | | |
Collapse
|
9
|
Luceri C, Giovannelli L, Pitozzi V, Toti S, Castagnini C, Routaboul JM, Lepiniec L, Larrosa M, Dolara P. Liver and colon DNA oxidative damage and gene expression profiles of rats fed Arabidopsis thaliana mutant seeds containing contrasted flavonoids. Food Chem Toxicol 2008; 46:1213-20. [DOI: 10.1016/j.fct.2007.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 09/24/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
|
10
|
Modulatory effects of polyphenols on apoptosis induction: relevance for cancer prevention. Int J Mol Sci 2008; 9:213-228. [PMID: 19325744 PMCID: PMC2635670 DOI: 10.3390/ijms9030213] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 11/30/2007] [Accepted: 01/23/2008] [Indexed: 12/17/2022] Open
Abstract
Polyphenols, occurring in fruit and vegetables, wine, tea, extra virgin olive oil, chocolate and other cocoa products, have been demonstrated to have clear antioxidant properties in vitro, and many of their biological actions have been attributed to their intrinsic reducing capabilities. However, it has become clear that, in complex biological systems, polyphenols exhibit several additional properties which are yet poorly understood. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the normal embryonic development and for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathological processes, since too little or too much apoptosis can lead to proliferative or degenerative diseases, respectively. Cancer cells are characterized by a deregulated proliferation, and/or an inability to undergo programmed cell death. A large body of evidence indicates that polyphenols can exert chemopreventive effects towards different organ specific cancers, affecting the overall process of carcinogenesis by several mechanisms: inhibition of DNA synthesis, modulation of ROS production, regulation of cell cycle arrest, modulation of survival/proliferation pathways. In addition, polyphenols can directly influence different points of the apoptotic process, and/or the expression of regulatory proteins. Although the bulk of data has been obtained in in vitro systems, a number of clinical studies suggesting a preventive and therapeutic effectiveness of polyphenols in vivo is available. However, a deeper knowledge of the underlying mechanisms responsible for the modulation of apoptosis by polyphenols, and their real effectiveness, is necessary in order to propose them as potential chemopreventive and chemotherapeutic candidates for cancer treatment.
Collapse
|
11
|
Morin B, Narbonne JF, Ribera D, Badouard C, Ravanat JL. Effect of dietary fat-soluble vitamins A and E and proanthocyanidin-rich extract from grape seeds on oxidative DNA damage in rats. Food Chem Toxicol 2008; 46:787-96. [DOI: 10.1016/j.fct.2007.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 05/15/2007] [Accepted: 10/08/2007] [Indexed: 01/16/2023]
|
12
|
Mazauric JP, Salmon JM. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:3876-81. [PMID: 16719509 DOI: 10.1021/jf060037o] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.
Collapse
Affiliation(s)
- Jean-Paul Mazauric
- Unité Mixte de Recherches, Sciences pour l'Oenologie, INRA, 2 place Viala, F-34060 Montpellier Cedex 1, France
| | | |
Collapse
|
13
|
Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 2005; 45:287-306. [PMID: 16047496 DOI: 10.1080/1040869059096] [Citation(s) in RCA: 1618] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polyphenols are the most abundant antioxidants in the diet and are widespread constituents of fruits, vegetables, cereals, dry legumes, chocolate, and beverages, such as tea, coffee, or wine. Experimental studies on animals or cultured human cell lines support a role of polyphenols in the prevention of cardiovascular diseases, cancers, neurodegenerative diseases, diabetes, or osteoporosis. However, it is very difficult to predict from these results the effects of polyphenol intake on disease prevention in humans. One of the reasons is that these studies have often been conducted at doses or concentrations far beyond those documented in humans. The few clinical studies on biomarkers of oxidative stress, cardiovascular disease risk factors, and tumor or bone resorption biomarkers have often led to contradictory results. Epidemiological studies have repeatedly shown an inverse association between the risk of myocardial infarction and the consumption of tea and wine or the intake level of some particular flavonoids, but no clear associations have been found between cancer risk and polyphenol consumption. More human studies are needed to provide clear evidence of their health protective effects and to better evaluate the risks possibly resulting from too high a polyphenol consumption.
Collapse
Affiliation(s)
- Augustin Scalbert
- Laboratoire des Maladies Métaboliques et Micronutriments, INRA, Centre de Recherche de Clermont-Ferrand/Theix, St-Genès-Champanelle, France.
| | | | | | | | | |
Collapse
|
14
|
Mazauric JP, Salmon JM. Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:5647-53. [PMID: 15998128 DOI: 10.1021/jf050308f] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Wine aging on yeast lees is a traditional enological practice used during the manufacture of wines. This technique has increased in popularity in recent years for the aging of red wines. Although wine polyphenols interact with yeast lees to a limited extent, such interactions have a large effect on the reactivity toward oxygen of wine polyphenolic compounds and yeast lees. Various domains of the yeast cell wall are protected by wine polyphenols from the action of extracellular hydrolytic enzymatic activities. Polysaccharides released during autolysis are thought to exert a significant effect on the sensory qualities of wine. We studied the chemical composition of polyphenolic compounds remaining in solution or adsorbed on yeast lees after various contact times during the simulation of wine aging. The analysis of the remnant polyphenols in the wine indicated that wine polyphenols adsorption on yeast lees follows biphasic kinetics. An initial and rapid fixation is followed by a slow, constant, and saturating fixation that reaches its maximum after about 1 week. Only very few monomeric phenolic compounds remained adsorbed on yeast lees, and no preferential adsorption of low or high polymeric size tannins occurred. The remnant condensed tannins in the wine contained fewer epigallocatechin units than the initial tannins, indicating that polar condensed tannins were preferentially adsorbed on yeast lees. Conversely, the efficiency of anthocyanin adsorption on yeast lees was unrelated to its polarity.
Collapse
Affiliation(s)
- Jean-Paul Mazauric
- Unité Mixte de Recherches, Sciences pour l'Oenologie, INRA, 2, Place Viala, F-34060 Montpellier Cedex 1, France
| | | |
Collapse
|
15
|
Abstract
Dietary polyphenols show a great diversity of structures, ranging from rather simple molecules (monomers and oligomers) to polymers. Higher-molecular-weight structures (with molecular weights of > 500) are usually designated as tannins, which refers to their ability to interact with proteins. Among them, condensed tannins (proanthocyanidins) are particularly important because of their wide distribution in plants and their contributions to major food qualities. All phenolic compounds are highly unstable and rapidly transformed into various reaction products when the plant cells are damaged (for instance, during food processing), thus adding to the complexity of dietary polyphenol composition. The polyphenol composition of plant-derived foods and beverages depends on that of the raw material used but also on the extraction process and subsequent biochemical and chemical reactions of plant polyphenols. The occurrence of specific tannin-like compounds (ie, thearubigins and theaflavins) arising from enzymatic oxidation is well documented in black tea. Various chemical reactions involving anthocyanins and/or flavanols have been demonstrated to occur during red wine aging. Current knowledge regarding the reaction mechanisms involved in some of these processes and the structures of the resulting products is reviewed. Their effects on organoleptic and nutritional quality are also discussed.
Collapse
Affiliation(s)
- Véronique Cheynier
- INRA-Unité Mixte de Recherche Sciences Pour l'Cenologie, Montpellier, France.
| |
Collapse
|
16
|
Rauscher GH, Shore D, Sandler DP. Alcohol intake and incidence of de novo adult acute leukemia. Leuk Res 2004; 28:1263-5. [PMID: 15475066 DOI: 10.1016/j.leukres.2004.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 04/05/2004] [Indexed: 11/18/2022]
Abstract
In a case-control study of adult acute leukemia we defined alcohol intake as either non-regular (<1 drink per week), light (1-5 drinks per week), moderate (6-8 drinks per week) or heavy (>8 drinks per week). An inverse association was found for light and moderate beer intake (RR = 0.58; 95% CI: 0.44, 0.76). In contrast, a positive association was found for moderate and heavy wine intake (RR = 2.1; 95% CI: 1.2, 3.8). Divergent results might reflect the effect of different nutrients in beer and wine, unmeasured confounding, or differing impacts of selection bias on these associations.
Collapse
Affiliation(s)
- Garth H Rauscher
- School of Public Health, Division of Epidemiology and Biostatistics, University of Illinois at Chicago, 816 SPHPI (M/C 923), 1603 W. Taylor, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
17
|
Barkwan S, . CB, . YB, . PT, . CF. Evaluation of the Cytotoxic and Genotoxic Potential of Khat (Catha edulis
Forsk) Extracts on Human T Lymphoblastoid Cell Line. JOURNAL OF MEDICAL SCIENCES 2004. [DOI: 10.3923/jms.2004.110.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Llópiz N, Puiggròs F, Céspedes E, Arola L, Ardévol A, Bladé C, Salvadó MJ. Antigenotoxic effect of grape seed procyanidin extract in Fao cells submitted to oxidative stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:1083-1087. [PMID: 14995102 DOI: 10.1021/jf0350313] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The protective effects of grape seed procyanidin extract on the repair of H(2)O(2)-induced DNA lesions were tested using Fao cells. Cells were exposed to 600 microM H(2)O(2) for 3 or 21 h. A procyanidin extract from grape seed (PE) was incubated or preincubated (1 h) during the exposure to H(2)O(2). The ability of procyanidins to protect against the genotoxicity of H(2)O(2) was compared with those of the monomeric flavanols (+)-catechin and (-)-epicatechin and the flavonol quercetin. After treatment, DNA damage was monitored using alkaline single-cell gel electrophoresis (the comet assay) (Aherne, S. A.; O'Brien, N. M. Nutr. Cancer 1999, 34, 160-166). At the end of the experiment, PE significantly decreased the damage caused by H(2)O(2). The results also showed that quercetin was the most effective of the flavonoids tested, which is consistent with its powerful antioxidant character. The results indicate that procyanidins are more effective than the corresponding individual monomers, catechin and epicatechin, at preventing DNA lesions in hepatocytes and that this protection is higher after preincubation than after co-incubation.
Collapse
Affiliation(s)
- Niurka Llópiz
- Departament de Bioquímica i Biotecnología, Unitat d'Enologia del Centre de Referència en Tecnologia dels Aliments de la Generalitat de Catalunya, Universitat Rovira i Virgili, Imperial Tàrraco 1, 43005 Tarragona, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Watzl B, Bub A, Pretzer G, Roser S, Barth SW, Rechkemmer G. Daily moderate amounts of red wine or alcohol have no effect on the immune system of healthy men. Eur J Clin Nutr 2003; 58:40-5. [PMID: 14679365 DOI: 10.1038/sj.ejcn.1601742] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate whether the daily intake of red wine (RW) at a dose which inversely correlates with cardiovascular disease (CVD) risk modulates immune functions in healthy men. DESIGN Randomized single-blind trial with four intervention periods. SETTING The Institute of Nutritional Physiology, Federal Research Centre for Nutrition, Karlsruhe, Germany. SUBJECTS A total of 24 healthy males with moderate alcohol consumption patterns were recruited and all completed the study. INTERVENTION Participants consumed 500 ml of RW (12% ethanol (ETOH)) or 500 ml of a 12% ETOH dilution per day for a period of 2 weeks. To control the potential effects of RW polyphenols, accordingly 500 ml/day of dealcoholized red wine (DRW) and of red grape juice (RGJ) were given. The following immune parameters were measured before beverage consumption and at 1 and 2 weeks following beverage consumption: phagocytic activity of neutrophils and monocytes, production of tumor necrosis factor-alpha (TNFalpha), interleukin-2 and -4, transforming growth factor-beta, TNFalpha mRNA, lymphocyte proliferation, lytic activity of natural killer cells, and percentage of apoptotic lymphocytes. RESULTS Consumption of a moderate volume of alcohol with RW and with a 12% ETOH dilution had no effect on immune functions in healthy males. Consumption of polyphenol-rich beverages (DRW and RGJ) did not affect immunity-related parameters. CONCLUSIONS Daily moderate consumption of alcohol and of RW for 2 weeks at doses which inversely correlate with CVD risk has no adverse effects on human immune cell functions. Polyphenol-rich beverages such as RGJ and DRW further do not suppress immune responses in healthy men.
Collapse
Affiliation(s)
- B Watzl
- Institute of Nutritional Physiology, Federal Research Centre for Nutrition, Karlsruhe, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Greenrod W, Fenech M. The principal phenolic and alcoholic components of wine protect human lymphocytes against hydrogen peroxide- and ionizing radiation-induced DNA damage in vitro. Mutagenesis 2003; 18:119-26. [PMID: 12621066 DOI: 10.1093/mutage/18.2.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have tested the hypothesis that the alcoholic and phenolic components of wine are protective against the DNA-damaging and cytotoxic effects of hydrogen peroxide and gamma-radiation in vitro. The components of wine tested were ethanol, glycerol, a mixture of the phenolic compounds catechin and caffeic acid and tartaric acid, all at concentrations that were 2.5 or 10.0% of the concentration in a typical Australian white wine (Riesling). These components were tested individually or combined as a mixture and compared to a white wine stripped of polyphenols, as well as a Hanks balanced salt solution control, which was the diluent for the wine components. The effect of the components was tested in lymphocytes, using the cytokinesis-block micronucleus assay, after 30 min incubation in plasma or whole blood for the hydrogen peroxide or gamma-radiation challenge, respectively. The results obtained showed that ethanol, glycerol, the catechin-caffeic acid mixture, the mixture of all components and the stripped white wine significantly reduced the DNA-damaging effects of hydrogen peroxide and gamma-radiation (P = 0.043-0.001, ANOVA). The strongest protective effect against DNA damage by gamma-irradiation was observed for the catechin-caffeic acid mixture and the mixture of all components (30 and 32% reduction, respectively). These two treatments as well as ethanol produced the strongest protective effects against DNA damage by hydrogen peroxide (24, 25 and 18%, respectively). The protection provided by the mixture did not account for the expected additive protective effects of the individual components. Ethanol was the only component that significantly increased baseline DNA damage rate, however, this effect was negated in the mixture. In conclusion, our results suggest that the main phenolic and alcoholic components of wine can reduce the DNA-damaging effects of two important oxidants, i.e. hydrogen peroxide and ionizing radiation, in this physiologically relevant in vitro system.
Collapse
Affiliation(s)
- William Greenrod
- CSIRO Health Sciences and Nutrition, PO Box 10041, Adelaide BC, South Australia 5000, Australia
| | | |
Collapse
|
21
|
Orozco TJ, Wang JF, Keen CL. Chronic consumption of a flavanol- and procyanindin-rich diet is associated with reduced levels of 8-hydroxy-2'-deoxyguanosine in rat testes. J Nutr Biochem 2003; 14:104-10. [PMID: 12667602 DOI: 10.1016/s0955-2863(02)00273-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cocoa can contain a high concentration of flavanols and procyanidins which have been reported to have strong antioxidative activity. In the present study, male Sprague-Dawley rats were fed diets containing 0, 0.5, 1, or 2% cocoa rich in flavanols for two weeks. Blood, liver, heart and testes were collected and analyzed for markers of oxidative damage. Plasma epicatechin concentrations, 8-hydroxy-2'-deoxyguanosine (8OH2'dG), and oxidized and reduced glutathione were quantitated by HPLC with electrochemical detection. Plasma F(2)-isoprostanes were measured using an enzyme immunoassay. Plasma epicatechin concentrations increased in a dose-dependant fashion according to the amount of cocoa in the diet (128 nM-790 nM). Cocoa supplementation was associated with lower than normal concentrations of 8OH2'dG in the testes (0.590 + 0.40 vs. 0.328 + 0.29; p < 0.05). Liver and heart 8OH2'dG levels were unaffected by dietary treatment. In erythrocytes, the glutathione pool was significantly less oxidized in the cocoa fed group compared to controls (p < 0.05). In liver and testes, no differences in superoxide dismutase activities were detected. Concentrations of plasma F(2)-isoprostanes and thiobarbituric acid reactive substances were similar in all groups. These results support the concept that a diet rich in flavanols and procyanidins can improve oxidant defense and reduce tissue markers for oxidative stress, although these effects can be tissue specific.
Collapse
Affiliation(s)
- Timothy J Orozco
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
22
|
Abstract
Flavonoids are plant pigments that are synthesised from phenylalanine, generally display marvelous colors known from flower petals, mostly emit brilliant fluorescence when they are excited by UV light, and are ubiquitous to green plant cells. The flavonoids are used by botanists for taxonomical classification. They regulate plant growth by inhibition of the exocytosis of the auxin indolyl acetic acid, as well as by induction of gene expression, and they influence other biological cells in numerous ways. Flavonoids inhibit or kill many bacterial strains, inhibit important viral enzymes, such as reverse transcriptase and protease, and destroy some pathogenic protozoans. Yet, their toxicity to animal cells is low. Flavonoids are major functional components of many herbal and insect preparations for medical use, e.g., propolis (bee's glue) and honey, which have been used since ancient times. The daily intake of flavonoids with normal food, especially fruit and vegetables, is 1-2 g. Modern authorised physicians are increasing their use of pure flavonoids to treat many important common diseases, due to their proven ability to inhibit specific enzymes, to simulate some hormones and neurotransmitters, and to scavenge free radicals.
Collapse
Affiliation(s)
- Bent H Havsteen
- Department of Biochemistry, University of Kiel, Olshausenstrasse 40, D-24098, Kiel, Germany.
| |
Collapse
|
23
|
Harris GK, Gupta A, Nines RG, Kresty LA, Habib SG, Frankel WL, LaPerle K, Gallaher DD, Schwartz SJ, Stoner GD. Effects of lyophilized black raspberries on azoxymethane-induced colon cancer and 8-hydroxy-2'-deoxyguanosine levels in the Fischer 344 rat. Nutr Cancer 2002; 40:125-33. [PMID: 11962247 DOI: 10.1207/s15327914nc402_8] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
This study examined the effects of lyophilized black raspberries (BRB) on azoxymethane (AOM)-induced aberrant crypt foci (ACF), colon tumors, and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in male Fischer 344 rats. AOM was injected (15 mg/kg body wt i.p.) once per week for 2 wk. At 24 h after the final injection, AOM-treated rats began consuming diets containing 0%, 2.5%, 5%, or 10% (wt/wt) BRB. Vehicle controls received 5% BRB or diet only. Rats were sacrificed after 9 and 33 wk of BRB feeding for ACF enumeration and tumor analysis. ACF multiplicity decreased 36%, 24%, and 21% (P < 0.01 for all groups) in the 2.5%, 5%, and 10% BRB groups, respectively, relative to the AOM-only group. Total tumor multiplicity declined 42%, 45%, and 71% (P < 0.05 for all groups). Although not significant, a decrease in tumor burden (28%, 42%, and 75%) was observed in all BRB groups. Adenocarcinoma multiplicity decreased 28%, 35%, and 80% (P < 0.01) in the same treatment groups. Urinary 8-OHdG levels were reduced by 73%, 81%, and 83% (P < 0.01 for all groups). These results indicate that BRB inhibit several measures of AOM-induced colon carcinogenesis and modulate an important marker of oxidative stress in the Fischer 344 rat.
Collapse
Affiliation(s)
- G K Harris
- Department of Food Sciences and Technology, College of Food, Agriculture, and Environmental Sciences, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Salmon J, Fornairon-Bonnefond C, Mazauric J. Interactions Between Wine Lees and Polyphenols: Influence on Oxygen Consumption Capacity During Simulation of Wine Aging. J Food Sci 2002. [DOI: 10.1111/j.1365-2621.2002.tb08691.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Lodovici M, Guglielmi F, Meoni M, Dolara P. Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem Toxicol 2001; 39:1205-10. [PMID: 11696394 DOI: 10.1016/s0278-6915(01)00067-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We examined the antioxidant activity of the following natural phenolic compounds present in food: 3-OH-benzoic acid (3-OH-BA); 4-OH-benzoic acid (4-OH-BA); 2,3-dihydroxybenzoic acid (2,3-diOH-BA); 3,4-dihydroxybenzoic acid (3,4-diOH-BA or protocatechuic acid); ferulic acid; caffeic acid; and 2-coumaric, 3-coumaric and 4-coumaric acids. We measured the inhibitory effect of these compounds on iron-dependent oxidative DNA damage in vitro [incubating herring sperm DNA with Fe(III)/GSH] or using cumene hydroperoxide (CumOOH) as a free-radical generating system; we also studied the interaction of these phenols with Fe(II) or Fe(III) spectrophotometrically. Among the tested compounds, 2,3-diOH-BA, 3,4-diOH-BA and caffeic acid interacted with Fe(II) and showed a potent inhibitory effect on iron-induced oxidative DNA damage. CumOOH-induced DNA oxidation was not modified by these compounds. On the contrary, 2-coumaric, 3-coumaric and 4-coumaric acids did not interact with iron but protected against oxidative DNA damage induced by Fe(III)/GSH and by CumOOH, indicating a direct free-radical scavenging activity of these compounds in both systems. The IC(50)+/-S.E.M. of the three coumaric acids against CumOOH-induced DNA oxidation was 44.2+/-2.0, 54.7+/-2.0 and 33.1+/-1.0 microM, respectively. On the contrary, 3-OH-BA and 4-OH-BA did not have scavenging activity and 3-OH-BA actually enhanced oxidative DNA damage. In conclusion, some natural phenolic acids, commonly present in food, have interesting protective activity against DNA oxidation in vitro and deserve further consideration as effective antioxidants in vivo.
Collapse
Affiliation(s)
- M Lodovici
- Department of Pharmacology, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| | | | | | | |
Collapse
|
26
|
Ivanov V, Carr AC, Frei B. Red wine antioxidants bind to human lipoproteins and protect them from metal ion-dependent and -independent oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:4442-4449. [PMID: 11559152 DOI: 10.1021/jf010117m] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant-derived polyphenols may exert beneficial effects on atherosclerosis and cardiovascular diseases, in part, because of their antioxidant properties. In this study we compared the effects of unbound (free) and lipoprotein-associated red wine components on in vitro antioxidant protection of human low-density lipoprotein (LDL). Preincubation of LDL (1 mg protein/mL) with 0-2.5% (v/v) red wine for 3 h at 37 degrees C followed by gel filtration to remove unbound red wine components resulted in a dose-dependent, up to 4-fold increase in LDL-associated antioxidant capacity (measured as Trolox equivalents). Similar results were obtained with high-density lipoprotein (HDL) and bovine serum albumin (BSA). Furthermore, LDL was subjected to oxidation by copper and aqueous peroxyl radicals (2,2'-azobis[2-amidinopropane] dihydrochloride, AAPH). Under both types of oxidative stress, LDL-associated and free red wine components significantly decreased oxidation of the lipoprotein's protein moiety (assessed by tryptophan fluorescence) and lipid moiety (assessed by thiobarbituric acid-reactive substances and conjugated dienes). Similar protective effects of red wine components were observed against HDL oxidation. In contrast, red wine exerted a pro-oxidant effect on copper-induced oxidation of BSA tryptophan residues, while protecting them from AAPH-induced oxidation. Ascorbate strongly enhanced the protective effect of red wine against copper-induced LDL oxidation, and had an additive effect against AAPH-induced oxidation. Our data indicate that red wine components bind to LDL and HDL and protect these lipoproteins from metal ion-dependent and -independent protein and lipid oxidation.
Collapse
Affiliation(s)
- V Ivanov
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331
| | | | | |
Collapse
|
27
|
Lodovici M, Casalini C, De Filippo C, Copeland E, Xu X, Clifford M, Dolara P. Inhibition of 1,2-dimethylhydrazine-induced oxidative DNA damage in rat colon mucosa by black tea complex polyphenols. Food Chem Toxicol 2000; 38:1085-8. [PMID: 11033196 DOI: 10.1016/s0278-6915(00)00109-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effect of black tea polyphenols on 1,2-dimethylhydrazine (DMH)-induced oxidative DNA damage in rat colon mucosa has been investigated. Fischer 344 rats were treated orally with thearubigin (TR) or theafulvin (TFu) for 10 days (40 mg/kg), injected ip with DMH (20 mg/kg) or saline and sacrificed 24 hr after DMH administration. The levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured in colonic mucosa DNA and expressed as a ratio relative to 2'-deoxyguanosine (2dG). Control rat mucosa had 8-OHdG values of 1.12 +/- 0.14/10(5) dG (mean +/- SEM, n=11), whereas DMH-treated rats significantly higher values (1.52 +/- 0.14/10(5) dG, n=26, P<0.05). Pretreatment of rats with TR had significantly inhibited DMH-induced oxidative DNA damage 0.99 +/- 0.09/10(5) dG, n=10, P<0.05) and a similar, although less marked, effect was observed with TFu (1.15 +/- 0.19/10(5), n=9, P=0.06). These findings confirm that DMH causes oxidative DNA damage in the colon mucosa of rats and demonstrate that this effect is prevented by the consumption of complex polyphenols from black tea.
Collapse
Affiliation(s)
- M Lodovici
- Department of Pharmacology, University of Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Canali R, Vignolini F, Nobili F, Mengheri E. Reduction of oxidative stress and cytokine-induced neutrophil chemoattractant (CINC) expression by red wine polyphenols in zinc deficiency induced intestinal damage of rat. Free Radic Biol Med 2000; 28:1661-70. [PMID: 10938463 DOI: 10.1016/s0891-5849(00)00285-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Consumption of red wine has been associated with health promotion and disease prevention. We have previously found that the intestine of zinc-deficient (ZD) rats develop oxidative damage associated with inflammation. Here we have used this model to investigate whether red wine polyphenols could protect against intestinal injury and, if so, whether this protection was achieved through antioxidant and anti-inflammatory activity. The intestinal alterations induced by zinc deficiency such as morphological damage, increased TBA-RS level and CuZn-superoxide dismutase activity, and decreased glutathione peroxidase activity, did not develop with the administration to ZD rats of a suspension of dealcoholated red wine (RWS). The same treatment induced in control rats a decrease of TBA-RS level but also of glutathione peroxidase and catalase activity. Treatment with RWS to ZD rats prevented a marked mucosal macrophage and neutrophil infiltration. The expression of pro-inflammatory cytokines, such as tumor necrosis factor alpha and cytokine-induced neutrophil chemoattractant (CINC), was induced by zinc deficiency, whereas that of the anti-inflammatory interleukin-10 was suppressed. Treatment with RWS reduced CINC expression. These results report a novel activity of red wine polyphenols in downregulation of intestinal CINC expression, which likely protects cells against inflammatory processes.
Collapse
Affiliation(s)
- R Canali
- Istituto Nazionale della Ricerca per gli Alimenti e la Nutrizione, Rome, Italy
| | | | | | | |
Collapse
|