1
|
Zhao G, Zhang A, Chen X, Xiang G, Jiang T, Zhao X. Barnacle inspired strategy combined with solvent exchange for enhancing wet adhesion of hydrogels to promote seawater-immersed wound healing. Bioact Mater 2024; 41:46-60. [PMID: 39101027 PMCID: PMC11296073 DOI: 10.1016/j.bioactmat.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Hydrogels are promising materials for wound protection, but in wet, or underwater environments, the hydration layer and swelling of hydrogels can seriously reduce adhesion and limit their application. In this study, inspired by the structural characteristics of strong barnacle wet adhesion and combined with solvent exchange, a robust wet adhesive hydrogel (CP-Gel) based on chitosan and 2-phenoxyethyl acrylate was obtained by breaking the hydration layer and resisting swelling. As a result, CP-Gel exhibited strong wet adhesion to various interfaces even underwater, adapted to joint movement and skin twisting, resisted sustained rushing water, and sealed damaged organs. More importantly, on-demand detachment and controllable adhesion were achieved by promoting swelling. In addition, CP-Gel with good biosafety significantly promotes seawater-immersed wound healing and is promising for use in water-contact wound care, organ sealing, and marine emergency rescue.
Collapse
Affiliation(s)
- Guiyuan Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Aijia Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guangli Xiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
2
|
Yang Y, Wang W, Zeng Q, Wang N, Li W, Chen B, Guan Q, Li C, Li W. Fabricating oxygen self-supplying 3D printed bioactive hydrogel scaffold for augmented vascularized bone regeneration. Bioact Mater 2024; 40:227-243. [PMID: 38973993 PMCID: PMC11226730 DOI: 10.1016/j.bioactmat.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Limited cells and factors, inadequate mechanical properties, and necrosis of defects center have hindered the wide clinical application of bone-tissue engineering scaffolds. Herein, we construct a self-oxygenated 3D printed bioactive hydrogel scaffold by integrating oxygen-generating nanoparticles and hybrid double network hydrogel structure. The hydrogel scaffold possesses the characteristics of extracellular matrix; Meanwhile, the fabricated hybrid double network structure by polyacrylamide and CaCl2-crosslinked sodium carboxymethylcellulose endows the hydrogel favorable compressive strength and 3D printability. Furthermore, the O2 generated by CaO2 nanoparticles encapsulated in ZIF-8 releases steadily and sustainably because of the well-developed microporous structure of ZIF-8, which can significantly promote cell viability and proliferation in vitro, as well as angiogenesis and osteogenic differentiation with the assistance of Zn2+. More significantly, the synergy of O2 and 3D printed pore structure can prevent necrosis of defects center and facilitate cell infiltration by providing cells the nutrients and space they need, which can further induce vascular network ingrowth and accelerate bone regeneration in all areas of the defect in vivo. Overall, this work provides a new avenue for preparing cell/factor-free bone-tissue engineered scaffolds that possess great potential for tissue regeneration and clinical alternative.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Wanmeng Wang
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, School of Stomatology, Tianjin Medical University, Tianjin, 300071, PR China
| | - Qianrui Zeng
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Ning Wang
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, School of Stomatology, Tianjin Medical University, Tianjin, 300071, PR China
| | - Wenbo Li
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Bo Chen
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, School of Stomatology, Tianjin Medical University, Tianjin, 300071, PR China
| | - Qingxin Guan
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Changyi Li
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, School of Stomatology, Tianjin Medical University, Tianjin, 300071, PR China
| | - Wei Li
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
3
|
Pan X, Li X, Wang Z, Ni Y, Wang Q. Nanolignin-Facilitated Robust Hydrogels. ACS NANO 2024; 18:24095-24104. [PMID: 39150717 DOI: 10.1021/acsnano.4c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Recently, certain challenges and accompanying drawbacks have emerged in the preparation of high-strength and tough polymer hydrogels. Insights from wood science highlight the role of the intertwined molecular structure of lignin and crystalline cellulose in contributing to wood's strength. Herein, we immersed prestretched poly(vinyl alcohol) (PVA) polymer hydrogels into a solution of nanosized lignosulfonate sodium (LS), a water-soluble anionic polyelectrolyte, to creatively reconstruct this similar structure at the molecular scale in hydrogels. The nanosized LS effectively fixed and bundled the prestretched PVA polymers while inducing the formation of dense crystalline domains within the polymer matrix. Consequently, the interwoven structure of crystalline PVA and LS conferred good strength to the composite hydrogels, exhibiting a tensile strength of up to ∼23 MPa, a fracture strain of ∼350%, Young's modulus of ∼17 MPa, toughness of ∼47 MJ/m3, and fracture energy of ∼42 kJ/m2. This hydrogel far outperformed previous hydrogels composed directly of lignin and PVA (tensile strength <1.5 MPa). Additionally, the composite hydrogels demonstrated excellent antifreezing properties (<-80 °C). Notably, the LS-assisted reconstruction technology offers opportunities for the secondary fixation of PVA hydrogel shapes and high-strength welding of hydrogel components. This work introduces an approach for the high-value utilization of LS, a green byproduct of pulp production. LS's profound biomimetic strategy will be applied in multifunctional hydrogel fields.
Collapse
Affiliation(s)
- Xiaofeng Pan
- Anhui Provincial Engineering Center for High-Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, P.R. China
| | - Xiang Li
- Anhui Provincial Engineering Center for High-Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Zhongkai Wang
- Anhui Provincial Engineering Center for High-Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Qinhua Wang
- Anhui Provincial Engineering Center for High-Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| |
Collapse
|
4
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
5
|
Serairi L, Santillo C, Basset P, Lavorgna M, Pace G. Boosting Contact Electrification by Amorphous Polyvinyl Alcohol Endowing Improved Contact Adhesion and Electrochemical Capacitance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403366. [PMID: 38651355 DOI: 10.1002/adma.202403366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Ion conductive hydrogels are relevant components in wearable, biocompatible, and biodegradable electronics. Polyvinyl-alcohol (PVA) homopolymer is often the favored choice for integration into supercapacitors and energy harvesters as in sustainable triboelectric nanogenerators (TENGs). However, to further improve hydrogel-based TENGs, a deeper understanding of the impact of their composition and structure on devices performance is necessary. Here, it is shown how ionic hydrogels based on an amorphous-PVA (a-PVA) allow to fabricate TENGs that outperform the one based on the homopolymer. When used as tribomaterial, the Li-doped a-PVA allows to achieve a twofold higher pressure sensitivity compared to PVA, and to develop a conformable e-skin. When used as an ionic conductor encased in an elastomeric tribomaterial, 100 mW cm-2 average power is obtained, providing 25% power increase compared to PVA. At the origin of such enhancement is the increased softness, stronger adhesive contact, higher ionic mobility (> 3,5-fold increase), and long-term stability achieved with Li-doped a-PVA. These improvements are attributed to the high density of hydroxyl groups and amorphous structure present in the a-PVA, enabling a strong binding to water molecules. This work discloses novel insights on those parameters allowing to develop easy-processable, stable, and highly conductive hydrogels for integration in conformable, soft, and biocompatible TENGs.
Collapse
Affiliation(s)
- Lisa Serairi
- Univ Gustave Eiffel, CNRS, ESYCOM, Marne-la-Vallée, F-77454, France
| | - Chiara Santillo
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, Portici, 80055, Italy
| | - Philippe Basset
- Univ Gustave Eiffel, CNRS, ESYCOM, Marne-la-Vallée, F-77454, France
| | - Marino Lavorgna
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, Portici, 80055, Italy
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Previati, 1/E, Lecco, 23900, Italy
| | - Giuseppina Pace
- Institute for Microelectronics and Microsystems, National Research Council (IMM-CNR), Via C. Olivetti 2, Agrate, 20864, Italy
| |
Collapse
|
6
|
Lu P, Liao X, Guo X, Cai C, Liu Y, Chi M, Du G, Wei Z, Meng X, Nie S. Gel-Based Triboelectric Nanogenerators for Flexible Sensing: Principles, Properties, and Applications. NANO-MICRO LETTERS 2024; 16:206. [PMID: 38819527 PMCID: PMC11143175 DOI: 10.1007/s40820-024-01432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
The rapid development of the Internet of Things and artificial intelligence technologies has increased the need for wearable, portable, and self-powered flexible sensing devices. Triboelectric nanogenerators (TENGs) based on gel materials (with excellent conductivity, mechanical tunability, environmental adaptability, and biocompatibility) are considered an advanced approach for developing a new generation of flexible sensors. This review comprehensively summarizes the recent advances in gel-based TENGs for flexible sensors, covering their principles, properties, and applications. Based on the development requirements for flexible sensors, the working mechanism of gel-based TENGs and the characteristic advantages of gels are introduced. Design strategies for the performance optimization of hydrogel-, organogel-, and aerogel-based TENGs are systematically summarized. In addition, the applications of gel-based TENGs in human motion sensing, tactile sensing, health monitoring, environmental monitoring, human-machine interaction, and other related fields are summarized. Finally, the challenges of gel-based TENGs for flexible sensing are discussed, and feasible strategies are proposed to guide future research.
Collapse
Affiliation(s)
- Peng Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
| | - Xiaofang Liao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Xiaoyao Guo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yanhua Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Mingchao Chi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guoli Du
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Zhiting Wei
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
7
|
Morimoto N, Murata A, Yamamoto Y, Narita F, Yamamoto M. Adhesive Sulfabetaine Polymer Hydrogels for the Sandwich Cell Culture. ACS OMEGA 2024; 9:11942-11949. [PMID: 38496950 PMCID: PMC10938316 DOI: 10.1021/acsomega.3c09708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Sandwich culture systems are techniques that cultivate cells by sandwiching them between the top and bottom substrates. Since the substrates can be separated, the system is expected to be applied to the construct layering of patterned cells and to the isolation of stacked cells. In this study, we prepared hydrogels composed of zwitterionic sulfabetaine polymers, poly[2-(2-(methacryloyloxyethyl)dimethylammonio)ethyl-1-sulfate] (PZBMA). The ZBMA homopolymers have been shown to form aggregates in aqueous solutions due to their intermolecular interactions. The water content of the PZBMA hydrogels in water was ∼70% regardless of N,N'-methylenebis(acrylamide), BIS, content as the cross-linker. The results indicated that the intermolecular interaction contributed more to the swelling behaviors than the chemical cross-linker. However, PZBMA hydrogels with 0.1 mol % BIS showed not only high elongation (∼850%) properties but also high adhesiveness and self-healing properties. When this PZBMA hydrogel was impregnated with collagen and subjected to sandwich culture using Madin-Darby canine kidney (MDCK) cells, a three-dimensional morphology of MDCK cell aggregates was constructed. Such a sulfabetaine hydrogel is expected to be developed for regenerative medicine.
Collapse
Affiliation(s)
- Nobuyuki Morimoto
- Department
of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02, Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Department
of Materials for Energy, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Atsuki Murata
- Department
of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02, Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuta Yamamoto
- Department
of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02, Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Fumio Narita
- Department
of Frontier Sciences for Advanced Environment, Graduate School of
Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Masaya Yamamoto
- Department
of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02, Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Graduate
School of Biomedical Engineering,Tohoku
University, Sendai 980-8579, Japan
| |
Collapse
|
8
|
Alavi SE, Alavi SZ, Nisa MU, Koohi M, Raza A, Ebrahimi Shahmabadi H. Revolutionizing Wound Healing: Exploring Scarless Solutions through Drug Delivery Innovations. Mol Pharm 2024; 21:1056-1076. [PMID: 38288723 DOI: 10.1021/acs.molpharmaceut.3c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Human skin is the largest organ and outermost surface of the human body, and due to the continuous exposure to various challenges, it is prone to develop injuries, customarily known as wounds. Although various tissue engineering strategies and bioactive wound matrices have been employed to speed up wound healing, scarring remains a significant challenge. The wound environment is harsh due to the presence of degradative enzymes and elevated pH levels, and the physiological processes involved in tissue regeneration operate on distinct time scales. Therefore, there is a need for effective drug delivery systems (DDSs) to address these issues. The objective of this review is to provide a comprehensive exposition of the mechanisms underlying the skin healing process, the factors and materials used in engineering DDSs, and the different DDSs used in wound care. Furthermore, this investigation will delve into the examination of emergent technologies and potential avenues for enhancing the efficacy of wound care devices.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Mehr Un Nisa
- Nishtar Medical University and Hospital, Multan 60000, Pakistan
| | - Maedeh Koohi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 202013, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| |
Collapse
|
9
|
Xu Z, Chen Y, Cao Y, Xue B. Tough Hydrogels with Different Toughening Mechanisms and Applications. Int J Mol Sci 2024; 25:2675. [PMID: 38473922 DOI: 10.3390/ijms25052675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Load-bearing biological tissues, such as cartilage and muscles, exhibit several crucial properties, including high elasticity, strength, and recoverability. These characteristics enable these tissues to endure significant mechanical stresses and swiftly recover after deformation, contributing to their exceptional durability and functionality. In contrast, while hydrogels are highly biocompatible and hold promise as synthetic biomaterials, their inherent network structure often limits their ability to simultaneously possess a diverse range of superior mechanical properties. As a result, the applications of hydrogels are significantly constrained. This article delves into the design mechanisms and mechanical properties of various tough hydrogels and investigates their applications in tissue engineering, flexible electronics, and other fields. The objective is to provide insights into the fabrication and application of hydrogels with combined high strength, stretchability, toughness, and fast recovery as well as their future development directions and challenges.
Collapse
Affiliation(s)
- Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yanru Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| |
Collapse
|
10
|
Xiang F, Liu Z, Hu H, Mitra P, Ma X, Zhu J, Shi A, Wang Q. Advances of blend films based on natural food soft matter: Multi-scale structural analysis. Int J Biol Macromol 2024; 258:128770. [PMID: 38104689 DOI: 10.1016/j.ijbiomac.2023.128770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The blend films made of food soft matter are of growing interest to the food packaging industries as a pro-environment packaging option. The blend films have become a novel pattern to replace traditional plastics gradually due to their characteristics of biodegradability, sustainability, and environmental friendliness. This review discussed the whole process of the manufacturing of food soft matter blend films from the raw material to the application due to multi-scale structural analysis. There are 3 stages and 12 critical analysis points of the entire process. The raw material, molecular self-assembly, film-forming mechanism and performance test of blend films are investigated. In addition, 11 kinds of blend films with different functional properties by casting are also preliminarily described. The industrialization progress of blend films can be extended or facilitated by analysis of the 12 critical analysis points and classification of the food soft matter blend films which has a great potential in protecting environment by developing sustainable packaging solutions.
Collapse
Affiliation(s)
- Fei Xiang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Pranabendu Mitra
- Department of Kinesiology, Health, Food, and Nutritional Sciences, University of Wisconsin-Stout, Menomonie, WI 54751, USA
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinjin Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
11
|
Rodrigo MJ, Cardiel MJ, Fraile JM, Mayoral JA, Pablo LE, Garcia-Martin E. Laponite for biomedical applications: An ophthalmological perspective. Mater Today Bio 2024; 24:100935. [PMID: 38239894 PMCID: PMC10794930 DOI: 10.1016/j.mtbio.2023.100935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024] Open
Abstract
Clay minerals have been applied in biomedicine for thousands of years. Laponite is a nanostructured synthetic clay with the capacity to retain and progressively release drugs. In recent years there has been a resurgence of interest in Laponite application in various biomedical areas. This is the first paper to review the potential biomedical applications of Laponite in ophthalmology. The introduction briefly covers the physical, chemical, rheological, and biocompatibility features of different routes of administration. After that, emphasis is placed on 1) drug delivery for antibiotics, anti-inflammatories, growth factors, other proteins, and cancer treatment; 2) bleeding prevention or treatment; and 3) tissue engineering through regenerative medicine using scaffolds in intraocular and extraocular tissue. Although most scientific research is not performed on the eye, both the findings and the new treatments resulting from that research are potentially applicable in ophthalmology since many of the drugs used are the same, the tissue evaluated in vitro or in vivo is also present in the eye, and the pathologies treated also occur in the eye. Finally, future prospects for this emerging field are discussed.
Collapse
Affiliation(s)
- Maria J. Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
| | - Maria J. Cardiel
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
- Department of Pathology, Lozano Blesa University Hospital, Zaragoza, Spain
| | - Jose M. Fraile
- Institute for Chemical Synthesis and Homogeneous Catalysis (ISQCH), Faculty of Sciences, University of Zaragoza–CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jose A. Mayoral
- Institute for Chemical Synthesis and Homogeneous Catalysis (ISQCH), Faculty of Sciences, University of Zaragoza–CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luis E. Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
- Biotech Vision SLP (spin-off Company), University of Zaragoza, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), GIMSO Research Group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, E-50009 Zaragoza, Spain
| |
Collapse
|
12
|
Jurin FE, Buron CC, Frau E, del Rossi S, Schintke S. The Electrical and Mechanical Characteristics of Conductive PVA/PEDOT:PSS Hydrogel Foams for Soft Strain Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:570. [PMID: 38257662 PMCID: PMC10819078 DOI: 10.3390/s24020570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Conductive hydrogels are of interest for highly flexible sensor elements. We compare conductive hydrogels and hydrogel foams in view of strain-sensing applications. Polyvinyl alcool (PVA) and poly(3,4-ethylenedioxythiophene (PEDOT:PSS) are used for the formulation of conductive hydrogels. For hydrogel foaming, we have investigated the influence of dodecylbenzenesulfonate (DBSA) as foaming agent, as well as the influence of air incorporation at various mixing speeds. We showed that DBSA acting as a surfactant, already at a concentration of 1.12wt%, efficiently stabilizes air bubbles, allowing for the formulation of conductive PVA and PVA/PEDOT:PSS hydrogel foams with low density (<400 kg/m3) and high water uptake capacity (swelling ratio > 1500%). The resulting Young moduli depend on the air-bubble incorporation from mixing, and are affected by freeze-drying/rehydration. Using dielectric broadband spectroscopy under mechanical load, we demonstrate that PVA/PEDOT:PSS hydrogel foams exhibit a significant decrease in conductivity under mechanical compression, compared to dense hydrogels. The frequency-dependent conductivity of the hydrogels exhibits two plateaus, one in the low frequency range, and one in the high frequency range. We find that the conductivity of the PVA/PEDOT:PSS hydrogels decreases linearly as a function of pressure in each of the frequency regions, which makes the hydrogel foams highly interesting in view of compressive strain-sensing applications.
Collapse
Affiliation(s)
- Florian E. Jurin
- Institut UTINAM, UMR 6213 CNRS-UBFC, Université de Bourgogne Franche-Comté (UBFC), F-25030 Besançon Cedex, France;
| | - Cédric C. Buron
- Institut UTINAM, UMR 6213 CNRS-UBFC, Université de Bourgogne Franche-Comté (UBFC), F-25030 Besançon Cedex, France;
| | - Eleonora Frau
- Laboratory of Applied NanoSciences (COMATEC-LANS), University of Applied Sciences Western Switzerland (HES-SO), CH-1401 Yverdon-les-Bains, Switzerland
| | - Stefan del Rossi
- Laboratory of Applied NanoSciences (COMATEC-LANS), University of Applied Sciences Western Switzerland (HES-SO), CH-1401 Yverdon-les-Bains, Switzerland
| | - Silvia Schintke
- Laboratory of Applied NanoSciences (COMATEC-LANS), University of Applied Sciences Western Switzerland (HES-SO), CH-1401 Yverdon-les-Bains, Switzerland
| |
Collapse
|
13
|
Wei H, Chen C, Yang D. Applications of inverse opal photonic crystal hydrogels in the preparation of acid-base color-changing materials. RSC Adv 2024; 14:2243-2263. [PMID: 38213963 PMCID: PMC10777361 DOI: 10.1039/d3ra07465j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
Hydrogels are three-dimensional (3D) crosslinked network hydrophilic polymers that have structures similar to that of biological protein tissue and can quickly absorb a large amount of water. Opal photonic crystals (OPCs) are a kind of photonic band gap material formed by the periodic arrangement of 3D media, and inverse opal photonic crystals (IOPCs) are their inverse structure. Inverse opal photonic crystal hydrogels (IOPCHs) can produce corresponding visual color responses to a change in acid or alkali in an external humid environment, which has wide applications in chemical sensing, anti-counterfeiting, medical detection, intelligent display, and other fields, and the field has developed rapidly in recent years. In this paper, the research progress on fast acid-base response IOPCHs (pH-IOPCHs) is comprehensively described from the perspective of material synthesis. The technical bottleneck of enhancing the performance of acid-base-responsive IOPCHs and the current practical application limitations are summarized, and the development prospects of acid-base-responsive IOPCHs are described. These comprehensive analyses are expected to provide new ideas for solving problems in the preparation and application of pH-IOPCHs.
Collapse
Affiliation(s)
- Hu Wei
- Research Institute for National Defense Engineering of Academy of Military Science, PLA Luoyang 471023 China +086-18761686837
- Henan Key Laboratory of Special Protective Materials Luoyang 471023 China
| | - Changbing Chen
- Research Institute for National Defense Engineering of Academy of Military Science, PLA Luoyang 471023 China +086-18761686837
- Henan Key Laboratory of Special Protective Materials Luoyang 471023 China
| | - Dafeng Yang
- Research Institute for National Defense Engineering of Academy of Military Science, PLA Luoyang 471023 China +086-18761686837
- Henan Key Laboratory of Special Protective Materials Luoyang 471023 China
| |
Collapse
|
14
|
Zheng X, Duan Z, Zhuang Y, Zhang S, Cui X, Qin D. Application of Solvent-Assisted Dual-Network Hydrogel in Water-Based Drilling Fluid for Lost Circulation Treatment in Fractured Formation. ACS OMEGA 2024; 9:1166-1173. [PMID: 38222518 PMCID: PMC10785652 DOI: 10.1021/acsomega.3c07384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
During oil and gas well construction, lost circulation caused substantial nonoperation time and extra costs, and hydrogel, resilient and environmentally friendly, was one of the major types of material for lost circulation treatment. To migrate the weak bonding and hydrothermal degradation of conventional single network hydrogels, dual network (DN) hydrogel was prepared and immersed in solvents of polyethylene glycol (PEG), ethylene glycol, and glycerol. The swelling of DN gels at different temperatures was studied with water content and swelling rate tests, and the gel structural and morphology was characterized with attenuated total reflectance infrared spectroscopy (ATR-IR) and scanning electron microscopy test. Then, the compression test and fracture plugging performance test were conducted to study the strength of the gel. The results show that compared to those in ethylene glycol and glycerin, DN gel after immersion in PEG (DN-PEG) exhibits greater compression strength and better plugging performance even at high temperatures. The compression strength of DN-PEG was twice that of DN hydrogel before immersion, and its fracture plug breaking pressure can reach over 10.0 MPa. After undergoing hydrothermal treatment at 90 °C, the compression strength of the DN-PEG was nearly 20 times that of the DN hydrogel, and the fracture plug breaking pressure was still 2.81 MPa. According to ATR-IR spectroscopy, as the molecular weight of the solvent increases, more hydroxyl groups in the PEG have better ability to bind with hydrogen bonds, which greatly inhibits the swelling and polymer chain breakage, thereby reducing hydrothermal degradation in the strength of the dual-network hydrogel. Our work proposed an effective method to reduce the degradation of hydrogel in water at high temperature, and the prepared DN-PEG hydrogel was a promising material for lost circulation treatments in fractured formation.
Collapse
Affiliation(s)
- Xin Zheng
- Changzhou
University, Changzhou 213164, China
| | - Zhifeng Duan
- Oil
and Gas Technology Research Institute, PetroChina
Changqing Oilfield Branch, Xi’an 710018, China
| | - Yan Zhuang
- Changzhou
University, Changzhou 213164, China
| | | | - Xinying Cui
- China
Petroleum University (East China), Qingdao 266580, China
| | - Donghui Qin
- Changzhou
University, Changzhou 213164, China
| |
Collapse
|
15
|
Dobrynin AV, Tian Y, Jacobs M, Nikitina EA, Ivanov DA, Maw M, Vashahi F, Sheiko SS. Forensics of polymer networks. NATURE MATERIALS 2023; 22:1394-1400. [PMID: 37749314 DOI: 10.1038/s41563-023-01663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/11/2023] [Indexed: 09/27/2023]
Abstract
Our lives cannot be imagined without polymer networks, which range widely, from synthetic rubber to biological tissues. Their properties-elasticity, strain-stiffening and stretchability-are controlled by a convolution of chemical composition, strand conformation and network topology. Yet, since the discovery of rubber vulcanization by Charles Goodyear in 1839, the internal organization of networks has remained a sealed 'black box'. While many studies show how network properties respond to topology variation, no method currently exists that would allow the decoding of the network structure from its properties. We address this problem by analysing networks' nonlinear responses to deformation to quantify their crosslink density, strand flexibility and fraction of stress-supporting strands. The decoded structural information enables the quality control of network synthesis, comparison of targeted to actual architecture and network classification according to the effectiveness of stress distribution. The developed forensic approach is a vital step in future implementation of artificial intelligence principles for soft matter design.
Collapse
Affiliation(s)
- Andrey V Dobrynin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Yuan Tian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Jacobs
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Dimitri A Ivanov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Institut de Sciences des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, Université de Haute-Alsace, Mulhouse, France
| | - Mitchell Maw
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Foad Vashahi
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Liu S, Yu Q, Guo R, Chen K, Xia J, Guo Z, He L, Wu Q, Liu L, Li Y, Zhang B, Lu L, Sheng X, Zhu J, Zhao L, Qi H, Liu K, Yin L. A Biodegradable, Adhesive, and Stretchable Hydrogel and Potential Applications for Allergic Rhinitis and Epistaxis. Adv Healthc Mater 2023; 12:e2302059. [PMID: 37610041 DOI: 10.1002/adhm.202302059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Bioadhesive hydrogels have attracted considerable attention as innovative materials in medical interventions and human-machine interface engineering. Despite significant advances in their application, it remains critical to develop adhesive hydrogels that meet the requirements for biocompatibility, biodegradability, long-term strong adhesion, and efficient drug delivery vehicles in moist conditions. A biocompatible, biodegradable, soft, and stretchable hydrogel made from a combination of a biopolymer (unmodified natural gelatin) and stretchable biodegradable poly(ethylene glycol) diacrylate is proposed to achieve durable and tough adhesion and explore its use for convenient and effective intranasal hemostasis and drug administration. Desirable hemostasis efficacy and enhanced therapeutic outcomes for allergic rhinitis are accomplished. Biodegradation enables the spontaneous removal of materials without causing secondary damage and minimizes medical waste. Preliminary trials on human subjects provide an essential foundation for practical applications. This work elucidates material strategies for biodegradable adhesive hydrogels, which are critical to achieving robust material interfaces and advanced drug delivery platforms for novel clinical treatments.
Collapse
Affiliation(s)
- Shengnan Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qianru Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Kuntao Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiao Xia
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenhu Guo
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lu He
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qian Wu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lan Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunxuan Li
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Bozhen Zhang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Lu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Jiahua Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lingyun Zhao
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Hui Qi
- Laboratory of Musculoskeletal Regenerative Medicine, Beijing Institute of Traumatology and Orthopaedics, Beijing, 100035, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
17
|
Ekapakul N, Lerdwiriyanupap T, Siritanon T, Choochottiros C. Double network structure via ionic bond and covalent bond of carboxymethyl chitosan and poly(ethylene glycol): Factors affecting hydrogel formation. Carbohydr Polym 2023; 318:121130. [PMID: 37479459 DOI: 10.1016/j.carbpol.2023.121130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023]
Abstract
The factors were studied that affect the formation of DN hydrogel, which was prepared using a water-based, environmental-friendly system. The DN hydrogel was designed and prepared based on a cross-linked, polysaccharide-based, polymer carboxymethyl chitosan (CMCS) via an ionic crosslinking reaction for the first network structure. UV irradiation created a radical crosslinking reaction of poly(ethylene glycol) from a double bond at the chain end for the second network structure. It was found that the optimum hydrogel was produced using 9.5 %v/v of 1000PEGGMA, CMCS 5%w/v, and CaCl2 3%w/v. The results showed the highest percentage of the gel fraction was 87.84 % and the hydrogel was stable based on its rheological properties. Factors affecting the hydrogel formation were the concentration and molecular weight of PEGGMA and the concentrations of CMCS and calcium chloride (CaCl2). The DN hydrogel had bioactivity due to its octacalcium phosphate (OCP) hydroxyapatite crystal form. In addition, the composite DN scaffold with a conductive polymer of chitosan-grafted-polyaniline (CS-g-PANI) had conduction of 2.33 × 10-5 S/cm when the concentration of CS-g-PANI was 3 mg/ml, confirming the semi-conductive nature of the material. All the results indicated that DN hydrogel could be a candidate to apply in tissue-engineering applications.
Collapse
Affiliation(s)
- Natjaya Ekapakul
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Tharit Lerdwiriyanupap
- School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Theeranun Siritanon
- School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chantiga Choochottiros
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
18
|
Hua Z, Hu M, Chen Y, Huang X, Gao L. Investigation of the Friction Properties of a New Artificial Imitation Cartilage Material: PHEMA/Glycerol Gel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114023. [PMID: 37297157 DOI: 10.3390/ma16114023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
The absence of artificial articular cartilage could cause the failure of artificial joints due to excessive material wear. There has been limited research on alternative materials for articular cartilage in joint prostheses, with few reducing the friction coefficient of artificial cartilage prostheses to the range of the natural cartilage friction coefficient (0.001-0.03). This work aimed to obtain and characterize mechanically and tribologically a new gel for potential application in articular replacement. Therefore, poly(hydroxyethyl methacrylate) (PHEMA)/glycerol synthetic gel was developed as a new type of artificial joint cartilage with a low friction coefficient, especially in calf serum. This glycerol material was developed via mixing HEMA and glycerin at a mass ratio of 1:1. The mechanical properties were studied, and it was found that the hardness of the synthetic gel was close to that of natural cartilage. The tribological performance of the synthetic gel was investigated using a reciprocating ball-on-plate rig. The ball samples were made of a cobalt-chromium-molybdenum (Co-Cr-Mo) alloy, and the plates were synthetic glycerol gel and two additional materials for comparison, which were ultra-high molecular polyethylene (UHMWPE) and 316L stainless steel. It was found that synthetic gel exhibited the lowest friction coefficient in both calf serum (0.018) and deionized water (0.039) compared to the other two conventional materials for knee prostheses. The surface roughness of the gel was found to be 4-5 μm through morphological analysis of wear. This newly proposed material provided a possible solution as a type of cartilage composite coating with hardness and tribological performance close to the nature of use in wear couples with artificial joints.
Collapse
Affiliation(s)
- Zikai Hua
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Mindie Hu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yiwen Chen
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Xiuling Huang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Leiming Gao
- Department of Engineering, Nottingham Trent University, Nottingham NG1 4FQ, UK
| |
Collapse
|
19
|
Dinte E, Iovanov RI, Bodoki AE, Colosi IA, Colosi HA, Tosa N, Vostinaru O, Tomuta I. Optimization of a Mucoadhesive Vaginal Gel Containing Clotrimazole Using a D-Optimal Experimental Design and Multivariate Analysis. Polymers (Basel) 2023; 15:polym15092023. [PMID: 37177171 PMCID: PMC10181139 DOI: 10.3390/polym15092023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this study was to develop a suitable clotrimazole (CLT)-loaded mucoadhesive vaginal gel (CLT-MVG) for topical applications in vaginal candidiasis. Ten CLT-MVG formulations were prepared, consisting of mixtures of acid polyacrylic (Carbopol 940) and polyethene oxides, Sentry Polyox WSRN 1105 or 750, according to an experimental D-optimal design, and CLT was suspended at a ratio of 1%. The prepared CLT-MVG formulations were studied in vitro, and the formulation containing Carbopol 940 0.89% combined with PEO 1105 1.39% was identified with the optimal rheological and in vitro bioadhesion properties, ensuring the prolonged release of CLT, with a similarity factor greater than 50, indicating dissolution profile similarity for three batches of the optimized formulation. This optimized formulation showed a pH in the tolerance range, and an adequate ex vivo mucoadhesion time, while the FT-IR studies revealed no interactions between the excipients and CLT. The microscopic analysis identified a mean particle size of suspended CLT of 5.24 ± 0.57 μm. The in vitro antifungal activity of the optimized formulation was tested on twenty strains of Candida albicans and proved to be better compared to a marketed clotrimazole preparation, showing a greater inhibition effect (p < 0.05). The optimized formulation could be a good candidate for the local treatment of vaginal mycosis.
Collapse
Affiliation(s)
- Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Rares Iuliu Iovanov
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Elena Bodoki
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
| | - Ioana Alina Colosi
- Department of Microbiology, Iuliu Hatieganu, Faculty of Medicine, University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Horatiu Alexandru Colosi
- Department of Medical Education, Division of Medical Informatics and Biostatistics, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Nicoleta Tosa
- Molecular and Biomolecular Department, National Institute for Research & Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Oliviu Vostinaru
- Department of Pharmacology, Physiology and Physiopathology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
20
|
Li L, Guo J, Kang C, Song H. Reinforcement of Nanocomposite Hydrogel with Dialdehyde Cellulose Nanofibrils via Physical and Double Network Crosslinking Synergies. Polymers (Basel) 2023; 15:1765. [PMID: 37050379 PMCID: PMC10096909 DOI: 10.3390/polym15071765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Preparation of tough and high-strength hydrogels for water plugging in oil fields with an easy-scalable method is still considered to be a challenge. In this study, dialdehyde cellulose nanofibril (DA-CNF) prepared by sodium periodate oxidation, polyamine, 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with sulfonate groups and Acrylamide (AM) as raw materials, CNF reinforced nanocomposite hydrogels were prepared in one step by in-situ polymerization. The tensile strength, and texture stability of the obtained nanocomposite hydrogel were determined. The results showed that the tensile strength and toughness of the obtained nanocomposite hydrogel increased four times compared with control sample due to physical and chemical double crosslinking synergies. Moreover, the texture intensity of DA-CNFs reinforced hydrogel still maintains high stability and strength performance under high salinity conditions. Therefore, DA-CNF reinforced hydrogel has potential application value in both normal and high-salinity environments in oil recovery.
Collapse
Affiliation(s)
| | - Jixiang Guo
- Unconventional Oil and Gas Institute, China University of Petroleum, Beijing 102249, China; (L.L.); (C.K.); (H.S.)
| | | | | |
Collapse
|
21
|
Eggshell membrane-incorporated cell friendly tough hydrogels with ultra-adhesive property. Colloids Surf B Biointerfaces 2023; 223:113156. [PMID: 36682295 DOI: 10.1016/j.colsurfb.2023.113156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Adhesive and tough hydrogels have received increased attention for their potential biomedical applications. However, traditional hydrogels have limited utility in tissue engineering because they tend to exhibit low biocompatibility, low adhesiveness, and poor mechanical properties. Herein, the use of the eggshell membrane (ESM) for developing tough, cell-friendly, and ultra-adhesive hydrogels is described. The ESM enhances the performance of the hydrogel network in three ways. First, its covalent cross-linking with the polyacrylamide and alginate chains strengthens the hydrogel network. Second, it provides functional groups, such as amine and carboxyl moieties, which are well known for enhancing the surface adhesion of biomaterials, thereby increasing the adhesiveness of the hydrogel. Third, it is a bioactive agent and improves cell adhesion and proliferation on the constructed scaffold. In conclusion, this study proposes the unique design of ESM-incorporated hydrogels with high toughness, cell-friendly, and ultra-adhesive properties for various biomedical engineering applications.
Collapse
|
22
|
Foudazi R, Zowada R, Manas-Zloczower I, Feke DL. Porous Hydrogels: Present Challenges and Future Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2092-2111. [PMID: 36719086 DOI: 10.1021/acs.langmuir.2c02253] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this feature article, we critically review the physical properties of porous hydrogels and their production methods. Our main focus is nondense hydrogels that have physical pores besides the space available between adjacent cross-links in the polymer network. After reviewing theories on the kinetics of swelling, equilibrium swelling, the structure-stiffness relationship, and solute diffusion in dense hydrogels, we propose future directions to develop models for porous hydrogels. The aim is to show how porous hydrogels can be designed and produced for studies leading to the modeling of physical properties. Additionally, different methods that are used for making hydrogels with physically incorporated pores are briefly reviewed while discussing the potentials, challenges, and future directions for each method. Among kinetic methods, we discuss bubble generation approaches including reactions, gas injection, phase separation, electrospinning, and freeze-drying. Templating approaches discussed are solid-phase, self-assembled amphiphiles, emulsion, and foam methods.
Collapse
Affiliation(s)
- Reza Foudazi
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma73069, United States
| | - Ryan Zowada
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico88003, United States
| | | | | |
Collapse
|
23
|
de Carvasal KP, Vergoten G, Vasseur JJ, Smietana M, Morvan F. Supramolecular Recognition of Phosphodiester-Based Donor and Acceptor Oligomers Forming Gels in Water. Biomacromolecules 2023; 24:756-765. [PMID: 36724436 DOI: 10.1021/acs.biomac.2c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Inspired by automated DNA synthesis, electron-rich dialkoxynaphthalene (DAN) donor and electron-deficient naphthalene-tetracarboxylic diimide (NDI) acceptor phosphodiester-linked homohexamers were synthesized by the phosphoramidite method. Two types of hexamers were prepared, one with only one phosphodiester between the aromatics (i.e., DAN or NDI) and a second with two phosphodiesters around a propanediol between the aromatics, leading to the latter more flexible and more hydrophilic hexamers. The folding properties of these homohexamers alone or mixed together, in water only, were studied by UV-visible absorption spectroscopy and atomic force microscopy (AFM). AFM imaging revealed that a 1:1 mixture of hexaDAN and hexaNDI formed fibers by charge transfer donor-acceptor recognition leading to a hydrogel after drying. The organization of the resulting structures is strongly dependent on the nature of the complementary partner, leading to the formation of mono- or multilayer hydrogel networks with different compactness.
Collapse
Affiliation(s)
- Kévan Pérez de Carvasal
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| | - Gérard Vergoten
- Université de Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, Lille 59006, France
| | - Jean-Jacques Vasseur
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| | - Michael Smietana
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| | - François Morvan
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| |
Collapse
|
24
|
Choi S, Moon JR, Park N, Im J, Kim YE, Kim JH, Kim J. Bone-Adhesive Anisotropic Tough Hydrogel Mimicking Tendon Enthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206207. [PMID: 36314423 DOI: 10.1002/adma.202206207] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Tendon consists of soft collagen, yet it is mechanically strong and firmly adhered to the bone owing to its hierarchically anisotropic structure and unique tendon-to-bone integration (enthesis), respectively. Despite the recent advances in biomaterials, hydrogels simultaneously providing tendon-like high mechanical properties and strong adhesion to bone-mimicking enthesis is still challenging. Here, a strong, stiff, and adhesive triple-network (TN) anisotropic hydrogel that mimics a bone-adhering tendon is shown. The tough adhesive TN hydrogel is developed by combining imidazole-containing polyaspartamide (providing multiple hydrogen bonds to the bone surface) and energy-dissipative alginate-polyacrylamide double-network. To mimic the anisotropic structure and high mechanical properties of tendons, the bone-adhered TN hydrogel is linearly stretched and subsequently fixed via secondary cross-linking. The resulting hydrogel exhibits high tensile modulus and strength while maintaining a high bone adhesion without chemical modification of the bone surface. Furthermore, a bone-ligament-bone structure with strong bone adhesion reminiscent of the natural ligament is realized.
Collapse
Affiliation(s)
- Suji Choi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Ryul Moon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Nuri Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jihye Im
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Eun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ji-Heung Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
25
|
Coudert N, Debrie C, Rieger J, Nicolai T, Colombani O. Thermosensitive Hydrogels of BAB Triblock Copolymers Exhibiting Gradually Slower Exchange Dynamics and an Unexpected Critical Reorganization Temperature Upon Heating. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Noémie Coudert
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085Le Mans Cedex 9, France
| | - Clément Debrie
- Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, Sorbonne Université, CNRS, UMR 8232, 4 Place Jussieu, 75252Paris Cedex 05, France
| | - Jutta Rieger
- Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team, Sorbonne Université, CNRS, UMR 8232, 4 Place Jussieu, 75252Paris Cedex 05, France
| | - Taco Nicolai
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085Le Mans Cedex 9, France
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085Le Mans Cedex 9, France
| |
Collapse
|
26
|
Kamiyama Y, Tamate R, Fujii K, Ueki T. Controlling mechanical properties of ultrahigh molecular weight ion gels by chemical structure of ionic liquids and monomers. SOFT MATTER 2022; 18:8582-8590. [PMID: 36367165 DOI: 10.1039/d2sm00853j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new class of ion gels, termed ultrahigh molecular weight (UHMW) gels, formed by physical entanglement of ultrahigh molecular weight polymers in ionic liquids, are synthesised using facile one step radical polymerisation with significantly low initiator conditions, and exhibit superior mechanical characteristics such as stretchability, recyclability, and room temperature self-healing ability. In this study, UHMW gels are synthesised using various combinations of monomer and IL structures, and the effect of their chemical structures on the physicochemical properties of UHMW gels are thoroughly investigated. UHMW polymers are prepared in situ for all combinations of ILs and monomers used in this study, indicating the wide applicability of this fabrication strategy. The structure-property relationships between chemical structures and mechanical properties of UHMW gels are investigated in detail. Furthermore, the differences in self-healing efficiency of UHMW gels depending on the chemical structure is discussed in terms of individual polymer conformation and polymer-polymer interaction based on molecular dynamics simulations.
Collapse
Affiliation(s)
- Yuji Kamiyama
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Ryota Tamate
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- PRESTO, JST., 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Kenta Fujii
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Takeshi Ueki
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
27
|
Podaru IA, Stănescu PO, Ginghină R, Stoleriu Ş, Trică B, Şomoghi R, Teodorescu M. Poly(N-vinylpyrrolidone)-Laponite XLG Nanocomposite Hydrogels: Characterization, Properties and Comparison with Divinyl Monomer-Crosslinked Hydrogels. Polymers (Basel) 2022; 14:4216. [PMID: 36236165 PMCID: PMC9571604 DOI: 10.3390/polym14194216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022] Open
Abstract
The present work investigates, for the first time, the synthesis and properties of some nanocomposite (NC) hydrogels obtained by the aqueous solution free radical polymerization of N-vinylpyrrolidone (NVP) in the presence of Laponite XLG (XLG) as a crosslinker, in comparison with the corresponding hydrogels prepared by using two conventional crosslinking divinyl monomers: N,N'-methylenebisacrylamide (MBA) and tri(ethylene glycol) divinyl ether (DVE). The structure and properties of the hydrogels were studied by FTIR, TEM, XRD, SEM, swelling and rheological and compressive mechanical measurements. The results showed that DVE and XLG are much better crosslinking agents for the synthesis of PNVP hydrogels than MBA, leading to larger gel fractions and more homogeneous network hydrogels. The hydrogels crosslinked by either DVE or XLG displayed comparable viscoelastic and compressive mechanical properties under the experimental conditions employed. The properties of the XLG-crosslinked hydrogels steadily improved as the clay content increased. The addition of XLG as a second crosslinker together with a divinyl monomer strongly enhanced the material properties in comparison with the hydrogels crosslinked by only one of the crosslinkers involved. The FTIR analyses suggested that the crosslinking of the NC hydrogels was the result of two different interactions occurring between the clay platelets and the PNVP chains. Laponite XLG displayed a uniform distribution within the NC hydrogels, the clay being mostly exfoliated. However, a small number of platelet agglomerations were still present. The PNVP hydrogels described here may find applications for water purification and in the biomedical field as drug delivery systems or wound dressings.
Collapse
Affiliation(s)
- Ionela Alice Podaru
- Department of Bioresources and Polymer Science, Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, 1–7 Gh. Polizu Str., 011061 Bucharest, Romania
- Armament Systems and Mechatronics Department, Military Technical Academy “Ferdinand I”, 39–49 G. Cosbuc Blvd., 050141 Bucharest, Romania
| | - Paul O. Stănescu
- Department of Bioresources and Polymer Science, Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, 1–7 Gh. Polizu Str., 011061 Bucharest, Romania
- Advanced Polymer Materials Group, Politehnica University of Bucharest, 1–7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Raluca Ginghină
- Chemical Technologies for CBRN Defense Department, Research and Innovation Center for CBRN Defense and Ecology, 225 Olteniţei Ave., 041327 Bucharest, Romania
| | - Ştefania Stoleriu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, 1–7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Spl. Independentei 202, 060021 Bucharest, Romania
| | - Raluca Şomoghi
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Spl. Independentei 202, 060021 Bucharest, Romania
- Faculty of Petroleum Technology and Petrochemistry, Petroleum and Gas University of Ploiesti, 39 Bucuresti Blvd., 100680 Ploiesti, Romania
| | - Mircea Teodorescu
- Department of Bioresources and Polymer Science, Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, 1–7 Gh. Polizu Str., 011061 Bucharest, Romania
| |
Collapse
|
28
|
A Review on Novel Channel Materials for Particle Image Velocimetry Measurements-Usability of Hydrogels in Cardiovascular Applications. Gels 2022; 8:gels8080502. [PMID: 36005103 PMCID: PMC9407631 DOI: 10.3390/gels8080502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Particle image velocimetry (PIV) is an optical and contactless measurement method for analyzing fluid blood dynamics in cardiovascular research. The main challenge to visualization investigated in the current research was matching the channel material’s index of refraction (IOR) to that of the fluid. Silicone is typically used as a channel material for these applications, so optical matching cannot be proven. This review considers hydrogel as a new PIV channel material for IOR matching. The advantages of hydrogels are their optical and mechanical properties. Hydrogels swell more than 90 vol% when hydrated in an aqueous solution and have an elastic behavior. This paper aimed to review single, double, and triple networks and nanocomposite hydrogels with suitable optical and mechanical properties to be used as PIV channel material, with a focus on cardiovascular applications. The properties are summarized in seven hydrogel groups: PAMPS, PAA, PVA, PAAm, PEG and PEO, PSA, and PNIPA. The reliability of the optical properties is related to low IORs, which allow higher light transmission. On the other hand, elastic modulus, tensile/compressive stress, and nominal tensile/compressive strain are higher for multiple-cross-linked and nanocomposite hydrogels than single mono-cross-linked gels. This review describes methods for measuring optical and mechanical properties, e.g., refractometry and mechanical testing.
Collapse
|
29
|
Abstract
Collagen is the most abundant component of mammalian extracellular matrices. As such, the development of materials that mimic the biological and mechanical properties of collagenous tissues is an enduring goal of the biomaterials community. Despite the development of molded and 3D printed collagen hydrogel platforms, their use as biomaterials and tissue engineering scaffolds is hindered by either low stiffness and toughness or processing complexity. Here, we demonstrate the development of stiff and tough biohybrid composites by combining collagen with a zwitterionic hydrogel through simple mixing. This combination led to the self-assembly of a nanostructured fibrillar network of collagen that was ionically linked to the surrounding zwitterionic hydrogel matrix, leading to a composite microstructure reminiscent of soft biological tissues. The addition of 5-15 mg mL-1 collagen and the formation of nanostructured fibrils increased the elastic modulus of the composite system by 40% compared to the base zwitterionic matrix. Most notably, the addition of collagen increased the fracture energy nearly 11-fold ([Formula: see text] 180 J m-2) and clearly delayed crack initiation and propagation. These composites exhibit elastic modulus ([Formula: see text] 0.180 MJ) and toughness ([Formula: see text]0.617 MJ m-3) approaching that of biological tissues such as articular cartilage. Maintenance of the fibrillar structure of collagen also greatly enhanced cytocompatibility, improving cell adhesion more than 100-fold with >90% cell viability.
Collapse
|
30
|
Ghorbanizamani F, Moulahoum H, Guler Celik E, Timur S. Ionic liquids enhancement of hydrogels and impact on biosensing applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Zhao M, Zhang H, Li Z. A Bibliometric and Visual Analysis of Nanocomposite Hydrogels Based on VOSviewer From 2010 to 2022. Front Bioeng Biotechnol 2022; 10:914253. [PMID: 35814005 PMCID: PMC9256966 DOI: 10.3389/fbioe.2022.914253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Nanocomposite hydrogels (NHs) are stable composite materials formed by dispersing nanomaterials in hydrogels and have broad development prospects in the biomedical field. In this study, we aimed to systematically and comprehensively evaluate the trends and hot spots of biomedical applications of NHs from 2010 to 2022. Methods: In total, 713 articles and reviews related to NH applications in the biomedical field from 2010 to 2022 were retrieved from the Web of Science Core Collection (WOSCC). Two scientometric software programs, VOSviewer and Microsoft Excel 2019, were used to visually perform bibliometric analysis in terms of research trends, sources, the contribution of journals, co-citation, and the co-occurrence of keywords. Results: From 1 January 2010 to 3 February 2022, the number of annual scientific publications about NHs exhibited an upward trend, and research articles were published in a larger proportion (more than 77%). The top three countries in NH research were China, the United States, and India. Meanwhile, Tabriz University of Medical Sciences, the Chinese Academy of Sciences, and Tshwane University of Technology were the most active and contributive. In the contribution of journals, the journal Advanced Functional Materials had the highest number of publications, and the journal Int J Biol Macro had the most citations. Varaprasad K was the most prolific author, and Haraguchi K ranked first among co-cited authors. In the ranking of frequency in the co-cited references, Nanocomposite Hydrogels for Biomedical Applications, published by Gaharwar AK, was the most frequently cited reference. The keyword with the highest frequency was “drug delivery.” Conclusion: This study performed a full overview of NHs using bibliometrics and identified current trends and hot spots. This information may help researchers focusing on NHs to identify developments in this field.
Collapse
Affiliation(s)
- Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Mingyi Zhao,
| | - Hanqi Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zixin Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
32
|
Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23126574. [PMID: 35743019 PMCID: PMC9224397 DOI: 10.3390/ijms23126574] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, bone tissue engineering (BTE), as a multidisciplinary field, has shown considerable promise in replacing traditional treatment modalities (i.e., autografts, allografts, and xenografts). Since bone is such a complex and dynamic structure, the construction of bone tissue composite materials has become an attractive strategy to guide bone growth and regeneration. Chitosan and its derivatives have been promising vehicles for BTE owing to their unique physical and chemical properties. With intrinsic physicochemical characteristics and closeness to the extracellular matrix of bones, chitosan-based composite scaffolds have been proved to be a promising candidate for providing successful bone regeneration and defect repair capacity. Advances in chitosan-based scaffolds for BTE have produced efficient and efficacious bio-properties via material structural design and different modifications. Efforts have been put into the modification of chitosan to overcome its limitations, including insolubility in water, faster depolymerization in the body, and blood incompatibility. Herein, we discuss the various modification methods of chitosan that expand its fields of application, which would pave the way for future applied research in biomedical innovation and regenerative medicine.
Collapse
|
33
|
Li D, Göckler T, Schepers U, Srivastava S. Polyelectrolyte Complex-Covalent Interpenetrating Polymer Network Hydrogels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Defu Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tobias Göckler
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Ute Schepers
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Samanvaya Srivastava
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Center for Biological Physics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
34
|
Khodami S, Kaniewska K, Stojek Z, Karbarz M. Hybrid double-network dual-crosslinked hydrogel with self-healing ability and mechanical stability. Synthesis, characterization and application for motion sensors. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Dendrobium officinale Enzyme Changing the Structure and Behaviors of Chitosan/γ-poly(glutamic acid) Hydrogel for Potential Skin Care. Polymers (Basel) 2022; 14:polym14102070. [PMID: 35631951 PMCID: PMC9146334 DOI: 10.3390/polym14102070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels have been widespreadly used in various fields. But weak toughness has limited their further applications. In this study, Dendrobium officinale enzyme (DOE) was explored to improve chitosan/γ-poly(glutamic acid) (CS/γ-PGA) hydrogel in the structure and properties. The results indicated that DOE with various sizes of ingredients can make multiple noncovalent crosslinks with the skeleton network of CS/γ-PGA, significantly changing the self-assembly of CS/γ-PGA/DOE hydrogel to form regular protuberance nanostructures, which exhibits stronger toughness and better behaviors for skin care. Particularly, 4% DOE enhanced the toughness of CS/γ-PGA/DOE hydrogel, increasing it by 116%. Meanwhile, water absorption, antioxygenation, antibacterial behavior and air permeability were increased by 39%, 97%, 27% and 52%.
Collapse
|
36
|
Smith PT, Altin G, Millik SC, Narupai B, Sietz C, Park JO, Nelson A. Methacrylated Bovine Serum Albumin and Tannic Acid Composite Materials for Three-Dimensional Printing Tough and Mechanically Functional Parts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21418-21425. [PMID: 35471016 DOI: 10.1021/acsami.2c01446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nature uses proteins as building blocks to create three-dimensional (3D) structural components (like spiderwebs and tissue) that are recycled within a closed loop. Furthermore, it is difficult to replicate the mechanical properties of these 3D architectures within synthetic systems. In the absence of biological machinery, protein-based materials can be difficult to process and can have a limited range of mechanical properties. Herein, we present an additive manufacturing workflow to fabricate tough, protein-based composite hydrogels and bioplastics with a range of mechanical properties. Briefly, methacrylated bovine-serum-albumin-based aqueous resins were 3D-printed using a commercial vat photopolymerization system. The printed structures were then treated with tannic acid to introduce additional non-covalent interactions and form tough hydrogels. The hydrogel material could be sutured and withstand mechanical load, even after immersion in water for 24 h. Additionally, a denaturing thermal cure could be used to virtually eliminate rehydration of the material and form a bioplastic. To highlight the functionality of this material, a bioplastic screw was 3D-printed and driven into wood without damage to the screw. Moreover, the 3D-printed constructs enzymatically degraded up to 85% after 30 days in pepsin solution. Thus, these protein-based 3D-printed constructs show great potential for biomedical devices that degrade in situ.
Collapse
Affiliation(s)
- Patrick T Smith
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gokce Altin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - S Cem Millik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Benjaporn Narupai
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Cameron Sietz
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - James O Park
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
37
|
Ganesh S, Subraveti SN, Raghavan SR. How a Gel Can Protect an Egg: A Flexible Hydrogel with Embedded Starch Particles Shields Fragile Objects Against Impact. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20014-20022. [PMID: 35442632 DOI: 10.1021/acsami.2c01261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogels are networks of polymer chains that are swollen in water. In recent years, several routes have been devised to make hydrogels that are flexible and bendable. This work investigates whether such flexible gels can be wrapped around brittle or fragile objects (such as an egg or a fruit) and protect the objects against impact. We study gels made by either physical cross-linking (e.g., gelatin) or chemical cross-linking (e.g., acrylamide) and the same gels with various particulate additives. None of the bare gels are protective, and nanoparticles like iron oxide or silica do not help. However, the addition of starch granules to the above gels greatly enhances their protective abilities. When a load strikes a gelatin gel containing 20% starch, the peak impact force is reduced by 25% when compared to a bare gel without the starch. Correspondingly, the coefficient of restitution (COR) is also lowered by the presence of starch (i.e., a ball bounces less on a starch-bearing gel). We correlate the impact-absorbing effects of starch granules to their ability to shear-thicken water. When starch granules are gelatinized by heat, they no longer give rise to shear-thickening, and in turn, their protective ability in a gel is also eliminated. Our research can guide the rational design of protective coatings or armor for fragile objects, which could be applied in the sports, defense, and consumer sectors.
Collapse
Affiliation(s)
- Sairam Ganesh
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sai Nikhil Subraveti
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
38
|
Lesage C, Lafont M, Guihard P, Weiss P, Guicheux J, Delplace V. Material-Assisted Strategies for Osteochondral Defect Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200050. [PMID: 35322596 PMCID: PMC9165504 DOI: 10.1002/advs.202200050] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Indexed: 05/08/2023]
Abstract
The osteochondral (OC) unit plays a pivotal role in joint lubrication and in the transmission of constraints to bones during movement. The OC unit does not spontaneously heal; therefore, OC defects are considered to be one of the major risk factors for developing long-term degenerative joint diseases such as osteoarthritis. Yet, there is currently no curative treatment for OC defects, and OC regeneration remains an unmet medical challenge. In this context, a plethora of tissue engineering strategies have been envisioned over the last two decades, such as combining cells, biological molecules, and/or biomaterials, yet with little evidence of successful clinical transfer to date. This striking observation must be put into perspective with the difficulty in comparing studies to identify overall key elements for success. This systematic review aims to provide a deeper insight into the field of material-assisted strategies for OC regeneration, with particular considerations for the therapeutic potential of the different approaches (with or without cells or biological molecules), and current OC regeneration evaluation methods. After a brief description of the biological complexity of the OC unit, the recent literature is thoroughly analyzed, and the major pitfalls, emerging key elements, and new paths to success are identified and discussed.
Collapse
Affiliation(s)
- Constance Lesage
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
- HTL Biotechnology7 Rue Alfred KastlerJavené35133France
| | - Marianne Lafont
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Pierre Guihard
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Pierre Weiss
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Jérôme Guicheux
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Vianney Delplace
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| |
Collapse
|
39
|
Zhang X, Xiang J, Hong Y, Shen L. Recent Advances in Design Strategies of Tough Hydrogels. Macromol Rapid Commun 2022; 43:e2200075. [PMID: 35436378 DOI: 10.1002/marc.202200075] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/05/2022] [Indexed: 11/10/2022]
Abstract
Hydrogels are a fascinating class of materials popular in numerous fields, including tissue engineering, drug delivery, soft robotics, and sensors, attributed to their 3D network porous structure containing a significant amount of water. However, traditional hydrogels exhibit poor mechanical strength, limiting their practical applications. Thus, many researchers have focused on the development of mechanically enhanced hydrogels. This review describes the design considerations for constructing tough hydrogels and some of the latest strategies in recent years. These tough hydrogels have an up-and-coming prospect and bring great hope to the fields of biomedicine and others. Nonetheless, it is still no small challenge to realize hydrogel materials that are tough, multifunctional, intelligent, and zero-defect. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaojia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Jinxi Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Yanlong Hong
- Shanghai Collaborative Innovation Center for Chinese Medicine Health Services, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lan Shen
- School of Pharmacy, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| |
Collapse
|
40
|
Li L, Peng H, Du Y, Zheng H, Yang A, Lv G, Li H. An antibacterial biomimetic adhesive with strong adhesion in both dry and underwater situations. J Mater Chem B 2022; 10:1063-1076. [PMID: 35076052 DOI: 10.1039/d1tb02215f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adhesives have attracted extensive attention in biomedical applications in recent years. However, the development of adhesives with strong adhesion in both dry and underwater conditions and antibacterial properties is still a challenge. Herein, a biomimetic adhesive (DP@TA/Gel) was developed based on the adhesion mechanism of mussel in water, from adhesion and solidification to avoiding excessive oxidization processes. DP@TA/Gel exhibited rapid strong nonspecific adhesiveness to diverse materials including wood (485 kPa) metal (507 kPa), plastic (74 kPa), and even fresh biological tissue (39 kPa) in dry conditions. Specially, owing to its biomimetic design, DP@TA/Gel could imitate the mussel adhesion mechanism underwater, endowing it with robust (38 kPa), highly repeatable (at least 15 times) and long-term (at least 120 h) stable adhesion even in underwater conditions. Remarkably, DP@TA/Gel also exhibited high adhesiveness in various water environments, including seawater, and a wide range of pH (3-11) and NaCl concentration (0.9-10%) solutions without any stimulus. In addition, DP@TA/Gel showed excellent biocompatibility and antibacterial properties. Thus, the DP@TA/Gel adhesive has appealing potential biomedical applications such as sutureless wound closure and as a tissue adhesive.
Collapse
Affiliation(s)
- Lin Li
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Haitao Peng
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Yan Du
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Heng Zheng
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Aiping Yang
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Guoyu Lv
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Hong Li
- College of Physics, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
41
|
Zhang L, Zhang Y, Ma F, Liu X, Liu Y, Cao Y, Pei R. A low-swelling and toughened adhesive hydrogel with anti-microbial and hemostatic capacities for wound healing. J Mater Chem B 2022; 10:915-926. [PMID: 35050296 DOI: 10.1039/d1tb01871j] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hydrogel-based wound dressings with tissue adhesion abilities are widely used for wound closure. However, currently developed hydrogel adhesives are still poor at continuing to seal wounds while bleeding is ongoing. Herein, we demonstrate an antibacterial and hemostatic hydrogel adhesive with low-swelling properties and toughness for wound healing. The hydrogel was composed of Pluronic F127 diacrylate, quaternized chitosan diacrylate, silk fibroin, and tannic acid, and it was not only able to maintain good tissue adhesion abilities in a moist environment but it also showed guaranteed tissue adhesion and mechanical strength after absorbing water due to its low-swelling and toughness properties. Furthermore, in vitro and in vivo tests demonstrated that the hydrogel also had antibacterial, antioxidant, and hemostatic properties, which could promote tissue regeneration. All these findings demonstrate that this hydrogel with multifunctional properties is a promising material for clinical wound healing applications.
Collapse
Affiliation(s)
- Liwei Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. .,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yangzhong Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
42
|
Liang M, Wei D, Yao Z, Ren P, Dai J, Xu L, Zhang T, Zhang Q. Hydrogel Adhesive Formed via Multiple Chemical Interactions: From Persistent Wet Adhesion to Rapid Hemostasis. Biomater Sci 2022; 10:1486-1497. [DOI: 10.1039/d1bm01848e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thus far, robust and durable adhesion capability of hydrogel adhesive in wet environment remains a huge challenge. Here, a chemically-physically double-network cross-linked hydrogel matrix was prepared by first mixing acrylic...
Collapse
|
43
|
Pérez-González N, Bozal-de Febrer N, Calpena-Campmany AC, Nardi-Ricart A, Rodríguez-Lagunas MJ, Morales-Molina JA, Soriano-Ruiz JL, Fernández-Campos F, Clares-Naveros B. New Formulations Loading Caspofungin for Topical Therapy of Vulvovaginal Candidiasis. Gels 2021; 7:259. [PMID: 34940319 PMCID: PMC8701247 DOI: 10.3390/gels7040259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) poses a significant problem worldwide affecting women from all strata of society. It is manifested as changes in vaginal discharge, irritation, itching and stinging sensation. Although most patients respond to topical treatment, there is still a need for increase the therapeutic arsenal due to resistances to anti-infective agents. The present study was designed to develop and characterize three hydrogels of chitosan (CTS), Poloxamer 407 (P407) and a combination of both containing 2% caspofungin (CSP) for the vaginal treatment of VVC. CTS was used by its mucoadhesive properties and P407 was used to exploit potential advantages related to increasing drug concentration in order to provide a local effect. The formulations were physically, mechanically and morphologically characterized. Drug release profile and ex vivo vaginal permeation studies were performed. Antifungal efficacy against different strains of Candida spp. was also evaluated. In addition, tolerance of formulations was studied by histological analysis. Results confirmed that CSP hydrogels could be proposed as promising candidates for the treatment of VVC.
Collapse
Affiliation(s)
- Noelia Pérez-González
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
| | - Nuria Bozal-de Febrer
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain;
| | - Ana C. Calpena-Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Anna Nardi-Ricart
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
| | - María J. Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - José A. Morales-Molina
- Department of Pharmacy, Torrecárdenas University Hospital, s/n Hermandad de Donantes de Sangre St., 04009 Almeria, Spain;
| | - José L. Soriano-Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
| | | | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
44
|
Ghandforoushan P, Golafshan N, Babu Kadumudi F, Castilho M, Dolatshahi-Pirouz A, Orive G. Injectable and adhesive hydrogels for dealing with wounds. Expert Opin Biol Ther 2021; 22:519-533. [PMID: 34793282 DOI: 10.1080/14712598.2022.2008353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The development of wound dressing materials that combine healing properties, ability to self-repair the material damages, skin-friendly adhesive nature, and competent mechanical properties have surpassing functional importance in healthcare. Due to their specificity, hydrogels have been recognized as a new gateway in biological materials to treat dysfunctional tissues. The design and creation of injectable hydrogel-based scaffolds have extensively progressed in recent years to improve their therapeutic efficacy and to pave the way for their easy minimally invasive administration. Hence, injectable hydrogel biomaterials have been prepared to eventually translate into minimally invasive therapy and pose a lasting effect on regenerative medicine. AREAS COVERED This review highlights the recent development of adhesive and injectable hydrogels that have applications in wound healing and wound dressing. Such hydrogel materials are not only expected to improve therapeutic outcomes but also to facilitate the easy surgical process in both wound healing and dressing. EXPERT OPINION Wound healing seems to be an appealing approach for treating countless life-threatening disorders. With the average increase of life expectancy in human societies, an increase in demand for injectable skin replacements and drug delivery carriers for chronic wound healing is expected.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country Upv/ehu Paseo de La Universidad 7, Vitoria-Gasteiz, Spain.,Networking Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (Ciber-bbn), Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,University of the Basque Country, University Institute for Regenerative Medicine and Oral Implantology - Uirmi (Upv/ehu-fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
45
|
Resmerita A, Asandulesa M, Farcas A. Evaluation of the Chemical, Morphological and Dielectric Properties of Supramolecular Networks Consisting of Polyethylene Glycol Polyrotaxanes and Polystyrene/Semi‐Rotaxane with Hydroxypropyl‐
β
‐Cyclodextrins. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ana‐Maria Resmerita
- “Petru Poni” Institute of Macromolecular Chemistry 41 A, Grigore Ghica Voda Alley Iasi 700487 Romania
| | - Mihai Asandulesa
- “Petru Poni” Institute of Macromolecular Chemistry 41 A, Grigore Ghica Voda Alley Iasi 700487 Romania
| | - Aurica Farcas
- “Petru Poni” Institute of Macromolecular Chemistry 41 A, Grigore Ghica Voda Alley Iasi 700487 Romania
| |
Collapse
|
46
|
Emami Z, Ehsani M, Zandi M, Daemi H, Ghanian MH, Foudazi R. Modified hydroxyapatite nanoparticles reinforced nanocomposite hydrogels based on gelatin/oxidized alginate via Schiff base reaction. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
47
|
Abstract
Skin-like electronics are developing rapidly to realize a variety of applications such as wearable sensing and soft robotics. Hydrogels, as soft biomaterials, have been studied intensively for skin-like electronic utilities due to their unique features such as softness, wetness, biocompatibility and ionic sensing capability. These features could potentially blur the gap between soft biological systems and hard artificial machines. However, the development of skin-like hydrogel devices is still in its infancy and faces challenges including limited functionality, low ambient stability, poor surface adhesion, and relatively high power consumption (as ionic sensors). This review aims to summarize current development of skin-inspired hydrogel devices to address these challenges. We first conduct an overview of hydrogels and existing strategies to increase their toughness and conductivity. Next, we describe current approaches to leverage hydrogel devices with advanced merits including anti-dehydration, anti-freezing, and adhesion. Thereafter, we highlight state-of-the-art skin-like hydrogel devices for applications including wearable electronics, soft robotics, and energy harvesting. Finally, we conclude and outline the future trends.
Collapse
Affiliation(s)
- Binbin Ying
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON M5S 3G8, Canada
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 0C3, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
48
|
Polo Fonseca L, Felisberti MI. Thermo- and UV-responsive amphiphilic nanogels via reversible [4+4] photocycloaddition of PEG/PCL-based polyurethane dispersions. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Kwak SS, Yoo S, Avila R, Chung HU, Jeong H, Liu C, Vogl JL, Kim J, Yoon HJ, Park Y, Ryu H, Lee G, Kim J, Koo J, Oh YS, Kim S, Xu S, Zhao Z, Xie Z, Huang Y, Rogers JA. Skin-Integrated Devices with Soft, Holey Architectures for Wireless Physiological Monitoring, With Applications in the Neonatal Intensive Care Unit. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103974. [PMID: 34510572 DOI: 10.1002/adma.202103974] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Continuous monitoring of vital signs is an essential aspect of operations in neonatal and pediatric intensive care units (NICUs and PICUs), of particular importance to extremely premature and/or critically ill patients. Current approaches require multiple sensors taped to the skin and connected via hard-wired interfaces to external data acquisition electronics. The adhesives can cause iatrogenic injuries to fragile, underdeveloped skin, and the wires can complicate even the most routine tasks in patient care. Here, materials strategies and design concepts are introduced that significantly improve these platforms through the use of optimized materials, open (i.e., "holey") layouts and precurved designs. These schemes 1) reduce the stresses at the skin interface, 2) facilitate release of interfacial moisture from transepidermal water loss, 3) allow visual inspection of the skin for rashes or other forms of irritation, 4) enable triggered reduction of adhesion to reduce the probability for injuries that can result from device removal. A combination of systematic benchtop testing and computational modeling identifies the essential mechanisms and key considerations. Demonstrations on adult volunteers and on a neonate in an operating NICUs illustrate a broad range of capabilities in continuous, clinical-grade monitoring of conventional vital signs, and unconventional indicators of health status.
Collapse
Affiliation(s)
- Sung Soo Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Seonggwang Yoo
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | | | - Hyoyoung Jeong
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Claire Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jamie L Vogl
- Division of Pediatric Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Hong-Joon Yoon
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Hanjun Ryu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Geumbee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jihye Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jahyun Koo
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - Yong Suk Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sungbong Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Shuai Xu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Sibel Health, Niles, IL, 60714, USA
- Department of Dermatology, Division of Dermatology, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zichen Zhao
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
50
|
Na YH, Hwang JM, Chung JW, Han Y. 3D
printing using polyampholyte hydrogel with reversible behavior. POLYM INT 2021. [DOI: 10.1002/pi.6221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Ho Na
- Department of Advanced Materials Hannam University Daejeon South Korea
| | - Jung Min Hwang
- Department of Advanced Materials Hannam University Daejeon South Korea
| | - Jae Woo Chung
- Department of Organic Materials and Fiber Engineering Soongsil University Seoul South Korea
| | - Youngbae Han
- Department of Mechanical and System Engineering Korea Military Academy Seoul South Korea
| |
Collapse
|