1
|
Real C, Pérez-García CN, Galán-Arriola C, García-Lunar I, García-Álvarez A. Right ventricular dysfunction: pathophysiology, experimental models, evaluation, and treatment. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2024; 77:957-970. [PMID: 39068988 DOI: 10.1016/j.rec.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/28/2024] [Indexed: 07/30/2024]
Abstract
Interest in the right ventricle has substantially increased due to advances in knowledge of its pathophysiology and prognostic implications across a wide spectrum of diseases. However, we are still far from understanding the multiple mechanisms that influence right ventricular dysfunction, its evaluation continues to be challenging, and there is a shortage of specific treatments in most scenarios. This review article aims to update knowledge about the physiology of the right ventricle, its transition to dysfunction, diagnostic tools, and available treatments from a translational perspective.
Collapse
Affiliation(s)
- Carlos Real
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Servicio de Cardiología, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | | | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Servicio de Cardiología, Hospital Universitario La Moraleja, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Servicio de Cardiología, Instituto Clínic Cardiovascular (ICCV), Hospital Clínic, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Fernández-Tocino M, Pun-Garcia A, Gómez M, Clemente-Moragón A, Oliver E, Villena-Gutierrez R, Trigo-Anca S, Díaz-Guerra A, Sanz-Rosa D, Prados B, Del Campo L, Andrés V, Fuster V, de la Pompa JL, Cádiz L, Ibañez B. β3-Adrenergic receptor overexpression in cardiomyocytes preconditions mitochondria to withstand ischemia-reperfusion injury. Basic Res Cardiol 2024; 119:773-794. [PMID: 39134663 PMCID: PMC11461581 DOI: 10.1007/s00395-024-01072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 10/09/2024]
Abstract
β3-Adrenergic receptor (β3AR) agonists have been shown to protect against ischemia-reperfusion injury (IRI). Since β3ARs are present both in cardiomyocytes and in endothelial cells, the cellular compartment responsible for this protection has remained unknown. Using transgenic mice constitutively expressing the human β3AR (hβ3AR) in cardiomyocytes or in the endothelium on a genetic background of null endogenous β3AR expression, we show that only cardiomyocyte expression protects against IRI (45 min ischemia followed by reperfusion over 24 h). Infarct size was also limited after ischemia-reperfusion in mice with cardiomyocyte hβ3AR overexpression on top of endogenous β3AR expression. hβ3AR overexpression in these mice reduced IRI-induced cardiac fibrosis and improved long-term left ventricular systolic function. Cardiomyocyte-specific β3AR overexpression resulted in a baseline remodeling of the mitochondrial network, characterized by upregulated mitochondrial biogenesis and a downregulation of mitochondrial quality control (mitophagy), resulting in elevated numbers of small mitochondria with a depressed capacity for the generation of reactive oxygen species but improved capacity for ATP generation. These processes precondition cardiomyocyte mitochondria to be more resistant to IRI. Upon reperfusion, hearts with hβ3AR overexpression display a restoration in the mitochondrial quality control and a rapid activation of antioxidant responses. Strong protection against IRI was also observed in mice infected with an adeno-associated virus (AAV) encoding hβ3AR under a cardiomyocyte-specific promoter. These results confirm the translational potential of increased cardiomyocyte β3AR expression, achieved either naturally through exercise or artificially through gene therapy approaches, to precondition the cardiomyocyte mitochondrial network to withstand future insults.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Mice, Transgenic
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/genetics
- Mice
- Humans
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Reactive Oxygen Species/metabolism
- Male
- Disease Models, Animal
Collapse
Affiliation(s)
- Miguel Fernández-Tocino
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Andrés Pun-Garcia
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Mónica Gómez
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Agustín Clemente-Moragón
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Eduardo Oliver
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Rocío Villena-Gutierrez
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Sofía Trigo-Anca
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Anabel Díaz-Guerra
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - David Sanz-Rosa
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Universidad Europea de Madrid (UEM), Madrid, Spain
| | - Belén Prados
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Lara Del Campo
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Universidad Complutense Madrid (UCM), Madrid, Spain
| | - Vicente Andrés
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Valentín Fuster
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - José Luis de la Pompa
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Laura Cádiz
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Borja Ibañez
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain.
- CIBERCV, Madrid, Spain.
- IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.
| |
Collapse
|
3
|
Corbi G, Comegna M, Vinciguerra C, Capasso A, Onorato L, Salucci AM, Rapacciuolo A, Cannavo A. Age and sex mediated effects of estrogen and Β3-adrenergic receptor on cardiovascular pathophysiology. Exp Gerontol 2024; 190:112420. [PMID: 38588751 DOI: 10.1016/j.exger.2024.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are consistently identified in determining the prevalence, manifestation, and response to therapies in several systemic disorders, including those affecting the cardiovascular (CV), skeletal muscle, and nervous system. Interestingly, such differences are often more noticeable as we age. For example, premenopausal women experience a lower risk of CV disease than men of the same age. While at an advanced age, with menopause, the risk of cardiovascular diseases and adverse outcomes increases exponentially in women, exceeding that of men. However, this effect appears to be reversed in diseases such as pulmonary hypertension, where women are up to seven times more likely than men to develop an idiopathic form of the disease with symptoms developing ten years earlier than their male counterparts. Explaining this is a complex question. However, several factors and mechanisms have been identified in recent decades, including a role for sex hormones, particularly estrogens and their related receptors. Furthermore, an emerging role in these sex differences has also been suggested for β-adrenergic receptors (βARs), which are essential regulators of mammalian physiology. It has in fact been shown that βARs interact with estrogen receptors (ER), providing further demonstration of their involvement in determining sexual differences. Based on these premises, this review article focused on the β3AR subtype, which shows important activities in adipose tissue but with new and interesting roles in regulating the function of cardiomyocytes and vascular cells. In detail, we examined how β3AR and ER signaling are intertwined and whether there would be sex- and age-dependent specific effects of these receptor systems.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marika Comegna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Advanced Biotechnologies - Franco Salvatore, Naples, Italy
| | - Caterina Vinciguerra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessio Capasso
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Onorato
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Antonio Rapacciuolo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
4
|
Awada C, Boucherat O, Provencher S, Bonnet S, Potus F. The future of group 2 pulmonary hypertension: Exploring clinical trials and therapeutic targets. Vascul Pharmacol 2023; 151:107180. [PMID: 37178949 DOI: 10.1016/j.vph.2023.107180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Pulmonary hypertension due to left heart disease (PH-LHD) or group 2 PH is the most common and lethal form of PH, occurring secondary to left ventricular systolic or diastolic heart failure (HF), left-sided valvular diseases, and congenital abnormalities. It is subdivided into isolated postcapillary PH (IpcPH) and combined pre- and post-capillary PH (CpcPH), with the latter sharing many similarities with group 1 PH. CpcPH is associated with worse outcomes and increased morbidity and mortality when compared to IpcPH. Although IpcPH can be improved by treatment of the underlying LHD, CpcPH is an incurable disease for which no specific treatment exists, likely due to the lack of understanding of its underlying mechanisms. Furthermore, drugs approved for PAH are not recommended for group 2 PH, as they are either ineffective or even deleterious. With this major unmet medical need, a better understanding of mechanisms and the identification of effective treatment strategies for this deadly condition are urgently needed. This review presents relevant background of the molecular mechanisms underlying PH-LHD that could translate into innovative therapeutic targets and explores novel targets currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Charifa Awada
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - François Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada.
| |
Collapse
|
5
|
Balligand JL, Michel LYM. Clinical pharmacology of β-3 adrenergic receptor agonists for cardiovascular diseases. Expert Rev Clin Pharmacol 2023; 16:1073-1084. [PMID: 37728503 DOI: 10.1080/17512433.2023.2193681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/17/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Few agonists of the third isotype of beta-adrenergic receptors, the β3-adrenoreceptor, are currently used clinically, and new agonists are under development for the treatment of overactive bladder disease. As the receptor is expressed in human cardiac and vascular tissues, it is important to understand their beneficial (or adverse) effect(s) on these targets. AREAS COVERED We discuss the most recent results of clinical trials testing the benefit and safety of β3-adrenoreceptor activation on cardiovascular outcomes in light of current knowledge on the receptor biology, genetic polymorphisms, and agonist pharmacology. EXPERT OPINION While evidence from small clinical trials is limited so far, the β3-agonist, mirabegron seems to be safe in patients at high cardiovascular risk but produces benefits on selected cardiovascular outcomes only at higher than standard doses. Activation of cardiovascular β3-adrenoreceptors deserves to be tested with more potent agonists, such as vibegron.
Collapse
Affiliation(s)
- Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
6
|
Ltaief Z, Yerly P, Liaudet L. Pulmonary Hypertension in Left Heart Diseases: Pathophysiology, Hemodynamic Assessment and Therapeutic Management. Int J Mol Sci 2023; 24:9971. [PMID: 37373119 PMCID: PMC10298585 DOI: 10.3390/ijms24129971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Pulmonary hypertension (PH) associated with left heart diseases (PH-LHD), also termed group 2 PH, represents the most common form of PH. It develops through the passive backward transmission of elevated left heart pressures in the setting of heart failure, either with preserved (HFpEF) or reduced (HFrEF) ejection fraction, which increases the pulsatile afterload of the right ventricle (RV) by reducing pulmonary artery (PA) compliance. In a subset of patients, progressive remodeling of the pulmonary circulation resulted in a pre-capillary phenotype of PH, with elevated pulmonary vascular resistance (PVR) further increasing the RV afterload, eventually leading to RV-PA uncoupling and RV failure. The primary therapeutic objective in PH-LHD is to reduce left-sided pressures through the appropriate use of diuretics and guideline-directed medical therapies for heart failure. When pulmonary vascular remodeling is established, targeted therapies aiming to reduce PVR are theoretically appealing. So far, such targeted therapies have mostly failed to show significant positive effects in patients with PH-LHD, in contrast to their proven efficacy in other forms of pre-capillary PH. Whether such therapies may benefit some specific subgroups of patients (HFrEF, HFpEF) with specific hemodynamic phenotypes (post- or pre-capillary PH) and various degrees of RV dysfunction still needs to be addressed.
Collapse
Affiliation(s)
- Zied Ltaief
- Service of Adult Intensive Care Medicine, University Hospital, 1011 Lausanne, Switzerland;
| | - Patrick Yerly
- Service of Cardiology, University Hospital, 1011 Lausanne, Switzerland;
| | - Lucas Liaudet
- Service of Adult Intensive Care Medicine, University Hospital, 1011 Lausanne, Switzerland;
| |
Collapse
|
7
|
Karimi Galougahi K, Zhang Y, Kienzle V, Liu C, Quek L, Patel S, Lau E, Cordina R, Figtree GA, Celermajer DS. β3 adrenergic agonism: A novel pathway which improves right ventricular-pulmonary arterial hemodynamics in pulmonary arterial hypertension. Physiol Rep 2023; 11:e15549. [PMID: 36597221 PMCID: PMC9810839 DOI: 10.14814/phy2.15549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023] Open
Abstract
Efficacy of therapies that target the downstream nitric oxide (NO) pathway in pulmonary arterial hypertension (PAH) depends on the bioavailability of NO. Reduced NO level in PAH is secondary to "uncoupling" of endothelial nitric oxide synthase (eNOS). Stimulation of β3 adrenergic receptors (β3 ARs) may lead to the recoupling of NOS and therefore be beneficial in PAH. We aimed to examine the efficacy of β3 AR agonism as a novel pathway in experimental PAH. In hypoxia (5 weeks) and Sugen hypoxia (hypoxia for 5 weeks + SU5416 injection) models of PAH, we examined the effects of the selective β3 AR agonist CL316243. We measured echocardiographic indices and invasive right ventricular (RV)-pulmonary arterial (PA) hemodynamics and compared CL316243 with riociguat and sildenafil. We assessed treatment effects on RV-PA remodeling, oxidative stress, and eNOS glutathionylation, an oxidative modification that uncouples eNOS. Compared with normoxic mice, RV systolic pressure was increased in the control hypoxic mice (p < 0.0001) and Sugen hypoxic mice (p < 0.0001). CL316243 reduced RV systolic pressure, to a similar degree to riociguat and sildenafil, in both hypoxia (p < 0.0001) and Sugen hypoxia models (p < 0.03). CL316243 reversed pulmonary vascular remodeling, decreased RV afterload, improved RV-PA coupling efficiency and reduced RV stiffness, hypertrophy, and fibrosis. Although all treatments decreased oxidative stress, CL316243 significantly reduced eNOS glutathionylation. β3 AR stimulation improved RV hemodynamics and led to beneficial RV-PA remodeling in experimental models of PAH. β3 AR agonists may be effective therapies in PAH.
Collapse
Affiliation(s)
- Keyvan Karimi Galougahi
- Heart Research InstituteSydneyAustralia
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | | | | | - Chia‐Chi Liu
- Heart Research InstituteSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Kolling Institute for Medical ResearchSydneyAustralia
| | - Lake‐Ee Quek
- Charles Perkins CenterUniversity of SydneySydneyAustralia
| | - Sanjay Patel
- Heart Research InstituteSydneyAustralia
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Edmund Lau
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Department of Respiratory MedicineRoyal Prince Alfred HospitalSydneyAustralia
| | - Rachael L. Cordina
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Gemma A. Figtree
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Kolling Institute for Medical ResearchSydneyAustralia
- Department of CardiologyRoyal North Shore HospitalSydneyAustralia
| | - David S. Celermajer
- Heart Research InstituteSydneyAustralia
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| |
Collapse
|
8
|
Dal Negro RW, Turco P, Povero M. Nebivolol: an effective option against long-lasting dyspnoea following COVID-19 pneumonia - a pivotal double-blind, cross-over controlled study. Multidiscip Respir Med 2022; 17:886. [PMID: 36636645 PMCID: PMC9830396 DOI: 10.4081/mrm.2022.886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 12/25/2022] Open
Abstract
Background Pulmonary microvascular occlusions can aggravate SARS-CoV-2 pneumonia and result in a variable decrease in capillary blood volume (Vc). Dyspnoea may persist for several weeks after hospital discharge in many patients who have "radiologically recovered" from COVID-19 pneumonia. Dyspnoea is frequently "unexplained" in these cases because abnormalities in lung vasculature are understudied. Furthermore, even when they are identified, therapeutic options are still lacking in clinical practice, with nitric oxide (NO) supplementation being used only for severe respiratory failure in the hospital setting. Nebivolol is the only selective β1 adrenoceptor antagonist capable of inducing nitric oxide-mediated vasodilation by stimulating endothelial NO synthase via β3 agonism. The purpose of this study was to compare the effect of nebivolol versus placebo in patients who had low Vc and complained of dyspnoea for several weeks after COVID-19 pneumonia. Methods Patients of both genders, aged ≥18 years, non-smokers, who had a CT scan that revealed no COVID-related parenchymal lesions but still complaining of dyspnoea 12-16 weeks after hospital discharge, were recruited. Spirometrical volumes, blood haemoglobin, SpO2, simultaneous diffusing capacity for carbon monoxide (CO) and NO (DLCO and DLNO, respectively), DLNO/DLCO ratio, Vc and exhaled NO (eNO) were measured together with their dyspnoea score (DS), heart frequency (HF), and blood arterial pressure (BAP). Data were collected before and one week after both placebo (P) and nebivolol (N) (2.5 mg od) double-blind cross-over administered at a two-week interval. Data were statistically compared, and p<0.05 assumed as statistically significant. Results Eight patients (3 males) were investigated. In baseline, their mean DS was 2.5±0.6 SD, despite the normality of lung volumes. DLCO and DLNO mean values were lower than predicted, while mean DLNO/DLCO ratio was higher. Mean Vc proved substantially reduced. Placebo did not modify any variable (all p=ns) while N improved DLco and Vc significantly (+8.5%, p<0.04 and +17.7%, p<0.003, respectively). eNO also was significantly increased (+17.6%, p<0.002). Only N lowered the dyspnoea score (-76%, p<0.001). Systolic and diastolic BAP were slightly lowered (-7.5%, p<0.02 and -5.1%, p<0.04, respectively), together with HF (-16.8%, p<0.03). Conclusions The simultaneous assessment of DLNO, DLCO, DLNO/DLCO ratio, and Vc confirmed that long-lasting dyspnoea is related to hidden abnormalities in the lung capillary vasculature. These abnormalities can persist even after the complete resolution of parenchymal lesions regardless of the normality of lung volumes. Nebivolol, but not placebo, improves DS and Vc significantly. The mechanism suggested is the NO-mediated vasodilation via the β3 adrenoceptor stimulation of endothelial NO synthase. This hypothesis is supported by the substantial increase of eNO only assessed after nebivolol. As the nebivolol tolerability in these post-COVID normotensive patients was very good, the therapeutic use of nebivolol against residual and symptomatic signs of long-COVID can be suggested in out-patients.
Collapse
Affiliation(s)
- Roberto W. Dal Negro
- National Centre for Respiratory Pharmacoeconomics and Pharmacoepidemiology - CESFAR, Verona ,National Centre for Respiratory Pharmacoeconomics and Pharmacoepidemiology, Via G. Rossetti 4, 37124 Verona, Italy.
| | - Paola Turco
- Research & Clinical Governance, Verona, Italy
| | | |
Collapse
|
9
|
Zhao L, Luo H, Li T, Zhao X, Liu Y. β3 adrenoceptor agonist mirabegron protects against right ventricular remodeling and drives Drp1 inhibition. Cardiovasc Diagn Ther 2022; 12:815-827. [PMID: 36605081 PMCID: PMC9808120 DOI: 10.21037/cdt-22-274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
Background The right ventricular (RV) function determines the prognosis of patients with pulmonary hypertension (PH). Metabolic disorders have been observed in the RV myocardium in PH. Activation of the β3 adrenoceptor improves cardiac function and restores cardiac metabolic efficiency in rodents with heart failure; however, its role in the RV remains uncertain. Methods Experimental PH was induced by monocrotaline (MCT) in rats. Mirabegron, a selective β3 adrenoceptor agonist, was given to MCT rats daily from the day after MCT injection at the dose of 10 mg/kg. In vivo echocardiography and RV catheterization were performed to assess RV hemodynamics, structure, and function. RV fibrosis and hypertrophy were assessed by Sirius Red (SR) and wheat germ agglutinin (WGA) staining respectively. Western blotting was performed to examine the markers of RV fibrosis and hypertrophy, as well as the levels of the key molecules and their phosphorylated forms. The molecular changes were confirmed in the cardiac hypertrophy model of angiotensin II (Ang II) treated H9c2 cardiomyocytes using western blotting. Results The overloaded RV had increased β3 adrenoceptor expression, which was further increased by mirabegron. Mirabegron reduced RV pressure and reduced RV structural and functional deterioration in MCT rats. Mirabegron decreased cardiac fibrosis and hypertrophy in the overloaded RV. Mirabegron suppressed dynaminrelated protein 1 (Drp1) and promoted AMP-activated protein kinase (AMPK) signaling in the overloaded RV and Ang II treated cardiomyocytes. Conclusions The β3 adrenoceptor agonist mirabegron reduced RV hypertrophy and fibrosis in PH rats. The treatment effect involved Drp1 inhibition and AMPK activation.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Cardiovascular Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hui Luo
- Department of Cardiology, the First Hospital of Changsha, Changsha, China
| | - Tangzhiming Li
- Department of Cardiology, the Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University, Shenzhen, China
| | - Xiexiong Zhao
- Department of Cardiovascular Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yanghong Liu
- Center for Reproductive Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Luo B, Li Y, Zhu M, Cui J, Liu Y, Liu Y. Intermittent Hypoxia and Atherosclerosis: From Molecular Mechanisms to the Therapeutic Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1438470. [PMID: 35965683 PMCID: PMC9365608 DOI: 10.1155/2022/1438470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022]
Abstract
Intermittent hypoxia (IH) has a dual nature. On the one hand, chronic IH (CIH) is an important pathologic feature of obstructive sleep apnea (OSA) syndrome (OSAS), and many studies have confirmed that OSA-related CIH (OSA-CIH) has atherogenic effects involving complex and interacting mechanisms. Limited preventive and treatment methods are currently available for this condition. On the other hand, non-OSA-related IH has beneficial or detrimental effects on the body, depending on the degree, duration, and cyclic cycle of hypoxia. It includes two main states: intermittent hypoxia in a simulated plateau environment and intermittent hypoxia in a normobaric environment. In this paper, we compare the two types of IH and summarizes the pathologic mechanisms and research advances in the treatment of OSA-CIH-induced atherosclerosis (AS), to provide evidence for the systematic prevention and treatment of OSAS-related AS.
Collapse
Affiliation(s)
- Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jing Cui
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yanfei Liu
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
11
|
Roy R, Koch WJ. Not All β-Receptors Appear the Same in Heart Failure: Emergence of β3-Agonists as a Therapeutic Option. Circ Heart Fail 2022; 15:e009685. [PMID: 35758037 DOI: 10.1161/circheartfailure.122.009685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Rajika Roy
- Center for Translational Medicine and Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Walter J Koch
- Center for Translational Medicine and Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
12
|
Liu S, Yan Y. Animal models of pulmonary hypertension due to left heart disease. Animal Model Exp Med 2022; 5:197-206. [PMID: 35234367 PMCID: PMC9240728 DOI: 10.1002/ame2.12214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 01/02/2023] Open
Abstract
Pulmonary hypertension due to left heart disease (PH‐LHD) is regarded as the most prevalent form of pulmonary hypertension (PH). Indeed, PH is an independent risk factor and predicts adverse prognosis for patients with left heart disease (LHD). Clinically, there are no drugs or treatments that directly address PH‐LHD, and treatment of LHD alone will not also ameliorate PH. To target the underlying physiopathological alterations of PH‐LHD and to develop novel therapeutic approaches for this population, animal models that simulate the pathophysiology of PH‐LHD are required. There are several available models for PH‐LHD that have been successfully employed in rodents or large animals by artificially provoking an elevated pressure load on the left heart, which by transduction elicits an escalated pressure in pulmonary artery. In addition, metabolic derangement combined with aortic banding or vascular endothelial growth factor receptor antagonist is also currently applied to reproduce the phenotype of PH‐LHD. As of today, none of the animal models exactly recapitulates the condition of patients with PH‐LHD. Nevertheless, the selection of an appropriate animal model is essential in basic and translational studies of PH‐LHD. Therefore, this review will summarize the characteristics of each PH‐LHD animal model and discuss the advantages and limitations of the different models.
Collapse
Affiliation(s)
- Shao‐Fei Liu
- Charité—Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Berlin Berlin Germany
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK) Ludwig‐Maximilians‐University Munich Munich Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Munich Heart Alliance Munich Germany
| |
Collapse
|
13
|
Huang R, Liu Y, Ciotkowska A, Tamalunas A, Waidelich R, Strittmatter F, Stief CG, Hennenberg M. Concentration-dependent alpha 1-Adrenoceptor Antagonism and Inhibition of Neurogenic Smooth Muscle Contraction by Mirabegron in the Human Prostate. Front Pharmacol 2021; 12:666047. [PMID: 34248624 PMCID: PMC8264149 DOI: 10.3389/fphar.2021.666047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023] Open
Abstract
Introduction: Mirabegron is available for treatment of storage symptoms in overactive bladder, which may be improved by β3-adrenoceptor-induced bladder smooth muscle relaxation. In addition to storage symptoms, lower urinary tract symptoms in men include obstructive symptoms attributed to benign prostatic hyperplasia, caused by increased prostate smooth muscle tone and prostate enlargement. In contrast to the bladder and storage symptoms, effects of mirabegron on prostate smooth muscle contraction and obstructive symptoms are poorly understood. Evidence from non-human smooth muscle suggested antagonism of α1-adrenoceptors as an important off-target effect of mirabegron. As α1-adrenergic contraction is crucial in pathophysiology and medical treatment of obstructive symptoms, we here examined effects of mirabegron on contractions of human prostate tissues and on proliferation of prostate stromal cells. Methods: Contractions were induced in an organ bath. Effects of mirabegron on proliferation, viability, and cAMP levels in cultured stromal cells were examined by EdU assays, CCK-8 assays and enzyme-linked immunosorbent assay. Results: Mirabegron in concentrations of 5 and 10 μM, but not 1 µM inhibited electric field stimulation-induced contractions of human prostate tissues. Mirabegron in concentrations of 5 and 10 µM shifted concentration response curves for noradrenaline-, methoxamine- and phenylephrine-induced contractions to the right, including recovery of contractions at high concentrations of α1-adrenergic agonists, increased EC50 values, but unchanged Emax values. Rightshifts of noradrenaline concentration response curves and inhibition of EFS-induced contractions were resistant to L-748,337, l-NAME, and BPIPP. 1 µM mirabegron was without effect on α1-adrenergic contractions. Endothelin-1- and U46619-induced contractions were not affected or only inhibited to neglectable extent. Effects of mirabegron (0.5–10 µM) on proliferation and viability of stromal cells were neglectable or small, reaching maximum decreases of 8% in proliferation assays and 17% in viability assays. Mirabegron did not induce detectable increases of cAMP levels in cultured stromal cells. Conclusion: Mirabegron inhibits neurogenic and α1-adrenergic human prostate smooth muscle contractions. This inhibition may be based on antagonism of α1-adrenoceptors by mirabegron, and does not include activation of β3-adrenoceptors and requires concentrations ranging 50-100fold higher than plasma concentrations reported from normal dosing. Non-adrenergic contractions and proliferation of prostate stromal cells are not inhibited by mirabegron.
Collapse
Affiliation(s)
- Ru Huang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Yuhan Liu
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | | | | | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
14
|
Mirabegron Ameliorated Atherosclerosis of ApoE -/- Mice in Chronic Intermittent Hypoxia but Not in Normoxia. Cardiovasc Drugs Ther 2021; 36:805-815. [PMID: 34152510 DOI: 10.1007/s10557-021-07196-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE It has been established that obstructive sleep apnea (OSA) is an independent risk factor for atherosclerosis. Chronic intermittent hypoxia (CIH) activates sympathoadrenal system and upregulates β3 adrenergic receptor (β3 AR). However, the effect of selective β3 AR agonist mirabegron in CIH-induced atherosclerosis remains unknown. METHODS We generated a CIH-induced atherosclerosis model through exposing ApoE-/- mice to CIH (8 h per day, cyclic inspiratory oxygen fraction 5-21%, 60-s cycle) for 6 weeks after 4-week high-fat dieting and investigated the effects of mirabegron, a selective β3 AR agonist, on CIH-induced atherosclerosis. The coronary endarterectomy (CE) specimens from coronary artery disease patients with OSA and without OSA were collected. RESULTS The expression of β3 AR was significantly elevated in CIH-induced atherosclerosis model. Furthermore, treatment with mirabegron (10mg/kg per day by oral administration for 6 weeks) ameliorated atherosclerosis in ApoE-/- mice in CIH but not in normoxia. Mechanistically, mirabegron activated β3 AR and ameliorated intraplaque oxidative stress by suppressing p22phox expression and reactive oxygen species (ROS) level. In addition, in human CE specimens, β3 AR was also upregulated associated with increased p22phox expression and ROS level both in the lumen and in the plaque of coronary artery in OSA subjects. CONCLUSION This study first demonstrated that mirabegron impeded the progression of CIH-induced atherosclerosis, at least in part, via β3 AR-mediated oxidative stress, suggesting a promising therapeutic strategy for protecting against atherosclerosis induced by CIH.
Collapse
|
15
|
Adrenergic and Glucocorticoid Receptors in the Pulmonary Health Effects of Air Pollution. TOXICS 2021; 9:toxics9060132. [PMID: 34200050 PMCID: PMC8226814 DOI: 10.3390/toxics9060132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023]
Abstract
Adrenergic receptors (ARs) and glucocorticoid receptors (GRs) are activated by circulating catecholamines and glucocorticoids, respectively. These receptors regulate the homeostasis of physiological processes with specificity via multiple receptor subtypes, wide tissue-specific distribution, and interactions with other receptors and signaling processes. Based on their physiological roles, ARs and GRs are widely manipulated therapeutically for chronic diseases. Although these receptors play key roles in inflammatory and cellular homeostatic processes, little research has addressed their involvement in the health effects of air pollution. We have recently demonstrated that ozone, a prototypic air pollutant, mediates pulmonary and systemic effects through the activation of these receptors. A single exposure to ozone induces the sympathetic–adrenal–medullary and hypothalamic–pituitary–adrenal axes, resulting in the release of epinephrine and corticosterone into the circulation. These hormones act as ligands for ARs and GRs. The roles of beta AR (βARs) and GRs in ozone-induced pulmonary injury and inflammation were confirmed in a number of studies using interventional approaches. Accordingly, the activation status of ARs and GRs is critical in mediating the health effects of inhaled irritants. In this paper, we review the cellular distribution and functions of ARs and GRs, their lung-specific localization, and their involvement in ozone-induced health effects, in order to capture attention for future research.
Collapse
|
16
|
Lteif C, Ataya A, Duarte JD. Therapeutic Challenges and Emerging Treatment Targets for Pulmonary Hypertension in Left Heart Disease. J Am Heart Assoc 2021; 10:e020633. [PMID: 34032129 PMCID: PMC8483544 DOI: 10.1161/jaha.120.020633] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension (PH) attributable to left heart disease (LHD) is believed to be the most common form of PH and is strongly associated with increased mortality and morbidity in this patient population. Specific therapies for PH‐LHD have not yet been identified and the use of pulmonary artery hypertension‐targeted therapies in PH‐LHD are not recommended. Endothelin receptor antagonists, phosphodiesterase‐5 inhibitors, guanylate cyclase stimulators, and prostacyclins have all been studied in PH‐LHD with conflicting results. Understanding the mechanisms underlying PH‐LHD could potentially provide novel therapeutic targets. Fibrosis, oxidative stress, and metabolic syndrome have been proposed as pathophysiological components of PH‐LHD. Genetic associations have also been identified, offering additional mechanisms with biological plausibility. This review summarizes the evidence and challenges for treatment of PH‐LHD and focuses on underlying mechanisms on the horizon that could develop into potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Christelle Lteif
- Department of Pharmacotherapy and Translational Research Center for Pharmacogenomics and Precision Medicine University of Florida College of Pharmacy Gainesville FL
| | - Ali Ataya
- Division of Pulmonary, Critical Care & Sleep Medicine University of Florida College of Medicine Gainesville FL
| | - Julio D Duarte
- Department of Pharmacotherapy and Translational Research Center for Pharmacogenomics and Precision Medicine University of Florida College of Pharmacy Gainesville FL
| |
Collapse
|
17
|
Abstract
The health burden of heart failure with preserved ejection fraction is increasingly recognized. Despite improvements in diagnostic algorithms and established knowledge on the clinical trajectory, effective treatment options for heart failure with preserved ejection fraction remain limited, mainly because of the high mechanistic heterogeneity. Diagnostic scores, big data, and phenomapping categorization are proposed as key steps needed for progress. In the meantime, advancements in imaging techniques combined to high-fidelity pressure signaling analysis have uncovered right ventricular dysfunction as a mediator of heart failure with preserved ejection fraction progression and as major independent determinant of poor outcome. This review summarizes the current understanding of the pathophysiology of right ventricular dysfunction in heart failure with preserved ejection fraction covering the different right heart phenotypes and offering perspectives on new treatments targeting the right ventricle in its function and geometry.
Collapse
Affiliation(s)
- Marco Guazzi
- Department of Biological Sciences, University of Milano, Italy (M.G.).,Cardiology Division, San Paolo Hospital, Italy (M.G.)
| | - Robert Naeije
- Erasme Hospital, Free University of Brussels, Belgium (R.N.)
| |
Collapse
|
18
|
Santiago-Vacas E, García-Lunar I, Solanes N, Dantas AP, Ascaso M, Jimenez-Trinidad FR, Ramirez J, Fernández-Friera L, Galán C, Sánchez J, Sabaté M, Pérez-Villa F, Rigol M, Pereda D, Ibañez B, García-Álvarez A. Effect of sildenafil on right ventricular performance in an experimental large-animal model of postcapillary pulmonary hypertension. Transl Res 2021; 228:64-75. [PMID: 32835905 DOI: 10.1016/j.trsl.2020.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
Right ventricle (RV) dysfunction is a main determinant of morbidity and mortality in postcapillary pulmonary hypertension (PH). However, currently there are not available therapies. Since reduced nitric oxide (NO) availability and cyclic guanylate monophosphate (cGMP) levels are central in this disease, therapies targeting the NO pathway might have a beneficial effect on RV performance. In this regard, sildenafil has shown contradictory results. Our objective was to evaluate the effect of sildenafil on RV performance in an experimental pig model of postcapillary PH induced by a fixed banding of the venous pulmonary confluent. Animals were evaluated by right heart catheterization and cardiac magnetic resonance before randomization and after 8 weeks on sildenafil (n = 8) or placebo (n = 8), and myocardial tissues were analyzed with histology and molecular biology. At the end of the study, animals receiving sildenafil showed better RV performance as compared with those on placebo (improvement in RV ejection fraction of 7.3% ± 5.8% versus -0.6% ± 5.0%, P= 0.021) associated with less apoptotic cells and gene expression related with reduced oxidative stress and increased anti-inflammatory activity in the myocardium. No differences were observed in pulmonary hemodynamics. In conclusion, in a translational large animal model of chronic postcapillary PH, sildenafil improved RV systolic function independently of afterload. Further research with pharmacological approaches able to manipulate the NO-cGMP axis are needed to confirm this potential cardioprotective effect.
Collapse
Affiliation(s)
- Evelyn Santiago-Vacas
- IDIBAPS, Hospital Clínic, Barcelona, Spain; Departament of Medicine, Universitat de Barcelona, Barcelona, Spain; Cardiology Department, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Hospital Universitario Quirónsalud Madrid, UEM, Madrid, Spain
| | | | | | | | | | | | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; HM Hospitales-Centro Integral de Enfermedades Cardiovasculares HM-CIEC, Madrid, Spain
| | - Carlos Galán
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | | | - Montserrat Rigol
- IDIBAPS, Hospital Clínic, Barcelona, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Daniel Pereda
- IDIBAPS, Hospital Clínic, Barcelona, Spain; Departament of Medicine, Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Borja Ibañez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; IIS- Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Ana García-Álvarez
- IDIBAPS, Hospital Clínic, Barcelona, Spain; Departament of Medicine, Universitat de Barcelona, Barcelona, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
19
|
Michel LYM, Farah C, Balligand JL. The Beta3 Adrenergic Receptor in Healthy and Pathological Cardiovascular Tissues. Cells 2020; 9:cells9122584. [PMID: 33276630 PMCID: PMC7761574 DOI: 10.3390/cells9122584] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
The third isotype of beta-adrenoreceptors (β3-AR) has recently come (back) into focus after the observation of its expression in white and beige human adipocytes and its implication in metabolic regulation. This coincides with the recent development and marketing of agonists at the human receptor with superior specificity. Twenty years ago, however, we and others described the expression of β3-AR in human myocardium and its regulation of contractility and cardiac remodeling. Subsequent work from many laboratories has since expanded the characterization of β3-AR involvement in many aspects of cardiovascular physio(patho)logy, justifying the present effort to update current paradigms under the light of the most recent evidence.
Collapse
Affiliation(s)
- Lauriane Y. M. Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
| | - Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
- Department of Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
- Correspondence: ; Tel.: +32-27645262
| |
Collapse
|
20
|
Neurohormonal Modulation as a Therapeutic Target in Pulmonary Hypertension. Cells 2020; 9:cells9112521. [PMID: 33266371 PMCID: PMC7700466 DOI: 10.3390/cells9112521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
The autonomic nervous system (ANS) and renin-angiotensin-aldosterone system (RAAS) are involved in many cardiovascular disorders, including pulmonary hypertension (PH). The current review focuses on the role of the ANS and RAAS activation in PH and updated evidence of potential therapies targeting both systems in this condition, particularly in Groups 1 and 2. State of the art knowledge in preclinical and clinical use of pharmacologic drugs (beta-blockers, beta-three adrenoceptor agonists, or renin-angiotensin-aldosterone signaling drugs) and invasive procedures, such as pulmonary artery denervation, is provided.
Collapse
|
21
|
Role of β 3-Adrenoceptor Activation in Changes of Pulmonary Microhemodynamics after Experimental Pulmonary Thromboembolism. Bull Exp Biol Med 2020; 169:751-754. [PMID: 33119807 DOI: 10.1007/s10517-020-04971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 10/23/2022]
Abstract
Changes in pulmonary microhemodynamics during modelling of pulmonary thromboembolism against the background of nebivolol and mirabegron pretreatment were studied in isolated perfused rabbit lungs. In both cases, the pulmonary artery pressure and precapillary and pulmonary vascular resistance increased to a greater extent than in control animals, but the increase in capillary hydrostatic pressure was less pronounced. The postcapillary resistance did not change in pulmonary embolism against the background of nebivolol administration and increased in case of mirabegron pretreatment; capillary filtration coefficient after nebivolol pretreatment increased less markedly than after mirabegron administration. The increase in capillary filtration coefficient after activation of β3-adrenoceptors with the specified drugs depended on the ratio of constriction of pulmonary veins, capillary hydrostatic pressure, and endothelial permeability.
Collapse
|
22
|
Spaczyńska M, Rocha SF, Oliver E. Pharmacology of Pulmonary Arterial Hypertension: An Overview of Current and Emerging Therapies. ACS Pharmacol Transl Sci 2020; 3:598-612. [PMID: 32832865 DOI: 10.1021/acsptsci.0c00048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension is a rare and devastating disease characterized by an abnormal chronic increase in pulmonary arterial pressure above 20 mmHg at rest, with a poor prognosis if not treated. Currently, there is not a single fully effective therapy, even though a dozen of drugs have been developed in the last decades. Pulmonary arterial hypertension is a multifactorial disease, meaning that several molecular mechanisms are implicated in its pathology. The main molecular pathways regulating the pulmonary vasomotor tone-endothelin, nitric oxide, and prostacyclin-are the most biologically and therapeutically explored to date. However, drugs targeting these pathways have already found their limitations. In the last years, translational research and clinical trials have made a strong effort in suggesting and testing novel therapeutic strategies for this disease. These approaches involve targeting the main molecular pathways with novel drugs, drug repurposing for novel targets, and also using combinatorial therapies. In this review, we summarize current strategies and drugs targeting the endothelin, nitric oxide, and prostacyclin pathways, as well as, the emerging new drugs proposed to cope with vascular remodelling, metabolic switch, perivascular inflammation, epigenetic modifications, estrogen deregulation, serotonin, and other neurohumoral mechanisms characteristic of this disease. Nowadays, pulmonary arterial hypertension remains an incurable disease; however, the incoming new knowledge makes us believe that new promising therapies are coming to the clinical arena soon.
Collapse
Affiliation(s)
- Monika Spaczyńska
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Susana F Rocha
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.,Centro de Investigaciones Biomédicas en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
23
|
Garcia-Lunar I, Blanco I, Fernández-Friera L, Prat-Gonzàlez S, Jordà P, Sánchez J, Pereda D, Pujadas S, Rivas M, Solé-Gonzalez E, Vázquez J, Blázquez Z, García-Picart J, Caravaca P, Escalera N, Garcia-Pavia P, Delgado J, Segovia-Cubero J, Fuster V, Roig E, Barberá JA, Ibanez B, García-Álvarez A. Design of the β3-Adrenergic Agonist Treatment in Chronic Pulmonary Hypertension Secondary to Heart Failure Trial. JACC Basic Transl Sci 2020; 5:317-327. [PMID: 32368692 PMCID: PMC7188870 DOI: 10.1016/j.jacbts.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
CpcPH is a relatively common complication of chronic HF, is associated with poor survival, and has no specific pharmacological treatment. ß3AR stimulation has shown improvement in pulmonary hemodynamics and RV performance in a translational large animal model mimicking this condition. The SPHERE-HF trial is a Phase II randomized, double-blind clinical trial designed to evaluate the efficacy and safety of mirabegron (oral β3 AR agonist) in patients with CpcPH secondary to HF. The SPHERE-HF trial will include 80 patients treated with mirabegron or placebo for 16 weeks. The main outcome is the change in PVR. Secondary outcomes include changes in RV performance, clinical status, NT-proBNP levels, and additional pulmonary hemodynamic parameters.
Combined pre-and post-capillary hypertension (CpcPH) is a relatively common complication of heart failure (HF) associated with a poor prognosis. Currently, there is no specific therapy approved for this entity. Recently, treatment with beta-3 adrenergic receptor (β3AR) agonists was able to improve pulmonary hemodynamics and right ventricular (RV) performance in a translational, large animal model of chronic PH. The authors present the design of a phase II randomized clinical trial that tests the benefits of mirabegron (a clinically available β3AR agonist) in patients with CpcPH due to HF. The effect of β3AR treatment will be evaluated on pulmonary hemodynamics, as well as clinical, biochemical, and advanced cardiac imaging parameters. (Beta3 Agonist Treatment in Chronic Pulmonary Hypertension Secondary to Heart Failure [SPHERE-HF]; NCT02775539)
Collapse
Key Words
- CCT, cardiac computed tomography
- CMR, cardiac magnetic resonance
- CpcPH, combined pre- and post-capillary pulmonary hypertension
- ECG, electrocardiography
- HF, heart failure
- ITT, intention to treat
- IpcPH, isolated post-capillary pulmonary hypertension
- LHD, left heart disease
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- NT-proBNP, N-terminal prohormone of brain natriuretic peptide
- NYHA, New York Heart Association
- PAP, pulmonary artery pressure
- PH, pulmonary hypertension
- PP, Per protocol
- PVR, pulmonary vascular resistance
- RV, right ventricle
- adrenoreceptors
- cGMP, cyclic guanosine monophosphate
- imaging
- pulmonary hypertension
- treatment
- β3AR, beta-3 adrenoreceptor
Collapse
Affiliation(s)
- Ines Garcia-Lunar
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Hospital Universitario Quirónsalud Madrid, UEM, Madrid, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,HM Hospitales-Centro Integral de Enfermedades Cardiovasculares HM-CIEC, Madrid, Spain
| | - Susanna Prat-Gonzàlez
- Institut Clinic Cardiovascular, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Paloma Jordà
- Institut Clinic Cardiovascular, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Javier Sánchez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Philips Healthcare Iberia, Madrid, Spain
| | - Daniel Pereda
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Institut Clinic Cardiovascular, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Sandra Pujadas
- Cardiology Department, Hospital Santa Creu i Sant Pau, IIb-Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Mercedes Rivas
- Cardiology Department, Hospital Santa Creu i Sant Pau, IIb-Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Jorge Vázquez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, University Hospital Puerta de Hierro, University Autonoma de Madrid, Madrid, Spain
| | - Zorba Blázquez
- Cardiology Department, University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Juan García-Picart
- Cardiology Department, Hospital Santa Creu i Sant Pau, IIb-Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Pedro Caravaca
- Cardiology Department, University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Noemí Escalera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Pablo Garcia-Pavia
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Cardiology Department, University Hospital Puerta de Hierro, University Autonoma de Madrid, Madrid, Spain.,University Francisco de Vitoria (UFV), Pozuelo de Alarcon, Spain
| | - Juan Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, University Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Javier Segovia-Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, University Hospital Puerta de Hierro, University Autonoma de Madrid, Madrid, Spain
| | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eulalia Roig
- Cardiology Department, Hospital Santa Creu i Sant Pau, IIb-Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Joan Albert Barberá
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Institut Clinic Cardiovascular, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Obara K, Shigematsu M, Takahasi H, Iiboshi Y, Yoshioka K, Kasuya Y, Tanaka Y. Pharmacological properties of β-adrenoceptors mediating rat superior mesenteric artery relaxation and the effects of chemical sympathetic denervation. Life Sci 2020; 241:117155. [PMID: 31837330 DOI: 10.1016/j.lfs.2019.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022]
Abstract
AIMS β-Adrenoceptors (β-ADRs) mediating the relaxation of rat superior mesenteric arteries (SMAs) were pharmacologically identified, and the effects of chemical sympathetic denervation on β-ADR-mediated relaxation were examined. MAIN METHODS The tension changes of endothelium-denuded SMAs were isometrically recorded and the mRNA of endothelium-denuded SMA β-ADR was detected using RT-PCR. KEY FINDINGS In endothelium-denuded SMAs contracted with ≥10-7 M phenylephrine (an α1-ADR agonist), isoprenaline (a β-ADR agonist)-induced relaxation was competitively inhibited by 3 × 10-9-10-8 M propranolol (a β1,2-ADR antagonist), but not further affected by ≥10-8 M propranolol. Although isoprenaline-induced relaxation was not affected by ICI-118,551 (10-9-10-8 M; a β2-ADR antagonist), it was competitively inhibited by atenolol (10-7-3 × 10-7 M; a β1-ADR antagonist) in the presence of ICI-118,551. In the presence of 10-7 M propranolol, isoprenaline- and CGP-12177A (a β3-ADR partial agonist)-induced relaxation was competitively inhibited by high concentrations of bupranolol (a β1,2,3-ADR antagonist), with pA2 values of 6.49 and 5.76, respectively. We detected the mRNA of β1- and β3-ADRs in endothelium-denuded SMAs. Treatment with 6-hydroxydopamine (a catecholaminergic neurotoxin) reduced maximal isoprenaline-induced relaxation in the presence and absence of 10-7 M propranolol, but not CGP-12177A-induced relaxation. SIGNIFICANCE Isoprenaline-induced relaxation of rat SMAs is mediated by β1- and β3-ADRs. β-ADR-mediated relaxation of rat SMAs is shown to be attenuated by chemical sympathetic denervation. The differences in the effects of bupranolol and chemical sympathetic denervation on the responses to isoprenaline and CGP-12177A in rat SMAs might be explained by the possible presence of multiple β3-ADRs with different pharmacological properties.
Collapse
Affiliation(s)
- Keisuke Obara
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi-City, Chiba 274-8510, Japan
| | - Mai Shigematsu
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi-City, Chiba 274-8510, Japan
| | - Hiromi Takahasi
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi-City, Chiba 274-8510, Japan
| | - Yuri Iiboshi
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi-City, Chiba 274-8510, Japan
| | - Kento Yoshioka
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi-City, Chiba 274-8510, Japan
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Yoshio Tanaka
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi-City, Chiba 274-8510, Japan.
| |
Collapse
|
25
|
Sun J, Cheng J, Ding X, Chi J, Yang J, Li W. β3 adrenergic receptor antagonist SR59230A exerts beneficial effects on right ventricular performance in monocrotaline-induced pulmonary arterial hypertension. Exp Ther Med 2019; 19:489-498. [PMID: 31853320 PMCID: PMC6909721 DOI: 10.3892/etm.2019.8236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with a high mortality rate. Previous studies have revealed the important function of the β3 adrenergic receptor (β3-AR) in cardiovascular diseases, and the potential beneficial effects of numerous β3-AR agonists on pulmonary vasodilation. Conversely, a number of studies have proposed that the antagonism of β3-AR may prevent heart failure. The present study aimed to investigate the functional involvement of β3-AR and the effects of the β3-AR antagonist, SR59230A, in PAH and subsequent heart failure. A rat PAH model was established by the subcutaneous injection of monocrotaline (MCT), and the rats were randomly assigned to groups receiving four weeks of SR59230A treatment or the vehicle control. SR59230A treatment significantly improved right ventricular function in PAH in vivo compared with the vehicle control (P<0.001). Additionally, the expression level of β3-AR was significantly upregulated in the lung and heart tissues of PAH rats compared with the sham group (P<0.01), and SR59230A treatment inhibited this increase in the lung (P<0.05), but not the heart. Specifically, SR59230A suppressed the elevated expression of endothelial nitric oxide and alleviated inflammatory infiltration to the lung under PAH conditions. These results are, to the best of our knowledge, the first to reveal that SR59230A exerts beneficial effects on right ventricular performance in rats with MCT-induced PAH. Furthermore, blocking β3-AR with SR59230A may alleviate the structural changes and inflammatory infiltration to the lung as a result of reduced oxidative stress.
Collapse
Affiliation(s)
- Jiantao Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiali Cheng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xue Ding
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jing Chi
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiemei Yang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Weimin Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China.,Department of Cardiovascular Medicine, The First Hospital of Harbin City, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
26
|
Oliver E, Mayor Jr F, D’Ocon P. Bloqueadores beta: perspectiva histórica y mecanismos de acción. Rev Esp Cardiol 2019. [DOI: 10.1016/j.recesp.2019.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Oliver E, Mayor F, D'Ocon P. Beta-blockers: Historical Perspective and Mechanisms of Action. ACTA ACUST UNITED AC 2019; 72:853-862. [PMID: 31178382 DOI: 10.1016/j.rec.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Beta-blockers are widely used molecules that are able to antagonize β-adrenergic receptors (ARs), which belong to the G protein-coupled receptor family and receive their stimulus from endogenous catecholamines. Upon β-AR stimulation, numerous intracellular cascades are activated, ultimately leading to cardiac contraction or vascular dilation, depending on the relevant subtype and their location. Three subtypes have been described that are differentially expressed in the body (β1-, β2- and β3-ARs), β1 being the most abundant subtype in the heart. Since their discovery, β-ARs have become an important target to fight cardiovascular disease. In fact, since their discovery by James Black in the late 1950s, β-blockers have revolutionized the field of cardiovascular therapies. To date, 3 generations of drugs have been released: nonselective β-blockers, cardioselective β-blockers (selective β1-antagonists), and a third generation of these drugs able to block β1 together with extra vasodilation activity (also called vasodilating β-blockers) either by blocking α1- or by activating β3-AR. More than 50 years after propranolol was introduced to the market due to its ability to reduce heart rate and consequently myocardial oxygen demand in the event of an angina attack, β-blockers are still widely used in clinics.
Collapse
Affiliation(s)
- Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| | - Federico Mayor
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Pilar D'Ocon
- Departamento de Farmacología, Universitat de València, Valencia, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
28
|
Yilmaz-Oral D, Kaya-Sezginer E, Askin D, Hamurtekin Y, Gur S. Mirabegron, A Selective β3-Adrenoceptor Agonist Causes an Improvement in Erectile Dysfunction in Diabetic Rats. Exp Clin Endocrinol Diabetes 2019; 129:296-302. [PMID: 30978726 DOI: 10.1055/a-0869-7493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIM To investigate the possible beneficial effect of mirabegron [a selective β3-adrenoceptor (AR) agonist] treatment on erectile dysfunction (ED) in streptozotocin-induced diabetic rats. METHODS Sprague-Dawley rats (n=20) were divided into two groups: control group and streptozotocin-induced diabetic group. In vivo erectile responses were evaluated after intracavernosal injection of mirabegron (0.4 mg/kg) in rats. The relaxation responses to electrical field stimulation (EFS, 10 Hz), sodium nitroprusside (SNP, 10 nM) and sildenafil (1 μM) of corpus cavernosum (CC) strips were examined after the incubation with mirabegron (10 μM). β3-ARs expression and localization were determined by Western blot and immunohistochemical analyses in CC tissue. RESULTS In vivo erectile responses of diabetic rats [intracavernasal pressure (ICP) / mean arterial pressure, 0.17±0.01] were decreased, which were restored after administration of mirabegron (0.75±0.01, P<0.001). The basal ICP (7.1±0.6 mmHg) in diabetic rats was markedly increased after mirabegron (36.1 ±5.4 mmHg, P<0.01). Mirabegron caused markedly relaxation in diabetic rat CC after phenylephrine precontraction. The relaxation responses to EFS and sildenafil were reduced in diabetic CC, which were increased in the presence of mirabegron. Mirabegron enhanced SNP-induced relaxation response in both groups. The expression and immunoreactivity of β3-ARs localized to CC smooth muscle were observed in control and diabetic rats. CONCLUSIONS This is the first study to show that intracavernosal administration of mirabegron improved erectile function and neurogenic relaxation of CC in diabetic rats. These results may be supported by further studies using combinations of mirabegron and phosphodiesterase type 5 (PDE5) inhibitors for the treatment of diabetic ED, especially in patients who do not respond to PDE5 inhibitor therapy.
Collapse
Affiliation(s)
- Didem Yilmaz-Oral
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Pharmacology, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Ecem Kaya-Sezginer
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Dilan Askin
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Yesim Hamurtekin
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Turkey
| | - Serap Gur
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
29
|
Effect of pulmonary artery denervation in postcapillary pulmonary hypertension: results of a randomized controlled translational study. Basic Res Cardiol 2019; 114:5. [DOI: 10.1007/s00395-018-0714-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
|
30
|
Luo J, Gu Y, Liu P, Jiang X, Yu W, Ye P, Chao Y, Yang H, Zhu L, Zhou L, Chen S. Berberine attenuates pulmonary arterial hypertension via protein phosphatase 2A signaling pathway both in vivo and in vitro. J Cell Physiol 2018; 233:9750-9762. [PMID: 30078229 DOI: 10.1002/jcp.26940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022]
Abstract
Excessive proliferation, migration, and antiapoptosis of pulmonary artery (PA) smooth muscle cells (PASMCs) underlies the development of pulmonary vascular remodeling. The innervation of the PA is predominantly sympathetic, and increased levels of circulating catecholamines have been detected in pulmonary arterial hypertension (PAH), suggesting that neurotransmitters released by sympathetic overactivation may play an essential role in PAH. However, the responsible mechanism remains unclear. Here, to investigate the effects of norepinephrine (NE) on PASMCs and the related mechanism, we used 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, the proliferating cell nuclear antigen and the cell counting kit-8 assay to evaluate the proliferation of PASMCs, Boyden chamber migration, and wound-healing assays to assess migration and western blot analysis to investigate protein expression. We demonstrated that the phosphorylation level of the protein phosphatase 2A (PP2A) catalytic subunit (Y307) was higher in PAH patients and PAH models than in controls, both in vivo and in vitro. In addition, NE induced the proliferation and migration of PASMCs, which was attenuated by berberine (BBR), a Chinese herbal medicine, and/or PP2A overexpression. PP2A inhibition worsened NE-induced PAH and could not be reversed by BBR. Thus, PP2A is critical in driving PAH, and BBR may alleviate PAH via PP2A signaling pathways, thereby offering a potential therapeutic option for PAH.
Collapse
Affiliation(s)
- Jie Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Pengfei Liu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaomin Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wande Yu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongfeng Yang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ling Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Rossello X, Piñero A, Fernández-Jiménez R, Sánchez-González J, Pizarro G, Galán-Arriola C, Lobo-Gonzalez M, Vilchez JP, García-Prieto J, García-Ruiz JM, García-Álvarez A, Sanz-Rosa D, Ibanez B. Mirabegron, a Clinically Approved β3 Adrenergic Receptor Agonist, Does Not Reduce Infarct Size in a Swine Model of Reperfused Myocardial Infarction. J Cardiovasc Transl Res 2018; 11:310-318. [PMID: 30073540 DOI: 10.1007/s12265-018-9819-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
The administration of the selective β3 adrenergic receptor (β3AR) agonist BRL-37344 protects from myocardial ischemia/reperfusion injury (IRI), although the lack of clinical approval limits its translatability. We tested the cardioprotective effect of mirabegron, the first-in-class β3AR agonist approved for human use. A dose-response study was conducted in 6 pigs to select the highest intravenous dose of mirabegron without significant detrimental hemodynamic effect. Subsequently, closed chest anterior myocardial infarction (45 min ischemia followed by reperfusion) was performed in 26 pigs which randomly received either mirabegron (10 μg/kg) or placebo 5 min before reperfusion. Day-7 cardiac magnetic resonance (CMR) showed no differences in infarct size (35.0 ± 2.0% of left ventricle (LV) vs. 35.9 ± 2.4% in mirabegron and placebo respectively, p = 0.782) or LV ejection fraction (36.3 ± 1.1 vs. 34.6 ± 1.9%, p = 0.430). Consistent results were obtained on day-45 CMR. In conclusion, the intravenous administration of the clinically available selective β3AR agonist mirabegron does not reduce infarct size in a swine model of IRI.
Collapse
Affiliation(s)
- Xavier Rossello
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Antonio Piñero
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Gonzalo Pizarro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea, Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Manuel Lobo-Gonzalez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Jean Paul Vilchez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Jaime García-Prieto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Jose Manuel García-Ruiz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea, Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain.
- Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain.
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
32
|
Abstract
Nitric oxide (NO) signalling has pleiotropic roles in biology and a crucial function in cardiovascular homeostasis. Tremendous knowledge has been accumulated on the mechanisms of the nitric oxide synthase (NOS)-NO pathway, but how this highly reactive, free radical gas signals to specific targets for precise regulation of cardiovascular function remains the focus of much intense research. In this Review, we summarize the updated paradigms on NOS regulation, NO interaction with reactive oxidant species in specific subcellular compartments, and downstream effects of NO in target cardiovascular tissues, while emphasizing the latest developments of molecular tools and biomarkers to modulate and monitor NO production and bioavailability.
Collapse
Affiliation(s)
- Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| |
Collapse
|
33
|
Liu R, Zhang Q, Luo Q, Qiao H, Wang P, Yu J, Cao Y, Lu B, Qu L. Norepinephrine stimulation of alpha1D-adrenoceptor promotes proliferation of pulmonary artery smooth muscle cells via ERK-1/2 signaling. Int J Biochem Cell Biol 2017; 88:100-112. [PMID: 28476501 DOI: 10.1016/j.biocel.2017.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/20/2017] [Accepted: 05/02/2017] [Indexed: 11/25/2022]
Abstract
It has been shown that the sympathetic nervous system is activated in pulmonary arterial hypertension (PAH). Norepinephrine (NE) levels are increased by chemoreflex-dependent sympathetic overactivation and involved in pulmonary vascular remodeling. However, the underlying mechanisms of the remodeling induced by NE are poorly understood. In this study, we found that, in vivo, the expression of tyrosine hydroxylase and the concentration of plasma NE were increased in PAH rats compared with normal rats. Increases in ventricular hypertrophy and medial width of the pulmonary arteries were reversed by prazosin, α1-adrenoceptor (α1-AR) antagonists, in PAH rats. Elevated expression of α1D-AR was detected in PAH rats. In addition, prazosin reduced the increasing expression of PCNA, CyclinA and CyclinE induced by hypoxia. In vitro, MTT assay, flow cytometry, Western blotting and immunofluorescence were performed to investigate the effects of NE on proliferation of pulmonary artery smooth muscle cells (PASMCs). We revealed that NE promoted PASMCs viability, increased the expression of PCNA, CyclinA and CyclinE, made more cells from G0/G1 phase to G2/M+S phase and enhanced the microtubule formation. Above NE-induced changes could be suppressed by BMY 7378, an inhibitor of α1D-AR. Furthermore, ERK-1/2 pathway was activated by NE. U0126, a specific inhibitor for ERK-1/2, attenuated the NE-induced proliferation of PASMCs under normoxia and hypoxia. Taken together, our results suggest that NE which stimulates α1D-AR promotes proliferation of PASMCs and the effect is, at least in part, mediated via the ERK-1/2 pathway.
Collapse
Affiliation(s)
- Ruxia Liu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Qianlong Zhang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Qian Luo
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Hui Qiao
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Peng Wang
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Juan Yu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Yonggang Cao
- Department of Pharmacology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Bo Lu
- Department of Genetics and Cell Biology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| | - Lihui Qu
- Department of Physiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China.
| |
Collapse
|
34
|
Perros F, de Man FS, Bogaard HJ, Antigny F, Simonneau G, Bonnet S, Provencher S, Galiè N, Humbert M. Use of β-Blockers in Pulmonary Hypertension. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.116.003703. [DOI: 10.1161/circheartfailure.116.003703] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
Contrasting with the major attention that left heart failure has received, right heart failure remains understudied both at the preclinical and clinical levels. However, right ventricle failure is a major predictor of outcomes in patients with precapillary pulmonary hypertension because of pulmonary arterial hypertension, and in patients with postcapillary pulmonary hypertension because of left heart disease. In pulmonary hypertension, the status of the right ventricle is one of the most important predictors of both morbidity and mortality. Paradoxically, there are currently no approved therapies targeting the right ventricle in pulmonary hypertension. By analogy with the key role of β-blockers in the management of left heart failure, some authors have proposed to use these agents to support the right ventricle function in pulmonary hypertension. In this review, we summarize the current knowledge on the use of β-blockers in pulmonary hypertension.
Collapse
Affiliation(s)
- Frédéric Perros
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Frances S. de Man
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Harm J. Bogaard
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Fabrice Antigny
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Gérald Simonneau
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Sébastien Bonnet
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Steeve Provencher
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Nazzareno Galiè
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Marc Humbert
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| |
Collapse
|
35
|
Vasopressors induce passive pulmonary hypertension by blood redistribution from systemic to pulmonary circulation. Basic Res Cardiol 2017; 112:21. [PMID: 28258299 DOI: 10.1007/s00395-017-0611-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/28/2017] [Indexed: 02/05/2023]
Abstract
Vasopressors are widely used in resuscitation, ventricular failure, and sepsis, and often induce pulmonary hypertension with undefined mechanisms. We hypothesize that vasopressor-induced pulmonary hypertension is caused by increased pulmonary blood volume and tested this hypothesis in dogs under general anesthesia. In normal hearts (model 1), phenylephrine (2.5 μg/kg/min) transiently increased right but decreased left cardiac output, associated with increased pulmonary blood volume (63% ± 11.8, P = 0.007) and pressures in the left atrium, pulmonary capillary, and pulmonary artery. However, the trans-pulmonary gradient and pulmonary vascular resistance remained stable. These changes were absent after decreasing blood volume or during right cardiac dysfunction to reduce pulmonary blood volume (model 2). During double-ventricle bypass (model 3), phenylephrine (1, 2.5 and 10 μg/kg/min) only slightly induced pulmonary vasoconstriction. Vasopressin (1U and 2U) dose-dependently increased pulmonary artery pressure (52 ± 8.4 and 71 ± 10.3%), but did not cause pulmonary vasoconstriction in normally beating hearts (model 1). Pulmonary artery and left atrial pressures increased during left ventricle dysfunction (model 4), and further increased after phenylephrine injection by 31 ± 5.6 and 43 ± 7.5%, respectively. In conclusion, vasopressors increased blood volume in the lung with minimal pulmonary vasoconstriction. Thus, this pulmonary hypertension is similar to the hemodynamic pattern observed in left heart diseases and is passive, due to redistribution of blood from systemic to pulmonary circulation. Understanding the underlying mechanisms may improve clinical management of patients who are taking vasopressors, especially those with coexisting heart disease.
Collapse
|