1
|
Anttila T, Herajärvi J, Laaksonen H, Mustonen C, Honkanen HP, Y Dimova E, Piuhola J, Koivunen P, Juvonen T, Anttila V. Remote ischemic preconditioning and hypoxia-induced biomarkers in acute myocardial infarction: study on a porcine model. SCAND CARDIOVASC J 2023; 57:2251730. [PMID: 37641930 DOI: 10.1080/14017431.2023.2251730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Objectives. Remote ischemic preconditioning (RIPC) mitigates acute myocardial infarction (AMI). We hypothesized that RIPC reduces the size and severity of AMI and explored molecular mechanisms behind this phenomenon. Design. In two series of experiments, piglets underwent 60 min of the circumflex coronary artery occlusion, resulting in AMI. Piglets were randomly assigned into the RIPC groups (n = 7 + 7) and the control groups (n = 7 + 7). The RIPC groups underwent four 5-min hind limb ischemia-reperfusion cycles before AMI. In series I, the protective efficacy of RIPC was investigated by using biomarkers and echocardiography with a follow-up of 24 h. In series II, the heart of each piglet was harvested for TTC-staining to measure infarct size. Muscle biopsies were collected from the hind limb to explore molecular mechanisms of RIPC using qPCR and Western blot analysis. Results. The levels of CK-MBm (p = 0.032) and TnI (p = 0.007) were lower in the RIPC group. Left ventricular ejection fraction in the RIPC group was greater at the end of the follow-up. The myocardial infarct size in the RIPC group was smaller (p = 0.033). Western blot indicated HIF1α stabilization in the skeletal muscle of the RIPC group. PCR analyses showed upregulation of the HIF target mRNAs for glucose transporter (GLUT1), glucose transporter 4 (GLUT4), phosphofructokinase 1 (PFK1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), enolase 1 (ENO1), lactate dehydrogenase (LDHA) and endothelial nitric oxidate synthase (eNOS). Conclusions. Biochemical, physiologic, and histologic evidence confirms that RIPC decreases the size of AMI. The HIF pathway is likely involved in the mechanism of the RIPC.
Collapse
Affiliation(s)
- Tuomas Anttila
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Johanna Herajärvi
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Henna Laaksonen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Caius Mustonen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Hannu-Pekka Honkanen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Jarkko Piuhola
- Department of Cardiology, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Tatu Juvonen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Cardiac Surgery, Heart and Lung Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Vesa Anttila
- Heart Center, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Zhang M, Zhou N, Cao F, Liu W, Yuan H, Huang G. The role and regulatory mechanism of HIF-1α in myocardial injury in rats undergoing cardiopulmonary bypass. Acta Cardiol 2023; 78:1070-1080. [PMID: 37470433 DOI: 10.1080/00015385.2023.2229584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Hypoxia-inducible factor-1alpha (HIF-1α) is a transcription factor implicated in physiological and pathological responses to hypoxia. The present study aims to investigate the effect and mechanism of HIF-1α on cardiopulmonary bypass (CPB)-related myocardial injury, thereby conferring a theoretical basis for the clinical treatment of myocardial injury in CPB. METHODS An experimental model of CPB was established in rats by surgery. Adenovirus-packaged overexpression vectors and antiagomiRNA were used to overexpress HIF-1α and NR4A1 or inhibit miR-124-3p expression in rat myocardial tissues, respectively. qRT-PCR and Western blot detected HIF-1α, miR-124-3p, and NR4A1 expression in myocardial tissues. The rat cardiac function was monitored through an echocardiogram. The rat plasma at different stages of CPB was collected, followed by the detection of IL-6, cTnT, CK-MB, and IL-1β. TUNEL staining measured apoptosis in myocardial tissues. ChIP assay analysed the enrichment of HIF-1α on the miR-124-3p promoter. The binding relationships between HIF-1α and miR-124-3p promoter sequence and between miR-124-3p and NR4A1 3'UTR sequence were confirmed by dual-luciferase reporter assay. RESULTS HIF-1α expression had no significant change after CPB modelling. Overexpression of HIF-1α improved the cardiac function of CPB rats, decreased plasma IL-6, cTnT, CK-MB, and IL-1β levels, and reduced TUNEL-positive myocardial cells. HIF-1α was enriched on the miR-124-3p promoter and promoted miR-124-3p expression. miR-124-3p bound to NR4A1 3'UTR sequence and targeted NR4A1 expression. Inhibition of miR-124-3p or overexpression of NR4A1 partially reversed the ameliorative effect of HIF-1α overexpression on myocardial injury in CPB rats. CONCLUSION Overexpression of HIF-1α can improve myocardial injury in CPB rats via the miR-124-3p/NR4A1 axis.
Collapse
Affiliation(s)
- Mingxia Zhang
- Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Na Zhou
- Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Fan Cao
- Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Wenhua Liu
- Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Huili Yuan
- Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Guodong Huang
- Guangzhou Women and Children Medical Center, Guangzhou, China
| |
Collapse
|
3
|
Zhao L, Chen Z, Cheng J, Chen B, Liu Y. Remote preconditioning combined with nebulized budesonide alleviate lipopolysaccharide induced acute lung injury via regulating HO-1 and NF-κB in rats. Pulm Pharmacol Ther 2023; 80:102215. [DOI: doi.org/10.1016/j.pupt.2023.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
4
|
Zhao L, Chen Z, Cheng J, Chen B, Liu Y. Remote preconditioning combined with nebulized budesonide alleviate lipopolysaccharide induced acute lung injury via regulating HO-1 and NF-κB in rats. Pulm Pharmacol Ther 2023; 80:102215. [PMID: 37060938 DOI: 10.1016/j.pupt.2023.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Acute lung injury (ALI) may result in severe systemic inflammation and is life-threatening. Remote inflammatory preconditioning (RIPC) has been confirmed to have an endogenous protective effect against ALI. Budesonide (BS) is a potent corticosteroid typically administered through nebulization that reduces inflammation in the lungs. We speculate that the combined use of RIPC and nebulized BS has a stronger protective effect on ALI. METHODS 48 Sprague-Dawley male rats were used for the experiments. Animals were divided evenly and randomly into three groups, control (NS injection), LPS (LPS injection), and RIPC (LPS injection with RIPC). Each group was then divided into two subgroups with inhalation of nebulized normal saline (NS) or BS. Prior to injection of LPS, RIPC was performed by tying and untying the right hind limb for three cycles of five minutes each. Following LPS injection, animals in each subgroup were placed in a same cage for nebulized inhalation. Animals were sacrificed 6 hours after LPS injection. Histological evaluation of ALI and lung wet-to-dry weight ratio were measured. Serum lactate acid, inflammatory cytokines, oxidative stress indicators were detected. The expression of HO-1, NF-κB p65 and p-p65 was measured by western blotting. RESULTS RIPC combined with nebulized BS significantly attenuated the LPS-induced ALI in rats. Reduction of MDA, increasing of SOD activity were found significantly improved by the joint strategy. TNF- and IL-1β rise brought on by LPS was reduced, but IL-10 production dramatically enhanced when compared to the LPS group. The expression of HO-1 was significantly increased by RIPC combined with nebulized BS while the expression of NF-κB p65 and p-p65 was decreased when compared with the LPS group. CONCLUSION RIPC combined with nebulized budesonide is protective for ALI induced by LPS in rats.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430011, China
| | - Zhuo Chen
- Department of Thoracic Surgery, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, 430012, China
| | - Jing Cheng
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430011, China
| | - Baojun Chen
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430011, China.
| | - Yong Liu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430011, China.
| |
Collapse
|
5
|
Dengler F, Sternberg F, Grages M, Kästner SBR, Verhaar N. Adaptive mechanisms in no flow vs. low flow ischemia in equine jejunum epithelium: Different paths to the same destination. Front Vet Sci 2022; 9:947482. [PMID: 36157182 PMCID: PMC9493374 DOI: 10.3389/fvets.2022.947482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/17/2022] [Indexed: 01/18/2023] Open
Abstract
Intestinal ischemia reperfusion injury (IRI) is a frequent complication of equine colic. Several mechanisms may be involved in adaptation of the intestinal epithelium to IRI and might infer therapeutic potential, including hypoxia-inducible factor (HIF) 1α, AMP-activated protein kinase (AMPK), nuclear factor-erythroid 2-related factor 2 (NRF2), and induction of autophagy. However, the mechanisms supporting adaptation and thus cellular survival are not completely understood yet. We investigated the activation of specific adaptation mechanisms in both no and low flow ischemia and reperfusion simulated in equine jejunum epithelium in vivo. We found an activation of HIF1α in no and low flow ischemia as indicated by increased levels of HIF1α target genes and phosphorylation of AMPKα tended to increase during ischemia. Furthermore, the protein expression of the autophagy marker LC3B in combination with decreased expression of nuclear-encoded mitochondrial genes indicates an increased rate of mitophagy in equine intestinal IRI, possibly preventing damage by mitochondria-derived reactive oxygen species (ROS). Interestingly, ROS levels were increased only shortly after the onset of low flow ischemia, which may be explained by an increased antioxidative defense, although NFR2 was not activated in this setup. In conclusion, we could demonstrate that a variety of adaptation mechanisms manipulating different aspects of cellular homeostasis are activated in IRI irrespective of the ischemia model, and that mitophagy might be an important factor for epithelial survival following small intestinal ischemia in horses that should be investigated further.
Collapse
Affiliation(s)
- Franziska Dengler
- Department of Biochemical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Franziska Dengler
| | - Felix Sternberg
- Department of Biochemical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Marei Grages
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabine BR Kästner
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole Verhaar
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
6
|
Lang JA, Kim J. Remote ischaemic preconditioning - translating cardiovascular benefits to humans. J Physiol 2022; 600:3053-3067. [PMID: 35596644 PMCID: PMC9327506 DOI: 10.1113/jp282568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/17/2022] [Indexed: 11/26/2022] Open
Abstract
Remote ischaemic preconditioning (RIPC), induced by intermittent periods of limb ischaemia and reperfusion, confers cardiac and vascular protection from subsequent ischaemia–reperfusion (IR) injury. Early animal studies reliably demonstrate that RIPC attenuated infarct size and preserved cardiac tissue. However, translating these adaptations to clinical practice in humans has been challenging. Large clinical studies have found inconsistent results with respect to RIPC eliciting IR injury protection or improving clinical outcomes. Follow‐up studies have implicated several factors that potentially affect the efficacy of RIPC in humans such as age, fitness, frequency, disease state and interactions with medications. Thus, realizing the clinical potential for RIPC may require a human experimental model where confounding factors are more effectively controlled and underlying mechanisms can be further elucidated. In this review, we highlight recent experimental findings in the peripheral circulation that have added valuable insight on the mechanisms and clinical benefit of RIPC in humans. Central to this discussion is the critical role of timing (i.e. immediate vs. delayed effects following a single bout of RIPC) and the frequency of RIPC. Limited evidence in humans has demonstrated that repeated bouts of RIPC over several days uniquely improves vascular function beyond that observed with a single bout alone. Since changes in resistance vessel and microvascular function often precede symptoms and diagnosis of cardiovascular disease, repeated bouts of RIPC may be promising as a preclinical intervention to prevent or delay cardiovascular disease progression.
![]()
Collapse
Affiliation(s)
- James A Lang
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - Jahyun Kim
- Department of Kinesiology, California State University Bakersfield, Bakersfield, CA, USA
| |
Collapse
|
7
|
Wu YK, Harel NY, Wecht JM, Bloom OE. Effects of Remote Ischemic Conditioning on Hand Engagement in individuals with Spinal cord Injury (RICHES): protocol for a pilot crossover study. F1000Res 2022; 10:464. [PMID: 35342620 PMCID: PMC8924555 DOI: 10.12688/f1000research.52670.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Most spinal cord injuries (SCI) are not full transections, indicating that residual nerve circuits are retained. Rehabilitation interventions have been shown to beneficially reorganize motor pathways in the brain, corticospinal tract, and at the spinal level. However, rehabilitation training require a large number of repetitions, and intervention effects may be absent or show transient retention. Therefore, the need remains for an effective approach to synergistically improve the amount and duration of neuroplasticity in combination with other interventions. Remote ischemic conditioning (RIC) demonstrates several potential advantages as a candidate for such an approach. Therefore, we propose a protocol to investigate RIC coupled with physical training to promote neuroplasticity in hand muscles. Methods: This will be a prospective randomized-order crossover trial to be performed in eight able-bodied participants and eight participants with chronic cervical SCI. Patients will participate in two experimental sessions consisting of either active or sham RIC preceding a bout of pinch movement exercise. Serial evaluations will be conducted at baseline, after RIC, immediately after pinch exercise, and follow up 15-minutes later. The primary outcome is the change in corticospinal excitability (primarily measured by the motor evoked potential of abductor pollicis brevis muscle). Secondary outcomes will include maximal volitional pinch force, and inflammatory biomarkers. To ensure safety, we will monitor tolerability and hemodynamic responses during RIC. Discussion: This protocol will be the first to test RIC in people with cervical SCI and to investigate whether RIC alters corticospinal excitability. By sharing the details of our protocol, we hope other interested researchers will seek to investigate similar approaches – depending on overlap with the current study and mutual sharing of participant-level data, this could increase the sample size, power, and generalizability of the analysis and results. Trial registration: ClinicalTrial.gov, ID: NCT03851302; Date of registration: February 22, 2019
Collapse
Affiliation(s)
- Yu-Kuang Wu
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10003, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY, 10468, USA
| | - Noam Y. Harel
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10003, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10003, USA
| | - Jill M. Wecht
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, 10003, USA
- Bronx Veterans Medical Research Foundation, Bronx, NY, 10468, USA
| | - Ona E. Bloom
- Bronx Veterans Medical Research Foundation, Bronx, NY, 10468, USA
- The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
- The Zucker School of Medicine at Hofstra Northwell, Hempstead, NY, 11549, USA
| |
Collapse
|
8
|
Lu Y, Tian Y, Mou T, Zhou Y, Tian J, Yun M, Kiss A, Podesser BK, Hacker M, Zhang X, Li X. Transient cardioprotective effects of remote ischemic postconditioning on non-reperfused myocardial infarction: longitudinal evaluation study in pigs. Int J Cardiol 2022; 355:37-43. [DOI: 10.1016/j.ijcard.2022.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
|
9
|
HIF-1α mediates the protective effect of plasma extracellular particles induced by remote ischaemic preconditioning on oxidative stress injury in human umbilical vein endothelial cells. Exp Ther Med 2021; 23:48. [PMID: 34917179 PMCID: PMC8630441 DOI: 10.3892/etm.2021.10970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
Remote ischaemic preconditioning (RIPC) is considered to alleviate myocardial ischaemia/reperfusion (I/R) injury. The present study explored whether blood plasma particulate matter, which is termed extracellular particles (EPs), and is released from cells during RIPC, could reduce H2O2-induced damage in human umbilical vein endothelial cells (HUVECs). Firstly, EPs were derived from volunteers who did or did not undergo RIPC. To induce RIPC in volunteers, a blood pressure cuff was alternatively inflated for 5 min and deflated for the same duration for four successive cycles. HUVECs were assigned to two groups: i) Group 1 was preincubated for 24 h with EPs from volunteers after sham-RIPC, then treated with H2O2 (1 mM; 6 h) to mimic the in vivo conditions of I/R-induced oxidative stress; and ii) group 2 was preincubated for 24 h with EPs from volunteers after RIPC, then treated with H2O2. Subsequently, EPs were derived from rats received sham-RIPC or RIPC and/or cadmium (Cd) pre-treatment. To induce RIPC in rats, a remote hind limb preconditioning stimulus was delivered using a blood pressure cuff attached at the inguinal level of the rat. The blood pressure cuff was alternatively inflated for 5 min and deflated for the same time period for four successive cycles. HUVECs were assigned to six groups: i) Group 1 was untreated; ii) group 2 received only H2O2 treatment (1 mM; 6 h); iii) group 3 was preincubated for 24 h with EPs from rats exposed to sham-RIPC, then treated with H2O2; iv) group 4 was preincubated for 24 h with EPs from rats that received an intraperitoneal injection of 1 mg/kg Cd [a pharmacological inhibitor of hypoxia-inducible factor 1-α (HIF-1α) in vivo] 180 min before sham-RIPC, then treated with H2O2; v) group 5 was preincubated for 24 h with EPs from rats exposed to RIPC, then treated with H2O2; and vi) group 6 was preincubated for 24 h with EPs from rats that received an intraperitoneal injection of 1 mg/kg Cd 180 min before RIPC, then treated with H2O2. Cell viability and cytotoxicity were monitored using Cell Counting Kit-8 and lactate dehydrogenase assays. Cell apoptosis and necrosis were assessed via flow cytometry and western blot analysis. A notable increase in EP concentration in the plasma of volunteers after RIPC compared with that in the plasma of volunteers after sham-RIPC was observed. RIPC-associated EPs (RIPC-EPs) from volunteers could improve cell viability and reduce cytotoxicity, cell apoptosis and necrosis in HUVECs treated with H2O2in vitro. Furthermore, RIPC caused a significant increase in HIF-1α expression in the rat limb musculature. The apoptosis-reducing effect of RIPC-EPs was demonstrated to be counteracted by an intraperitoneal injection of Cd before RIPC in rats. A significant decrease in the EP levels precipitated from the plasma of rats that received Cd treatment before RIPC was observed compared with rats that did not receive Cd treatment. The present study suggested that HIF-1α mediated at least partly the protective effect of plasma RIPC-EPs on oxidative stress injury in HUVECs.
Collapse
|
10
|
The Role of RIPC in Preventing Organ Damage, Inflammation, and Oxidative Stress during Lower Limb DSA: A Randomised Controlled Trial. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6043550. [PMID: 34925697 PMCID: PMC8674049 DOI: 10.1155/2021/6043550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Objective Diagnostic digital subtraction angiography (DSA) and DSA with percutaneous transluminal angioplasty (DSA-PTA) are common procedures for diagnosing and treating symptomatic lower extremity arterial disease (LEAD). However, organ damage following DSA and DSA-PTA is often underrecognised and hence undiagnosed. To reduce the risk induced by invasive procedures in symptomatic LEAD patients, the method of remote ischemic preconditioning (RIPC) has been suggested. The aim of the current study was to assess the effect of RIPC intervention on the organ damage markers profile, oxidative stress, and inflammation biomarkers in LEAD patients undergoing DSA and DSA-PTA procedure. Methods The RIPC intervention was performed by inflating a standard blood pressure cuff on the patient's upper arm to 200 mmHg for 5 minutes four times with 5-minute perfusion between each cycle. The sham intervention was performed similarly, but the cuff was inflated to 20 mmHg. Changes in the cardiac and renal damage biomarkers' profile, oxidative stress, and inflammation biomarkers were recorded before and 24 hours after DSA or DSA-PTA. Results A total of 111 (RIPC 54, sham 57) patients with symptomatic LEAD scheduled for endovascular procedure were randomised, and 102 patients (RIPC 47, sham 55) completed the study protocol. RIPC significantly limited the increase of adiponectine levels after DSA and DSA-PTA, compared to sham intervention (p = 0.020), but CK-MB levels were markedly lower in the sham group (p = 0.047) after procedure. There was no significant difference between the RIPC and the sham group in mean changes in hs-troponin-T (p = 0.25), NT-proBNP (p = 0.24), creatinine (p = 0.76), eGFR (p = 0.61), urea (p = 0.95), beta-2-microglobuline (p = 0.34), or cystatine C (p = 0.24) levels. Conclusion In this controlled clinical study, RIPC failed to improve the profile of renal and cardiac biomarkers in patients with LEAD periprocedurally. RIPC significantly limits the rise in adiponectin levels and may influence the decrease of CK-MB levels 24 hours after endovascular procedure.
Collapse
|
11
|
Cienfuegos-Pecina E, Moreno-Peña DP, Torres-González L, Rodríguez-Rodríguez DR, Garza-Villarreal D, Mendoza-Hernández OH, Flores-Cantú RA, Samaniego Sáenz BA, Alarcon-Galvan G, Muñoz-Espinosa LE, Ibarra-Rivera TR, Saucedo AL, Cordero-Pérez P. Treatment with sodium ( S)-2-hydroxyglutarate prevents liver injury in an ischemia-reperfusion model in female Wistar rats. PeerJ 2021; 9:e12426. [PMID: 34824916 PMCID: PMC8592047 DOI: 10.7717/peerj.12426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ischemia-reperfusion (IR) injury is one of the leading causes of early graft dysfunction in liver transplantation. Techniques such as ischemic preconditioning protect the graft through the activation of the hypoxia-inducible factors (HIF), which are downregulated by the EGLN family of prolyl-4-hydroxylases, a potential biological target for the development of strategies based on pharmacological preconditioning. For that reason, this study aims to evaluate the effect of the EGLN inhibitor sodium (S)-2-hydroxyglutarate [(S)-2HG] on liver IR injury in Wistar rats. Methods Twenty-eight female Wistar rats were divided into the following groups: sham (SH, n = 7), non-toxicity (HGTox, n = 7, 25 mg/kg of (S)-2HG, twice per day for two days), IR (n = 7, total liver ischemia: 20 minutes, reperfusion: 60 minutes), and (S)-2HG+IR (HGIR, n = 7, 25 mg/kg of (S)-2HG, twice per day for two days, total liver ischemia as the IR group). Serum ALT, AST, LDH, ALP, glucose, and total bilirubin were assessed. The concentrations of IL-1β, IL-6, TNF, malondialdehyde, superoxide dismutase, and glutathione peroxidase were measured in liver tissue, as well as the expression of Hmox1, Vegfa, and Pdk1, determined by RT-qPCR. Sections of liver tissue were evaluated histologically, assessing the severity of necrosis, sinusoidal congestion, and cytoplasmatic vacuolization. Results The administration of (S)-2HG did not cause any alteration in the assessed biochemical markers compared to SH. Preconditioning with (S)-2HG significantly ameliorated IR injury in the HGIR group, decreasing the serum activities of ALT, AST, and LDH, and the tissue concentrations of IL-1β and IL-6 compared to the IR group. IR injury decreased serum glucose compared to SH. There were no differences in the other biomarkers assessed. The treatment with (S)-2HG tended to decrease the severity of hepatocyte necrosis and sinusoidal congestion compared to the IR group. The administration of (S)-2HG did not affect the expression of Hmox1 but decreased the expression of both Vegfa and Pdk1 compared to the SH group, suggesting that the HIF-1 pathway is not involved in its mechanism of hepatoprotection. In conclusion, (S)-2HG showed a hepatoprotective effect, decreasing the levels of liver injury and inflammation biomarkers, without evidence of the involvement of the HIF-1 pathway. No hepatotoxic effect was observed at the tested dose.
Collapse
Affiliation(s)
- Eduardo Cienfuegos-Pecina
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico.,Universidad Autónoma de Nuevo León. Blood Bank, Department of Clinical Pathology, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Diana P Moreno-Peña
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Liliana Torres-González
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Diana Raquel Rodríguez-Rodríguez
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Diana Garza-Villarreal
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Oscar H Mendoza-Hernández
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Raul Alejandro Flores-Cantú
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Brenda Alejandra Samaniego Sáenz
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Gabriela Alarcon-Galvan
- Universidad de Monterrey, Basic Science Department, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Linda E Muñoz-Espinosa
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Tannya R Ibarra-Rivera
- Universidad Autónoma de Nuevo León. Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Alma L Saucedo
- Universidad Autónoma de Nuevo León. Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Paula Cordero-Pérez
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| |
Collapse
|
12
|
Abstract
Patients with type 2 diabetes mellitus (T2D) are at increased risk of cardiovascular (CV) disease. Sodium glucose cotransporter 2 (SGLT2) inhibitors, also known as gliflozins, are a class of medications used to treat T2D by preventing the reabsorption of glucose filtered through the kidney and thereby facilitating glucose excretion in the urine. Over the past 5 years, many cardiovascular outcome trials (CVOTs) have evaluated the safety and efficacy of SGLT2 inhibitors in preventing CV events. The results of 7 CVOTs have provided solid evidence that the use of SGLT2 in patients with T2D and at high CV risk significantly reduced the risk of death from CV causes. Moreover, in patient with heart failure with reduced ejection fraction, regardless of the presence or absence of T2D, SGLT2 inhibitors use significantly reduced the risk of worsening heart failure and death from CV causes. Although the exact mechanism of the cardiorenal benefit of SGLT2 inhibitors is still unknown, studies have shown that the beneficial effect of these drugs cannot be exclusively explained by their glucose lowering effect, and several possible mechanisms have been proposed. This review will explore the changing role of SGLT2 inhibitors from a diabetes drug to clinical practice guideline-supported therapy for the prevention and treatment of CV diseases, including heart failure.
Collapse
Affiliation(s)
- Reza Mohebi
- Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - James L Januzzi
- Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Baim Institute for Clinical Research, Boston, MA, USA
| |
Collapse
|
13
|
Impact of Maturation on Myocardial Response to Ischemia and the Effectiveness of Remote Preconditioning in Male Rats. Int J Mol Sci 2021; 22:ijms222011009. [PMID: 34681669 PMCID: PMC8540346 DOI: 10.3390/ijms222011009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022] Open
Abstract
Aging attenuates cardiac tolerance to ischemia/reperfusion (I/R) associated with defects in protective cell signaling, however, the onset of this phenotype has not been completely investigated. This study aimed to compare changes in response to I/R and the effects of remote ischemic preconditioning (RIPC) in the hearts of younger adult (3 months) and mature adult (6 months) male Wistar rats, with changes in selected proteins of protective signaling. Langendorff-perfused hearts were exposed to 30 min I/120 min R without or with prior three cycles of RIPC (pressure cuff inflation/deflation on the hind limb). Infarct size (IS), incidence of ventricular arrhythmias and recovery of contractile function (LVDP) served as the end points. In both age groups, left ventricular tissue samples were collected prior to ischemia (baseline) and after I/R, in non-RIPC controls and in RIPC groups to detect selected pro-survival proteins (Western blot). Maturation did not affect post-ischemic recovery of heart function (Left Ventricular Developed Pressure, LVDP), however, it increased IS and arrhythmogenesis accompanied by decreased levels and activity of several pro-survival proteins and by higher levels of pro-apoptotic proteins in the hearts of elder animals. RIPC reduced the occurrence of reperfusion-induced ventricular arrhythmias, IS and contractile dysfunction in younger animals, and this was preserved in the mature adults. RIPC did not increase phosphorylated protein kinase B (p-Akt)/total Akt ratio, endothelial nitric oxide synthase (eNOS) and protein kinase Cε (PKCε) prior to ischemia but only after I/R, while phosphorylated glycogen synthase kinase-3β (GSK3β) was increased (inactivated) before and after ischemia in both age groups coupled with decreased levels of pro-apoptotic markers. We assume that resistance of rat heart to I/R injury starts to already decline during maturation, and that RIPC may represent a clinically relevant cardioprotective intervention in the elder population.
Collapse
|
14
|
Liu Y, Xu J, Zhao L, Cheng J, Chen B. Remote Inflammatory Preconditioning Alleviates Lipopolysaccharide-Induced Acute Lung Injury via Inhibition of Intrinsic Apoptosis in Rats. J Immunol Res 2021; 2021:1125199. [PMID: 34595242 PMCID: PMC8478588 DOI: 10.1155/2021/1125199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) always leads to severe inflammation. As inflammation and oxidative stress are the common pathological basis of endotoxin-induced inflammatory injury and ischemic reperfusion injury (IRI), we speculate that remote ischemic preconditioning (RIPC) can be protective for ALI when used as remote inflammatory preconditioning (RInPC). METHOD A total of 21 Sprague-Dawley rats were used for the animal experiments. Eighteen rats were equally and randomly divided into the control (NS injection), LPS (LPS injection), and RInPC groups. The RInPC was performed prior to the LPS injection via tourniquet blockage of blood flow to the right hind limb and adopted three cycles of 5 min tying followed by 5 min untying. Animals were sacrificed 24 hours later. There were 2 rats in the LPS group and 1 in the RInPC group who died before the end of the experiment. Supplementary experiments in the LPS and RInPC groups were conducted to ensure that 6 animals in each group reached the end of the experiment. RESULTS In the present study, we demonstrated that the RInPC significantly attenuated the LPS-induced ALI in rats. Apoptotic cells were reduced significantly by the RInPC, with the simultaneous improvement of apoptosis-related proteins. Reduction of MPO and MDA and increasing of SOD activity were found significantly improved by the RInPC. Increasing of TNF-α, IL-1β, and IL-6 induced by the LPS was inhibited, while IL-10 was significantly increased by RInPC, compared to the LPS group. CONCLUSION RInPC could inhibit inflammation and attenuate oxidative stress, thereby reducing intrinsic apoptosis and providing lung protection in the LPS-induced ALI in rats.
Collapse
Affiliation(s)
- Yong Liu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430011, China
| | - Jiahang Xu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430011, China
| | - Liang Zhao
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430011, China
| | - Jing Cheng
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430011, China
| | - Baojun Chen
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430011, China
| |
Collapse
|
15
|
Effects of remote ischemic postconditioning on HIF-1α and other markers in on-pump cardiac surgery. Gen Thorac Cardiovasc Surg 2021; 70:239-247. [PMID: 34378159 DOI: 10.1007/s11748-021-01690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND There is a lack of data about the effects of remote ischemic postconditioning (RIPostC) on hypoxia-inducible factor-1α (HIF-1α) plasma levels after on-pump cardiac surgery (OPCS). This study aimed to measure the effects of RIPostC on postoperative HIF-1α plasma levels, cardiac markers and arterial oxygenation in patients undergoing OPCS. METHODS This single-centre randomized, double blind, controlled trial, enrolled 70 patients (35 control and 35 RIPostC). RIPostC was performed by 3 cycles (5 min of ischemia followed by 5 min of reperfusion) administered in upper arm immediately after the pump period. The primary outcome was to measure HIF-1α plasma levels: before surgery (T0), and 2 h (T1), 8 h (T2), 24 h (T3), 36 h (T4) and 48 h (T5) after RIPostC. As secondary endpoint, Troponin T, CK-MB, CPK plasma levels and PaO2/FiO2 ratio were measured. RESULTS HIF-1α plasma levels were increased at T1-T3 compared to T0 in both groups (P < 0.001). In the RIPostC group HIF-1α increased compared to the control group: differences between means (95% CI) were 0.034 (0.006-0.06) P = 0.019 at T1; 0.041 (0.013-0.069) P = 0.005 at T2; and 0.021 (0.001-0.042) P = 0.045 at T3. PaO2/FiO2 was higher in the RIPostC group than in the control group: at T3, T4 and T5. Moreover, Troponin T, CK-MB and CPK values decreased in the RIPostC group compared to the control group. CONCLUSIONS HIF-1α plasma levels increased in control patients during for at least 36 h after OPCS. RIPostC resulted in even higher HIF-1α levels during at least the first 24 h and improved arterial oxygenation and cardiac markers.
Collapse
|
16
|
Myocardial remote ischemic preconditioning: from cell biology to clinical application. Mol Cell Biochem 2021; 476:3857-3867. [PMID: 34125317 DOI: 10.1007/s11010-021-04192-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Remote ischemic preconditioning (rIPC) is a cardioprotective phenomenon where brief periods of ischemia followed by reperfusion of one organ/tissue can confer subsequent protection against ischemia/reperfusion injury in other organs, such as the heart. It involves activation of humoral, neural or systemic communication pathways inducing different intracellular signals in the heart. The main purpose of this review is to summarize the possible mechanisms involved in the rIPC cardioprotection, and to describe recent clinical trials to establish the efficacy of these strategies in cardioprotection from lethal ischemia/reperfusion injury. In this sense, certain factors weaken the subcellular mechanisms of rIPC in patients, such as age, comorbidities, medication, and anesthetic protocol, which could explain the heterogeneity of results in some clinical trials. For these reasons, further studies, carefully designed, are necessary to develop a clearer understanding of the pathways and mechanism of early and late rIPC. An understanding of the pathways is important for translation to patients.
Collapse
|
17
|
Remote ischemic preconditioning improves tissue oxygenation in a porcine model of controlled hemorrhage without fluid resuscitation. Sci Rep 2021; 11:10808. [PMID: 34031524 PMCID: PMC8144617 DOI: 10.1038/s41598-021-90470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) involves deliberate, brief interruptions of blood flow to increase the tolerance of distant critical organs to ischemia. This study tests the effects of limb RIPC in a porcine model of controlled hemorrhage without replacement therapy simulating an extreme field situation of delayed evacuation to definitive care. Twenty-eight pigs (47 ± 6 kg) were assigned to: (1) control, no procedure (n = 7); (2) HS = hemorrhagic shock (n = 13); and (3) RIPC + HS = remote ischemic preconditioning followed by hemorrhage (n = 8). The animals were observed for 7 h after bleeding without fluid replacement. Survival rate between animals of the RIPC + HS group and those of the HS group were similar (HS, 6 of 13[46%]-vs-RIPC + HS, 4 of 8[50%], p = 0.86 by Chi-square). Animals of the RIPC + HS group had faster recovery of mean arterial pressure and developed higher heart rates without complications. They also had less decrease in pH and bicarbonate, and the increase in lactate began later. Global oxygen delivery was higher, and tissue oxygen extraction ratio lower, in RIPC + HS animals. These improvements after RIPC in hemodynamic and metabolic status provide essential substrates for improved cellular response after hemorrhage and reduction of the likelihood of potentially catastrophic consequences of the accompanying ischemia.
Collapse
|
18
|
Johansen MC, Gottesman RF, Kral BG, Vaidya D, Yanek LR, Becker LC, Becker DM, Nyquist P. Association of Coronary Artery Atherosclerosis With Brain White Matter Hyperintensity. Stroke 2021; 52:2594-2600. [PMID: 34000829 DOI: 10.1161/strokeaha.120.032674] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michelle C Johansen
- Department of Neurology (M.C.J., R.F.G., P.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rebecca F Gottesman
- Department of Neurology (M.C.J., R.F.G., P.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brian G Kral
- Department of Medicine, Division of Cardiology (B.G.K., L.C.B.), Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Medicine, Division of General Internal Medicine, GeneSTAR Research Program (B.G.K., D.V., L.R.Y., L.C.B., D.M.B., P.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dhananjay Vaidya
- Department of Medicine, Division of General Internal Medicine, GeneSTAR Research Program (B.G.K., D.V., L.R.Y., L.C.B., D.M.B., P.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lisa R Yanek
- Department of Medicine, Division of General Internal Medicine, GeneSTAR Research Program (B.G.K., D.V., L.R.Y., L.C.B., D.M.B., P.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lewis C Becker
- Department of Medicine, Division of Cardiology (B.G.K., L.C.B.), Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Medicine, Division of General Internal Medicine, GeneSTAR Research Program (B.G.K., D.V., L.R.Y., L.C.B., D.M.B., P.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Diane M Becker
- Department of Medicine, Division of General Internal Medicine, GeneSTAR Research Program (B.G.K., D.V., L.R.Y., L.C.B., D.M.B., P.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Paul Nyquist
- Department of Neurology (M.C.J., R.F.G., P.N.), Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Medicine, Division of General Internal Medicine, GeneSTAR Research Program (B.G.K., D.V., L.R.Y., L.C.B., D.M.B., P.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
19
|
Lassen TR, Hjortbak MV, Hauerslev M, Tonnesen PT, Kristiansen SB, Jensen RV, Bøtker HE. Influence of strain, age, origin, and anesthesia on the cardioprotective efficacy by local and remote ischemic conditioning in an ex vivo rat model. Physiol Rep 2021; 9:e14810. [PMID: 33818005 PMCID: PMC8020046 DOI: 10.14814/phy2.14810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background Local ischemic preconditioning (IPC) and remote ischemic conditioning (RIC) induced by brief periods of ischemia and reperfusion protect against ischemia‐reperfusion injury. Methods We studied the sensitivity to IR‐injury and the influence of strain, age, supplier, and anesthesia upon the efficacy of IPC and RIC in 7‐ and 16‐weeks‐old Sprague‐Dawley and Wistar rats from three different suppliers. The influence of sedation with a hypnorm and midazolam mixture (rodent mixture) and pentobarbiturate was compared. Results IPC attenuated infarct size in both 7‐weeks‐old Sprague–Dawley (48.4 ± 17.7% vs. 20.3 ± 6.9, p < 0.001) and 7‐weeks‐old Wistar (55.6 ± 10.9% vs. 26.8 ± 5.0%, p < 0.001) rats. Infarct size was larger in 16‐weeks‐old Sprague–Dawley rats, however, IPC still lowered infarct size (78.8 ± 9.2% vs. 58.3 ± 12.3%, p < 0.01). RIC reduced infarct sizes in 7‐weeks‐old Sprague–Dawley (75.3 ± 11.8% vs. 58.6 ± 8.9%, p < 0.05), but not in 7‐weeks‐old Wistar rats (31.7 ± 17.6% and 24.0 ± 12.6%, p = 0.2). In 16‐weeks‐old Sprague–Dawley rats, RIC did not induce protection (76.4 ± 5.5% and 73.2 ± 14.7%, p = 0.6). However, RIC induced protection in 16‐weeks‐old Wistar rats (45.2 ± 8.5% vs. 14.7 ± 10.8%, p < 0.001). RIC did not reduce infarct size in 7‐weeks‐old Sprague–Dawley rats from Charles River (62.0 ± 13.5% and 69.4 ± 10.4% p = 0.3) or 16‐weeks‐old Wistar rats from Janvier (50.7 ± 11.3 and 49.2 ± 16.2, p = 0.8). There was no difference between sedation with rodent mixture or pentobarbiturate. Conclusion The cardioprotective effect of IPC is consistent across rat strains independent of age, strain, and supplier. RIC seems to be less reproducible, but still yields protection across different rat strains. However, age, animal supplier, and anesthetics may modulate the sensitivity of IR‐injury and the response to RIC.
Collapse
Affiliation(s)
- Thomas Ravn Lassen
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Marie Vognstoft Hjortbak
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Marie Hauerslev
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Pernille Tilma Tonnesen
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | | | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
20
|
Mitochondria and Pharmacologic Cardiac Conditioning-At the Heart of Ischemic Injury. Int J Mol Sci 2021; 22:ijms22063224. [PMID: 33810024 PMCID: PMC8004818 DOI: 10.3390/ijms22063224] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Pharmacologic cardiac conditioning increases the intrinsic resistance against ischemia and reperfusion (I/R) injury. The cardiac conditioning response is mediated via complex signaling networks. These networks have been an intriguing research field for decades, largely advancing our knowledge on cardiac signaling beyond the conditioning response. The centerpieces of this system are the mitochondria, a dynamic organelle, almost acting as a cell within the cell. Mitochondria comprise a plethora of functions at the crossroads of cell death or survival. These include the maintenance of aerobic ATP production and redox signaling, closely entwined with mitochondrial calcium handling and mitochondrial permeability transition. Moreover, mitochondria host pathways of programmed cell death impact the inflammatory response and contain their own mechanisms of fusion and fission (division). These act as quality control mechanisms in cellular ageing, release of pro-apoptotic factors and mitophagy. Furthermore, recently identified mechanisms of mitochondrial regeneration can increase the capacity for oxidative phosphorylation, decrease oxidative stress and might help to beneficially impact myocardial remodeling, as well as invigorate the heart against subsequent ischemic insults. The current review highlights different pathways and unresolved questions surrounding mitochondria in myocardial I/R injury and pharmacological cardiac conditioning.
Collapse
|
21
|
Waldron M, Papavasileiou G, Jeffries O, Nevola V, Heffernan S M, Kilduff L, Tallent J. Concurrent adaptations in maximal aerobic capacity, heat tolerance, microvascular blood flow and oxygen extraction following heat acclimation and ischemic preconditioning. J Therm Biol 2020; 93:102724. [PMID: 33077136 DOI: 10.1016/j.jtherbio.2020.102724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022]
Abstract
We investigated the effects of: 1) Ischemic pre-conditioning (IPC) plus a concurrent five-day heat acclimation + IPC (IPC + HA), 2) five-day HA with sham IPC (HA), or 3) control (CON) on thermoneutral measurements of endurance performance, resting measures of skeletal muscle oxygenation and blood flow. Twenty-nine participants were randomly allocated to three groups, which included: 1) five-days of repeated leg occlusion (4 x 5-min) IPC at limb occlusive pressure, plus fixed-intensity (55% V˙ O2max) cycling HA at ~36 °C/40% humidity; 2) HA plus sham IPC (20 mmHg) or 3) or CON (thermoneutral 55% V˙ O2max plus sham IPC). In IPC + HA and HA, there were increases in maximal oxygen consumption (O2max) (7.8% and 5.4%, respectively; P < 0.05), ventilatory threshold (VT) (5.6% and 2.4%, respectively, P < 0.05), delta efficiency (DE) (2.0% and 1.4%, respectively; P < 0.05) and maximum oxygen pulse (O2pulse-Max) (7.0% and 6.9%, respectively; P < 0.05) during an exhaustive incremental test. There were no changes for CON (P > 0.05). Changes (P < 0.05) in resting core temperature (TC), muscle oxygen consumption (m V˙ O2), and limb blood flow (LBF) were also found pre-to-post intervention among the HA and IPC + HA groups, but not in CON (P > 0.05). Five-days of either HA or IPC + HA can enhance markers of endurance performance in cooler environments, alongside improved muscle oxygen extraction, blood flow, exercising muscle efficiency and O2 pulse at higher intensities, thus suggesting the occurrence of peripheral adaptation. Both HA and IPC + HA enhance the adaptation of endurance capacity, which might partly relate to peripheral changes.
Collapse
Affiliation(s)
- M Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK; School of Science and Technology, University of New England, NSW, Australia; Welsh Institute of Performance Science, Swansea University, Swansea, UK.
| | - G Papavasileiou
- Sport, Health and Applied Sciences, St Mary's University, London, UK
| | - O Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - V Nevola
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK; Defence Science and Technology Laboratory (Dstl), Fareham, Hampshire, UK
| | - M Heffernan S
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - L Kilduff
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK; Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - J Tallent
- Sport, Health and Applied Sciences, St Mary's University, London, UK
| |
Collapse
|
22
|
Cienfuegos-Pecina E, Ibarra-Rivera TR, Saucedo AL, Ramírez-Martínez LA, Esquivel-Figueroa D, Domínguez-Vázquez I, Alcántara-Solano KJ, Moreno-Peña DP, Alarcon-Galvan G, Rodríguez-Rodríguez DR, Torres-González L, Muñoz-Espinosa LE, Pérez-Rodríguez E, Cordero-Pérez P. Effect of sodium ( S)-2-hydroxyglutarate in male, and succinic acid in female Wistar rats against renal ischemia-reperfusion injury, suggesting a role of the HIF-1 pathway. PeerJ 2020; 8:e9438. [PMID: 32728491 PMCID: PMC7357568 DOI: 10.7717/peerj.9438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background Ischemia–reperfusion (IR) injury is the main cause of delayed graft function in solid organ transplantation. Hypoxia-inducible factors (HIFs) control the expression of genes related to preconditioning against IR injury. During normoxia, HIF-α subunits are marked for degradation by the egg-laying defective nine homolog (EGLN) family of prolyl-4-hydroxylases. The inhibition of EGLN stabilizes HIFs and protects against IR injury. The aim of this study was to determine whether the EGLN inhibitors sodium (S)-2-hydroxyglutarate [(S)-2HG] and succinic acid (SA) have a nephroprotective effect against renal IR injury in Wistar rats. Methods (S)-2HG was synthesized in a 22.96% yield from commercially available L-glutamic acid in a two-step methodology (diazotization/alkaline hydrolysis), and its structure was confirmed by nuclear magnetic resonance and polarimetry. SA was acquired commercially. (S)-2HG and SA were independently evaluated in male and female Wistar rats respectively after renal IR injury. Rats were divided into the following groups: sham (SH), nontoxicity [(S)-2HG: 12.5 or 25 mg/kg; SA: 12.5, 25, or 50 mg/kg], IR, and compound+IR [(S)-2HG: 12.5 or 25 mg/kg; SA: 12.5, 25, or 50 mg/kg]; independent SH and IR groups were used for each assessed compound. Markers of kidney injury (BUN, creatinine, glucose, and uric acid) and liver function (ALT, AST, ALP, LDH, serum proteins, and albumin), proinflammatory cytokines (IL-1β, IL-6, and TNF-α), oxidative stress biomarkers (malondialdehyde and superoxide dismutase), and histological parameters (tubular necrosis, acidophilic casts, and vascular congestion) were assessed. Tissue HIF-1α was measured by ELISA and Western blot, and the expression of Hmox1 was assessed by RT-qPCR. Results (S)-2HG had a dose-dependent nephroprotective effect, as evidenced by a significant reduction in the changes in the BUN, creatinine, ALP, AST, and LDH levels compared with the IR group. Tissue HIF-1α was only increased in the IR group compared to SH; however, (S)-2HG caused a significant increase in the expression of Hmox1, suggesting an early accumulation of HIF-1α in the (S)-2HG-treated groups. There were no significant effects on the other biomarkers. SA did not show a nephroprotective effect; the only changes were a decrease in creatinine level at 12.5 mg/kg and increased IR injury at 50 mg/kg. There were no effects on the other biochemical, proinflammatory, or oxidative stress biomarkers. Conclusion None of the compounds were hepatotoxic at the tested doses. (S)-2HG showed a dose-dependent nephroprotective effect at the evaluated doses, which involved an increase in the expression of Hmox1, suggesting stabilization of HIF-1α. SA did not show a nephroprotective effect but tended to increase IR injury when given at high doses.
Collapse
Affiliation(s)
- Eduardo Cienfuegos-Pecina
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Tannya R Ibarra-Rivera
- Universidad Autonoma de Nuevo Leon, Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Alma L Saucedo
- Universidad Autonoma de Nuevo Leon, Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Luis A Ramírez-Martínez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Deanna Esquivel-Figueroa
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Ixel Domínguez-Vázquez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Karina J Alcántara-Solano
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Diana P Moreno-Peña
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Gabriela Alarcon-Galvan
- Universidad de Monterrey, Basic Science Department, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Diana Raquel Rodríguez-Rodríguez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Liliana Torres-González
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Linda E Muñoz-Espinosa
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Edelmiro Pérez-Rodríguez
- Universidad Autonoma de Nuevo Leon, Transplant Service, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Paula Cordero-Pérez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| |
Collapse
|
23
|
Armstrong NJ, Mather KA, Sargurupremraj M, Knol MJ, Malik R, Satizabal CL, Yanek LR, Wen W, Gudnason VG, Dueker ND, Elliott LT, Hofer E, Bis J, Jahanshad N, Li S, Logue MA, Luciano M, Scholz M, Smith AV, Trompet S, Vojinovic D, Xia R, Alfaro-Almagro F, Ames D, Amin N, Amouyel P, Beiser AS, Brodaty H, Deary IJ, Fennema-Notestine C, Gampawar PG, Gottesman R, Griffanti L, Jack CR, Jenkinson M, Jiang J, Kral BG, Kwok JB, Lampe L, C M Liewald D, Maillard P, Marchini J, Bastin ME, Mazoyer B, Pirpamer L, Rafael Romero J, Roshchupkin GV, Schofield PR, Schroeter ML, Stott DJ, Thalamuthu A, Trollor J, Tzourio C, van der Grond J, Vernooij MW, Witte VA, Wright MJ, Yang Q, Morris Z, Siggurdsson S, Psaty B, Villringer A, Schmidt H, Haberg AK, van Duijn CM, Jukema JW, Dichgans M, Sacco RL, Wright CB, Kremen WS, Becker LC, Thompson PM, Mosley TH, Wardlaw JM, Ikram MA, Adams HHH, Seshadri S, Sachdev PS, Smith SM, Launer L, Longstreth W, DeCarli C, Schmidt R, Fornage M, Debette S, Nyquist PA. Common Genetic Variation Indicates Separate Causes for Periventricular and Deep White Matter Hyperintensities. Stroke 2020; 51:2111-2121. [PMID: 32517579 DOI: 10.1161/strokeaha.119.027544] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Periventricular white matter hyperintensities (WMH; PVWMH) and deep WMH (DWMH) are regional classifications of WMH and reflect proposed differences in cause. In the first study, to date, we undertook genome-wide association analyses of DWMH and PVWMH to show that these phenotypes have different genetic underpinnings. METHODS Participants were aged 45 years and older, free of stroke and dementia. We conducted genome-wide association analyses of PVWMH and DWMH in 26,654 participants from CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology), ENIGMA (Enhancing Neuro-Imaging Genetics Through Meta-Analysis), and the UKB (UK Biobank). Regional correlations were investigated using the genome-wide association analyses -pairwise method. Cross-trait genetic correlations between PVWMH, DWMH, stroke, and dementia were estimated using LDSC. RESULTS In the discovery and replication analysis, for PVWMH only, we found associations on chromosomes 2 (NBEAL), 10q23.1 (TSPAN14/FAM231A), and 10q24.33 (SH3PXD2A). In the much larger combined meta-analysis of all cohorts, we identified ten significant regions for PVWMH: chromosomes 2 (3 regions), 6, 7, 10 (2 regions), 13, 16, and 17q23.1. New loci of interest include 7q36.1 (NOS3) and 16q24.2. In both the discovery/replication and combined analysis, we found genome-wide significant associations for the 17q25.1 locus for both DWMH and PVWMH. Using gene-based association analysis, 19 genes across all regions were identified for PVWMH only, including the new genes: CALCRL (2q32.1), KLHL24 (3q27.1), VCAN (5q27.1), and POLR2F (22q13.1). Thirteen genes in the 17q25.1 locus were significant for both phenotypes. More extensive genetic correlations were observed for PVWMH with small vessel ischemic stroke. There were no associations with dementia for either phenotype. CONCLUSIONS Our study confirms these phenotypes have distinct and also shared genetic architectures. Genetic analyses indicated PVWMH was more associated with ischemic stroke whilst DWMH loci were implicated in vascular, astrocyte, and neuronal function. Our study confirms these phenotypes are distinct neuroimaging classifications and identifies new candidate genes associated with PVWMH only.
Collapse
Affiliation(s)
- Nicola J Armstrong
- Mathematics and Statistics, Murdoch University, Perth, Australia (N.J.A.)
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia (K.A.M., P.R.S., A.T.)
| | | | - Maria J Knol
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.)
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU Munich, Germany (R.M., M.D.)
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX (C.L.S., S.S.).,The Framingham Heart Study, MA (C.L.S., A.S.B., J.R.R., S.S.).,Department of Neurology (C.L.S., A.S.B., J.R.R., S.S.), Boston University School of Medicine, MA
| | - Lisa R Yanek
- GeneSTAR Research Program (L.R.Y., B.G.K., L.C.B., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia
| | - Vilmundur G Gudnason
- Icelandic Heart Association, Kopavogur (V.G.G., S.S.).,University of Iceland, Reykjavik, Iceland (V.G.G., A.V.S.)
| | - Nicole D Dueker
- Dr. John T. Macdonald Foundation Department of Human Genetics (R.L.S.), University of Miami, FL
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada (L.T.E.).,Wellcome Centre for Integrative Neuroimaging (WIN FMRIB) (L.T.E., F.A.-A., L.G., M.J., S.M.S.), University of Oxford, United Kingdom
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Austria (E.H., R.S.).,Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria (E.H.)
| | - Joshua Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA (J.B., B.P., W.L.)
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey (N.J., P.M.T.)
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA (S.L., M.A.L., A.S.B., Q.Y.)
| | - Mark A Logue
- Department of Psychiatry and Biomedical Genetics Section (M.A.L.), Boston University School of Medicine, MA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA (S.L., M.A.L., A.S.B., Q.Y.).,National Center for PTSD: Behavioral Science Division, VA Boston Healthcare System, Boston, MA (M.A.L.)
| | - Michelle Luciano
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, United Kingdom (M.L., I.J.D., D.C.M.L., M.E.B., J.M.W.)
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology (M.S.)
| | - Albert V Smith
- University of Iceland, Reykjavik, Iceland (V.G.G., A.V.S.)
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics (S.T.), Leiden University Medical Center, the Netherlands.,Department of Cardiology (S.T.), Leiden University Medical Center, the Netherlands
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.)
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX (R.X., M.F.)
| | - Fidel Alfaro-Almagro
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB) (L.T.E., F.A.-A., L.G., M.J., S.M.S.), University of Oxford, United Kingdom
| | - David Ames
- National Ageing Research Institute, Parkville, Victoria, Australia (D.A.).,Academic Unit for Psychiatry of Old Age, University of Melbourne, St George's Hospital, Kew, Australia (D.A.)
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.)
| | - Philippe Amouyel
- Lille University, Inserm, Institut Pasteur de Lille, RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases and Labex Distalz, France (P.A.).,Lille University, Inserm, CHU Lille, Institut Pasteur de Lille, RID-AGE (P.A.)
| | - Alexa S Beiser
- The Framingham Heart Study, MA (C.L.S., A.S.B., J.R.R., S.S.).,Department of Neurology (C.L.S., A.S.B., J.R.R., S.S.), Boston University School of Medicine, MA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA (S.L., M.A.L., A.S.B., Q.Y.)
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia.,Dementia Centre for Research Collaboration (H.B.), University of New South Wales, Sydney, Australia
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, United Kingdom (M.L., I.J.D., D.C.M.L., M.E.B., J.M.W.)
| | - Christine Fennema-Notestine
- Department of Psychiatry (C.F.-N.), University of California, San Diego, La Jolla, CA.,Center for Behavior Genetics of Aging (C.F.-N.), University of California, San Diego, La Jolla, CA
| | - Piyush G Gampawar
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Austria (P.G.G., H.S.)
| | - Rebecca Gottesman
- Department of Neurology, Cerebrovascular and stroke Division (R.G.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ludovica Griffanti
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB) (L.T.E., F.A.-A., L.G., M.J., S.M.S.), University of Oxford, United Kingdom
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN (C.R.J.J.)
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB) (L.T.E., F.A.-A., L.G., M.J., S.M.S.), University of Oxford, United Kingdom
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia
| | - Brian G Kral
- GeneSTAR Research Program (L.R.Y., B.G.K., L.C.B., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - John B Kwok
- School of Medical Sciences (J.B.K., P.R.S.), University of New South Wales, Sydney, Australia.,Brain and Mind Centre - The University of Sydney, Camperdown, NSW, Australia (J.B.K.)
| | - Leonie Lampe
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (L.L., V.A.W.)
| | - David C M Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, United Kingdom (M.L., I.J.D., D.C.M.L., M.E.B., J.M.W.)
| | - Pauline Maillard
- Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology, University of California-Davis, Davis, CA (P.M.)
| | - Jonathan Marchini
- Statistical Genetics and Methods at Regeneron Pharmaceuticals, Inc, New York, NY (J.M.)
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, United Kingdom (M.L., I.J.D., D.C.M.L., M.E.B., J.M.W.).,Centre for Clinical Brain Sciences, Edinburgh Imaging, Centre for Cognitive Ageing, University of Edinburgh, United Kingdom (M.E.B., J.M.W.)
| | - Bernard Mazoyer
- Institut des Maladies Neurodégénératives, University of Bordeaux, France (B.M.)
| | - Lukas Pirpamer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Austria (L.P.)
| | - José Rafael Romero
- The Framingham Heart Study, MA (C.L.S., A.S.B., J.R.R., S.S.).,Department of Neurology (C.L.S., A.S.B., J.R.R., S.S.), Boston University School of Medicine, MA
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.).,Department of Radiology and Nuclear Medicine (G.V.R., M.W.V., H.H.H.A.)
| | - Peter R Schofield
- School of Medical Sciences (J.B.K., P.R.S.), University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia (K.A.M., P.R.S., A.T.)
| | - Matthias L Schroeter
- LIFE Research Center for Civilization Disease, Leipzig, Germany (M.S.).,Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (M.L.S., A.V.).,Day Clinic for Cognitive Neurology, University Hospital Leipzig, Germany (M.L.S., A.V.)
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom (D.J.S.)
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia (K.A.M., P.R.S., A.T.)
| | - Julian Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia.,Department of Developmental Disability Neuropsychiatry, School of Psychiatry (J.T.), University of New South Wales, Sydney, Australia
| | - Christophe Tzourio
- University Bordeaux, Inserm, Bordeaux Population Health Research Center, France (M.S., C.T., S.D.).,CHU de Bordeaux, Public Health Department, Medical information Department, Bordeaux, France (C.T.)
| | - Jeroen van der Grond
- Department of Radiology (J.v.d.G.), Leiden University Medical Center, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.).,Department of Radiology and Nuclear Medicine (G.V.R., M.W.V., H.H.H.A.)
| | - Veronica A Witte
- Collaborative Research Center 1052 Obesity Mechanisms, Faculty of Medicine, University of Leipzig, Germany (V.A.W).,Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (L.L., V.A.W.)
| | - Margaret J Wright
- Queensland Brain Institute (M.J.W.), The University of Queensland, St Lucia, QLD, Australia.,Centre for Advanced Imaging (M.J.W.), The University of Queensland, St Lucia, QLD, Australia
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA (S.L., M.A.L., A.S.B., Q.Y.)
| | - Zoe Morris
- Neuroradiology Department, Department of Clinical Neurosciences, Western General Hospital, Edinburgh, United Kingdom (Z.M.)
| | - Siggi Siggurdsson
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX (C.L.S., S.S.).,The Framingham Heart Study, MA (C.L.S., A.S.B., J.R.R., S.S.).,Department of Neurology (C.L.S., A.S.B., J.R.R., S.S.), Boston University School of Medicine, MA
| | - Bruce Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA (J.B., B.P., W.L.)
| | - Arno Villringer
- Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (M.L.S., A.V.).,Day Clinic for Cognitive Neurology, University Hospital Leipzig, Germany (M.L.S., A.V.)
| | - Helena Schmidt
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Austria (P.G.G., H.S.)
| | - Asta K Haberg
- Department of Neuromedicine and Movement Science (A.K.H.), Norwegian University of Science and Technology, Trondheim, Norway.,Department of Radiology and Nuclear Medicine (A.K.H.), Norwegian University of Science and Technology, Trondheim, Norway
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.).,Nuffield Department of Population Health (C.M.v.D.), University of Oxford, United Kingdom
| | - J Wouter Jukema
- Department of Cardiology (J.W.J.), Leiden University Medical Center, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, the Netherlands (J.W.J.)
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU Munich, Germany (R.M., M.D.).,German Center for Neurodegenerative Diseases, Munich, Germany (M.D.).,Munich Cluster for Systems Neurology (SyNergy), Germany (M.D.)
| | - Ralph L Sacco
- Department of Public Health Sciences, Miller School of Medicine (R.L.S.), University of Miami, FL.,Department of Neurology, Miller School of Medicine (R.L.S.), University of Miami, FL.,Evelyn F. McKnight Brain Institute, Department of Neurology (R.L.S.), University of Miami, FL
| | - Clinton B Wright
- National Institute of Neurological Disorders and Stroke (C.B.W.), National Institutes of Health, Bethesda, MD
| | - William S Kremen
- Center for Behavior Genetics of Aging (W.S.K.), University of California, San Diego, La Jolla, CA.,Department of Psychiatry (W.S.K.), University of California, San Diego, La Jolla, CA
| | - Lewis C Becker
- GeneSTAR Research Program (L.R.Y., B.G.K., L.C.B., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Paul M Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey (N.J., P.M.T.)
| | - Thomas H Mosley
- Department of Geriatric Medicine, Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson (T.H.M.)
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, United Kingdom (M.L., I.J.D., D.C.M.L., M.E.B., J.M.W.).,Centre for Clinical Brain Sciences, Edinburgh Imaging, Centre for Cognitive Ageing, University of Edinburgh, United Kingdom (M.E.B., J.M.W.)
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.)
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands (M.J.K., D.V., N.A., G.V.R., M.W.V., C.M.v.D., M.A.I., H.H.H.A.).,Department of Radiology and Nuclear Medicine (G.V.R., M.W.V., H.H.H.A.).,Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands (H.H.H.A.)
| | | | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry (K.A.M., W.W., H.B., J.J., A.T., J.T., P.S.S.), University of New South Wales, Sydney, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia (P.S.S.)
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB) (L.T.E., F.A.-A., L.G., M.J., S.M.S.), University of Oxford, United Kingdom
| | - Lenore Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program (L.L.), National Institutes of Health, Bethesda, MD
| | - William Longstreth
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA (J.B., B.P., W.L.)
| | - Charles DeCarli
- Alzheimer's Disease Center and Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology and Center for Neuroscience University of California at Davis (C.D.)
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Austria (E.H., R.S.)
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX (R.X., M.F.).,Human Genetics Center, School of Public Health UT, Houston, TX (M.F.)
| | - Stephanie Debette
- University Bordeaux, Inserm, Bordeaux Population Health Research Center, France (M.S., C.T., S.D.).,Department of Neurology, CHU de Bordeaux (University Hospital), Bordeaux, France (S.D.)
| | - Paul A Nyquist
- GeneSTAR Research Program (L.R.Y., B.G.K., L.C.B., P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD.,Departments of Neurology, Critical Care Medicine, Neurosurgery (P.A.N.), Johns Hopkins University School of Medicine, Baltimore, MD.,Critical Care Medicine Department (P.A.N.), National Institutes of Health, Bethesda, MD
| |
Collapse
|
24
|
Paradis-Deschênes P, Joanisse DR, Mauriège P, Billaut F. Ischemic Preconditioning Enhances Aerobic Adaptations to Sprint-Interval Training in Athletes Without Altering Systemic Hypoxic Signaling and Immune Function. Front Sports Act Living 2020; 2:41. [PMID: 33345033 PMCID: PMC7739728 DOI: 10.3389/fspor.2020.00041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 01/29/2023] Open
Abstract
Optimizing traditional training methods to elicit greater adaptations is paramount for athletes. Ischemic preconditioning (IPC) can improve maximal exercise capacity and up-regulate signaling pathways involved in physiological training adaptations. However, data on the chronic use of IPC are scarce and its impact on high-intensity training is still unknown. We investigated the benefits of adding IPC to sprint-interval training (SIT) on performance and physiological adaptations of endurance athletes. In a randomized controlled trial, athletes included eight SIT sessions in their training routine for 4 weeks, preceded by IPC (3 × 5 min ischemia/5 min reperfusion cycles at 220 mmHg, n = 11) or a placebo (20 mmHg, n = 9). Athletes were tested pre-, mid-, and post-training on a 30 s Wingate test, 5-km time trial (TT), and maximal incremental step test. Arterial O2 saturation, heart rate, rate of perceived exertion, and quadriceps muscle oxygenation changes in total hemoglobin (Δ[THb]), deoxyhemoglobin (Δ[HHb]), and tissue saturation index (ΔTSI) were measured during exercise. Blood samples were taken pre- and post-training to determine blood markers of hypoxic response, lipid-lipoprotein profile, and immune function. Differences within and between groups were analyzed using Cohen's effect size (ES). Compared to PLA, IPC improved time to complete the TT (Mid vs. Post: -1.6%, Cohen's ES ± 90% confidence limits -0.24, -0.40;-0.07) and increased power output (Mid vs. Post: 4.0%, ES 0.20, 0.06;0.35), Δ[THb] (Mid vs. Post: 73.6%, ES 0.70, -0.15;1.54, Pre vs. Post: 68.5%, ES 0.69, -0.05;1.43), Δ[HHb] (Pre vs. Post: 12.7%, ES 0.24, -0.11;0.59) and heart rate (Pre vs. Post: 1.4%, ES 0.21, -0.13;0.55, Mid vs. Post: 1.6%, ES 0.25, -0.09;0.60). IPC also attenuated the fatigue index in the Wingate test (Mid vs. Post: -8.4%, ES -0.37, -0.79;0.05). VO2peak and maximal aerobic power remained unchanged in both groups. Changes in blood markers of the hypoxic response, vasodilation, and angiogenesis remained within the normal clinical range in both groups. We concluded that IPC combined with SIT induces greater adaptations in cycling endurance performance that may be related to muscle perfusion and metabolic changes. The absence of elevated markers of immune function suggests that chronic IPC is devoid of deleterious effects in athletes, and is thus a safe and potent ergogenic tool.
Collapse
Affiliation(s)
- Pénélope Paradis-Deschênes
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Denis R. Joanisse
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Pascale Mauriège
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - François Billaut
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| |
Collapse
|
25
|
Späth MR, Koehler FC, Hoyer-Allo KJR, Grundmann F, Burst V, Müller RU. Preconditioning strategies to prevent acute kidney injury. F1000Res 2020; 9:F1000 Faculty Rev-237. [PMID: 32269763 PMCID: PMC7135682 DOI: 10.12688/f1000research.21406.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury is a common clinical disorder resulting in significantly increased morbidity and mortality. However, despite extensive research, strategies for prevention or treatment are still lacking in routine clinical practice. Already decades ago, several preconditioning strategies (e. g. ischemic/hypoxic preconditioning and calorie restriction) have been published and their extraordinary effectiveness - especially in rodents - has raised the hope for powerful clinical tools to prevent acute kidney injury. However, the underlying mechanisms are still not completely understood and translation to the clinics has not been successful yet. In this review, the most attractive strategies and the current mechanistic concepts are introduced and discussed. Furthermore, we present clinical trials evaluating the feasibility of preconditioning in the clinical setting.
Collapse
Affiliation(s)
- Martin Richard Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, NRW, 50931, Germany
| | - Felix Carlo Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, NRW, 50931, Germany
| | - Karla Johanna Ruth Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, NRW, 50931, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, NRW, 50937, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, NRW, 50931, Germany
| |
Collapse
|
26
|
Packer M. Critical examination of mechanisms underlying the reduction in heart failure events with SGLT2 inhibitors: identification of a molecular link between their actions to stimulate erythrocytosis and to alleviate cellular stress. Cardiovasc Res 2020; 117:74-84. [PMID: 32243505 DOI: 10.1093/cvr/cvaa064] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduce the risk of serious heart failure events, even though SGLT2 is not expressed in the myocardium. This cardioprotective benefit is not related to an effect of these drugs to lower blood glucose, promote ketone body utilization or enhance natriuresis, but it is linked statistically with their action to increase haematocrit. SGLT2 inhibitors increase both erythropoietin and erythropoiesis, but the increase in red blood cell mass does not directly prevent heart failure events. Instead, erythrocytosis is a biomarker of a state of hypoxia mimicry, which is induced by SGLT2 inhibitors in manner akin to cobalt chloride. The primary mediators of the cellular response to states of energy depletion are sirtuin-1 and hypoxia-inducible factors (HIF-1α/HIF-2α). These master regulators promote the cellular adaptation to states of nutrient and oxygen deprivation, promoting mitochondrial capacity and minimizing the generation of oxidative stress. Activation of sirtuin-1 and HIF-1α/HIF-2α also stimulates autophagy, a lysosome-mediated degradative pathway that maintains cellular homoeostasis by removing dangerous constituents (particularly unhealthy mitochondria and peroxisomes), which are a major source of oxidative stress and cardiomyocyte dysfunction and demise. SGLT2 inhibitors can activate SIRT-1 and stimulate autophagy in the heart, and thereby, favourably influence the course of cardiomyopathy. Therefore, the linkage between erythrocytosis and the reduction in heart failure events with SGLT2 inhibitors may be related to a shared underlying molecular mechanism that is triggered by the action of these drugs to induce a perceived state of oxygen and nutrient deprivation.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX 75226, USA.,Imperial College, London, UK
| |
Collapse
|
27
|
Kim J, Franke WD, Lang JA. Improved endothelial-dependent and endothelial-independent skin vasodilator responses following remote ischemic preconditioning. Am J Physiol Heart Circ Physiol 2020; 318:H110-H115. [PMID: 31774694 DOI: 10.1152/ajpheart.00467.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One week of daily remote ischemic preconditioning (RIPC) improves cutaneous vasodilatory (VD) function. However, the underlying mechanisms and the number of sessions needed to optimize this adaptive response remain unclear. We hypothesized that the responses to localized heating of the skin will be greater after 2 wk as opposed to 1 wk of RIPC. Furthermore, 2 wk of repeated RIPC will augment cutaneous VD responses to thermal and pharmacological stimuli. In methods, twenty-four participants (24 ± 2 yr; 13 men, 11 women) performed repeated RIPC (7 daily sessions over 1 wk, n = 11; 12 sessions over 2 wk, n = 13), consisting of four repetitions of 5 min of arm blood flow occlusion separated by 5 min reperfusion. Laser speckle contrast imaging was used to measure skin blood flow responses, in perfusion units (PU), to local heating (Tloc = 42°C), acetylcholine (ACh), and sodium nitroprusside (SNP) before and after repeated RIPC. Data were expressed as cutaneous vascular conductance (CVC, in PU/mmHg). In results, the VD response to local heating increased after RIPC (∆CVC from baseline; 1 wk: 0.94 ± 0.11 to 1.19 ± 0.15, 2 wk: 1.18 ± 0.07 to 1.33 ± 0.10 PU/mmHg; P < 0.05) but the ∆CVC did not differ between weeks. SNP-induced VD increased after 2 wk of RIPC (∆CVC; 0.34 ± 0.07 to 0.63 ± 0.11 PU/mmHg; P < 0.05), but ACh-induced VD did not. In conclusion, repeated RIPC improves local heating- and SNP-mediated cutaneous VD. When compared with 1 wk of RIPC, 2 wk of RIPC does not induce further improvements in cutaneous VD function.NEW & NOTEWORTHY Repeated RIPC increases the cutaneous vasodilatory response to local heating and to sodium nitroprusside but not to acetylcholine. Thus, endothelial-independent and local heating-mediated cutaneous vasodilation are improved following RIPC. However, 2 wk of RIPC sessions are not more effective than 1 wk of RIPC sessions in enhancing local heating-mediated cutaneous vasodilation.
Collapse
Affiliation(s)
- Jahyun Kim
- Department of Kinesiology, Iowa State University, Ames, Iowa
| | - Warren D Franke
- Department of Kinesiology, Iowa State University, Ames, Iowa
| | - James A Lang
- Department of Kinesiology, Iowa State University, Ames, Iowa.,Department of Physical Therapy, Des Moines University, Des Moines, Iowa
| |
Collapse
|
28
|
Verdesoto Rodriguez MC, Spenceley N, Ilina M, Danton MH. A Prospective Randomized Blinded Trial of Remote Ischemic Preconditioning in Children Undergoing Cardiac Surgery. Semin Thorac Cardiovasc Surg 2020; 32:313-322. [DOI: 10.1053/j.semtcvs.2019.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
|
29
|
Zarbock A, Kellum JA, Gourine AV, Ackland GL. Salvaging remote ischaemic preconditioning as a therapy for perioperative acute kidney injury. Br J Anaesth 2020; 124:8-12. [PMID: 31629484 DOI: 10.1016/j.bja.2019.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Alexander Zarbock
- Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, University Hospital Münster, Münster, Germany.
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Gareth L Ackland
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK; Translational Medicine & Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
30
|
Wu Q, Wang T, Chen S, Zhou Q, Li H, Hu N, Feng Y, Dong N, Yao S, Xia Z. Cardiac protective effects of remote ischaemic preconditioning in children undergoing tetralogy of fallot repair surgery: a randomized controlled trial. Eur Heart J 2019; 39:1028-1037. [PMID: 28329231 PMCID: PMC6018784 DOI: 10.1093/eurheartj/ehx030] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/17/2017] [Indexed: 01/17/2023] Open
Abstract
Aims Remote ischaemic preconditioning (RIPC) by inducing brief ischaemia in distant tissues protects the heart against myocardial ischaemia-reperfusion injury (IRI) in children undergoing open-heart surgery, although its effectiveness in adults with comorbidities is controversial. The effectiveness and mechanism of RIPC with respect to myocardial IRI in children with tetralogy of Fallot (ToF), a severe cyanotic congenital cardiac disease, undergoing open heart surgery are unclear. We hypothesized that RIPC can confer cardioprotection in children undergoing ToF repair surgery. Methods and results Overall, 112 ToF children undergoing radical open cardiac surgery using cardiopulmonary bypass (CPB) were randomized to either a RIPC group (n = 55) or a control group (n = 57). The RIPC protocol consisted of three cycles of 5-min lower limb occlusion and 5-min reperfusion using a cuff-inflator. Serum inflammatory cytokines and cardiac injury markers were measured before surgery and after CPB. Right ventricle outflow tract (RVOT) tissues were collected during the surgery to assess hypoxia-inducible factor (Hif)-1α and other signalling proteins. Cardiac mitochondrial injury was assessed by electron microscopy. The primary results showed that the length of stay in the intensive care unit (ICU) was longer in the control group than in the RIPC group (52.30 ± 13.43 h vs. 47.55 ± 10.34 h, respectively, P = 0.039). Patients in the control group needed longer post-operative ventilation time compared to the RIPC group (35.02 ± 6.56 h vs. 31.96 ± 6.60 h, respectively, P = 0.016). The levels of post-operative serum troponin-T at 12 and 18 h, CK-MB at 24 h, as well as the serum h-FABP levels at 6 h, after CPB were significantly lower, which was coincident with significantly higher protein expression of cardiac Hif-1α, p-Akt, p-STAT3, p-STAT5, and p-eNOS and less vacuolization of mitochondria in the RIPC group compared to the control group. Conclusion In ToF children undergoing open heart surgery, RIPC attenuates myocardial IRI and improves the short-term prognosis.
Collapse
Affiliation(s)
- Qingping Wu
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Tingting Wang
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shiqiang Chen
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Quanjun Zhou
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Haobo Li
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,Department of Anaesthesiology, University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| | - Na Hu
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yinglu Feng
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shanglong Yao
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,Department of Anaesthesiology, University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
31
|
Zhou D, Ding J, Ya J, Pan L, Wang Y, Ji X, Meng R. Remote ischemic conditioning: a promising therapeutic intervention for multi-organ protection. Aging (Albany NY) 2019; 10:1825-1855. [PMID: 30115811 PMCID: PMC6128414 DOI: 10.18632/aging.101527] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of formidable exploration, multi-organ ischemia-reperfusion injury (IRI) encountered, particularly amongst elderly patients with clinical scenarios, such as age-related arteriosclerotic vascular disease, heart surgery and organ transplantation, is still an unsettled conundrum that besets clinicians. Remote ischemic conditioning (RIC), delivered via transient, repetitive noninvasive IR interventions to distant organs or tissues, is regarded as an innovative approach against IRI. Based on the available evidence, RIC holds the potential of affording protection to multiple organs or tissues, which include not only the heart and brain, but also others that are likely susceptible to IRI, such as the kidney, lung, liver and skin. Neuronal and humoral signaling pathways appear to play requisite roles in the mechanisms of RIC-related beneficial effects, and these pathways also display inseparable interactions with each other. So far, several hurdles lying ahead of clinical translation that remain to be settled, such as establishment of biomarkers, modification of RIC regimen, and deep understanding of underlying minutiae through which RIC exerts its powerful function. As this approach has garnered an increasing interest, herein, we aim to encapsulate an overview of the basic concept and postulated protective mechanisms of RIC, highlight the main findings from proof-of-concept clinical studies in various clinical scenarios, and also to discuss potential obstacles that remain to be conquered. More well designed and comprehensive experimental work or clinical trials are warranted in future research to confirm whether RIC could be utilized as a non-invasive, inexpensive and efficient adjunct therapeutic intervention method for multi-organ protection.
Collapse
Affiliation(s)
- Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jiayue Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jingyuan Ya
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
32
|
Deja MA, Piekarska M, Malinowski M, Wiaderkiewicz R, Czekaj P, Machej L, Węglarzy A, Kowalówka A, Kołodziej T, Czech E, Plewka D, Mizia M, Latusek T, Szurlej B. Can human myocardium be remotely preconditioned? The results of a randomized controlled trial. Eur J Cardiothorac Surg 2019; 55:1086-1094. [PMID: 30649238 DOI: 10.1093/ejcts/ezy441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/02/2018] [Accepted: 11/17/2018] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES No experimental study has shown that the myocardium of a remotely preconditioned patient is more resistant to a standardized ischaemic/hypoxic insult. METHODS This was a single-centre randomized (1:1), double-blinded, sham-controlled, parallel-group study. Patients referred for elective coronary bypass surgery were allocated to either remote ischaemic preconditioning (3 cycles of 5-min ischaemia/5-min reperfusion of the right arm using a blood pressure cuff inflated to 200 mmHg) or sham intervention. One hundred and thirty-four patients were recruited, of whom 10 dropped out, and 4 were excluded from the per-protocol analysis. The right atrial trabecula harvested on cannulation for cardiopulmonary bypass was subjected to 60 min of simulated ischaemia and 120 min of reoxygenation in an isolated organ experiment. Postoperative troponin T release and haemodynamics were assessed in an in vivo study. RESULTS The atrial trabeculae obtained from remotely preconditioned patients recovered 41.9% (36.3-48.3) of the initial contraction force, whereas those from non-preconditioned patients recovered 45.9% (39.1-53.7) (P = 0.399). Overall, the content of cleaved poly (ADP ribose) polymerase in the right atrial muscle increased from 9.4% (6.0-13.5) to 19.1% (13.2-23.8) (P < 0.001) after 1 h of ischaemia and 2 h of reperfusion in vitro. The amount of activated Caspase 3 and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells also significantly increased. No difference was observed between the remotely preconditioned and sham-treated myocardium. In the in vivo trial, the area under the curve for postoperative concentration of troponin T over 72 h was 16.4 ng⋅h/ml (95% confidence interval 14.2-18.9) for the remote ischaemic preconditioning and 15.5 ng⋅h/ml (13.4-17.9) for the control group in the intention-to-treat analysis. This translated into an area under the curve ratio of 1.06 (0.86-1.30; P = 0.586). CONCLUSIONS Remote ischaemic preconditioning with 3 cycles of 5-min ischaemia/reperfusion of the upper limb before cardiac surgery does not make human myocardium more resistant to ischaemia/reperfusion injury. CLINICAL TRIAL REGISTRATION NUMBER NCT01994707.
Collapse
Affiliation(s)
- Marek A Deja
- Department of Cardiac Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.,Department of Cardiac Surgery, Upper-Silesian Heart Center, Katowice, Poland
| | - Magda Piekarska
- Department of Cardiac Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.,Department of Cardiac Surgery, Upper-Silesian Heart Center, Katowice, Poland
| | - Marcin Malinowski
- Department of Cardiac Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.,Department of Cardiac Surgery, Upper-Silesian Heart Center, Katowice, Poland
| | - Ryszard Wiaderkiewicz
- Department of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Piotr Czekaj
- Department of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Leszek Machej
- Department of Anesthesia and Intensive Care Nursing, School of Health Sciences, Medical University of Silesia, Katowice, Poland
| | - Andrzej Węglarzy
- Department of Cardiac Anesthesia, Upper-Silesian Heart Center, Katowice, Poland
| | - Adam Kowalówka
- Department of Cardiac Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.,Department of Cardiac Surgery, Upper-Silesian Heart Center, Katowice, Poland
| | - Tadeusz Kołodziej
- Department of Cardiac Surgery, Upper-Silesian Heart Center, Katowice, Poland
| | - Ewa Czech
- Department of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Danuta Plewka
- Department of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Mizia
- 1 Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz Latusek
- Department of Cardiac Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Bartosz Szurlej
- Department of Cardiac Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
33
|
Guo ZN, Guo WT, Liu J, Chang J, Ma H, Zhang P, Zhang FL, Han K, Hu HH, Jin H, Sun X, Simpson DM, Yang Y. Changes in cerebral autoregulation and blood biomarkers after remote ischemic preconditioning. Neurology 2019; 93:e8-e19. [PMID: 31142636 PMCID: PMC6659004 DOI: 10.1212/wnl.0000000000007732] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Objective To determine the effect of remote ischemic preconditioning (RIPC) on dynamic cerebral autoregulation (dCA) and various blood biomarkers in healthy adults. Methods A self-controlled interventional study was conducted. Serial measurements of dCA were performed at 7 time points (7, 9, and 11 am; 2, 5, and 8 pm, and 8 am on the next day) without or with RIPC, carried out at 7:20 to 8 am. Venous blood samples were collected at baseline (7 am) and 1 hour after RIPC, and blood biomarkers, including 5 neuroprotective factors and 25 inflammation-related biomarkers, were measured with a quantitative protein chip. Results Fifty participants were enrolled (age 34.54 ± 12.01 years, 22 men). Compared with the results on the day without RIPC, dCA was significantly increased at 6 hours after RIPC, and the increase was sustained for at least 24 hours. After RIPC, 2 neuroprotective factors (glial cell-derived neurotrophic factor and vascular endothelial growth factor-A) and 4 inflammation-related biomarkers (transforming growth factor-β1, leukemia inhibitory factor, matrix metallopeptidase-9, and tissue inhibitor of metalloproteinase-1) were significantly elevated compared with their baseline levels. Conversely, monocyte chemoattractant protein-1 was significantly lower compared with its baseline level. Conclusions RIPC induces a sustained increase of dCA from 6 to at least 24 hours after treatment in healthy adults. In addition, several neuroprotective and inflammation-related blood biomarkers were differentially regulated shortly after RIPC. The increased dCA and altered blood biomarkers may collectively contribute to the beneficial effects of RIPC on cerebrovascular function. ClinicalTrials.gov identifier: NCT02965547.
Collapse
Affiliation(s)
- Zhen-Ni Guo
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Wei-Tong Guo
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Jia Liu
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Junlei Chang
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Hongyin Ma
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Peng Zhang
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Fu-Liang Zhang
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Ke Han
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Han-Hwa Hu
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Hang Jin
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Xin Sun
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - David Martin Simpson
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Yi Yang
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK.
| |
Collapse
|
34
|
Nyquist P, Georgakis MK. Remote ischemic preconditioning effects on brain vasculature. Neurology 2019; 93:15-16. [PMID: 31142632 DOI: 10.1212/wnl.0000000000007724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Paul Nyquist
- From the Department of Neurology (P.N.), Anesthesia/Critical Care Medicine, and Department of Neurosurgery, General Internal Medicine (P.N.), Johns Hopkin School of Medicine, Baltimore, MD; and Institute for Stroke and Dementia Research (M.K.G.), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany.
| | - Marios K Georgakis
- From the Department of Neurology (P.N.), Anesthesia/Critical Care Medicine, and Department of Neurosurgery, General Internal Medicine (P.N.), Johns Hopkin School of Medicine, Baltimore, MD; and Institute for Stroke and Dementia Research (M.K.G.), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany
| |
Collapse
|
35
|
Zhang L, Liu H, Xu K, Ling Z, Huang Y, Hu Q, Lu K, Liu C, Wang Y, Liu N, Zhang X, Xu B, Wu J, Chen S, Zhang G, Chen M. Hypoxia preconditioned renal tubular epithelial cell-derived extracellular vesicles alleviate renal ischaemia-reperfusion injury mediated by the HIF-1α/Rab22 pathway and potentially affected by microRNAs. Int J Biol Sci 2019; 15:1161-1176. [PMID: 31223277 PMCID: PMC6567810 DOI: 10.7150/ijbs.32004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
We previously found that hypoxia induced renal tubular epithelial cells (RTECs) release functional extracellular vesicles (EVs), which mediate the protection of remote ischaemic preconditioning (RIPC) for kidney ischaemia-reperfusion (I/R) injury. We intend to investigate whether the EVs were regulated by hypoxia-inducible factor 1α (HIF-1α) and Rab22 during RIPC. We also attempted to determine the potentially protective cargo of the EVs and reveal their underlying mechanism. Hypoxia preconditioning (HPC) of human kidney 2 (HK2) cells was conducted at 1% oxygen (O2) for different amounts of time to simulate IPC in vitro. EVs were isolated and then quantified. HIF-1α- and Rab22-inhibited HK2 cells were used to investigate the role of the HIF-1α/Rab22 pathway in HPC-induced EV production. Both normoxic and HPC EVs were treated in vivo to assess the protective effect of I/R injury. Moreover, microRNA (miRNA) sequencing analysis and bioinformatics analysis was performed. We revealed that the optimal conditions for simulating IPC in vitro was no more than 12 h under the 1% O2 culture circumstance. HPC enhanced the production of EVs, and the production of EVs was regulated by the HIF-1α/Rab22 pathway during HPC. Moreover, HPC EVs were found to be more effective at attenuating mice renal I/R injury. Furthermore, 16 miRNAs were upregulated in HPC EVs. Functional and pathway analysis indicated that the miRNAs may participate in multiple processes and pathways by binding their targets to influence the biochemical results during RIPC. We demonstrated that HIF-1α/Rab22 pathway mediated RTEC-derived EVs during RIPC. The HPC EVs protected renal I/R injury potentially through differentially expressed miRNAs. Further study is needed to verify the effective EV-miRNAs and their underlying mechanism.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Han Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Kai Xu
- Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhixin Ling
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yeqing Huang
- Department of Urology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qiang Hu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Kai Lu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chunhui Liu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yiduo Wang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ning Liu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaowen Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Bin Xu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jianping Wu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
36
|
Hummitzsch L, Zitta K, Berndt R, Wong YL, Rusch R, Hess K, Wedel T, Gruenewald M, Cremer J, Steinfath M, Albrecht M. Remote ischemic preconditioning attenuates intestinal mucosal damage: insight from a rat model of ischemia-reperfusion injury. J Transl Med 2019; 17:136. [PMID: 31036020 PMCID: PMC6489261 DOI: 10.1186/s12967-019-1885-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
Background Remote ischemic preconditioning (RIPC) is a phenomenon, whereby repeated, non-lethal episodes of ischemia to an organ or limb exert protection against ischemia–reperfusion (I/R) injury in distant organs. Despite intensive research, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms, especially in the intestine. Aim of this study was to evaluate possible protective effects RIPC on intestinal I/R injury. Methods Thirty rats were randomly assigned to four groups: I/R; I/R + RIPC; Sham; Sham + RIPC. Animals were anesthetized and the superior mesenteric artery was clamped for 30 min, followed by 60 min of reperfusion. RIPC-treated rats received 3 × 5 min of bilateral hindlimb I/R prior to surgery, sham groups obtained laparotomy without clamping. After I/R injury serum/tissue was analyzed for: Mucosal damage, Caspase-3/7 activity, expression of cell stress proteins, hydrogen peroxide (H2O2) and malondialdehyde (MDA) production, Hypoxia-inducible factor-1α (HIF-1α) protein expression and matrix metalloproteinase (MMP) activity. Results Intestinal I/R resulted in increased mucosal injury (P < 0.001) and elevated Caspase-3/7 activity (P < 0.001). RIPC significantly reduced the histological signs of intestinal I/R injury (P < 0.01), but did not affect Caspase-3/7 activity. Proteome profiling suggested a RIPC-mediated regulation of several cell stress proteins after I/R injury: Cytochrome C (+ 157%); Cited-2 (− 39%), ADAMTS1 (+ 74%). Serum concentrations of H2O2 and MDA remained unchanged after RIPC, while the reduced intestinal injury was associated with increased HIF-1α levels. Measurements of MMP activities in serum and intestinal tissue revealed an attenuated gelatinase activity at 130 kDa within the serum samples (P < 0.001) after RIPC, while the activity of MMPs within the intestinal tissue was not affected by I/R injury or RIPC. Conclusions RIPC ameliorates intestinal I/R injury in rats. The underlying mechanisms may involve HIF-1α protein expression and a decreased serum activity of a 130 kDa factor with gelatinase activity. Electronic supplementary material The online version of this article (10.1186/s12967-019-1885-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105, Kiel, Germany.
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105, Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Yuk Lung Wong
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105, Kiel, Germany
| | - Rene Rusch
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Katharina Hess
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Thilo Wedel
- Institute of Anatomy, Christian-Albrechts-University, Kiel, Germany
| | - Matthias Gruenewald
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105, Kiel, Germany
| |
Collapse
|
37
|
Wang H, Lyu Y, Liao Q, Jin L, Xu L, Hu Y, Yu Y, Guo K. Effects of Remote Ischemic Preconditioning in Patients Undergoing Off-Pump Coronary Artery Bypass Graft Surgery. Front Physiol 2019; 10:495. [PMID: 31110480 PMCID: PMC6501551 DOI: 10.3389/fphys.2019.00495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 01/15/2023] Open
Abstract
Purpose This study aimed to evaluate effects of remote ischemic preconditioning (RIPC) on myocardial injury in patients undergoing off-pump coronary artery bypass graft surgery (OPCABG). Methods Sixty-five patients scheduled for the OPCABG were randomly assigned to control (n = 32) or RIPC group (n = 33). All patients received general anesthesia. Before the surgical incision, RIPC was induced on an upper limb with repeated 5-min ischemia and 5-min reperfusion for four times. Blood samples were collected from right internal jugular vein. Plasma levels of IL-6, IL-8, IL-10, TNF-α, cTnT, HFABP, IMA, and MDA were detected at pre-operatively and 0, 6, 18, 24, 48, 72, and 120 h after the surgery. Left internal mammary artery (LIMA) and great saphenous vein (GSV) was cut into 2–3 mm for Western blot analysis of Hif-1α. Results In the present study, RIPC treatment significantly reduced plasma levels of cardiac troponin T (p < 0.05), heart-type fatty acid binding protein (p < 0.05), ischemia modified albumin (p < 0.05), malondialdehyde (p < 0.05), as well as plasma levels of pro-inflammatory cytokines including IL-6, IL-8, and TNF-α (P < 0.05, respectively). RIPC treatment significantly increased hypoxia-inducible factor-1α (p < 0.05) expression as well. Mechanical ventilation time for postoperative patients was shortened in RIPC group than those in control group (17.4 ± 3.8 h vs. 19.7 ± 2.9 h, respectively, p < 0.05). Conclusion RIPC by upper limb ischemia shortens mechanical ventilation time in patients undergoing OPCABG. RIPC treatment reduces postoperative myocardial enzyme expression and pro-inflammatory cytokine production. RIPC is a protective therapeutic approach in the coronary artery bypass graft surgery.
Collapse
Affiliation(s)
- Huilin Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Lyu
- Department of Anesthesiology, Yunnan Baoshan Anli Hospital, Baoshan, China
| | - Qingwu Liao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liying Xu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Circulating mediators of remote ischemic preconditioning: search for the missing link between non-lethal ischemia and cardioprotection. Oncotarget 2019; 10:216-244. [PMID: 30719216 PMCID: PMC6349428 DOI: 10.18632/oncotarget.26537] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of mortality and morbidity worldwide. There has been an extensive search for cardioprotective therapies to reduce myocardial ischemia-reperfusion (I/R) injury. Remote ischemic preconditioning (RIPC) is a phenomenon that relies on the body's endogenous protective modalities against I/R injury. In RIPC, non-lethal brief I/R of one organ or tissue confers protection against subsequent lethal I/R injury in an organ remote to the briefly ischemic organ or tissue. Initially it was believed to be limited to direct myocardial protection, however it soon became apparent that RIPC applied to other organs such as kidney, liver, intestine, skeletal muscle can reduce myocardial infarct size. Intriguing discoveries have been made in extending the concept of RIPC to other organs than the heart. Over the years, the underlying mechanisms of RIPC have been widely sought and discussed. The involvement of blood-borne factors as mediators of RIPC has been suggested by a number of research groups. The main purpose of this review article is to summarize the possible circulating mediators of RIPC, and recent studies to establish the clinical efficacy of these mediators in cardioprotection from lethal I/R injury.
Collapse
|
39
|
Fontanals M, O'Leary JD, Zaarour C, Skelton T, Faraoni D. Preoperative anemia increases the risk of red blood cell transfusion and prolonged hospital length of stay in children undergoing spine arthrodesis surgery. Transfusion 2018; 59:492-499. [DOI: 10.1111/trf.15055] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Montserrat Fontanals
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children and Department of AnesthesiaUniversity of Toronto Toronto Ontario Canada
| | - James D. O'Leary
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children and Department of AnesthesiaUniversity of Toronto Toronto Ontario Canada
| | - Christian Zaarour
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children and Department of AnesthesiaUniversity of Toronto Toronto Ontario Canada
| | - Teresa Skelton
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children and Department of AnesthesiaUniversity of Toronto Toronto Ontario Canada
| | - David Faraoni
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children and Department of AnesthesiaUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
40
|
Kumowski N, Hegelmaier T, Kolbenschlag J, Mainka T, Michel-Lauter B, Maier C. Short-Term Glucocorticoid Treatment Normalizes the Microcirculatory Response to Remote Ischemic Conditioning in Early Complex Regional Pain Syndrome. Pain Pract 2018; 19:168-175. [PMID: 30269438 DOI: 10.1111/papr.12730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/13/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND The early phase of complex regional pain syndrome (CRPS) is characterized by an inflammatory state and therefore often treated with anti-inflammatory acting glucocorticoids. Recently, we demonstrated that remote ischemic conditioning (RIC), a cyclic application of nondamaging ischemia on a remote extremity, reduces blood flow and increases oxygen extraction in the CRPS-affected extremity. AIM The aim of the presented study was to analyze the effect of short-term pain treatment including glucocorticoid pulse treatment on the RIC-induced perfusion parameters. METHOD Independently from the study, pain treatment was started with an oral glucocorticoid pulse (180 to 360 mg prednisolone) in 12 patients with CRPS (disease duration < 1 year). RIC was conducted before and after pulse treatment. Three cycles of 5 minutes ischemia and 10 minutes reperfusion were applied to the contralateral limb. Blood flow, tissue oxygenation, and oxygen extraction fraction were assessed ipsilateral before and during RIC. Current pain was assessed on the numeric rating scale (0 to 10), and finger-palm distance was measured. RESULTS Pain level (5.8 ± 1.5 vs. 3.1 ± 1.1) and finger-palm distance (5 ± 1.9 cm vs. 3.7 ± 1.9 cm) were decreased significantly by the treatment. RIC decreased blood flow by 32.8% ± 42.8% (P < 0.05) and increased oxygen extraction fraction by 8.5% ± 10.3% (P < 0.05) solely before the treatment. After treatment, all parameters remained unchanged after RIC (P < 0.05 vs. before), comparable to healthy subjects. CONCLUSION Confirming previous results, RIC presumably unmasks luxury perfusion in untreated CRPS patients. In accordance with the clinical improvement, the short-term pain treatment with glucocorticoids as major component normalizes impaired perfusion. These results might underline the rationale for anti-inflammatory treatment in early-phase CRPS.
Collapse
Affiliation(s)
- Nina Kumowski
- Department of Pain Medicine, BG University Hospital Bergmannsheil GmbH, Ruhr University, Bochum, Germany
| | - Tobias Hegelmaier
- Department of Pain Medicine, BG University Hospital Bergmannsheil GmbH, Ruhr University, Bochum, Germany.,Department of Neurology, St. Josef-Hospital, Ruhr University, Bochum, Germany
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Tina Mainka
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Beate Michel-Lauter
- Department of Pain Medicine, BG University Hospital Bergmannsheil GmbH, Ruhr University, Bochum, Germany
| | - Christoph Maier
- Department of Pain Medicine, BG University Hospital Bergmannsheil GmbH, Ruhr University, Bochum, Germany
| |
Collapse
|
41
|
Majumder A, Singh M, George AK, Homme RP, Laha A, Tyagi SC. Remote ischemic conditioning as a cytoprotective strategy in vasculopathies during hyperhomocysteinemia: An emerging research perspective. J Cell Biochem 2018; 120:77-92. [PMID: 30272816 DOI: 10.1002/jcb.27603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022]
Abstract
Higher levels of nonprotein amino acid homocysteine (Hcy), that is, hyperhomocysteinemia (HHcy) (~5% of general population) has been associated with severe vasculopathies in different organs; however, precise molecular mechanism(s) as to how HHcy plays havoc with body's vascular networks are largely unknown. Interventional modalities have not proven beneficial to counter multifactorial HHcy's effects on the vascular system. An ancient Indian form of exercise called 'yoga' causes transient ischemia as a result of various body postures however the cellular mechanisms are not clear. We discuss a novel perspective wherein we argue that application of remote ischemic conditioning (RIC) could, in fact, deliver anticipated results to patients who are suffering from chronic vascular dysfunction due to HHcy. RIC is the mechanistic phenomenon whereby brief episodes of ischemia-reperfusion events are applied to distant tissues/organs; that could potentially offer a powerful tool in mitigating chronic lethal ischemia in target organs during HHcy condition via simultaneous reduction of inflammation, oxidative and endoplasmic reticulum stress, extracellular matrix remodeling, fibrosis, and angiogenesis. We opine that during ischemic conditioning our organs cross talk by releasing cellular messengers in the form of exosomes containing messenger RNAs, circular RNAs, anti-pyroptotic factors, protective cytokines like musclin, transcription factors, small molecules, anti-inflammatory, antiapoptotic factors, antioxidants, and vasoactive gases. All these could help mobilize the bone marrow-derived stem cells (having tissue healing properties) to target organs. In that context, we argue that RIC could certainly play a savior's role in an unfortunate ischemic or adverse event in people who have higher levels of the circulating Hcy in their systems.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Mahavir Singh
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Akash K George
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Rubens Petit Homme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Anwesha Laha
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
42
|
Zhou G, Li MH, Tudor G, Lu HT, Kadirvel R, Kallmes D. Remote Ischemic Conditioning in Cerebral Diseases and Neurointerventional Procedures: Recent Research Progress. Front Neurol 2018; 9:339. [PMID: 29867745 PMCID: PMC5964135 DOI: 10.3389/fneur.2018.00339] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia and stroke are increasing in prevalence and are among the leading causes of morbidity and mortality in both developed and developing countries. Despite the progress in endovascular treatment, ischemia/reperfusion (IR) injury is an important contributor to post-surgical mortality and morbidity affecting a wide range of neurointerventional procedures. However, pharmacological recruitment of effective cerebral protective signaling has been largely disappointing to date. In remote ischemic conditioning (RIC), repetitive transient mechanical obstruction of vessels at a limb remote from the IR injury site protects vital organs from IR injury and confers infarction size reduction following prolonged arterial occlusion. Results of pharmacologic agents appear to be species specific, while RIC is based on the neuroprotective influences of phosphorylated protein kinase B, signaling proteins, nitric oxide, and transcriptional activators, the benefits of which have been confirmed in many species. Inducing RIC protection in patients undergoing cerebral vascular surgery or those who are at high risk of brain injury has been the subject of research and has been enacted in clinical settings. Its simplicity and non-invasive nature, as well as the flexibility of the timing of RIC stimulus, also makes it feasible to apply alongside neurointerventional procedures. Furthermore, despite nonuniform RIC protocols, emerging literature demonstrates improved clinical outcomes. The aims of this article are to summarize the potential mechanisms underlying different forms of conditioning, to explore the current translation of this paradigm from laboratory to neurovascular diseases, and to outline applications for patient care.
Collapse
Affiliation(s)
- Geng Zhou
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Mayo Clinic, Rochester, MN, United States
| | - Ming Hua Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | - Hai Tao Lu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | |
Collapse
|
43
|
Dugbartey GJ, Redington AN. Prevention of contrast-induced nephropathy by limb ischemic preconditioning: underlying mechanisms and clinical effects. Am J Physiol Renal Physiol 2018; 314:F319-F328. [DOI: 10.1152/ajprenal.00130.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Contrast-induced nephropathy (CIN) is an important complication following diagnostic radiographic imaging and interventional therapy. It results from administration of intravascular iodinated contrast media (CM) and is currently the third most common cause of hospital-acquired acute kidney injury. CIN is associated with increased morbidity, prolonged hospitalization, and higher mortality. Although the importance of CIN is widely appreciated, and its occurrence can be mitigated by the use of pre- and posthydration protocols and low osmolar instead of high osmolar iodine-containing CM, specific prophylactic therapy is lacking. Remote ischemic preconditioning (RIPC), induced through short cycles of ischemia-reperfusion applied to the limb, is an intriguing new strategy that has been shown to reduce myocardial infarction size in patients undergoing emergency percutaneous coronary intervention. Furthermore, multiple proof-of-principle clinical studies have suggested benefit in several other ischemia-reperfusion syndromes, including stroke. Perhaps somewhat surprisingly, RIPC also is emerging as a promising strategy for CIN prevention. In this review, we discuss current clinical and experimental developments regarding the biology of CIN, concentrating on the pathophysiology of CIN, and cellular and molecular mechanisms by which limb ischemic preconditioning may confer renal protection in clinical and experimental models of CIN.
Collapse
Affiliation(s)
- George J. Dugbartey
- Division of Cardiology, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Andrew N. Redington
- Division of Cardiology, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
44
|
Liu H, Fu L, Sun X, Peng W, Chen Z, Li Y. Remote ischemic conditioning improves myocardial parameters and clinical outcomes during primary percutaneous coronary intervention: a meta-analysis of randomized controlled trials. Oncotarget 2018; 9:8653-8664. [PMID: 29492224 PMCID: PMC5823569 DOI: 10.18632/oncotarget.23818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/04/2017] [Indexed: 01/10/2023] Open
Abstract
We conducted a systematic review and meta-analysis to evaluate the effects of remote ischemic conditioning on myocardial parameters and clinical outcomes in ST segment elevation acute myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention. Ten eligible randomized controlled trials with 1006 STEMI patients were identified. Compared with controls, remote ischemic conditioning reduced the myocardial enzyme levels (standardized mean difference =-0.86; 95% CI: -1.44 to -0.28; P = 0.004; I2 = 94.5%), and increased the incidence of complete ST-segment resolution [odds ratio (OR) = 1.74; 95% CI: 1.09 to 2.77; P = 0.02; I2 = 47.9%]. Remote ischemic conditioning patients had a lower risk of all-cause mortality (OR = 0.27; 95% CI: 0.12 to 0.62; P = 0.002; I2 = 0.0%) and lower major adverse cardiovascular and cerebrovascular events rate (OR=0.45; 95% CI: 0.27 to 0.75; P = 0.002; I2 = 0.0%). Meta-analysis suggested that remote ischemic conditioning conferred cardioprotection by reducing myocardial enzymes and increasing the incidence of complete ST-segment resolution in patients after STEMI. As a result, clinical outcomes were improved in terms of mortality and incidence of major adverse cardiovascular and cerebrovascular events.
Collapse
Affiliation(s)
- Hai Liu
- Third Department of Cardiac Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Li Fu
- Institute of Clinical Medicine, Department of Endocrinology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi 417000, China
| | - Xiangke Sun
- Department of Cardiology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi 417000, China
| | - Wei Peng
- Department of Cardiology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi 417000, China
| | - Zhiwei Chen
- Department of Cardiology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi 417000, China
| | - Yiliang Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Postdoctoral Research Workstation of Neurology, Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
45
|
Chen H, Jing XY, Shen YJ, Wang TL, Ou C, Lu SF, Cai Y, Li Q, Chen X, Ding YJ, Yu XC, Zhu BM. Stat5-dependent cardioprotection in late remote ischaemia preconditioning. Cardiovasc Res 2018; 114:679-689. [DOI: 10.1093/cvr/cvy014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/19/2018] [Indexed: 02/05/2023] Open
Affiliation(s)
- Hui Chen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Xianlin Road 138, Qixia Street, Nanjing, Jiangsu 210023, China
| | - Xin-Yue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Xianlin Road 138, Qixia Street, Nanjing, Jiangsu 210023, China
| | - Yu-Jun Shen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Xianlin Road 138, Qixia Street, Nanjing, Jiangsu 210023, China
| | - Tian-Lin Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Xianlin Road 138, Qixia Street, Nanjing, Jiangsu 210023, China
| | - Chen Ou
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Xianlin Road 138, Qixia Street, Nanjing, Jiangsu 210023, China
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Xianlin Road 138, Qixia Street, Nanjing, Jiangsu 210023, China
| | - Yun Cai
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Xianlin Road 138, Qixia Street, Nanjing, Jiangsu 210023, China
| | - Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Xianlin Road 138, Qixia Street, Nanjing, Jiangsu 210023, China
| | - Xia Chen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Xianlin Road 138, Qixia Street, Nanjing, Jiangsu 210023, China
| | - Ya-Juan Ding
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Xianlin Road 138, Qixia Street, Nanjing, Jiangsu 210023, China
| | - Xiao-Chun Yu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei, Beijing, 100700, China
| | - Bing-Mei Zhu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Xianlin Road 138, Qixia Street, Nanjing, Jiangsu 210023, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
46
|
de Preux Charles AS, Bise T, Baier F, Marro J, Jaźwińska A. Distinct effects of inflammation on preconditioning and regeneration of the adult zebrafish heart. Open Biol 2017; 6:rsob.160102. [PMID: 27440424 PMCID: PMC4967830 DOI: 10.1098/rsob.160102] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
The adult heart is able to activate cardioprotective programmes and modifies its architecture in response to physiological or pathological changes. While mammalian cardiac remodelling often involves hypertrophic expansion, the adult zebrafish heart exploits hyperplastic growth. This capacity depends on the responsiveness of zebrafish cardiomyocytes to mitogenic signals throughout their entire life. Here, we have examined the role of inflammation on the stimulation of cell cycle activity in the context of heart preconditioning and regeneration. We used thoracotomy as a cardiac preconditioning model and cryoinjury as a model of cardiac infarction in the adult zebrafish. First, we performed a spatio-temporal characterization of leucocytes and cycling cardiac cells after thoracotomy. This analysis revealed a concomitance between the infiltration of inflammatory cells and the stimulation of the mitotic activity. However, decreasing the immune response using clodronate liposome injection, PLX3397 treatment or anti-inflammatory drugs surprisingly had no effect on the re-entry of cardiac cells into the cell cycle. In contrast, reducing inflammation using the same strategies after cryoinjury strongly impaired cardiac cell mitotic activity and the regenerative process. Taken together, our results show that, while the immune response is not necessary to induce cell-cycle activity in intact preconditioned hearts, inflammation is required for the regeneration of injured hearts in zebrafish.
Collapse
Affiliation(s)
| | - Thomas Bise
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Felix Baier
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Jan Marro
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
47
|
Cytoprotective effects of transgenic neuroglobin overexpression in an acute and chronic mouse model of ischemic heart disease. Heart Vessels 2017; 33:80-88. [PMID: 29098407 DOI: 10.1007/s00380-017-1065-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/13/2017] [Indexed: 01/01/2023]
Abstract
Neuroglobin (NGB) is an oxygen-binding protein that is mainly expressed in nervous tissues where it is considered to be neuroprotective during ischemic brain injury. Interestingly, transgenic mice overexpressing NGB reveal cytoprotective effects on tissues lacking endogenous NGB, which might indicate a therapeutic role for NGB in a broad range of ischemic conditions. In the present study, we investigated the effect of NGB overexpression on survival as well as on the size and occurrence of myocardial infarctions (MI) in a mouse model of acute MI (AMI) and a model of advanced atherosclerosis (ApoE -/- Fbn1 C1039G+/- mice), in which coronary plaques and MI develop in mice being fed a Western-type diet. Overexpression of NGB significantly enhanced post-AMI survival and reduced MI size by 14% 1 week after AMI. Gene expression analysis of the infarction border showed reduction of tissue hypoxia and attenuation of hypoxia-induced inflammatory pathways, which might be responsible for these beneficial effects. In contrast, NGB overexpression did not affect survival or occurrence of MI in the atherosclerotic mice although the incidence of coronary plaques was significantly reduced. In conclusion, NGB proved to act cytoprotectively during MI in the acute setting while this effect was less pronounced in the atherosclerosis model.
Collapse
|
48
|
Gedik N, Kottenberg E, Thielmann M, Frey UH, Jakob H, Peters J, Heusch G, Kleinbongard P. Potential humoral mediators of remote ischemic preconditioning in patients undergoing surgical coronary revascularization. Sci Rep 2017; 7:12660. [PMID: 28978919 PMCID: PMC5627278 DOI: 10.1038/s41598-017-12833-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 01/03/2023] Open
Abstract
Remote ischemic preconditioning (RIPC) by repeated brief cycles of limb ischemia/reperfusion may reduce myocardial ischemia/reperfusion injury and improve patients‘ prognosis after elective coronary artery bypass graft (CABG) surgery. The signal transducer and activator of transcription (STAT)5 activation in left ventricular myocardium is associated with RIPC´s cardioprotection. Cytokines and growth hormones typically activate STATs and could therefore act as humoral transfer factors of RIPC´s cardioprotection. We here determined arterial plasma concentrations of 25 different cytokines, growth hormones, and other factors which have previously been associated with cardioprotection, before (baseline)/after RIPC or placebo (n = 23/23), respectively, and before/after ischemic cardioplegic arrest in CABG patients. RIPC-induced protection was reflected by a 35% reduction of serum troponin I release. With the exception of interleukin-1α, none of the humoral factors changed in their concentrations after RIPC or placebo, respectively. Interleukin-1α, when normalized to baseline, increased after RIPC (280 ± 56%) but not with placebo (97 ± 15%). The interleukin-1α concentration remained increased until after ischemic cardioplegic arrest and was also higher than with placebo in absolute concentrations (25 ± 6 versus 16 ± 3 pg/mL). Only interleukin-1α possibly fulfills the criteria which would be expected from a substance to be released in response to RIPC and to protect the myocardium during ischemic cardioplegic arrest.
Collapse
Affiliation(s)
- Nilgün Gedik
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Eva Kottenberg
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Ulrich H Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Heinz Jakob
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany.
| |
Collapse
|
49
|
Stokfisz K, Ledakowicz-Polak A, Zagorski M, Zielinska M. Ischaemic preconditioning - Current knowledge and potential future applications after 30 years of experience. Adv Med Sci 2017; 62:307-316. [PMID: 28511069 DOI: 10.1016/j.advms.2016.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/19/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Ischaemic preconditioning (IPC) phenomenon has been known for thirty years. During that time several studies showed that IPC provided by brief ischaemic and reperfusion episodes prior to longer ischaemia can bestow a protective effect to both preconditioned and also remote organs. IPC affecting remote organs is called remote ischaemic preconditioning. Initially, most IPC studies were focused on enhancing myocardial resistance to subsequent ischaemia and reperfusion injury. However, preconditioning was found to be a universal phenomenon and was observed in various organs and tissues including the heart, liver, brain, retina, kidney, skeletal muscles and intestine. Currently, there are a lot of simultaneous studies are underway aiming at finding out whether IPC can be helpful in protecting these organs. The mechanism of local and remote IPC is complex and not well known. Several triggers, intracellular pathways and effectors, humoral, neural and induced by genetic changes may be considered potential pathways in the protective activity of local and remote IPC. Local and remote IPC mechanism may potentially serve as heart protection during cardiac surgery and may limit the infarct size of the myocardium, can be a strategy for preventing the development of acute kidney injury development and liver damage during transplantation, may protect the brain against ischaemic injury. In addition, the method is safe, non-invasive, cheap and easily applicable. The main purpose of this review article is to present new advances which would help to understand the potential mechanism of IPC. It also discusses both its potential applications and utility in clinical settings.
Collapse
Affiliation(s)
- Karolina Stokfisz
- Intensive Cardiac Therapy Clinic, Department of Invasive Cardiology and Electrocardiology, Medical University, Lodz, Poland.
| | - Anna Ledakowicz-Polak
- Intensive Cardiac Therapy Clinic, Department of Invasive Cardiology and Electrocardiology, Medical University, Lodz, Poland
| | - Maciej Zagorski
- Cardiosurgery Clinic, Department of Cardiology and Cardiosurgery, Medical University, Lodz, Poland
| | - Marzenna Zielinska
- Intensive Cardiac Therapy Clinic, Department of Invasive Cardiology and Electrocardiology, Medical University, Lodz, Poland
| |
Collapse
|
50
|
Robertson FP, Goswami R, Wright GP, Imber C, Sharma D, Malago M, Fuller BJ, Davidson BR. Remote ischaemic preconditioning in orthotopic liver transplantation (RIPCOLT trial): a pilot randomized controlled feasibility study. HPB (Oxford) 2017; 19:757-767. [PMID: 28651898 DOI: 10.1016/j.hpb.2017.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ischaemia Reperfusion (IR) injury is a major cause of morbidity, mortality and graft loss following Orthotopic Liver Transplantation (OLT). Utilising marginal grafts, which are more susceptible to IR injury, makes this a key research goal. Remote Ischaemic Preconditioning (RIPC) has been shown to ameliorate hepatic IR injury in experimental models. Whether RIPC can reduce IR injury in human liver transplant recipients is unknown. METHODS Forty patients undergoing liver transplantation were randomized to RIPC or a sham. RIPC was induced through three 5 min cycles of alternate ischaemia and reperfusion of the left leg prior to surgery. Data on clinical outcomes was collected prospectively. Per-operative cytokine levels were measured. RESULTS Fourty five of 51 patients approached (88%) were willing to enroll in the study. Five patients were excluded and 40 randomized, of which 20 underwent RIPC which was successfully completed in all patients. There were no complications following RIPC. Median day 3 AST levels were slightly higher in the RIPC group (221 IU vs 149 IU, p = 1.00). CONCLUSIONS RIPC is acceptable and safe in liver transplant recipients. This study has not demonstrated evidence of a reduction in short-term measures of IR injury. Longer follow up will be required and consideration of an altered protocol.
Collapse
Affiliation(s)
- Francis P Robertson
- Division of Surgery and Intervention Science, Royal Free Campus, University College London, Pond Street, NW3 2QG, UK.
| | - Rup Goswami
- Department of Hepatico Pancreatico Biliary Surgery and Liver Transplantation, Royal Free Hospital Foundation Trust, Pond Street, NW3 2QG, UK
| | - Graham P Wright
- Department of Immunology, Edinburgh Napier University, Craiglockhart Campus, Glenlockhart Road, EH14 1DJ, UK
| | - Charles Imber
- Department of Hepatico Pancreatico Biliary Surgery and Liver Transplantation, Royal Free Hospital Foundation Trust, Pond Street, NW3 2QG, UK
| | - Dinesh Sharma
- Department of Hepatico Pancreatico Biliary Surgery and Liver Transplantation, Royal Free Hospital Foundation Trust, Pond Street, NW3 2QG, UK
| | - Massimo Malago
- Department of Hepatico Pancreatico Biliary Surgery and Liver Transplantation, Royal Free Hospital Foundation Trust, Pond Street, NW3 2QG, UK
| | - Barry J Fuller
- Division of Surgery and Intervention Science, Royal Free Campus, University College London, Pond Street, NW3 2QG, UK
| | - Brian R Davidson
- Division of Surgery and Intervention Science, Royal Free Campus, University College London, Pond Street, NW3 2QG, UK; Department of Hepatico Pancreatico Biliary Surgery and Liver Transplantation, Royal Free Hospital Foundation Trust, Pond Street, NW3 2QG, UK
| |
Collapse
|