1
|
Zhang JJ, Cheng L, Qiao Q, Xiao XL, Lin SJ, He YF, Sha RL, Sha J, Ma Y, Zhang HL, Ye XR. Adenosine triphosphate-induced cell death in heart failure: Is there a link? World J Cardiol 2025; 17:105021. [PMID: 40308621 PMCID: PMC12038699 DOI: 10.4330/wjc.v17.i4.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/22/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025] Open
Abstract
Heart failure (HF) has emerged as one of the foremost global health threats due to its intricate pathophysiological mechanisms and multifactorial etiology. Adenosine triphosphate (ATP)-induced cell death represents a novel form of regulated cell deaths, marked by cellular energy depletion and metabolic dysregulation stemming from excessive ATP accumulation, identifying its uniqueness compared to other cell death processes modalities such as programmed cell death and necrosis. Growing evidence suggests that ATP-induced cell death (AICD) is predominantly governed by various biological pathways, including energy metabolism, redox homeostasis and intracellular calcium equilibrium. Recent research has shown that AICD is crucial in HF induced by pathological conditions like myocardial infarction, ischemia-reperfusion injury, and chemotherapy. Thus, it is essential to investigate the function of AICD in the pathogenesis of HF, as this may provide a foundation for the development of targeted therapies and novel treatment strategies. This review synthesizes current advancements in understanding the link between AICD and HF, while further elucidating its involvement in cardiac remodeling and HF progression.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Department of Cardiovascular Medicine, Fuwai Yunnan Hospital, Chinese Academy Medical Sciences, Kunming 650000, Yunnan Province, China
| | - Lu Cheng
- Department of Cardiovascular Medicine, Fuwai Yunnan Hospital, Chinese Academy Medical Sciences, Kunming 650000, Yunnan Province, China
| | - Qian Qiao
- Department of Cardiovascular Medicine, Fuwai Yunnan Hospital, Chinese Academy Medical Sciences, Kunming 650000, Yunnan Province, China
| | - Xue-Liang Xiao
- Department of Critical Care Medicine, Ninglang Yi Autonomous County People's Hospital, Lijiang 674300, Yunnan Province, China
| | - Shao-Jun Lin
- Department of Critical Care Medicine, Ninglang Yi Autonomous County People's Hospital, Lijiang 674300, Yunnan Province, China
| | - Yue-Fang He
- Department of Critical Care Medicine, Ninglang Yi Autonomous County People's Hospital, Lijiang 674300, Yunnan Province, China
| | - Ren-Luo Sha
- Department of Critical Care Medicine, Ninglang Yi Autonomous County People's Hospital, Lijiang 674300, Yunnan Province, China
| | - Jun Sha
- Department of Critical Care Medicine, Ninglang Yi Autonomous County People's Hospital, Lijiang 674300, Yunnan Province, China
| | - Yin Ma
- Department of Critical Care Medicine, Ninglang Yi Autonomous County People's Hospital, Lijiang 674300, Yunnan Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia.
| | - Xue-Rui Ye
- Department of Cardiovascular Medicine, Fuwai Yunnan Hospital, Chinese Academy Medical Sciences, Kunming 650000, Yunnan Province, China
| |
Collapse
|
2
|
Ni R, Ji XY, Cao T, Liu XW, Wang C, Lu C, Peng A, Zhang ZX, Fan GC, Zhang J, Su ZL, Peng TQ. Nicotinamide mononucleotide protects septic hearts in mice via preventing cyclophilin F modification and lysosomal dysfunction. Acta Pharmacol Sin 2025; 46:976-988. [PMID: 39623043 PMCID: PMC11950505 DOI: 10.1038/s41401-024-01424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/05/2024] [Indexed: 02/11/2025]
Abstract
Myocardial dysfunction is a decisive factor of death in septic patients. Cyclophilin F (PPIF) is a major component of the mitochondrial permeability transition pore (mPTP) and acts as a critical mPTP sensitizer triggering mPTP opening. In sepsis, decreased NAD+ impairs Sirtuin 3 function, which may prevent PPIF de-acetylation. Repletion of NAD+ with nicotinamide mononucleotide (NMN) reduces myocardial dysfunction in septic mice. In addition, administration of the mPTP inhibitor cyclosporine-A attenuated sepsis-induced myocardial dysfunction, and deletion of PPIF reduced lung and liver injuries in sepsis, leading to increased survival. It is plausible that NAD+ repletion with NMN may prevent mPTP opening in protecting septic hearts through PPIF de-acetylation and/or inhibition of mitochondrial ROS-mediated PPIF oxidation. In this study we investigated how NMN alleviated myocardial dysfunction in septic mice. Sepsis was induced in mice by injection of LPS (4 mg/kg, i.p.). Then mice received NMN (500 mg/kg, i.p.) or mito-TEMPO (0.7 mg/kg, i.p.) right after LPS injection, and subjected to echocardiography for assessing myocardial function. At the end of experiment, the heart tissues and sera were collected for analyses. In vitro experiments were conducted in neonatal mouse cardiomyocytes treated with LPS (1 µg/mL) in the presence of NMN (500 µmol/L) or mito-TEMPO (25 nmol/L). We showed that LPS treatment markedly increased mitochondrial ROS production and induced lysosomal dysfunction and aberrant autophagy in cardiomyocytes and mouse hearts, leading to inflammatory responses and myocardial injury and dysfunction in septic mice. NMN administration attenuated LPS-induced deteriorative effects. Selective inhibition of mitochondrial superoxide production with mito-TEMPO attenuated lysosomal dysfunction and aberrant autophagy in septic mouse hearts. Notably, LPS treatment significantly increased acetylation and oxidation of PPIF, which was prevented by NMN in mouse hearts. Knockdown of PPIF replicated the beneficial effects of NMN or mito-TEMPO on ROS production, lysosomal dysfunction, aberrant autophagy, and myocardial injury/dysfunction in sepsis. In addition, administration of NMN abrogated LPS-induced ATP5A1 acetylation and increased ATP5A1 protein levels and ATP production in septic mouse hearts. This study demonstrates that NMN modulates the interplay of mitochondrial ROS and PPIF in maintaining normal lysosomal function and autophagy and protecting ATP5A1 and ATP production during sepsis.
Collapse
Affiliation(s)
- Rui Ni
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Xiao-Yun Ji
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Ting Cao
- Institutes of Biology and Medical Sciences and Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, China
| | - Xiu-Wen Liu
- Affiliated Hospital, Jiangsu University, Zhenjiang, 212013, China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Chao Wang
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, Western University, London, ON, Canada
| | - Angel Peng
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Zhu-Xu Zhang
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Department of Medicine, Western University, London, ON, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, Western University, London, ON, Canada
| | - Zhao-Liang Su
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Tian-Qing Peng
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada.
- Department of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
3
|
Zhu XZ, Qiu Z, Lei SQ, Leng Y, Li WY, Xia ZY. The Role of P53 in Myocardial Ischemia-Reperfusion Injury. Cardiovasc Drugs Ther 2025; 39:195-209. [PMID: 37389674 DOI: 10.1007/s10557-023-07480-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE P53 is one of the key tumor suppressors. In normal cells, p53 is maintained at low levels by the ubiquitination of the ubiquitinated ligase MDM2. In contrast, under stress conditions such as DNA damage and ischemia, the interaction between p53 and MDM2 is blocked and activated by phosphorylation and acetylation, thereby mediating the trans-activation of p53 through its target genes to regulate a variety of cellular responses. Previous studies have shown that the expression of p53 is negligible in normal myocardium, tends to increase in myocardial ischemia and is maximally induced in ischemia-reperfused myocardium, demonstrating a possible key role of p53 in the development of MIRI. In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and describe the therapeutic agents targeting the relevant targets to provide new strategies for the prevention and treatment of MIRI. METHODS We collected 161 relevant papers mainly from Pubmed and Web of Science (search terms "p53" and "myocardial ischemia-reperfusion injury"). After that, we selected pathway studies related to p53 and classified them according to their contents. We eventually analyzed and summarized them. RESULTS AND CONCLUSION In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and validate its status as an important intermediate affecting MIRI. On the one hand, p53 is regulated and modified by multiple factors, especially non-coding RNAs; on the other hand, p53 regulates apoptosis, programmed necrosis, autophagy, iron death and oxidative stress in MIRI through multiple pathways. More importantly, several studies have reported medications targeting p53-related therapeutic targets. These medications are expected to be effective options for the alleviation of MIRI, but further safety and clinical studies are needed to convert them into clinical applications.
Collapse
Affiliation(s)
- Xi-Zi Zhu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Wen-Yuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
4
|
Coluccino G, Negro A, Filippi A, Bean C, Muraca VP, Gissi C, Canetti D, Mimmi MC, Zamprogno E, Ciscato F, Acquasaliente L, De Filippis V, Comelli M, Carraro M, Rasola A, Gerle C, Bernardi P, Corazza A, Lippe G. N-terminal cleavage of cyclophilin D boosts its ability to bind F-ATP synthase. Commun Biol 2024; 7:1486. [PMID: 39528709 PMCID: PMC11555324 DOI: 10.1038/s42003-024-07172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Cyclophilin (CyP) D is a regulator of the mitochondrial F-ATP synthase. Here we report the discovery of a form of CyPD lacking the first 10 (mouse) or 13 (human) N-terminal residues (ΔN-CyPD), a protein region with species-specific features. NMR studies on recombinant human full-length CyPD (FL-CyPD) and ΔN-CyPD form revealed that the N-terminus is highly flexible, in contrast with the rigid globular part. We have studied the interactions of FL and ΔN-CyPD with F-ATP synthase at the OSCP subunit, a site where CyPD binding inhibits catalysis and favors the transition of the enzyme complex to the permeability transition pore. At variance from FL-CyPD, ΔN-CyPD binds OSCP in saline media, indicating that the N-terminus substantially decreases the binding affinity for OSCP. We also provide evidence that calpain 1 is responsible for generation of ΔN-CyPD in cells. Altogether, our work suggests the existence of a novel mechanism of modulation of CyPD through cleavage of its N-terminus that may have significant pathophysiological implications.
Collapse
Affiliation(s)
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Antonio Filippi
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Camilla Bean
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | | | - Clarissa Gissi
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Diana Canetti
- Centre for Amyloidosis, Division of Medicine, University College London, London, NW32PF, UK
| | - Maria Chiara Mimmi
- Centre for Inherited Cardiovascular Diseases, IRCCS San Matteo Hospital Foundation, 27100, Pavia, Italy
| | - Elisa Zamprogno
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Francesco Ciscato
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Institute of Neuroscience, National Research Council (CNR), 35131, Padova, Italy
| | - Laura Acquasaliente
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Vincenzo De Filippis
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Marina Comelli
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Michela Carraro
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, Hyogo, Japan
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | | | - Giovanna Lippe
- Department of Medicine, University of Udine, 33100, Udine, Italy.
| |
Collapse
|
5
|
Zhang X, Zheng Y, Wang Z, Zhang G, Yang L, Gan J, Jiang X. Calpain: The regulatory point of cardiovascular and cerebrovascular diseases. Biomed Pharmacother 2024; 179:117272. [PMID: 39153432 DOI: 10.1016/j.biopha.2024.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Calpain, a key member of the Calpain cysteine protease superfamily, performs limited protein hydrolysis in a calcium-dependent manner. Its activity is tightly regulated due to the potential for non-specific cleavage of various intracellular proteins upon aberrant activation. A thorough review of the literature from 2010 to 2023 reveals 121 references discussing cardiovascular and cerebrovascular diseases. Dysregulation of the Calpain system is associated with various pathological phenomena, including lipid metabolism disorders, inflammation, apoptosis, and excitotoxicity. Although recent studies have revealed the significant role of Calpain in cardiovascular and cerebrovascular diseases, the precise mechanisms remain incompletely understood. Exploring the potential of Calpain inhibition as a therapeutic approach for the treatment of cardiovascular and cerebrovascular diseases may emerge as a compelling area of interest for future calpain research.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Guangming Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
6
|
Cizauskas HE, Burnham HV, Panni A, Peña A, Alvarez-Arce A, Davis MT, Araujo KN, Delligatti CE, Edassery S, Kirk JA, Arora R, Barefield DY. Proteolytic degradation of atrial sarcomere proteins underlies contractile defects in atrial fibrillation. Am J Physiol Heart Circ Physiol 2024; 327:H460-H472. [PMID: 38940916 PMCID: PMC11442024 DOI: 10.1152/ajpheart.00148.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Atrial fibrillation (AFib) is the most common cardiac rhythm disturbance, often treated via electrical cardioversion. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs, suggesting that defects in contractility occur in AFib and are revealed upon restoration of rhythm. This project aims to define the contractile remodeling that occurs in AFib. To assess contractile function, we used a canine atrial tachypacing model of induced AFib. Mass spectrometry analysis showed dysregulation of contractile proteins in samples from AFib compared with sinus rhythm atria. Atrial cardiomyocytes show reduced force of contraction, decreased resting tension, and increased calcium sensitivity in skinned single cardiomyocyte studies. These alterations correlated with degradation of myofilament proteins including myosin heavy chain altering force of contraction, titin altering resting tension, and troponin I altering calcium sensitivity. We measured degradation of other myofilament proteins, including cardiac myosin binding protein C and actinin, that show degradation products in the AFib samples that are absent in the sinus rhythm atria. Many of the degradation products appeared as discrete cleavage products that are generated by calpain proteolysis. We assessed calpain activity and found it to be significantly increased. These results provide an understanding of the contractile remodeling that occurs in AFib and provide insight into the molecular explanation for atrial stunning and the increased risk of atrial thrombus and stroke in AFib.NEW & NOTEWORTHY Atrial fibrillation is the most common cardiac rhythm disorder, and remodeling during atrial fibrillation is highly variable between patients. This study has defined the biophysical changes in contractility that occur in atrial fibrillation along with identifying potential molecular mechanisms that may drive this remodeling. This includes proteolysis of several myofilament proteins including titin, troponin I, myosin heavy chain, myosin binding protein C, and actinin, which is consistent with the observed contractile deficits.
Collapse
Affiliation(s)
- Hannah E Cizauskas
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Hope V Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Azaria Panni
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Alexandra Peña
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Alejandro Alvarez-Arce
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - M Therese Davis
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Kelly N Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Christine E Delligatti
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Seby Edassery
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| |
Collapse
|
7
|
Di T, He L, Shi Q, Chen L, Zhu L, Zhao S, Zhang C. Emodin Blocks mPTP Opening and Improves LPS-Induced HMEC-1 Cell Injury by Upregulation of ATP5A1. Chem Biodivers 2024; 21:e202301916. [PMID: 38511277 DOI: 10.1002/cbdv.202301916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Emodin has been shown to exert anti-inflammatory and cytoprotective effects. Our study aimed to identify a novel anti-inflammatory mechanism of emodin. METHODS An LPS-induced model of microvascular endothelial cell (HMEC-1) injury was constructed. Cell proliferation was examined using a CCK-8 assay. The effects of emodin on reactive oxygen species (ROS), cell migration, the mitochondrial membrane potential (MMP), and the opening of the mitochondrial permeability transition pore (mPTP) were evaluated. Actin-Tracker Green was used to examine the relationship between cell microfilament reconstruction and ATP5A1 expression. The effects of emodin on the expression of ATP5A1, NALP3, and TNF-α were determined. After treatment with emodin, ATP5A1 and inflammatory factors (TNF-α, IL-1, IL-6, IL-13 and IL-18) were examined by Western blotting. RESULTS Emodin significantly increased HMEC-1 cell proliferation and migration, inhibited the production of ROS, increased the mitochondrial membrane potential, and blocked the opening of the mPTP. Moreover, emodin could increase ATP5A1 expression, ameliorate cell microfilament remodeling, and decrease the expression of inflammatory factors. In addition, when ATP5A1 was overexpressed, the regulatory effect of emodin on inflammatory factors was not significant. CONCLUSION Our findings suggest that emodin can protect HMEC-1 cells against inflammatory injury. This process is modulated by the expression of ATP5A1.
Collapse
Affiliation(s)
- Tietao Di
- Department of Trauma Orthopedics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Limin He
- Department of Trauma Orthopedics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Qing Shi
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Lu Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Lei Zhu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Sisi Zhao
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Chunling Zhang
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| |
Collapse
|
8
|
Chen Q, Li L, Samidurai A, Thompson J, Hu Y, Willard B, Lesnefsky EJ. Acute endoplasmic reticulum stress-induced mitochondria respiratory chain damage: The role of activated calpains. FASEB J 2024; 38:e23404. [PMID: 38197290 PMCID: PMC11032170 DOI: 10.1096/fj.202301158rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/19/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
The induction of acute endoplasmic reticulum (ER) stress damages the electron transport chain (ETC) in cardiac mitochondria. Activation of mitochondria-localized calpain 1 (CPN1) and calpain 2 (CPN2) impairs the ETC in pathological conditions, including aging and ischemia-reperfusion in settings where ER stress is increased. We asked if the activation of calpains causes the damage to the ETC during ER stress. Control littermate and CPNS1 (calpain small regulatory subunit 1) deletion mice were used in the current study. CPNS1 is an essential subunit required to maintain CPN1 and CPN2 activities, and deletion of CPNS1 prevents their activation. Tunicamycin (TUNI, 0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 72 h of TUNI treatment. ER stress was increased in both control littermate and CPNS1 deletion mice with TUNI treatment. The TUNI treatment activated both cytosolic and mitochondrial CPN1 and 2 (CPN1/2) in control but not in CPNS1 deletion mice. TUNI treatment led to decreased oxidative phosphorylation and complex I activity in control but not in CPNS1 deletion mice compared to vehicle. The contents of complex I subunits, including NDUFV2 and ND5, were decreased in control but not in CPNS1 deletion mice. TUNI treatment also led to decreased oxidation through cytochrome oxidase (COX) only in control mice. Proteomic study showed that subunit 2 of COX was decreased in control but not in CPNS1 deletion mice. Our results provide a direct link between activation of CPN1/2 and complex I and COX damage during acute ER stress.
Collapse
Affiliation(s)
- Qun Chen
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ling Li
- Proteomics Core, Cleveland Clinic, Cleveland, Ohio, USA
| | - Arun Samidurai
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jeremy Thompson
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ying Hu
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Edward J. Lesnefsky
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
- Richmond Department of Veterans Affairs Medical Center, Richmond, Virginia, USA
| |
Collapse
|
9
|
Sadowska-Bartosz I, Bartosz G. The Cellular and Organismal Effects of Nitroxides and Nitroxide-Containing Nanoparticles. Int J Mol Sci 2024; 25:1446. [PMID: 38338725 PMCID: PMC10855878 DOI: 10.3390/ijms25031446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Nitroxides are stable free radicals that have antioxidant properties. They react with many types of radicals, including alkyl and peroxyl radicals. They act as mimics of superoxide dismutase and stimulate the catalase activity of hemoproteins. In some situations, they may exhibit pro-oxidant activity, mainly due to the formation of oxoammonium cations as products of their oxidation. In this review, the cellular effects of nitroxides and their effects in animal experiments and clinical trials are discussed, including the beneficial effects in various pathological situations involving oxidative stress, protective effects against UV and ionizing radiation, and prolongation of the life span of cancer-prone mice. Nitroxides were used as active components of various types of nanoparticles. The application of these nanoparticles in cellular and animal experiments is also discussed.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland;
| | | |
Collapse
|
10
|
Dai S, Cao T, Shen H, Zong X, Gu W, Li H, Wei L, Huang H, Yu Y, Chen Y, Ye W, Hua F, Fan H, Shen Z. Landscape of molecular crosstalk between SARS-CoV-2 infection and cardiovascular diseases: emphasis on mitochondrial dysfunction and immune-inflammation. J Transl Med 2023; 21:915. [PMID: 38104081 PMCID: PMC10725609 DOI: 10.1186/s12967-023-04787-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND SARS-CoV-2, the pathogen of COVID-19, is a worldwide threat to human health and causes a long-term burden on the cardiovascular system. Individuals with pre-existing cardiovascular diseases are at higher risk for SARS-CoV-2 infection and tend to have a worse prognosis. However, the relevance and pathogenic mechanisms between COVID-19 and cardiovascular diseases are not yet completely comprehended. METHODS Common differentially expressed genes (DEGs) were obtained in datasets of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2 and myocardial tissues from heart failure patients. Further GO and KEGG pathway analysis, protein-protein interaction (PPI) network construction, hub genes identification, immune microenvironment analysis, and drug candidate predication were performed. Then, an isoproterenol-stimulated myocardial hypertrophy cell model and a transverse aortic constriction-induced mouse heart failure model were employed to validate the expression of hub genes. RESULTS A total of 315 up-regulated and 78 down-regulated common DEGs were identified. Functional enrichment analysis revealed mitochondrial metabolic disorders and extensive immune inflammation as the most prominent shared features of COVID-19 and cardiovascular diseases. Then, hub DEGs, as well as hub immune-related and mitochondria-related DEGs, were screened. Additionally, nine potential therapeutic agents for COVID-19-related cardiovascular diseases were proposed. Furthermore, the expression patterns of most of the hub genes related to cardiovascular diseases in the validation dataset along with cellular and mouse myocardial damage models, were consistent with the findings of bioinformatics analysis. CONCLUSIONS The study unveiled the molecular networks and signaling pathways connecting COVID-19 and cardiovascular diseases, which may provide novel targets for intervention of COVID-19-related cardiovascular diseases.
Collapse
Affiliation(s)
- Shiyu Dai
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Ting Cao
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Han Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Xuejing Zong
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Wenyu Gu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Hanghang Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Lei Wei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Haoyue Huang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Yunsheng Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Wenxue Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Fei Hua
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Hongyou Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
11
|
Cao T, Ni R, Ding W, Ji X, Fan GC, Zhang Z, Peng T. Nicotinamide mononucleotide as a therapeutic agent to alleviate multi-organ failure in sepsis. J Transl Med 2023; 21:883. [PMID: 38057866 PMCID: PMC10699070 DOI: 10.1186/s12967-023-04767-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Sepsis-caused multi-organ failure remains the major cause of morbidity and mortality in intensive care units with limited therapeutics. Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD+), has been recently reported to be protective in sepsis; however, its therapeutic effects remain to be determined. This study sought to investigate the therapeutic effects of NMN in septic organ failure and its underlying mechanisms. METHODS Sepsis was induced by feces-injection-in-peritoneum in mice. NMN was given after an hour of sepsis onset. Cultured neutrophils, macrophages and endothelial cells were incubated with various agents. RESULTS We demonstrate that administration of NMN elevated NAD+ levels and reduced serum lactate levels, oxidative stress, inflammation, and caspase-3 activity in multiple organs of septic mice, which correlated with the attenuation of heart dysfunction, pulmonary microvascular permeability, liver injury, and kidney dysfunction, leading to lower mortality. The therapeutic effects of NMN were associated with lower bacterial burden in blood, and less ROS production in septic mice. NMN improved bacterial phagocytosis and bactericidal activity of macrophages and neutrophils while reducing the lipopolysaccharides-induced inflammatory response of macrophages. In cultured endothelial cells, NMN mitigated mitochondrial dysfunction, inflammation, apoptosis, and barrier dysfunction induced by septic conditions, all of which were offset by SIRT3 inhibition. CONCLUSION NAD+ repletion with NMN prevents mitochondrial dysfunction and restrains bacterial dissemination while limiting inflammatory damage through SIRT3 signaling in sepsis. Thus, NMN may represent a therapeutic option for sepsis.
Collapse
Affiliation(s)
- Ting Cao
- Institutes of Biology and Medical Sciences and Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, China.
| | - Rui Ni
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
| | - Weimin Ding
- Institutes of Biology and Medical Sciences and Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, China
| | - Xiaoyun Ji
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Zhuxu Zhang
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada
| | - Tianqing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4G5, Canada.
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada.
| |
Collapse
|
12
|
Cizauskas HE, Burnham HV, Panni A, Pena A, Alvarez-Arce A, Davis MT, Araujo KN, Delligatti C, Edassery S, Kirk JA, Arora R, Barefield DY. Proteolytic degradation of atrial sarcomere proteins underlies contractile defects in atrial fibrillation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565691. [PMID: 37961455 PMCID: PMC10635151 DOI: 10.1101/2023.11.05.565691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Aims Atrial fibrillation (AFib) is the most common cardiac rhythm disturbance. Treatment of AFib involves restoration of the atrial electrical rhythm. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs that involves decreased blood flow velocity and reduced atrial contractility. This suggests that defects in contractility occur in AFib and are revealed upon restoration of rhythm. The aim of this project is to define the contractile remodeling that occurs in AFib. Methods and Results To assess contractile function, we used a canine atrial tachypacing model of induced AFib. Mass spectrometry analysis showed dysregulation of contractile proteins in samples from AFib compared to sinus rhythm atria. Atrial cardiomyocytes showed reduced force of contraction in skinned single cardiomyocyte calcium-force studies. There were no significant differences in myosin heavy chain isoform expression. Resting tension is decreased in the AFib samples correlating with reduced full-length titin in the sarcomere. We measured degradation of other myofilament proteins including cMyBP-C, actinin, and cTnI, showing significant degradation in the AFib samples compared to sinus rhythm atria. Many of the protein degradation products appeared as discrete cleavage products that are generated by calpain proteolysis. We assessed calpain activity and found it to be significantly increased. Skinned cardiomyocytes from AFib atria showed decreased troponin I phosphorylation, consistent with the increased calcium sensitivity that was found within these cardiomyocytes. Conclusions With these results it can be concluded that AFib causes alterations in contraction that can be explained by both molecular changes occurring in myofilament proteins and overall myofilament protein degradation. These results provide an understanding of the contractile remodeling that occurs in AFib and provides insight into the molecular explanation for atrial stunning and the increased risk of atrial thrombus and stroke in AFib.
Collapse
|
13
|
Wang H, Yu W, Wang Y, Wu R, Dai Y, Deng Y, Wang S, Yuan J, Tan R. p53 contributes to cardiovascular diseases via mitochondria dysfunction: A new paradigm. Free Radic Biol Med 2023; 208:846-858. [PMID: 37776918 DOI: 10.1016/j.freeradbiomed.2023.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Cardiovascular diseases (CVDs) are leading causes of global mortality; however, their underlying mechanisms remain unclear. The tumor suppressor factor p53 has been extensively studied for its role in cancer and is also known to play an important role in regulating CVDs. Abnormal p53 expression levels and modifications contribute to the occurrence and development of CVDs. Additionally, mounting evidence underscores the critical involvement of mitochondrial dysfunction in CVDs. Notably, studies indicate that p53 abnormalities directly correlate with mitochondrial dysfunction and may even interact with each other. Encouragingly, small molecule inhibitors targeting p53 have exhibited remarkable effects in animal models of CVDs. Moreover, therapeutic strategies aimed at mitochondrial-related molecules and mitochondrial replacement therapy have demonstrated their advantageous potential. Therefore, targeting p53 or mitochondria holds immense promise as a pioneering therapeutic approach for combating CVDs. In this comprehensive review, we delve into the mechanisms how p53 influences mitochondrial dysfunction, including energy metabolism, mitochondrial oxidative stress, mitochondria-induced apoptosis, mitochondrial autophagy, and mitochondrial dynamics, in various CVDs. Furthermore, we summarize and discuss the potential significance of targeting p53 or mitochondria in the treatment of CVDs.
Collapse
Affiliation(s)
- Hao Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wei Yu
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yibo Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ruihao Wu
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yifei Dai
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ye Deng
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, 272000, China.
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
14
|
Zhang RR, Zhang JL, Li Q, Zhang SM, Gu XM, Niu W, Zhou JJ, Zhou LC. SEVERE BURN-INDUCED MITOCHONDRIAL RECRUITMENT OF CALPAIN CAUSES ABERRANT MITOCHONDRIAL DYNAMICS AND HEART DYSFUNCTION. Shock 2023; 60:255-261. [PMID: 37278996 PMCID: PMC10476594 DOI: 10.1097/shk.0000000000002159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
ABSTRACT Mitochondrial damage is an important cause of heart dysfunction after severe burn injury. However, the pathophysiological process remains unclear. This study aims to examine the mitochondrial dynamics in the heart and the role of μ-calpain, a cysteine protease, in this scenario. Rats were subjected to severe burn injury treatment, and the calpain inhibitor MDL28170 was administered intravenously 1 h before or after burn injury. Rats in the burn group displayed weakened heart performance and decreased mean arterial pressure, which was accompanied by a diminishment of mitochondrial function. The animals also exhibited higher levels of calpain in mitochondria, as reflected by immunofluorescence staining and activity tests. In contrast, treatment with MDL28170 before any severe burn diminished these responses to a severe burn. Burn injury decreased the abundance of mitochondria and resulted in a lower percentage of small mitochondria and a higher percentage of large mitochondria. Furthermore, burn injury caused an increase in the fission protein DRP1 in the mitochondria and a decrease in the inner membrane fusion protein OPA1. Similarly, these alterations were also blocked by MDL28170. Of note, inhibition of calpain yielded the emergence of more elongated mitochondria along with membrane invagination in the middle of the longitude, which is an indicator of the fission process. Finally, MDL28170, administered 1 h after burn injury, preserved mitochondrial function and heart performance, and increased the survival rate. Overall, these results provided the first evidence that mitochondrial recruitment of calpain confers heart dysfunction after severe burn injury, which involves aberrant mitochondrial dynamics.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- School of Life Science, Northwest University, Xi’an, China
| | - Jing-Long Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Xi’an, China
| | - Qiao Li
- Department of Respiratory and Critical Care Medicine, Xijing Hospital, Xi’an, China
| | - Shu-Miao Zhang
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi’an, China
| | - Xiao-Ming Gu
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi’an, China
| | - Wen Niu
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi’an, China
| | - Jing-Jun Zhou
- School of Life Science, Northwest University, Xi’an, China
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi’an, China
| | - Lyu-Chen Zhou
- School of Life Science, Northwest University, Xi’an, China
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi’an, China
| |
Collapse
|
15
|
Seydi E, Hassani MK, Naderpour S, Arjmand A, Pourahmad J. Cardiotoxicity of chloroquine and hydroxychloroquine through mitochondrial pathway. BMC Pharmacol Toxicol 2023; 24:26. [PMID: 37085872 PMCID: PMC10119838 DOI: 10.1186/s40360-023-00666-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/27/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Medical therapies can cause cardiotoxicity. Chloroquine (QC) and hydroxychloroquine (HQC) are drugs used in the treatment of malaria and skin and rheumatic disorders. These drugs were considered to help treatment of coronavirus disease (COVID-19) in 2019. Despite the low cost and availability of QC and HQC, reports indicate that this class of drugs can cause cardiotoxicity. The mechanism of this event is not well known, but evidence shows that QC and HQC can cause cardiotoxicity by affecting mitochondria and lysosomes. METHODS Therefore, our study was designed to investigate the effects of QC and HQC on heart mitochondria. In order to achieve this aim, mitochondrial function, reactive oxygen species (ROS) level, mitochondrial membrane disruption, and cytochrome c release in heart mitochondria were evaluated. Statistical significance was determined using the one-way and two-way analysis of variance (ANOVA) followed by post hoc Tukey to evaluate mitochondrial succinate dehydrogenase (SDH) activity and cytochrome c release, and Bonferroni test to evaluate the ROS level, mitochondrial membrane potential (MMP) collapse, and mitochondrial swelling. RESULTS Based on ANOVA analysis (one-way), the results of mitochondrial SDH activity showed that the IC50 concentration for CQ is 20 µM and for HCQ is 50 µM. Based on two-way ANOVA analysis, the highest effect of CQ and HCQ on the generation of ROS, collapse in the MMP, and mitochondrial swelling were observed at 40 µM and 100 µM concentrations, respectively (p < 0.05). Also, the highest effect of these two drugs has been observed in 60 min (p < 0.05). The statistical results showed that compared to CQ, HCQ is able to cause the release of cytochrome c from mitochondria in all applied concentrations (p < 0.05). CONCLUSIONS The results suggest that QC and HQC can cause cardiotoxicity which can lead to heart disorders through oxidative stress and disfunction of heart mitochondria.
Collapse
Affiliation(s)
- Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Mozhgan Karbalaei Hassani
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saghi Naderpour
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Cyprus
| | - Abdollah Arjmand
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Ji XY, Zheng D, Ni R, Wang JX, Shao JQ, Vue Z, Hinton A, Song LS, Fan GC, Chakrabarti S, Su ZL, Peng TQ. Sustained over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice through aberrant autophagy. Acta Pharmacol Sin 2022; 43:2873-2884. [PMID: 35986214 PMCID: PMC9622835 DOI: 10.1038/s41401-022-00965-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/24/2022] [Indexed: 11/09/2022]
Abstract
Calpains have been implicated in heart diseases. While calpain-1 has been detrimental to the heart, the role of calpain-2 in cardiac pathology remains controversial. In this study we investigated whether sustained over-expression of calpain-2 had any adverse effects on the heart and the underlying mechanisms. Double transgenic mice (Tg-Capn2/tTA) were generated, which express human CAPN2 restricted to cardiomyocytes. The mice were subjected to echocardiography at age 3, 6, 8 and 12 months, and their heart tissues and sera were collected for analyses. We showed that transgenic mice over-expressing calpain-2 restricted to cardiomyocytes had normal heart function with no evidence of cardiac pathological remodeling at age 3 months. However, they exhibited features of dilated cardiomyopathy including increased heart size, enlarged heart chambers and heart dysfunction from age 8 months; histological analysis revealed loss of cardiomyocytes replaced by myocardial fibrosis and cardiomyocyte hypertrophy in transgenic mice from age 8 months. These cardiac alterations closely correlated with aberrant autophagy evidenced by significantly increased LC3BII and p62 protein levels and accumulation of autophagosomes in the hearts of transgenic mice. Notably, injection of 3-methyladenine, a well-established inhibitor of autophagy (30 mg/kg, i.p. once every 3 days starting from age 6 months for 2 months) prevented aberrant autophagy, attenuated myocardial injury and improved heart function in the transgenic mice. In cultured cardiomyocytes, over-expression of calpain-2 blocked autophagic flux by impairing lysosomal function. Furthermore, over-expression of calpain-2 resulted in lower levels of junctophilin-2 protein in the heart of transgenic mice and in cultured cardiomyocytes, which was attenuated by 3-methyladenine. In addition, blockade of autophagic flux by bafilomycin A (100 nM) induced a reduction of junctophilin-2 protein in cardiomyocytes. In summary, transgenic over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice, which may be mediated through aberrant autophagy and a reduction of junctophilin-2. Thus, a sustained increase in calpain-2 may be detrimental to the heart.
Collapse
Affiliation(s)
- Xiao-Yun Ji
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Dong Zheng
- Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Rui Ni
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Jin-Xi Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jian-Qiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Zhao-Liang Su
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Tian-Qing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada.
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada.
| |
Collapse
|
17
|
Tunicamycin-Induced Endoplasmic Reticulum Stress Damages Complex I in Cardiac Mitochondria. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081209. [PMID: 36013387 PMCID: PMC9409705 DOI: 10.3390/life12081209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Induction of acute ER (endoplasmic reticulum) stress using thapsigargin contributes to complex I damage in mouse hearts. Thapsigargin impairs complex I by increasing mitochondrial calcium through inhibition of Ca2+-ATPase in the ER. Tunicamycin (TUNI) is used to induce ER stress by inhibiting protein folding. We asked if TUNI-induced ER stress led to complex I damage. METHODS TUNI (0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 24 or 72 h following TUNI treatment for mitochondrial functional analysis. RESULTS ER stress was only increased in mice following 72 h of TUNI treatment. TUNI treatment decreased oxidative phosphorylation with complex I substrates compared to vehicle with a decrease in complex I activity. The contents of complex I subunits including NBUPL and NDUFS7 were decreased in TUNI-treated mice. TUNI treatment activated both cytosolic and mitochondrial calpain 1. Our results indicate that TUNI-induced ER stress damages complex I through degradation of its subunits including NDUFS7. CONCLUSION Induction of the ER stress using TUNI contributes to complex I damage by activating calpain 1.
Collapse
|
18
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. The mitochondrial electron transport chain contributes to calpain 1 activation during ischemia-reperfusion. Biochem Biophys Res Commun 2022; 613:127-132. [PMID: 35550199 DOI: 10.1016/j.bbrc.2022.04.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022]
Abstract
Activation of calpain1 (CPN1) contributes to mitochondrial dysfunction during cardiac ischemia (ISC) - reperfusion (REP). Blockade of electron transport using amobarbital (AMO) protects mitochondria during ISC-REP, indicating that the electron transport chain (ETC) is a key source of mitochondrial injury. We asked if AMO treatment can decrease CPN1 activation as a potential mechanism of mitochondrial protection during ISC-REP. Buffer-perfused adult rat hearts underwent 25 min global ISC and 30 min REP. AMO (2.5 mM) or vehicle was administered for 1 min before ISC to block electron flow in the ETC. Hearts in the time control group were untreated and buffer perfused without ISC. Hearts were collected at the end of perfusion and used for mitochondrial isolation. ISC-REP increased both the cleavage of spectrin (indicating cytosolic CPN1 activation) in cytosol and the truncation of AIF (apoptosis inducing factor, indicating mitochondrial CPN1 activation) in subsarcolemmal mitochondria compared to time control. Thus, ISC-REP activated both cytosolic and mitochondrial CPN1. AMO treatment prevented the cleavage of spectrin and AIF during ISC-REP, suggesting that the transient blockade of electron transport during ISC decreases CPN1 activation. AMO treatment decreased the activation of PARP [poly(ADP-ribose) polymerase] downstream of AIF that triggers caspase-independent apoptosis. AMO treatment also decreased the release of cytochrome c from mitochondria during ISC-REP that prevented caspase 3 activation. These results support that the damaged ETC activates CPN1 in cytosol and mitochondria during ISC-REP, likely via calcium overload and oxidative stress. Thus, AMO treatment to mitigate mitochondrial-driven cardiac injury can decrease both caspase-dependent and caspase-independent programmed cell death during ISC-REP.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA; Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Richmond Department of Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| |
Collapse
|
19
|
Aluja D, Delgado-Tomás S, Ruiz-Meana M, Barrabés JA, Inserte J. Calpains as Potential Therapeutic Targets for Myocardial Hypertrophy. Int J Mol Sci 2022; 23:ijms23084103. [PMID: 35456920 PMCID: PMC9032729 DOI: 10.3390/ijms23084103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Despite advances in its treatment, heart failure remains a major cause of morbidity and mortality, evidencing an urgent need for novel mechanism-based targets and strategies. Myocardial hypertrophy, caused by a wide variety of chronic stress stimuli, represents an independent risk factor for the development of heart failure, and its prevention constitutes a clinical objective. Recent studies performed in preclinical animal models support the contribution of the Ca2+-dependent cysteine proteases calpains in regulating the hypertrophic process and highlight the feasibility of their long-term inhibition as a pharmacological strategy. In this review, we discuss the existing evidence implicating calpains in the development of cardiac hypertrophy, as well as the latest advances in unraveling the underlying mechanisms. Finally, we provide an updated overview of calpain inhibitors that have been explored in preclinical models of cardiac hypertrophy and the progress made in developing new compounds that may serve for testing the efficacy of calpain inhibition in the treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- David Aluja
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Sara Delgado-Tomás
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José A. Barrabés
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934894038
| |
Collapse
|
20
|
Simvastatin Combined with Resistance Training Improves Outcomes in Patients with Chronic Heart Failure by Modulating Mitochondrial Membrane Potential and the Janus Kinase/Signal Transducer and Activator of Transcription 3 Signaling Pathways. Cardiovasc Ther 2022; 2022:8430733. [PMID: 35356068 PMCID: PMC8934205 DOI: 10.1155/2022/8430733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
Background Chronic heart failure (CHF) is the end stage of cardiac disease with a 5-year mortality rate reaching 50%. Simvastatin is an antioxidant with lipid-lowering effects, which is commonly used to treat CHF. Resistance training is a nondrug treatment for CHF and exerts a positive effect on both the myocardial structure and function. Objective This study is aimed at exploring the effects and outcomes of simvastatin combined with resistance training on the mitochondrial membrane potential (MMP) of peripheral blood lymphocytes and the Janus kinase/signal transducer and activator of the transcription 3 (JAK/STAT3) signaling pathway in patients with CHF. Methods One hundred and eleven patients with CHF were allocated to the control group (CNG) (n = 55) and intervention group (IG) (n = 56) using the random number table method. The CNG received simvastatin treatment only, whereas the IG received simvastatin treatment plus resistance training. Treatment efficacy, diastolic interventricular septal thickness (IVST), left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVDD), MMP fluorescence intensity, JAK mRNA and STAT3 mRNA relative expression levels, serum C-reactive protein (CRP), galectin-3, interleukin-6 (IL-6), N-terminal–probrain natriuretic peptide (NT-proBNP), high-sensitivity cardiac troponin T (hs-cTnT), and heart-type fatty acid-binding protein (H-FABP) levels were compared in both groups. Results After 6 months of treatment, diastolic IVST, LVDD, and serum levels of CRP, galectin-3, IL-6, NT-proBNP, hs-cTnT, and H-FABP decreased in both groups and were lower in the IG than in the CNG (P < 0.05), whereas LVEF, JAK and STAT3 mRNA relative expression levels, and MMP fluorescence intensity of peripheral blood lymphocytes were higher in the IG than in the CNG (P < 0.05). Conclusion Simvastatin combined with resistance training improves heart function and reduces myocardial damage as well as the occurrence of adverse cardiac events compared with simvastatin alone. The mechanism may be related to the increase of expression of MMP, JAK, and STAT3, the regulation of MMP and JAK/STAT3 signaling pathways in peripheral lymphocytes, the alleviation of mitochondrial damage, and the inhibition of inflammatory response.
Collapse
|
21
|
Zhang M, Zhong H, Cao T, Huang Y, Ji X, Fan GC, Peng T. Gamma-Aminobutyrate Transaminase Protects against Lipid Overload-Triggered Cardiac Injury in Mice. Int J Mol Sci 2022; 23:ijms23042182. [PMID: 35216295 PMCID: PMC8874535 DOI: 10.3390/ijms23042182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/26/2022] Open
Abstract
Lipid overload contributes to cardiac complications of diabetes and obesity. However, the underlying mechanisms remain obscure. This study investigates the role of gamma-aminobutyrate transaminase (ABAT), the key enzyme involved in the catabolism of γ-aminobutyric acid (GABA), in lipid overload-induced cardiac injury. Microarray revealed a down-regulation of ABAT mRNA expression in high fat diet (HFD)-fed mouse hearts, which correlated with a reduction in ABAT protein level and its GABA catabolic activity. Transgenic mice with cardiomyocyte-specific ABAT over-expression (Tg-ABAT/tTA) were generated to determine the role of ABAT in lipid overload-induced cardiac injury. Feeding with a HFD to control mice for 4 months reduced ATP production and the mitochondrial DNA copy number, and induced myocardial oxidative stress, hypertrophy, fibrosis and dysfunction. Such pathological effects of HFD were mitigated by ABAT over-expression in Tg-ABAT/tTA mice. In cultured cardiomyocytes, palmitate increased mitochondrial ROS production, depleted ATP production and promoted apoptosis, all of which were attenuated by ABAT over-expression. With the inhibition of ABAT’s GABA catabolic activity, the protective effects of ABAT remained unchanged in palmitate-induced cardiomyocytes. Thus, ABAT protects the mitochondrial function in defending the heart against lipid overload-induced injury through mechanisms independent of its GABA catabolic activity, and may represent a new therapeutic target for lipid overload-induced cardiac injury.
Collapse
Affiliation(s)
- Mengxiao Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (M.Z.); (H.Z.); (T.C.); (Y.H.)
- School of Pharmacy, Bengbu Medical College, Bengbu 233000, China
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada;
| | - Huiting Zhong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (M.Z.); (H.Z.); (T.C.); (Y.H.)
| | - Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (M.Z.); (H.Z.); (T.C.); (Y.H.)
| | - Yifan Huang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (M.Z.); (H.Z.); (T.C.); (Y.H.)
| | - Xiaoyun Ji
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Tianqing Peng
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Department of Medicine, Western University, London, ON N6A 5W9, Canada
- VRLA6-140, 800 Commissioners Road, London, ON N6A 5W9, Canada
- Correspondence: ; Tel.: +1-519-6858500-55441
| |
Collapse
|
22
|
Miao Z, Miao Z, Teng X, Xu S. Chlorpyrifos triggers epithelioma papulosum cyprini cell pyroptosis via miR-124-3p/CAPN1 axis. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127318. [PMID: 34879549 DOI: 10.1016/j.jhazmat.2021.127318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Chlorpyrifos (CPF), a widely used organophosphorus pesticide has caused water pollution, threatening aquatic organisms. MicroRNAs (miRNAs) highly conserved noncoding RNAs, that regulate various cell death processes, including pyroptosis. To investigate the effect of CPF exposure on epithelioma papulosum cyprini (EPC) cell pyroptosis and the role of the miR-124-3p/CAPN1 axis, we established miR-124 overexpression and inhibition EPC cell models of CPF exposure. The target of the miR-124-3p/CAPN1 axis was primarily confirmed by the double luciferase reporter assay. Pyroptosis was demonstrated to occur in CPF-exposed EPC cells and was accompanied by mitochondrial membrane potential depletion, ROS level elevation and pyroptotic indicator expression upregulation. PD150606 was supplied as a CAPN1 inhibitor, alleviating CPF-induced mitochondrial dysfunction, and alleviating the increased expression of NLRP3, CASP1, IL1β and GSDMD. In conclusion, CPF induces pyroptosis by regulating the miR-124-3p/CAPN1 axis. This study enriches the cytotoxicity study of CPF, and provides new theoretical fundamentals for exploration of miRNA and its target protein response to water contaminants.
Collapse
Affiliation(s)
- Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiruo Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
23
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Reversing mitochondrial defects in aged hearts: role of mitochondrial calpain activation. Am J Physiol Cell Physiol 2022; 322:C296-C310. [PMID: 35044856 PMCID: PMC8836732 DOI: 10.1152/ajpcell.00279.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
Aging chronically increases endoplasmic reticulum (ER) stress that contributes to mitochondrial dysfunction. Activation of calpain 1 (CPN1) impairs mitochondrial function during acute ER stress. We proposed that aging-induced ER stress led to mitochondrial dysfunction by activating CPN1. We posit that attenuation of the ER stress or direct inhibition of CPN1 in aged hearts can decrease cardiac injury during ischemia-reperfusion by improving mitochondrial function. Male young (3 mo) and aged mice (24 mo) were used in the present study, and 4-phenylbutyrate (4-PBA) was used to decrease the ER stress in aged mice. Subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) were isolated. Chronic 4-PBA treatment for 2 wk decreased CPN1 activation as shown by the decreased cleavage of spectrin in cytosol and apoptosis inducing factor (AIF) and the α1 subunit of pyruvate dehydrogenase (PDH) in mitochondria. Treatment improved oxidative phosphorylation in 24-mo-old SSM and IFM at baseline compared with vehicle. When 4-PBA-treated 24-mo-old hearts were subjected to ischemia-reperfusion, infarct size was decreased. These results support that attenuation of the ER stress decreased cardiac injury in aged hearts by improving mitochondrial function before ischemia. To challenge the role of CPN1 as an effector of the ER stress, aged mice were treated with MDL-28170 (MDL, an inhibitor of calpain 1). MDL treatment improved mitochondrial function in aged SSM and IFM. MDL-treated 24-mo-old hearts sustained less cardiac injury following ischemia-reperfusion. These results support that age-induced ER stress augments cardiac injury during ischemia-reperfusion by impairing mitochondrial function through activation of CPN1.
Collapse
Affiliation(s)
- Qun Chen
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jeremy Thompson
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ying Hu
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
- McGuire Department of Veterans Affairs Medical Center, Richmond, Virginia
| |
Collapse
|
24
|
Li L, Thompson J, Hu Y, Lesnefsky EJ, Willard B, Chen Q. Calpain-mediated protein targets in cardiac mitochondria following ischemia-reperfusion. Sci Rep 2022; 12:138. [PMID: 34997008 PMCID: PMC8741987 DOI: 10.1038/s41598-021-03947-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Calpain 1 and 2 (CPN1/2) are calcium-dependent cysteine proteases that exist in cytosol and mitochondria. Pharmacologic inhibition of CPN1/2 decreases cardiac injury during ischemia (ISC)-reperfusion (REP) by improving mitochondrial function. However, the protein targets of CPN1/2 activation during ISC-REP are unclear. CPN1/2 include a large subunit and a small regulatory subunit 1 (CPNS1). Genetic deletion of CPNS1 eliminates the activities of both CPN1 and CPN2. Conditional cardiomyocyte specific CPNS1 deletion mice were used in the present study to clarify the role of CPN1/2 activation in mitochondrial damage during ISC-REP with an emphasis on identifying the potential protein targets of CPN1/2. Isolated hearts from wild type (WT) or CPNS1 deletion mice underwent 25 min in vitro global ISC and 30 min REP. Deletion of CPNS1 led to decreased cytosolic and mitochondrial calpain 1 activation compared to WT. Cardiac injury was decreased in CPNS1 deletion mice following ISC-REP as shown by the decreased infarct size compared to WT. Compared to WT, mitochondrial function was improved in CPNS1 deletion mice following ischemia-reperfusion as shown by the improved oxidative phosphorylation and decreased susceptibility to mitochondrial permeability transition pore opening. H2O2 generation was also decreased in mitochondria from deletion mice following ISC-REP compared to WT. Deletion of CPNS1 also resulted in less cytochrome c and truncated apoptosis inducing factor (tAIF) release from mitochondria. Proteomic analysis of the isolated mitochondria showed that deletion of CPNS1 increased the content of proteins functioning in regulation of mitochondrial calcium homeostasis (paraplegin and sarcalumenin) and complex III activity. These results suggest that activation of CPN1 increases cardiac injury during ischemia-reperfusion by impairing mitochondrial function and triggering cytochrome c and tAIF release from mitochondria into cytosol.
Collapse
Affiliation(s)
- Ling Li
- Proteomics Core, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jeremy Thompson
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- McGuire Department of Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| | - Belinda Willard
- Proteomics Core, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
25
|
Videla LA, Marimán A, Ramos B, José Silva M, Del Campo A. Standpoints in mitochondrial dysfunction: Underlying mechanisms in search of therapeutic strategies. Mitochondrion 2022; 63:9-22. [PMID: 34990812 DOI: 10.1016/j.mito.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction has been defined as a reduced efficiency of mitochondria to produce ATP given by a loss of mitochondrial membrane potential, alterations in the electron transport chain (ETC) function, with increase in reactive oxygen species (ROS) generation and decrease in oxygen consumption. During the last decades, mitochondrial dysfunction has been the focus of many researchers as a convergent point for the pathophysiology of several diseases. Numerous investigations have demonstrated that mitochondrial dysfunction is detrimental to cells, tissues and organisms, nevertheless, dysfunctional mitochondria can signal in a particular way in response to stress, a characteristic that may be useful to search for new therapeutic strategies with a common feature. The aim of this review addresses mitochondrial dysfunction and stress signaling as a promising target for future drug development.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile.
| | - Andrea Marimán
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Bastián Ramos
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - María José Silva
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile.
| |
Collapse
|
26
|
Shan S, Liu Z, Li L, Zhang C, Kou R, Song F. Calpain-mediated cleavage of mitochondrial fusion/fission proteins in acetaminophen-induced mice liver injury. Hum Exp Toxicol 2022; 41:9603271221108321. [PMID: 35713544 DOI: 10.1177/09603271221108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitochondrial dysfunction was considered to be a critical event in acetaminophen (APAP) -induced hepatotoxicity. Recent studies suggest that abnormal mitochondrial dynamics contributes to mitochondrial dysfunction in APAP-induced liver injury, yet the underlying mechanisms responsible for deregulated mitochondrial dynamics remains elusive. In this study, C57BL/6 mice were used to establish a model of acute liver injury via intraperitoneal (i.p.) injection with overdose of APAP. Furthermore, calpain intervention experiments were achieved by the inhibitors ALLN or calpeptin. The activity of serum enzymes and pathological changes of APAP-treated mice were evaluated, and the critical molecules in mitochondrial dynamics and calpain degradative pathway were determined by electron microscopy, immunoblot and calpain activity kit. The results demonstrated that APAP overdose resulted in a severe liver injury, mitochondrial damage and an obvious cleavage of fusion/fission proteins. Meanwhile, the activation of calpain degradative machinery in liver were observed following APAP. By contrast, pretreatment of calpain inhibitors significantly inhibited the activation of calpains. Our further investigation found that ALLN or calpeptin administration significantly suppresses the changes of mitochondrial dynamics in APAP-treated mice and finally protected against APAP-induced hepatoxicity. Overall, these results suggest that calpain-mediated cleavage of mitochondrial dynamics proteins was involved in the pathogenic process of mitochondrial dysfunction and thus present a potential molecular coupling APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Linlin Li
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Ruirui Kou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| |
Collapse
|
27
|
Chen J, Gong J, Chen H, Li X, Wang L, Qian X, Zhou K, Wang T, Jiang S, Li L, Li S. Ischemic stroke induces cardiac dysfunction and alters transcriptome profile in mice. BMC Genomics 2021; 22:641. [PMID: 34481466 PMCID: PMC8418010 DOI: 10.1186/s12864-021-07938-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022] Open
Abstract
Background Stroke can induce cardiac dysfunction in the absence of primary cardiac disease; however, the mechanisms underlying the interaction between the neurological deficits and the heart are poorly understood. The objective of this study was to investigate the effects of stroke on cardiac function and to identify the transcriptome characteristics of the heart. Results Stroke significantly decreased heart weight/tibia length ratio and cardiomyocyte cross-sectional areas and increased atrogin-1 and the E3 ubiquitin ligase MuRF-1, indicating myocardial atrophy in MCAO-induced mouse hearts. RNA sequencing of mRNA revealed 383 differentially expressed genes (DEGs) in MCAO myocardium, of which 221 were downregulated and 162 upregulated. Grouping of DEGs based on biological function and quantitative PCR validation indicated that suppressed immune response and collagen synthesis and altered activity of oxidoreductase, peptidase, and endopeptidase may be involved in MCAO-induced cardiomyopathy. The DEGs were mainly distributed in the membrane or extracellular region of cardiomyocytes and acted as potential mediators of stroke-induced cardiac dysregulation involved in cardiac atrophy. Conclusion Stroke induced a unique transcriptome response in the myocardium and resulted in immediate cardiac atrophy and dysfunction. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07938-y.
Collapse
Affiliation(s)
- Jie Chen
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahong Gong
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Haili Chen
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xuqing Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Li Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xiaoli Qian
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Kecheng Zhou
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Ting Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Lei Li
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengcun Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China. .,Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China. .,Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
28
|
Inhibition of calpain reduces cell apoptosis by suppressing mitochondrial fission in acute viral myocarditis. Cell Biol Toxicol 2021; 38:487-504. [PMID: 34365571 PMCID: PMC9200683 DOI: 10.1007/s10565-021-09634-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
Cardiomyocyte apoptosis is critical for the development of viral myocarditis (VMC), which is one of the leading causes of cardiac sudden death in young adults. Our previous studies have demonstrated that elevated calpain activity is involved in the pathogenesis of VMC. This study aimed to further explore the underlying mechanisms. Neonatal rat cardiomyocytes (NRCMs) and transgenic mice overexpressing calpastatin were infected with coxsackievirus B3 (CVB3) to establish a VMC model. Apoptosis was detected with flow cytometry, TUNEL staining, and western blotting. Cardiac function was measured using echocardiography. Mitochondrial function was measured using ATP assays, JC-1, and MitoSOX. Mitochondrial morphology was observed using MitoTracker staining and transmission electron microscopy. Colocalization of dynamin-related protein 1 (Drp-1) in mitochondria was examined using immunofluorescence. Phosphorylation levels of Drp-1 at Ser637 site were determined using western blotting analysis. We found that CVB3 infection impaired mitochondrial function as evidenced by increased mitochondrial ROS production, decreased ATP production and mitochondrial membrane potential, induced myocardial apoptosis and damage, and decreased myocardial function. These effects of CVB3 infection were attenuated by inhibition of calpain both by PD150606 treatment and calpastatin overexpression. Furthermore, CVB3-induced mitochondrial dysfunction was associated with the accumulation of Drp-1 in the outer membrane of mitochondria and subsequent increase in mitochondrial fission. Mechanistically, calpain cleaved and activated calcineurin A, which dephosphorylated Drp-1 at Ser637 site and promoted its accumulation in the mitochondria, leading to mitochondrial fission and dysfunction. In summary, calpain inhibition attenuated CVB3-induced myocarditis by reducing mitochondrial fission, thereby inhibiting cardiomyocyte apoptosis. Graphical abstract Calpain is activated by CVB3 infection. Activated calpain cleaves calcineurin A and converts it to active form which could dephosphorylate Drp-1 at Ser637 site. Then, the active Drp-1 translocates from the cytoplasm to mitochondria and triggers excessive mitochondrial fission. Eventually, the balance of mitochondrial dynamics is broken, and apoptosis occurs. ![]()
Collapse
|
29
|
Calpain-Mediated Mitochondrial Damage: An Emerging Mechanism Contributing to Cardiac Disease. Cells 2021; 10:cells10082024. [PMID: 34440793 PMCID: PMC8392834 DOI: 10.3390/cells10082024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Calpains belong to the family of calcium-dependent cysteine proteases expressed ubiquitously in mammals and many other organisms. Activation of calpain is observed in diseased hearts and is implicated in cardiac cell death, hypertrophy, fibrosis, and inflammation. However, the underlying mechanisms remain incompletely understood. Recent studies have revealed that calpains target and impair mitochondria in cardiac disease. The objective of this review is to discuss the role of calpains in mediating mitochondrial damage and the underlying mechanisms, and to evaluate whether targeted inhibition of mitochondrial calpain is a potential strategy in treating cardiac disease. We expect to describe the wealth of new evidence surrounding calpain-mediated mitochondrial damage to facilitate future mechanistic studies and therapy development for cardiac disease.
Collapse
|
30
|
Todorov L, Saso L, Benarous K, Traykova M, Linani A, Kostova I. Synthesis, Structure and Impact of 5-Aminoorotic Acid and Its Complexes with Lanthanum(III) and Gallium(III) on the Activity of Xanthine Oxidase. Molecules 2021; 26:4503. [PMID: 34361656 PMCID: PMC8348579 DOI: 10.3390/molecules26154503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
The superoxide radical ion is involved in numerous physiological processes, associated with both health and pathology. Its participation in cancer onset and progression is well documented. Lanthanum(III) and gallium(III) are cations that are known to possess anticancer properties. Their coordination complexes are being investigated by the scientific community in the search for novel oncological disease remedies. Their complexes with 5-aminoorotic acid suppress superoxide, derived enzymatically from xanthine/xanthine oxidase (X/XO). It seems that they, to differing extents, impact the enzyme, or the substrate, or both. The present study closely examines their chemical structure by way of modern methods-IR, Raman, and 1H NMR spectroscopy. Their superoxide-scavenging behavior in the presence of a non-enzymatic source (potassium superoxide) is compared to that in the presence of an enzymatic source (X/XO). Enzymatic activity of XO, defined in terms of the production of uric acid, seems to be impacted by both complexes and the pure ligand in a concentration-dependent manner. In order to better relate the compounds' chemical characteristics to XO inhibition, they were docked in silico to XO. A molecular docking assay provided further proof that 5-aminoorotic acid and its complexes with lanthanum(III) and gallium(III) very probably suppress superoxide production via XO inhibition.
Collapse
Affiliation(s)
- Lozan Todorov
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Khedidja Benarous
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat 03000, Algeria; (K.B.); (A.L.)
| | - Maria Traykova
- Department of Physics and Biophysics, Faculty of Medicine, Medical University, 1431 Sofia, Bulgaria;
| | - Abderahmane Linani
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat 03000, Algeria; (K.B.); (A.L.)
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| |
Collapse
|
31
|
Ji H, Wu D, Kimberlee O, Li R, Qian G. Molecular Perspectives of Mitophagy in Myocardial Stress: Pathophysiology and Therapeutic Targets. Front Physiol 2021; 12:700585. [PMID: 34276422 PMCID: PMC8279814 DOI: 10.3389/fphys.2021.700585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 01/15/2023] Open
Abstract
A variety of complex risk factors and pathological mechanisms contribute to myocardial stress, which ultimately promotes the development of cardiovascular diseases, including acute cardiac insufficiency, myocardial ischemia, myocardial infarction, high-glycemic myocardial injury, and acute alcoholic cardiotoxicity. Myocardial stress is characterized by abnormal metabolism, excessive reactive oxygen species production, an insufficient energy supply, endoplasmic reticulum stress, mitochondrial damage, and apoptosis. Mitochondria, the main organelles contributing to the energy supply of cardiomyocytes, are key determinants of cell survival and death. Mitophagy is important for cardiomyocyte function and metabolism because it removes damaged and aged mitochondria in a timely manner, thereby maintaining the proper number of normal mitochondria. In this review, we first introduce the general characteristics and regulatory mechanisms of mitophagy. We then describe the three classic mitophagy regulatory pathways and their involvement in myocardial stress. Finally, we discuss the two completely opposite effects of mitophagy on the fate of cardiomyocytes. Our summary of the molecular pathways underlying mitophagy in myocardial stress may provide therapeutic targets for myocardial protection interventions.
Collapse
Affiliation(s)
- Haizhe Ji
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China.,Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dan Wu
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| | - O'Maley Kimberlee
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Ruibing Li
- Department of Clinical Laboratory Medicine, The First Medical Center, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
32
|
Preventing Myocardial Injury Following Non-Cardiac Surgery: A Potential Role for Preoperative Antioxidant Therapy with Ubiquinone. Antioxidants (Basel) 2021; 10:antiox10020276. [PMID: 33579045 PMCID: PMC7916807 DOI: 10.3390/antiox10020276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Over 240 million non-cardiac operations occur each year and are associated with a 15-20% incidence of adverse perioperative cardiovascular events. Unfortunately, preoperative therapies that have been useful for chronic ischemic heart diseases, such as coronary artery revascularization, antiplatelet agents, and beta-blockers have failed to improve outcomes. In a pre-clinical swine model of ischemic heart disease, we showed that daily administration of ubiquinone (coenzyme Q10, CoQ10) enhances the antioxidant status of mitochondria within chronically ischemic heart tissue, potentially via a PGC1α-dependent mechanism. In a randomized controlled trial, among high-risk patients undergoing elective vascular surgery, we showed that NT Pro-BNP levels are an important means of risk-stratification during the perioperative period and can be lowered with administration of CoQ10 (400 mg/day) for 3 days prior to surgery. The review provides background information for the role of oxidant stress and inflammation during high-risk operations and the potential novel application of ubiquinone as a preoperative antioxidant therapy that might reduce perioperative adverse cardiovascular outcomes.
Collapse
|
33
|
Zhou Q, Tu T, Tai S, Tang L, Yang H, Zhu Z. Endothelial specific deletion of HMGB1 increases blood pressure and retards ischemia recovery through eNOS and ROS pathway in mice. Redox Biol 2021; 41:101890. [PMID: 33582562 PMCID: PMC7887649 DOI: 10.1016/j.redox.2021.101890] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies demonstrated HMGB1, an extracellular inflammation molecule, played an important role on endothelial cells. This study aimed to define the role and related mechanism of HMGB1 in endothelial cells. Endothelial-specific deletion of HMGB1(HMGB1ECKO) was generated and Akt/eNOS signaling, reactive oxygen species (ROS) production, endothelium dependent relaxation (EDR), and angiogenesis were determined in vitro and in vivo. Decreased activation of Akt/eNOS signaling, sprouting, and proliferation, and increased ROS production were evidenced in endothelial cells derived from HMGB1ECKO mice as compared with wild type controls. Decreased EDR and retarded blood flow recovery after hind limb ischemia were also demonstrated in HMGB1ECKO mice. Both impaired EDR and angiogenesis could be partly rescued by superoxide dismutase in HMGB1ECKO mice. In conclusion, intracellular HMGB1 might be a key regulator of endothelial Akt/eNOS pathway and ROS production, thus plays an important role in EDR regulation and angiogenesis.
Collapse
Affiliation(s)
- Qin Zhou
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Tu
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi Tai
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Tang
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Yang
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaowei Zhu
- Cardiovascular Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
34
|
Abstract
Supplemental Digital Content is Available in the Text. Ischemia and anoxia-induced mitochondrial impairment may be a key factor leading to heart injury during myocardial infarction (MI). Calpain 1 and 2 are involved in the MI-induced mitochondria injury. G protein-coupled receptor 35 (GPR35) could be triggered by hypoxia. Whether or not GPR35 regulates calpain 1/2 in the pathogenesis of MI is still unclear. In this study, we determined that MI increases GPR35 expression in myocardial tissue. Suppression of GPR35 protects heart from MI injury in mice through reduction of reactive oxygen species activity and mitochondria-dependent apoptosis. Further studies show that GPR35 regulates calpain 1/2. Suppression of GPR35 reduces the expression and activity of calpain 1/2, and alleviates calpain 1/2-associated mitochondrial injury to preserve cardiac function. Based on these data, we conclude that a functional inhibition of GPR35 downregulates calpain 1/2 and contributes to maintenance of cardiac function under pathologic conditions with mitochondrial disorder. In conclusion, our study showed that the identified regulation by GPR35 of calpain 1/2 has important implications for the pathogenesis of MI. Targeting the action of GPR35 and calpain 1/2 in mitochondria presents a potential therapeutic intervention for MI.
Collapse
|
35
|
Li S, Qian X, Gong J, Chen J, Tu W, Chen X, Chu M, Yang G, Li L, Jiang S. Exercise Training Reverses Lipotoxicity-induced Cardiomyopathy by Inhibiting HMGCS2. Med Sci Sports Exerc 2021; 53:47-57. [PMID: 32826638 DOI: 10.1249/mss.0000000000002453] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE This study aimed to determine the effect of exercise training on preventing lipotoxic cardiomyopathy and to investigate the role of the 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) and miR-344g-5p in cardiomyocytes. METHODS Male C57BL/6 mice were fed a 60% high-fat diet (HFD) for 12 wk then began swimming exercise or remained sedentary for 8 wk. Thereafter, cardiac function was assessed by echocardiography, and heart tissue and plasma were collected for further measurements. The molecular mechanism of exercise was investigated after treating Hmgcs2 siRNA in palmitate-induced neonatal mouse cardiomyocytes. RESULTS HFD induced myocardial hypertrophy and fibrosis and reduced coronary reserve and cardiac function. HMGCS2 levels increased, but junctophilin-2 (JPH2) levels decreased in HFD mice hearts. Such effects were attenuated by swimming exercise. Mechanistically, Hmgcs2 silencing prevented apoptosis and caspase-3 cleavage and elevated the expression of JPH2 in palmitate-stimulated cardiomyocytes. In addition, exercise promoted miR-344g-5p expression in HFD hearts. The overexpression of miR-344g-5p by chemical mimic reduced HMGCS2, apoptosis, and caspase-3 cleavage and elevated JPH2 expression in palmitate-induced cardiomyocytes. CONCLUSION Our results suggest that exercise limits lipid metabolic disorder, cardiac hypertrophy, and fibrosis and aids in the prevention of lipotoxic cardiomyopathy. Exercise-mediated cardioprotection by upregulating miR-344g-5p, which targets Hmgcs2 mRNA, prohibits HMGCS2 upregulation and thus lipotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maoping Chu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, CHINA
| | | | - Lei Li
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, CHINA
| | | |
Collapse
|
36
|
Liang L, Li H, Cao T, Qu L, Zhang L, Fan GC, Greer PA, Li J, Jones DL, Peng T. Calpain activation mediates microgravity-induced myocardial abnormalities in mice via p38 and ERK1/2 MAPK pathways. J Biol Chem 2020; 295:16840-16851. [PMID: 32989050 PMCID: PMC7864076 DOI: 10.1074/jbc.ra119.011890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
The human cardiovascular system has adapted to function optimally in Earth's 1G gravity, and microgravity conditions cause myocardial abnormalities, including atrophy and dysfunction. However, the underlying mechanisms linking microgravity and cardiac anomalies are incompletely understood. In this study, we investigated whether and how calpain activation promotes myocardial abnormalities under simulated microgravity conditions. Simulated microgravity was induced by tail suspension in mice with cardiomyocyte-specific deletion of Capns1, which disrupts activity and stability of calpain-1 and calpain-2, and their WT littermates. Tail suspension time-dependently reduced cardiomyocyte size, heart weight, and myocardial function in WT mice, and these changes were accompanied by calpain activation, NADPH oxidase activation, and oxidative stress in heart tissues. The effects of tail suspension were attenuated by deletion of Capns1 Notably, the protective effects of Capns1 deletion were associated with the prevention of phosphorylation of Ser-345 on p47 phox and attenuation of ERK1/2 and p38 activation in hearts of tail-suspended mice. Using a rotary cell culture system, we simulated microgravity in cultured neonatal mouse cardiomyocytes and observed decreased total protein/DNA ratio and induced calpain activation, phosphorylation of Ser-345 on p47 phox , and activation of ERK1/2 and p38, all of which were prevented by calpain inhibitor-III. Furthermore, inhibition of ERK1/2 or p38 attenuated phosphorylation of Ser-345 on p47 phox in cardiomyocytes under simulated microgravity. This study demonstrates for the first time that calpain promotes NADPH oxidase activation and myocardial abnormalities under microgravity by facilitating p47 phox phosphorylation via ERK1/2 and p38 pathways. Thus, calpain inhibition may be an effective therapeutic approach to reduce microgravity-induced myocardial abnormalities.
Collapse
Affiliation(s)
- Liwen Liang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Huili Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| | - Lulu Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jianmin Li
- Department of Pathology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Douglas L Jones
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; Lawson Health Research Institute of London Health Sciences Centre, London, Ontario, Canada; Department of Medicine, Western University, London, Ontario, Canada
| | - Tianqing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; Lawson Health Research Institute of London Health Sciences Centre, London, Ontario, Canada; Department of Medicine, Western University, London, Ontario, Canada.
| |
Collapse
|
37
|
Forini F, Canale P, Nicolini G, Iervasi G. Mitochondria-Targeted Drug Delivery in Cardiovascular Disease: A Long Road to Nano-Cardio Medicine. Pharmaceutics 2020; 12:E1122. [PMID: 33233847 PMCID: PMC7699942 DOI: 10.3390/pharmaceutics12111122] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) represents a major threat for human health. The available preventive and treatment interventions are insufficient to revert the underlying pathological processes, which underscores the urgency of alternative approaches. Mitochondria dysfunction plays a key role in the etiopathogenesis of CVD and is regarded as an intriguing target for the development of innovative therapies. Oxidative stress, mitochondrial permeability transition pore opening, and excessive fission are major noxious pathways amenable to drug therapy. Thanks to the advancements of nanotechnology research, several mitochondria-targeted drug delivery systems (DDS) have been optimized with improved pharmacokinetic and biocompatibility, and lower toxicity and antigenicity for application in the cardiovascular field. This review summarizes the recent progress and remaining obstacles in targeting mitochondria as a novel therapeutic option for CVD. The advantages of nanoparticle delivery over un-targeted strategies are also discussed.
Collapse
Affiliation(s)
- Francesca Forini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Paola Canale
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
- Department of Biology, University of Pisa, Via Volta 4 bis, 56126 Pisa, Italy
| | - Giuseppina Nicolini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Giorgio Iervasi
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| |
Collapse
|
38
|
Zheng J, Lu C. Oxidized LDL Causes Endothelial Apoptosis by Inhibiting Mitochondrial Fusion and Mitochondria Autophagy. Front Cell Dev Biol 2020; 8:600950. [PMID: 33262989 PMCID: PMC7686653 DOI: 10.3389/fcell.2020.600950] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL)-induced endothelial dysfunction is an initial step toward atherosclerosis development. Mitochondria damage correlates with ox-LDL-induced endothelial injury through an undefined mechanism. We explored the role of optic atrophy 1 (Opa1)-related mitochondrial fusion and mitophagy in ox-LDL-treated endothelial cells, focusing on mitochondrial damage and cell apoptosis. Oxidized low-density lipoprotein treatment reduced endothelial cell viability by increasing apoptosis. Endothelial cell proliferation and migration were also impaired by ox-LDL. At the molecular level, mitochondrial dysfunction was induced by ox-LDL, as demonstrated by decreased mitochondrial membrane potential, increased mitochondrial reactive oxygen species production, augmented mitochondrial permeability transition pore openings, and elevated caspase-3/9 activity. Mitophagy and mitochondrial fusion were also impaired by ox-LDL. Opa1 overexpression reversed this effect by increasing endothelial cell viability and decreasing apoptosis. Interestingly, inhibition of mitophagy or mitochondrial fusion through transfection of siRNAs against Atg5 or Mfn2, respectively, abolished the protective effects of Opa1. Our results illustrate the role of Opa1-related mitochondrial fusion and mitophagy in sustaining endothelial cell viability and mitochondrial homeostasis under ox-LDL stress.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
39
|
Xin T, Lu C, Zhang J, Wen J, Yan S, Li C, Zhang F, Zhang J. Oxidized LDL Disrupts Metabolism and Inhibits Macrophage Survival by Activating a miR-9/Drp1/Mitochondrial Fission Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8848930. [PMID: 33204400 PMCID: PMC7655251 DOI: 10.1155/2020/8848930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction is associated with macrophage damage, but the role of mitochondrial fission in macrophage cholesterol metabolism is not fully understood. In this study, we explored the influences of miR-9 and mitochondrial fission on macrophage viability and cholesterol metabolism. Macrophages were incubated with oxidized low-density lipoprotein (ox-LDL) in vitro, after which mitochondrial fission, cell viability, and cholesterol metabolism were examined using qPCR, ELISAs, and immunofluorescence. ox-LDL treatment significantly increased Drp1-associated mitochondrial fission. Transfection of Drp1 siRNA significantly reduced cell death, attenuated oxidative stress, and inhibited inflammatory responses in ox-LDL-treated macrophages. Interestingly, inhibition of Drp1-related mitochondrial fission also improved cholesterol metabolism by balancing the transcription of cholesterol influx/efflux enzymes. We also found that miR-9 was downregulated in ox-LDL-treated macrophages, and administration of a miR-9 mimic decreased Drp1 transcription and mitochondrial fission, as well as its effects. These results indicate that signaling via the novel miR-9/Drp1/mitochondrial fission axis is a key determinant of macrophage viability and cholesterol metabolism.
Collapse
Affiliation(s)
- Ting Xin
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Jing Zhang
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Jiaxin Wen
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Shuangbin Yan
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Chao Li
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Feng Zhang
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Jin Zhang
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
40
|
Thompson J, Maceyka M, Chen Q. Targeting ER stress and calpain activation to reverse age-dependent mitochondrial damage in the heart. Mech Ageing Dev 2020; 192:111380. [PMID: 33045249 DOI: 10.1016/j.mad.2020.111380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Severity of cardiovascular disease increases markedly in elderly patients. In addition, many therapeutic strategies that decrease cardiac injury in adult patients are invalid in elderly patients. Thus, it is a challenge to protect the aged heart in the context of underlying chronic or acute cardiac diseases including ischemia-reperfusion injury. The cause(s) of this age-related increased damage remain unknown. Aging impairs the function of the mitochondrial electron transport chain (ETC), leading to decreased energy production and increased oxidative stress due to generation of reactive oxygen species (ROS). Additionally, ROS-induced oxidative stress can increase cardiac injury during ischemia-reperfusion by potentiating mitochondrial permeability transition pore (MPTP) opening. Aging leads to increased endoplasmic reticulum (ER) stress, which contributes to mitochondrial dysfunction, including reduced function of the ETC. The activation of both cytosolic and mitochondrial calcium-activated proteases termed calpains leads to mitochondrial dysfunction and decreased ETC function. Intriguingly, mitochondrial ROS generation also induces ER stress, highlighting the dynamic interaction between mitochondria and ER. Here, we discuss the role of ER stress in sensitizing and potentiating mitochondrial dysfunction in response to ischemia-reperfusion, and the promising potential therapeutic benefit of inhibition of ER stress and / or calpains to attenuate cardiac injury in elderly patients.
Collapse
Affiliation(s)
- Jeremy Thompson
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Michael Maceyka
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| |
Collapse
|
41
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Cardiomyocyte specific deletion of p53 decreases cell injury during ischemia-reperfusion: Role of Mitochondria. Free Radic Biol Med 2020; 158:162-170. [PMID: 32711023 PMCID: PMC7484321 DOI: 10.1016/j.freeradbiomed.2020.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
p53 is a tumor suppressor protein with a very low content in the basal condition, but the content rapidly rises during stress conditions including ischemia-reperfusion. An increase in p53 content increases cardiac injury during ischemia-reperfusion. Since mitochondrial damage plays a key role in cardiac injury during ischemia-reperfusion, we asked if genetic ablation of p53 decreases cardiac injury by protecting mitochondria. Isolated, perfused hearts from cardiac specific p53 deletion or wild type underwent 25 min global ischemia at 37 °C and 60 min reperfusion. At the end of reperfusion, hearts were harvested for infarct size measurement. In separate groups, cardiac mitochondria were isolated at 30 min reperfusion. Time control hearts were buffer-perfused without ischemia. Compared to wild type, deletion of p53 improved cardiac functional recovery and decreased infarct size following ischemia-reperfusion. Oxidative phosphorylation was improved in p53 deletion mitochondria following ischemia-reperfusion compared to wild type. The net release of ROS generation from wild type but not in p53 deletion mitochondria was increased following ischemia-reperfusion. Peroxiredoxin 3 (PRDX 3) content was higher in p53 deletion than that in wild type, indicating that p53 deletion increases a key antioxidant. Ischemia-reperfusion led to increased spectrin cleavage (a marker of cytosolic calpain1 activation) in wild type but not in p53 deletion mice. Ischemia-reperfusion increased the truncation of mature AIF (apoptosis inducing factor, an indicator of mitochondrial calpain1 activation) in wild type but not in p53 deletion mice. The loss of cytochrome c from mitochondria was also decreased in p53 deletion following ischemia-reperfusion. Bcl-2 content was decreased in wild type but not in p53 deletion following reperfusion, suggesting that depletion of bcl-2 contributes to permeabilization of the mitochondrial outer membrane. Thus, deletion of p53 decreases cardiac injury by protecting mitochondria through attenuation of oxidative stress and calpain activation during ischemia-reperfusion.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA; Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA; McGuire Department of Veterans Affairs Medical Center, Richmond, VA, 23298, USA
| |
Collapse
|
42
|
Zhu H, Zhao M, Chen Y, Li D. Bcl-2-associated athanogene 5 overexpression attenuates catecholamine-induced vascular endothelial cell apoptosis. J Cell Physiol 2020; 236:946-957. [PMID: 32583430 DOI: 10.1002/jcp.29904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/12/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
Bcl-2 associated athanogene 5 (Bag5) is a novel endoplasmic reticulum (ER) regulator. However, its role in catecholamine-induced endothelial cells damage has not been fully understood. In our study, catecholamine was used to mimic hypertension-related endothelial cell damage. Then, western blots, enzyme-linked immunosorbent assay, immunofluorescence, quantitative polymerase chain reaction and pathway analysis were conducted to analyze the role of Bag5 in endothelial cell damage in response to catecholamine. Our results indicated that the endothelial cell viability was impaired by catecholamine. Interestingly, Bag5 overexpression significantly reversed endothelial cell viability. Mechanistically, Bag5 overexpression inhibited ER stress, attenuated oxidative stress and repressed inflammation in catecholamine-treated endothelial cells. These beneficial effects finally contributed to endothelial cell survival under catecholamine treatment. Pathway analysis demonstrated that Bag5 was under the control of the mitogen-activated protein kinase (MAPK)-extracellular-signal-regulated kinase (ERK) signaling pathway. Reactivation of the MAPK-ERK pathway could upregulate Bag5 expression and thus promote endothelial cell survival through inhibiting oxidative stress, ER stress, and inflammation. Altogether, our results illustrate that Bag5 overexpression sustains endothelial cell survival in response to catecholamine treatment. This finding identifies Bag5 downregulation and the inactivated MAPK-ERK pathway as potential mechanisms underlying catecholamine-induced endothelial cell damage.
Collapse
Affiliation(s)
- Hang Zhu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Maoxiang Zhao
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dandan Li
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
43
|
Quader M, Akande O, Toldo S, Cholyway R, Kang L, Lesnefsky EJ, Chen Q. The Commonalities and Differences in Mitochondrial Dysfunction Between ex vivo and in vivo Myocardial Global Ischemia Rat Heart Models: Implications for Donation After Circulatory Death Research. Front Physiol 2020; 11:681. [PMID: 32714203 PMCID: PMC7344325 DOI: 10.3389/fphys.2020.00681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022] Open
Abstract
Heart transplantation is the ultimate treatment option for patients with advanced heart failure. Since hearts from donation after brain death (DBD) donors are limited, donation after circulatory death (DCD) donor hearts could be another source for heart transplantation. DCD process involves ischemia-reperfusion (IR) injury. Mitochondrial dysfunction contributes to IR and is well established in the ex vivo (buffer perfused) ischemia animal model. However, DCD hearts undergo in vivo ischemia with a variable "ischemic period." In addition, the DCD hearts are exposed to an intense catecholamine surge that is not seen with ex vivo perfused hearts. Thus, the severity of mitochondrial damage in in vivo ischemia hearts could differ from the ex vivo ischemia hearts even following the same period of ischemia. The aim of our current study is to identify the mitochondrial dysfunction in DCD hearts and propose strategies to protect mitochondria. Adult Sprague Dawley rat hearts underwent in vivo or ex vivo ischemia for 25 min. Subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) were isolated from hearts following ischemia. We found that both ex vivo and in vivo ischemia led to decreased oxidative phosphorylation in SSM and IFM compared to time control or DBD hearts. The proportion of damage to SSM and IFM, including proton leak through the inner membrane, was higher with ex vivo ischemia compare to in vivo ischemia. Time control hearts showed a decrease in SSM and IFM function compared to DBD hearts. The calcium retention capacity (CRC) was also decreased in SSM and IFM with ex vivo and in vivo ischemia, indicating that ischemic damage to mitochondria sensitizes mitochondrial permeability transition pores (MPTP). Our study found differential mitochondrial damage between the in vivo ischemia and the ex vivo ischemia setup. Therefore, consideration should be given to the mode of ischemia while evaluating and testing myocardial protective interventions targeting mitochondria to reduce IR injury in hearts.
Collapse
Affiliation(s)
- Mohammed Quader
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, United States
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA, United States
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Oluwatoyin Akande
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stefano Toldo
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Renee Cholyway
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - Le Kang
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States
| | - Edward J. Lesnefsky
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, United States
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Qun Chen
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
44
|
Gong X, Yu Z, Huang Z, Xie L, Zhou N, Wang J, Liang Y, Qin S, Nie Z, Wei L, Li Z, Wang S, Su Y, Ge J. Protective effects of cardiac resynchronization therapy in a canine model with experimental heart failure by improving mitochondrial function: a mitochondrial proteomics study. J Interv Card Electrophysiol 2020; 61:123-135. [DOI: 10.1007/s10840-020-00768-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
|
45
|
Fu Z, Jiao Y, Wang J, Zhang Y, Shen M, Reiter RJ, Xi Q, Chen Y. Cardioprotective Role of Melatonin in Acute Myocardial Infarction. Front Physiol 2020; 11:366. [PMID: 32411013 PMCID: PMC7201093 DOI: 10.3389/fphys.2020.00366] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a pleiotropic, indole secreted, and synthesized by the human pineal gland. Melatonin has biological effects including anti-apoptosis, protecting mitochondria, anti-oxidation, anti-inflammation, and stimulating target cells to secrete cytokines. Its protective effect on cardiomyocytes in acute myocardial infarction (AMI) has caused widespread interest in the actions of this molecule. The effects of melatonin against oxidative stress, promoting autophagic repair of cells, regulating immune and inflammatory responses, enhancing mitochondrial function, and relieving endoplasmic reticulum stress, play crucial roles in protecting cardiomyocytes from infarction. Mitochondrial apoptosis and dysfunction are common occurrence in cardiomyocyte injury after myocardial infarction. This review focuses on the targets of melatonin in protecting cardiomyocytes in AMI, the main molecular signaling pathways that melatonin influences in its endogenous protective role in myocardial infarction, and the developmental prospect of melatonin in myocardial infarction treatment.
Collapse
Affiliation(s)
- Zhenhong Fu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Jiao
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jihang Wang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingzhi Shen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
- San Antonio Cellular Therapeutics Institute, Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, United States
| | - Qing Xi
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
Mitochondrial ROS-Modulated mtDNA: A Potential Target for Cardiac Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9423593. [PMID: 32308810 PMCID: PMC7139858 DOI: 10.1155/2020/9423593] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 02/05/2023]
Abstract
Mitochondrial DNA (mtDNA) damage is associated with the development of cardiovascular diseases. Cardiac aging plays a central role in cardiovascular diseases. There is accumulating evidence linking cardiac aging to mtDNA damage, including mtDNA mutation and decreased mtDNA copy number. Current wisdom indicates that mtDNA is susceptible to damage by mitochondrial reactive oxygen species (mtROS). This review presents the cellular and molecular mechanisms of cardiac aging, including autophagy, chronic inflammation, mtROS, and mtDNA damage, and the effects of mitochondrial biogenesis and oxidative stress on mtDNA. The importance of nucleoid-associated proteins (Pol γ), nuclear respiratory factors (NRF1 and NRF2), the cGAS-STING pathway, and the mitochondrial biogenesis pathway concerning the development of mtDNA damage during cardiac aging is discussed. Thus, the repair of damaged mtDNA provides a potential clinical target for preventing cardiac aging.
Collapse
|
47
|
Xin T, Lu C. Irisin activates Opa1-induced mitophagy to protect cardiomyocytes against apoptosis following myocardial infarction. Aging (Albany NY) 2020; 12:4474-4488. [PMID: 32155590 PMCID: PMC7093202 DOI: 10.18632/aging.102899] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Myocardial infarction is characterized by sudden ischemia and cardiomyocyte death. Mitochondria have critical roles in regulating cardiomyocyte viability and can sustain damage under ischemic conditions. Mitophagy is a mechanism by which damaged mitochondria are removed by autophagy to maintain mitochondrial structure and function. We investigated the role of the dynamin-like GTPase optic atrophy 1 (Opa1) in mitophagy following myocardial infarction. Opa1 expression was downregulated in infarcted hearts in vivo and in hypoxia-treated cardiomyocytes in vitro. We found that Opa1 overexpression protected cardiomyocytes against hypoxia-induced damage and enhanced cell viability by inducing mitophagy. Opa1-induced mitophagy was activated by treatment with irisin, which protected cardiomyocytes from further damage following myocardial infarction. Opa1 knockdown abolished the cardioprotective effects of irisin resulting in an enhanced inflammatory response, increased oxidative stress, and mitochondrial dysfunction in cardiomyocytes. Our data indicate that Opa1 plays an important role in maintaining cardiomyocyte viability and mitochondrial function following myocardial infarction by inducing mitophagy. Irisin can activate Opa1-induced mitophagy and protect against cardiomyocyte injury following myocardial infarction.
Collapse
Affiliation(s)
- Ting Xin
- The First Center Clinic College of Tianjin Medical University, Tianjin First Center Hospital, Tianjin, China.,Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
48
|
Mohsin AA, Thompson J, Hu Y, Hollander J, Lesnefsky EJ, Chen Q. Endoplasmic reticulum stress-induced complex I defect: Central role of calcium overload. Arch Biochem Biophys 2020; 683:108299. [PMID: 32061585 DOI: 10.1016/j.abb.2020.108299] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND ER (endoplasmic reticulum) stress leads to decreased complex I activity in cardiac mitochondria. The aim of the current study is to explore the potential mechanisms by which ER stress leads to the complex I defect. ER stress contributes to intracellular calcium overload and oxidative stress that are two key factors to induce mitochondrial dysfunction. Since oxidative stress is often accompanied by intracellular calcium overload during ER stress in vivo, the role of oxidative stress and calcium overload in mitochondrial dysfunction was studied using in vitro models. ER stress results in intracellular calcium overload that favors activation of calcium-dependent calpains. The contribution of mitochondrial calpain activation in ER stress-mediated complex I damage was studied. METHODS Thapsigargin (THAP) was used to induce acute ER stress in H9c2 cells and C57BL/6 mice. Exogenous calcium (25 μM) and H2O2 (100 μM) were used to induce modest calcium overload and oxidative stress in isolated mitochondria. Calpain small subunit 1 (CAPNS1) is essential to maintain calpain 1 and calpain 2 (CPN1/2) activities. Deletion of CAPNS1 eliminates the activities of CPN1/2. Wild type and cardiac-specific CAPNS1 deletion mice were used to explore the role of CPN1/2 activation in calcium-induced mitochondrial damage. RESULTS In isolated mitochondria, exogenous calcium but not H2O2 treatment led to decreased oxidative phosphorylation, supporting that calcium overload contributes a key role in the mitochondrial damage. THAP treatment of H9c2 cells decreased respiration selectively with complex I substrates. THAP treatment activated cytosolic and mitochondrial CPN1/2 in C57BL/6 mice and led to degradation of complex I subunits including NDUFS7. Calcium treatment decreased NDUFS7 content in wild type but not in CAPNS1 knockout mice. CONCLUSION ER stress-mediated activation of mitochondria-localized CPN1/2 contributes to complex I damage by cleaving component subunits.
Collapse
Affiliation(s)
- Ahmed A Mohsin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Radiological Techniques Department, Health and Medical Technology College-Baghdad, Middle Technical University (MTU), Iraq
| | - Jeremy Thompson
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - John Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, 25606, USA; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 25606, USA
| | - Edward J Lesnefsky
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Medical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| | - Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
49
|
Xing J, Wang Z, Xu H, Liu C, Wei Z, Zhao L, Ren L. Pak2 inhibition promotes resveratrol-mediated glioblastoma A172 cell apoptosis via modulating the AMPK-YAP signaling pathway. J Cell Physiol 2020; 235:6563-6573. [PMID: 32017068 DOI: 10.1002/jcp.29515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 01/08/2020] [Indexed: 12/28/2022]
Abstract
As a polyphenolic compound, resveratrol (Res) is widely present in a variety of plants. Previous studies have shown that Res can inhibit various tumors. However, its role in c remains largely unexplored. In the present study, we first demonstrated that Res inhibited cell viability and induced apoptosis of glioblastoma A172 cell. Further experiments showed that Res induced mitochondrial dysfunction and activated the activity of caspase-9. Functional studies have found that Res treatment is associated with an increase in the expression of Pak2. Interestingly, inhibition of Pak2 could further augment the proapoptotic effect of Res. Mechanistically, Pak2 inhibition induced reactive oxygen species overproduction, mitochondria-JNK pathway activation, and AMPK-YAP axis suppression. However, overexpression of YAP could abolish the anticancer effects of Res and Pak2 inhibition, suggesting a necessary role played by the AMPK-YAP pathway in regulating cancer-suppressive actions of Res and Pak2 inhibition. Altogether, our results indicated that Res in combination with Pak2 inhibition could further enhance the anticancer property of Res and this effect is mediated via the AMPK-YAP pathway.
Collapse
Affiliation(s)
- Jin Xing
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Hao Xu
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Chaobo Liu
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Zilong Wei
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Liang Zhao
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Zhang M, Zhou D, Ouyang Z, Yu M, Jiang Y. Sphingosine kinase 1 promotes cerebral ischemia-reperfusion injury through inducing ER stress and activating the NF-κB signaling pathway. J Cell Physiol 2020; 235:6605-6614. [PMID: 31985036 DOI: 10.1002/jcp.29546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/15/2020] [Indexed: 01/02/2023]
Abstract
Endoplasm reticulum stress and inflammation response have been found to be linked to cerebral ischemia-reperfusion (IR) injury. Sphingosine kinase 1 (SPHK1) has been reported to be a novel endoplasm reticulum regulator. The aim of our study is to figure out the role of SPHK1 in cerebral IR injury and verify whether it has an ability to regulate inflammation and endoplasm reticulum stress. Hydrogen peroxide was used to induce cerebral IR injury. Enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, western blots, and immunofluorescence were used to measure the alterations of cell viability, inflammation response, and endoplasm reticulum stress. The results demonstrated that after exposure to hydrogen peroxide, cell viability was reduced whereas SPHK1 expression was significantly elevated. Knockdown of SPHK1 attenuated hydrogen peroxide-mediated cell death and reversed cell viability. Our data also demonstrated that SPHK1 deletion reduced endoplasm reticulum stress and alleviated inflammation response in hydrogen peroxide-treated cells. In addition, we also found that SHPK1 modulated endoplasm reticulum stress and inflammation response to through the NF-κB signaling pathway. Inhibition of NF-κB signaling pathway has similar results when compared with the cells with SPHK1 deletion. Altogether, our results demonstrated that SPHK1 upregulation, induced by hydrogen peroxide, is responsible for cerebral IR injury through inducing endoplasm reticulum stress and inflammation response in a manner working through the NF-κB signaling pathway. This finding provides new insight into the molecular mechanism to explain the neuron death induced by cerebral IR injury.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dingzhou Zhou
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhu Ouyang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqiang Yu
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|