1
|
Shanaki Bavarsad M, Spina S, Oehler A, Allen IE, Suemoto CK, Leite REP, Seeley WS, Green A, Jagust W, Rabinovici GD, Grinberg LT. Comprehensive mapping of synaptic vesicle protein 2A (SV2A) in health and neurodegenerative diseases: a comparative analysis with synaptophysin and ground truth for PET-imaging interpretation. Acta Neuropathol 2024; 148:58. [PMID: 39476256 DOI: 10.1007/s00401-024-02816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 11/07/2024]
Abstract
Synaptic dysfunction and loss are central to neurodegenerative diseases and correlate with cognitive decline. Synaptic Vesicle Protein 2A (SV2A) is a promising PET-imaging target for assessing synaptic density in vivo, but comprehensive mapping in the human brain is needed to validate its biomarker potential. This study used quantitative immunohistochemistry and Western blotting to map SV2A and synaptophysin (SYP) densities across six cortical regions in healthy controls and patients with early-onset Alzheimer's disease (EOAD), late-onset Alzheimer's disease (LOAD), progressive supranuclear palsy (PSP), and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-GRN). We identified region in SV2A density among controls and observed disease- and region-specific reductions, with the most severe in FTLD-GRN (up to 59.5%) and EOAD. EOAD showed a 49% reduction in the middle frontal gyrus (MFG), while LOAD had over 30% declines in the inferior frontal gyrus (IFG) and hippocampus (CA1). In PSP, smaller but significant reductions were noted in the hippocampal formation, with the inferior temporal gyrus (ITG) relatively unaffected. A strong positive correlation between SV2A and SYP densities confirmed SV2A's reliability as a synaptic integrity marker. This study supports the use of SV2A PET imaging for early diagnosis and monitoring of neurodegenerative diseases, providing essential data for interpreting in vivo PET results. Further research should explore SV2A as a therapeutic target and validate these findings in larger, longitudinal studies.
Collapse
Affiliation(s)
- Mahsa Shanaki Bavarsad
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, University of California, San Francisco (UCSF), San Francisco, USA
| | - Isabel E Allen
- Department of Biostatistics and Epidemiology, University of California, San Francisco (UCSF), San Francisco, USA
| | - Claudia K Suemoto
- Discipline of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Renata E P Leite
- Department of Pathology, Lim22, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - William S Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Ari Green
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, USA
| | - William Jagust
- Department of Neuroscience, University of California Berkeley, Berkeley, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA.
- Department of Pathology, Lim22, University of Sao Paulo Medical School, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Saez-Calveras N, Vaquer-Alicea J, White CL, Tak Y, Cosentino S, Faust PL, Louis ED, Diamond MI. Essential tremor with tau pathology features seeds indistinguishable in conformation from Alzheimer's disease and primary age-related tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617973. [PMID: 39464029 PMCID: PMC11507725 DOI: 10.1101/2024.10.12.617973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Neurodegenerative tauopathies are characterized by the deposition of distinct fibrillar tau assemblies whose rigid core structures correlate with defined neuropathological phenotypes. Essential tremor (ET) is a progressive neurological disease that, in some cases, is associated with cognitive impairment and tau accumulation. Consequently, we explored the tau assembly conformation in ET patients with tau pathology using cytometry-based tau biosensor assays. These assays quantify tau prion seeding activity present in brain homogenates based on conversion of intracellular tau-fluorescent protein fusions from a soluble to an aggregated state. Prions exhibit seeding barriers, whereby a specific assembly structure cannot serve as a template for a native monomer if the amino acids are not compatible. We recently exploited the tau prion species barrier to define tauopathies by systematically substituting alanine (Ala) in the tau monomer and measuring its incorporation into seeded aggregates within biosensor cells. The Ala scan precisely classified the conformation of tau seeds from diverse tauopathies. We next studied 18 ET patient brains with tau pathology. Only one case had concurrent high amyloid-β plaque pathology consistent with Alzheimer's disease (AD). We detected robust tau seeding activity in 9 (50%) of the patients. This predominantly localized to the temporal pole and temporal cortex. We examined 8 ET cases with the Ala scan and determined that the amino acid requirements for tau monomer incorporation into aggregates seeded from these ET brain homogenates were identical to those of AD and primary age-related tauopathy (PART), and completely distinct from other tauopathies such as corticobasal degeneration, chronic traumatic encephalopathy, and progressive supranuclear palsy. Based on these studies, tau assembly cores in a pathologically confined subset of ET cases with high tau pathology are identical to AD and PART. This could facilitate more precise diagnosis and therapy for ET patients with cognitive impairment.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Neurology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Charles L White
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Pathology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yogesh Tak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Stephanie Cosentino
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and Gertrude H. Sergievsky Center, Columbia University, New York, NY
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Elan D Louis
- Department of Neurology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Neurology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
3
|
Gelpi E, Reinecke R, Gaig C, Iranzo A, Sabater L, Molina-Porcel L, Aldecoa I, Endmayr V, Högl B, Schmutzhard E, Poewe W, Pfausler B, Popovic M, Pretnar-Oblak J, Leypoldt F, Matschke J, Glatzel M, Erro EM, Jerico I, Caballero MC, Zelaya MV, Mariotto S, Heidbreder A, Kalev O, Weis S, Macher S, Berger-Sieczkowski E, Ferrari J, Reisinger C, Klupp N, Tienari P, Rautila O, Niemelä M, Yilmazer-Hanke D, Guasp M, Bloem B, Van Gaalen J, Kusters B, Titulaer M, Fransen NL, Santamaria J, Dawson T, Holton JL, Ling H, Revesz T, Myllykangas L, Budka H, Kovacs GG, Lewerenz J, Dalmau J, Graus F, Koneczny I, Höftberger R. Neuropathological spectrum of anti-IgLON5 disease and stages of brainstem tau pathology: updated neuropathological research criteria of the disease-related tauopathy. Acta Neuropathol 2024; 148:53. [PMID: 39400557 PMCID: PMC11473580 DOI: 10.1007/s00401-024-02805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
Anti-IgLON5 disease is a unique condition that bridges autoimmunity and neurodegeneration. Since its initial description 10 years ago, an increasing number of autopsies has led to the observation of a broader spectrum of neuropathologies underlying a particular constellation of clinical symptoms. In this study, we describe the neuropathological findings in 22 patients with anti-IgLON5 disease from 9 different European centers. In 15 patients (68%), we observed a hypothalamic and brainstem-predominant tauopathy of varying severity in which the original research neuropathological criteria were readily applicable. This pathology was observed in younger patients (median age at onset 61 years) with a long disease duration (median 9 years). In contrast, in 7 (32%) patients, the originally described brainstem tauopathy was nearly absent or only minimal in the form of delicate threads, despite mild-to-moderate neurodegenerative features, consistent clinical symptoms and the presence of anti-IgLON5 antibodies in CSF and serum. These patients were older at onset (median 79 years) and had shorter disease duration (median < 1 year). Overall, about one-third of the patients showed concomitant TDP-43 pathology within the regions affected by tau pathology and/or neurodegeneration. Based on these observations and in view of the spectrum of the tau burden in the core regions involved in the disease, we propose a simple staging system: stage 1 mild neurodegeneration without overt or only minimal tau pathology, stage 2 moderate neurodegeneration and mild/ moderate tauopathy and stage 3 prominent neurodegeneration and tau pathology. This staging intends to reflect a potential (age- and time-dependent) progression of tau pathology, supporting the current notion that tau accumulation is a secondary phenomenon related to the presence of anti-IgLON5 antibodies in the CNS. Finally, we adapt the original research criteria of the anti-IgLON5 disease-related tauopathy to include the spectrum of pathologies observed in this larger postmortem series.
Collapse
Affiliation(s)
- Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Raphael Reinecke
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Carles Gaig
- Sleep Unit, Neurology Department, Hospital Clinic de Barcelona, IDIBAPS/FCRB, Barcelona, Spain
| | - Alex Iranzo
- Sleep Unit, Neurology Department, Hospital Clinic de Barcelona, IDIBAPS/FCRB, Barcelona, Spain
| | - Lidia Sabater
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), Neuroimmunology Program, Barcelona, Spain
| | - Laura Molina-Porcel
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS/FCRB), Neurological Tissue Bank of the Biobanc, Hospital Clinic, Barcelona, Spain
- Memory Unit, Neurology Department, Hospital Clinic de Barcelona, IDIBAPS/FCRB, Barcelona, Spain
| | - Iban Aldecoa
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS/FCRB), Neurological Tissue Bank of the Biobanc, Hospital Clinic, Barcelona, Spain
- Pathology Department, Biomedical Diagnostic Center, Hospital Clinic de Barcelona-University of Barcelona, IDIBAPS/FCRB, Barcelona, Spain
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Schmutzhard
- Neuro-Critical Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Pfausler
- Neuro-Critical Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mara Popovic
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Pretnar-Oblak
- Department for Vascular Neurology and Intensive Neurological Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry and Laboratory Medicine, Department of Neurology, Kiel University, Kiel, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Maria Erro
- Neurology Department, University Hospital Pamplona, Navarra, Spain
- Navarra Biomed Research Institute, Pamplona, Spain
| | - Ivonne Jerico
- Neurology Department, University Hospital Pamplona, Navarra, Spain
- Navarra Biomed Research Institute, Pamplona, Spain
| | - Maria Cristina Caballero
- Navarra Biomed Research Institute, Pamplona, Spain
- Pathology Department, University Hospital Pamplona, Navarra, Spain
| | - Maria Victoria Zelaya
- Navarra Biomed Research Institute, Pamplona, Spain
- Pathology Department, University Hospital Pamplona, Navarra, Spain
| | - Sara Mariotto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Heidbreder
- Department of Neurology, Kepler University Hospital Linz, and Clinical Research Institute for Neurosciences, Johannes Kepler University, Linz, Austria
| | - Ognian Kalev
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Kepler University Hospital Linz, Austria and Clinical Research Institute for Neurosciences, Johannes Kepler University, Linz, Austria
| | - Serge Weis
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Kepler University Hospital Linz, Austria and Clinical Research Institute for Neurosciences, Johannes Kepler University, Linz, Austria
| | - Stefan Macher
- Comprehensive Center for Clinical Neurosciences & Mental Health Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Evelyn Berger-Sieczkowski
- Comprehensive Center for Clinical Neurosciences & Mental Health Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Julia Ferrari
- Department of Neurology, St. John's of God Hospital, Vienna, Austria
| | | | - Nikolaus Klupp
- Center of Forensic Medicine, Medical University of Vienna, Vienna, Austria
| | - Pentti Tienari
- Translational Immunology, Research Programs Unit, Department of Neurology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Osma Rautila
- Translational Immunology, Research Programs Unit, Department of Neurology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Marja Niemelä
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Deniz Yilmazer-Hanke
- Clinical Neuroanatomy, Department of Neurology, University Hospital, Ulm University, Ulm, Germany
| | - Mar Guasp
- Sleep Unit, Neurology Department, Hospital Clinic de Barcelona, IDIBAPS/FCRB, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), Neuroimmunology Program, Barcelona, Spain
| | - Bas Bloem
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith Van Gaalen
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Maarten Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nina L Fransen
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Pathology, UMC Utrecht, Utrecht, The Netherlands
| | - Joan Santamaria
- Sleep Unit, Neurology Department, Hospital Clinic de Barcelona, IDIBAPS/FCRB, Barcelona, Spain
| | - Thimoty Dawson
- Neuropathology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Helen Ling
- Queen Square Brain Bank for Neurological Disorders, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Herbert Budka
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Jan Lewerenz
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Josep Dalmau
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Francesc Graus
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), Neuroimmunology Program, Barcelona, Spain
| | - Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences & Mental Health Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences & Mental Health Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Yamahara N, Takekoshi A, Kimura A, Shimohata T. Autoimmune Encephalitis and Paraneoplastic Neurological Syndromes with Progressive Supranuclear Palsy-like Manifestations. Brain Sci 2024; 14:1012. [PMID: 39452025 PMCID: PMC11506429 DOI: 10.3390/brainsci14101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Advances in diagnostic procedures have led to an increasing rate of diagnosis of autoimmune encephalitis or paraneoplastic neurological syndrome (AE/PNS) among patients with progressive supranuclear palsy (PSP)-like manifestations. METHODS In this narrative review, we first discuss the clinical characteristics of AE/PNS in comparison to those of PSP, followed by a discussion of diagnosis and treatment. RESULTS The antibodies involved in these conditions include anti-IgLON5, -Ma2, and -Ri antibodies, each of which has a characteristic clinical presentation. The steps in the diagnosis of AE/PNS in patients with PSP-like manifestations include (i) suspicion of AE/PNS based on clinical presentations atypical of PSP and (ii) antibody detection measures. Methods used to identify antibodies include a combination of tissue-based assays and confirmatory tests. The primary confirmatory tests include cell-based assays and immunoblotting. Treatments can be divided into immunotherapy and tumor therapies, the former of which includes acute and maintenance therapies. CONCLUSIONS One of the major challenges of diagnosis is that existing reports on PSP-like patients with AE/PNS include only case reports, with the majority discussing antibodies other than anti-IgLON5 antibody. As such, more patients need to be evaluated to establish the relationship between antibodies and PSP-like manifestations.
Collapse
Affiliation(s)
| | | | | | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan; (N.Y.); (A.T.); (A.K.)
| |
Collapse
|
5
|
Rexach JE, Cheng Y, Chen L, Polioudakis D, Lin LC, Mitri V, Elkins A, Han X, Yamakawa M, Yin A, Calini D, Kawaguchi R, Ou J, Huang J, Williams C, Robinson J, Gaus SE, Spina S, Lee EB, Grinberg LT, Vinters H, Trojanowski JQ, Seeley WW, Malhotra D, Geschwind DH. Cross-disorder and disease-specific pathways in dementia revealed by single-cell genomics. Cell 2024; 187:5753-5774.e28. [PMID: 39265576 DOI: 10.1016/j.cell.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 05/29/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
The development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNA-seq and ATAC-seq in Alzheimer's disease (AD), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), analyzing 41 participants and ∼1 million cells (RNA + ATAC) from three brain regions varying in vulnerability and pathological burden. We identify 32 shared, disease-associated cell types and 14 that are disease specific. Disease-specific cell states represent glial-immune mechanisms and selective neuronal vulnerability impacting layer 5 intratelencephalic neurons in AD, layer 2/3 intratelencephalic neurons in FTD, and layer 5/6 near-projection neurons in PSP. We identify disease-associated gene regulatory networks and cells impacted by causal genetic risk, which differ by disorder. These data illustrate the heterogeneous spectrum of glial and neuronal compositional and gene expression alterations in different dementias and identify therapeutic targets by revealing shared and disease-specific cell states.
Collapse
Affiliation(s)
- Jessica E Rexach
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lawrence Chen
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Damon Polioudakis
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Li-Chun Lin
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vivianne Mitri
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew Elkins
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Han
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mai Yamakawa
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna Yin
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniela Calini
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development, F. Hoffman-LaRoche Ltd., Basel, Switzerland
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jing Ou
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jerry Huang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher Williams
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John Robinson
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie E Gaus
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Edward B Lee
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Harry Vinters
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John Q Trojanowski
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Dheeraj Malhotra
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development, F. Hoffman-LaRoche Ltd., Basel, Switzerland
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Badihian N, Tosakulwong N, Weigand SD, Ali F, Clark HM, Stierwalt J, Botha H, Savica R, Dickson DW, Whitwell JL, Josephs KA. Relationships between regional burden of tau pathology and age at death and disease duration in PSP. Parkinsonism Relat Disord 2024; 127:107109. [PMID: 39222570 PMCID: PMC11449633 DOI: 10.1016/j.parkreldis.2024.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND A definitive diagnosis of progressive supranuclear palsy (PSP) can only be established through neuropathological evaluations where four cardinal tau lesions are identified. Relationships between regional tau burden and disease duration/age at death is unclear. OBJECTIVE To investigate relationships between tau burden in different brain regions and disease duration and age at death in PSP and determine whether association are influenced by PSP subtype (subcortical/cortical) or co-pathologies. METHODS We identified 45 patients with definite PSP who were evaluated at Mayo Clinic between 2009 and 2023, died and underwent histopathological evaluation. We performed semi-quantitative lesion count for each of four cardinal lesions (pretangles/globose neurofibrillary tangles, threads, tufted astrocytes, and coiled bodies) across 10 brain regions. We fit Bayesian linear hierarchical regression models to estimate the relationship between total pathological burden, and disease duration and age at death by region and the influence of subtype and co-pathologies. RESULTS Of the 45 patients, 18 (40 %) were female. Median age at death was 75 (56-87) years and median disease duration was 8 (3,15) years. Younger age at death was associated with greater total tau burden in the pallidum, red nucleus, striatum, and subthalamic nucleus (all p ≤ 0.01). Shorter disease duration was associated with greater total tau burden in the red nucleus (p = 0.05). There was no evidence for a difference in association between lesion types. PSP subtype and co-pathologies did not influence associations. CONCLUSIONS The findings from this study suggest that age and disease duration influence burden of tau pathology in subcortical regions in PSP.
Collapse
Affiliation(s)
- Negin Badihian
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
7
|
Bang J, Pantelyat A. Correlation between clinical and neuropathological subtypes of PSP: Do clinical symptoms reflect tau distribution? Parkinsonism Relat Disord 2024; 127:107108. [PMID: 39237424 DOI: 10.1016/j.parkreldis.2024.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Affiliation(s)
- Jee Bang
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-181C, Baltimore, Maryland, 21287, USA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-181C, Baltimore, Maryland, 21287, USA.
| |
Collapse
|
8
|
Koizumi R, Akagi A, Riku Y, Miyahara H, Sone J, Tanaka F, Yoshida M, Iwasaki Y. Correlation between clinical and neuropathological subtypes of progressive supranuclear palsy. Parkinsonism Relat Disord 2024; 127:106076. [PMID: 38494398 DOI: 10.1016/j.parkreldis.2024.106076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Progressive supranuclear palsy (PSP) is characterized by pathology prominently in the basal ganglia, the tegmentum of the brainstem, and the frontal cortex. However, pathology varies according to clinical features. This study aimed to statistically verify the correspondence between the clinical and pathological subtypes of PSP. METHODS We identified patients with a pathological diagnosis of PSP and classified the eight clinical subtypes of the Movement Disorders Society criteria for the clinical diagnosis of PSP (MDS-PSP criteria) into the Richardson, Akinesia, and Cognitive groups. We used anti-phosphorylated tau antibody immunostaining to semi-quantitatively evaluate neurofibrillary tangles (NFTs) and coiled bodies/threads (CB/Ths) in the globus pallidus, subthalamic nucleus, and midbrain tegmentum. In the frontal cortex, tufted astrocytes (TAs) and CB/Ths were assessed on a 3-point scale. We compared the pathology among the three groups, recorded the phenotypes ranked the second and lower in the multiple allocation extinction rule and examined whether the pathology changed depending on applying each phenotype. RESULTS The Richardson group exhibited severe NFTs and CB/Ths in the midbrain tegmentum. The Akinesia group showed severe NFTs in the globus pallidus. The Cognitive group had severe TAs and CB/Ths in the frontal cortex. TAs and CB/Ths in the frontal cortex correspond to behavioral variant frontotemporal dementia, and supranuclear vertical oculomotor palsy. CONCLUSION These clinical symptoms may reflect the distribution of tau pathologies in PSP.
Collapse
Affiliation(s)
- Ryuichi Koizumi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazako Karimata, Nagakute City, Aichi prefecture, 480-1103, Japan; Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukura, Kanazawa Ward, Yokohama City, Kanagawa prefecture, 236-0004, Japan.
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazako Karimata, Nagakute City, Aichi prefecture, 480-1103, Japan.
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazako Karimata, Nagakute City, Aichi prefecture, 480-1103, Japan.
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazako Karimata, Nagakute City, Aichi prefecture, 480-1103, Japan.
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazako Karimata, Nagakute City, Aichi prefecture, 480-1103, Japan.
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukura, Kanazawa Ward, Yokohama City, Kanagawa prefecture, 236-0004, Japan.
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazako Karimata, Nagakute City, Aichi prefecture, 480-1103, Japan.
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazako Karimata, Nagakute City, Aichi prefecture, 480-1103, Japan.
| |
Collapse
|
9
|
Jang Y, Oh S, Hall AJ, Zhang Z, Tropea TF, Chen-Plotkin A, Rosenthal LS, Dawson TM, Na CH, Pantelyat AY. Biomarker discovery in progressive supranuclear palsy from human cerebrospinal fluid. Clin Proteomics 2024; 21:56. [PMID: 39342078 PMCID: PMC11437921 DOI: 10.1186/s12014-024-09507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a neurodegenerative disorder often misdiagnosed as Parkinson's Disease (PD) due to shared symptoms. PSP is characterized by the accumulation of tau protein in specific brain regions, leading to loss of balance, gaze impairment, and dementia. Diagnosing PSP is challenging, and there is a significant demand for reliable biomarkers. Existing biomarkers, including tau protein and neurofilament light chain (NfL) levels in cerebrospinal fluid (CSF), show inconsistencies in distinguishing PSP from other neurodegenerative disorders. Therefore, the development of new biomarkers for PSP is imperative. METHODS We conducted an extensive proteome analysis of CSF samples from 40 PSP patients, 40 PD patients, and 40 healthy controls (HC) using tandem mass tag-based quantification. Mass spectrometry analysis of 120 CSF samples was performed across 13 batches of 11-plex TMT experiments, with data normalization to reduce batch effects. Pathway, interactome, cell-type-specific enrichment, and bootstrap receiver operating characteristic analyses were performed to identify key candidate biomarkers. RESULTS We identified a total of 3,653 unique proteins. Our analysis revealed 190, 152, and 247 differentially expressed proteins in comparisons of PSP vs. HC, PSP vs. PD, and PSP vs. both PD and HC, respectively. Gene set enrichment and interactome analysis of the differentially expressed proteins in PSP CSF showed their involvement in cell adhesion, cholesterol metabolism, and glycan biosynthesis. Cell-type enrichment analysis indicated a predominance of neuronally-derived proteins among the differentially expressed proteins. The potential biomarker classification performance demonstrated that ATP6AP2 (reduced in PSP) had the highest AUC (0.922), followed by NEFM, EFEMP2, LAMP2, CHST12, FAT2, B4GALT1, LCAT, CBLN3, FSTL5, ATP6AP1, and GGH. CONCLUSION Biomarker candidate proteins ATP6AP2, NEFM, and CHI3L1 were identified as key differentiators of PSP from the other groups. This study represents the first large-scale use of mass spectrometry-based proteome analysis to identify cerebrospinal fluid (CSF) biomarkers specific to progressive supranuclear palsy (PSP) that can differentiate it from Parkinson's disease (PD) and healthy controls. Our findings lay a crucial foundation for the development and validation of reliable biomarkers, which will enhance diagnostic accuracy and facilitate early detection of PSP.
Collapse
Affiliation(s)
- Yura Jang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sungtaek Oh
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna J Hall
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Alexander Y Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Bai Q, Shao E, Ma D, Jiao B, Scheetz SD, Hartnett-Scott KA, Ilin VA, Aizenman E, Kofler J, Burton EA. A human Tau expressing zebrafish model of progressive supranuclear palsy identifies Brd4 as a regulator of microglial synaptic elimination. Nat Commun 2024; 15:8195. [PMID: 39294122 PMCID: PMC11410960 DOI: 10.1038/s41467-024-52173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is an incurable neurodegenerative disease characterized by 4-repeat (0N/4R)-Tau protein accumulation in CNS neurons. We generated transgenic zebrafish expressing human 0N/4R-Tau to investigate PSP pathophysiology. Tau zebrafish replicated multiple features of PSP, including: decreased survival; hypokinesia; impaired optokinetic responses; neurodegeneration; neuroinflammation; synapse loss; and Tau hyperphosphorylation, misfolding, mislocalization, insolubility, truncation, and oligomerization. Using automated assays, we screened 147 small molecules for activity in rescuing neurological deficits in Tau zebrafish. (+)JQ1, a bromodomain inhibitor, improved hypokinesia, survival, microgliosis, and brain synapse elimination. A heterozygous brd4+/- mutant reducing expression of the bromodomain protein Brd4 similarly rescued these phenotypes. Microglial phagocytosis of synaptic material was decreased by (+)JQ1 in both Tau zebrafish and rat primary cortical cultures. Microglia in human PSP brains expressed Brd4. Our findings implicate Brd4 as a regulator of microglial synaptic elimination in tauopathy and provide an unbiased approach for identifying mechanisms and therapeutic targets in PSP.
Collapse
Affiliation(s)
- Qing Bai
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Enhua Shao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Denglei Ma
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Binxuan Jiao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Seth D Scheetz
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Karen A Hartnett-Scott
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Vladimir A Ilin
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Elias Aizenman
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Edward A Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatrics Research, Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
11
|
Adams JW, Kirsch D, Calderazzo SM, Tuz-Zahra F, Tripodis Y, Mez J, Alosco ML, Alvarez VE, Huber BR, Kubilus C, Cormier KA, Nicks R, Uretsky M, Nair E, Kuzyk E, Aytan N, Cherry JD, Crary JF, Daneshvar DH, Nowinski CJ, Goldstein LE, Dwyer B, Katz DI, Cantu RC, Stern RA, McKee AC, Stein TD. Substantia Nigra Pathology, Contact Sports Play, and Parkinsonism in Chronic Traumatic Encephalopathy. JAMA Neurol 2024; 81:916-924. [PMID: 39008284 PMCID: PMC11250391 DOI: 10.1001/jamaneurol.2024.2166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/21/2024] [Indexed: 07/16/2024]
Abstract
Importance Parkinsonism is associated with traumatic brain injury and chronic traumatic encephalopathy (CTE), a neurodegenerative disease associated with repetitive head impact (RHI) exposure, but the neuropathologic substrates that underlie parkinsonism in individuals with CTE are yet to be defined. Objective To evaluate the frequency of parkinsonism in individuals with CTE and the association of RHI and neuropathologic substrates with parkinsonism in these individuals. Design, Setting, and Participants This cross-sectional study included brain donors with neuropathologically diagnosed CTE without other significant neurodegenerative disease and with information on parkinsonism from the Understanding Neurologic Injury and Traumatic Encephalopathy brain bank between July 2015 and May 2022. Exposure Years of contact sports participation as a proxy for RHI. Main Outcomes and Measures The main outcomes were frequency of parkinsonism in individuals with CTE and associations between (1) RHI with substantia nigra (SN) Lewy bodies (LBs) and neurofibrillary tangles (NFTs); (2) LBs, NFTs, and arteriolosclerosis with SN neuronal loss; and (3) SN neuronal loss, LBs, NFTs, and arteriolosclerosis with parkinsonism, tested by age-adjusted logistic regressions. Results Of 481 male brain donors with neuropathologically diagnosed CTE, parkinsonism occurred frequently in individuals with CTE (119 [24.7%]; 362 [75.3%] did not have parkinsonism). Participants with parkinsonism had a higher mean (SD) age at death (71.5 [13.0] years) than participants without parkinsonism (54.1 [19.3] years) (P < .001) and higher rates of dementia (104 [87.4%] vs 105 [29.0%]), visual hallucinations (45 [37.8%] vs 51 [14.1%]), and probable rapid eye movement sleep behavior disorder (52 [43.7%] vs 58 [16.0%]) (P < .001 for all). Participants with parkinsonism had a more severe CTE stage (eg, stage IV: 35 [29.4%] vs 39 [10.8%]) and nigral pathology than those without parkinsonism (NFTs: 50 of 117 [42.7%] vs 103 of 344 [29.9%]; P = .01; neuronal loss: 61 of 117 [52.1%] vs 59 of 344 [17.1%]; P < .001; and LBs: 28 of 116 [24.1%] vs 20 of 342 [5.8%]; P < .001). Years of contact sports participation were associated with SN NFTs (adjusted odds ratio [AOR], 1.04; 95% CI, 1.00-1.07; P = .03) and neuronal loss (AOR, 1.05; 95% CI, 1.01-1.08; P = .02). Nigral neuronal loss (AOR, 2.61; 95% CI, 1.52-4.47; P < .001) and LBs (AOR, 2.29; 95% CI, 1.15-4.57; P = .02) were associated with parkinsonism. However, SN neuronal loss was associated with SN LBs (AOR, 4.48; 95% CI, 2.25-8.92; P < .001), SN NFTs (AOR, 2.51; 95% CI, 1.52-4.15; P < .001), and arteriolosclerosis (AOR, 2.27; 95% CI, 1.33-3.85; P = .002). In American football players, regression analysis demonstrated that SN NFTs and neuronal loss mediated the association between years of play and parkinsonism in the context of CTE (β, 0.012; 95% CI, 0.001-0.038). Conclusions and Relevance In this cross-sectional study of contact sports athletes with CTE, years of contact sports participation were associated with SN tau pathology and neuronal loss, and these pathologies were associated with parkinsonism. Repetitive head impacts may incite neuropathologic processes that lead to symptoms of parkinsonism in individuals with CTE.
Collapse
Affiliation(s)
- Jason W. Adams
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla
| | - Daniel Kirsch
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Samantha M. Calderazzo
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Fatima Tuz-Zahra
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Jesse Mez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
- VA Bedford Healthcare System, Bedford, Massachusetts
| | - Bertrand R. Huber
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
| | - Caroline Kubilus
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Kerry A. Cormier
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
- VA Bedford Healthcare System, Bedford, Massachusetts
| | - Raymond Nicks
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Madeline Uretsky
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Evan Nair
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Eva Kuzyk
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Nurgul Aytan
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Jonathan D. Cherry
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - John F. Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel H. Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts
- Department of Physical Medicine and Rehabilitation, Mass General Brigham-Spaulding Rehabilitation, Charlestown, Massachusetts
| | - Christopher J. Nowinski
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
| | - Lee E. Goldstein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Brigid Dwyer
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Brain Injury Program, Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Douglas I. Katz
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Brain Injury Program, Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Robert C. Cantu
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Emerson Hospital, Concord, Massachusetts
| | - Robert A. Stern
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts
| | - Ann C. McKee
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
- VA Bedford Healthcare System, Bedford, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts
- VA Boston Healthcare System, Boston, Massachusetts
- VA Bedford Healthcare System, Bedford, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
12
|
Garcia-Guaqueta DP, Ghayal NB, Lowe VJ, Dickson DW, Whitwell JL, Josephs KA. Patterns of glucose hypometabolism can help differentiate FTLD-FET from other types of FTLD. J Neurol 2024; 271:6264-6273. [PMID: 39088063 DOI: 10.1007/s00415-024-12583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION FTLD-FET is a newly described subtype of frontotemporal lobar degeneration (FTLD characterized by pathologic inclusions of FET proteins: fused in sarcoma (FUS), Ewing sarcoma, and TATA-binding protein-associated factor 2N (TAF15)). Severe caudate volume loss on MRI has been linked to FTLD-FUS, yet glucose hypometabolism in FTLD-FET has not been studied. We assessed [18F] fluorodeoxyglucose PET (FDG-PET) hypometabolism in FTLD-FET subtypes and compared metabolism to FTLD-tau and FTLD-TDP. METHODS We retrospectively reviewed medical records of 26 autopsied FTLD patients (six FTLD-FET, ten FTLD-Tau, and ten FTLD-TDP) who had completed antemortem FDG-PET. We evaluated five regions, caudate nucleus, medial frontal cortex, lateral frontal cortex, and medial temporal using a 0-3 visual rating scale and validated our findings quantitatively using CORTEX-ID suite Z scores. RESULTS Of the six FTLD-FET cases (three females) with median age at onset = 36, three were atypical FTLD-U (aFTLD-U) and three were neuronal intermediate filament inclusion disease (NIFID). bvFTD was the most common presentation. Four of the six FTLD cases (3 aFTLD-U + 1 NIFID) showed prominent caudate hypometabolism relatively early in the disease course. FTLD-tau and FTLD-TDP did not show early prominent caudate hypometabolism. Hypometabolism in medial and lateral temporal cortex was associated with FTLD-TDP, while FTLD-tau had normal-minimal regional metabolism. DISCUSSION Prominent caudate hypometabolism, especially early in the disease course, appears to be a hallmark feature of the aFTLD-U subtype of FTLD-FET. Assessing caudate and temporal hypometabolism on FDG-PET will help to differentiate FTLD-FET from FTLD-tau and FTLD-TDP.
Collapse
Affiliation(s)
| | - Nikhil B Ghayal
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Val J Lowe
- Department of Neuroscience (Neuropathology), Mayo Clinic, Florida, 32224, USA
| | | | - Jennifer L Whitwell
- Department of Neuroscience (Neuropathology), Mayo Clinic, Florida, 32224, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Neurology, Behavioral Neurology and Movement Disorders, College of Medicine, and Science, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
13
|
Sano T, Mizutani M, Ishihara T, Hara N, Miyashita A, Ikeuchi T, Hasegawa M, Takahashi Y, Takao M. Long-standing preservation of levodopa response in progressive supranuclear palsy. J Neurol Sci 2024; 466:123203. [PMID: 39260141 DOI: 10.1016/j.jns.2024.123203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024]
Abstract
The clinical and neuropathological characteristics of progressive supranuclear palsy (PSP) with preservation of levodopa (L-dopa) response are described in this report. We present the case of a 73-year-old Japanese man with a 13-year history of dopa-responsive Parkinsonism and abnormalities observed in metaiodobenzylguanidine (MIBG) myocardial scintigraphy, suggesting Parkinson's disease. However, autopsy results revealed PSP pathology, including tuft-shaped astrocytes and globose-type neurofibrillary tangles, without Lewy body pathology. The degeneration was moderately to severely distributed in the globus pallidus, subthalamic nucleus, and substantia nigra, whereas striatal degeneration was mild. These findings suggest an intact response to L-dopa therapy throughout the patient's lifetime. Pathological examination of cardiac sympathetic nerves revealed intact nerves, suggesting functional involvement in the MIBG abnormality. This study provides further evidence of the clinical and pathological heterogeneity of PSP. Homozygosity for both the rs564309-C allele at TRIM11 and the rs2242367-G allele at SLC2A13 might have played a protective role. This case indicates a protracted course-PSP, which may hold promise for future treatments.
Collapse
Affiliation(s)
- Terunori Sano
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Masashi Mizutani
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tasuku Ishihara
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masaki Takao
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
14
|
Ressler HW, Humphrey J, Vialle RA, Babrowicz B, Kandoi S, Raj T, Dickson DW, Ertekin-Taner N, Crary JF, Farrell K. MAPT haplotype-associated transcriptomic changes in progressive supranuclear palsy. Acta Neuropathol Commun 2024; 12:135. [PMID: 39154163 PMCID: PMC11330133 DOI: 10.1186/s40478-024-01839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/28/2024] [Indexed: 08/19/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative movement and cognitive disorder characterized by abnormal accumulation of the microtubule-associated protein tau in the brain. Biochemically, inclusions in PSP are enriched for tau proteoforms with four microtubule-binding domain repeats (4R), an isoform that arises from alternative tau pre-mRNA splicing. While preferential aggregation and reduced degradation of 4R tau protein is thought to play a role in inclusion formation and toxicity, an alternative hypothesis is that altered expression of tau mRNA isoforms plays a causal role. This stems from the observation that PSP is associated with common variation in the tau gene (MAPT) at the 17q21.31 locus which contains low copy number repeats flanking a large recurrent genomic inversion. The complex genomic structural changes at the locus give rise to two dominant haplotypes, termed H1 and H2, that have the potential to markedly influence gene expression. Here, we explored haplotype-dependent differences in gene expression using a bulk RNA-seq dataset derived from human post-mortem brain tissue from PSP (n = 84) and controls (n = 77) using a rigorous computational pipeline, including alternative pre-mRNA splicing. We found 3579 differentially expressed genes in the temporal cortex and 10,011 in the cerebellum. We also found 7214 differential splicing events in the temporal cortex and 18,802 in the cerebellum. In the cerebellum, total tau mRNA levels and the proportion of transcripts encoding 4R tau were significantly increased in PSP compared to controls. In the temporal cortex, the proportion of reads that expressed 4R tau was increased in cases compared to controls. 4R tau mRNA levels were significantly associated with the H1 haplotype in the temporal cortex. Further, we observed a marked haplotype-dependent difference in KANSL1 expression that was strongly associated with H1 in both brain regions. These findings support the hypothesis that sporadic PSP is associated with haplotype-dependent increases in 4R tau mRNA that might play a causal role in this disorder.
Collapse
Affiliation(s)
- Hadley W Ressler
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo A Vialle
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bergan Babrowicz
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shrishtee Kandoi
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Towfique Raj
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Shir D, Corriveau-Lecavalier N, Bermudez Noguera C, Barnard L, Pham NTT, Botha H, Duffy JR, Clark HM, Utianski RL, Knopman DS, Petersen RC, Boeve BF, Murray ME, Nguyen AT, Reichard RR, Dickson DW, Day GS, Kremers WK, Graff-Radford NR, Jones DT, Machulda MM, Fields JA, Whitwell JL, Josephs KA, Graff-Radford J. Clinicoradiological and neuropathological evaluation of primary progressive aphasia. J Neurol Neurosurg Psychiatry 2024; 95:812-821. [PMID: 38514176 PMCID: PMC11330364 DOI: 10.1136/jnnp-2023-332862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Primary progressive aphasia (PPA) defines a group of neurodegenerative disorders characterised by language decline. Three PPA variants correlate with distinct underlying pathologies: semantic variant PPA (svPPA) with transactive response DNA-binding protein of 43 kD (TDP-43) proteinopathy, agrammatic variant PPA (agPPA) with tau deposition and logopenic variant PPA (lvPPA) with Alzheimer's disease (AD). Our objectives were to differentiate PPA variants using clinical and neuroimaging features, assess progression and evaluate structural MRI and a novel 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) image decomposition machine learning algorithm for neuropathology prediction. METHODS We analysed 82 autopsied patients diagnosed with PPA from 1998 to 2022. Clinical histories, language characteristics, neuropsychological results and brain imaging were reviewed. A machine learning framework using a k-nearest neighbours classifier assessed FDG-PET scans from 45 patients compared with a large reference database. RESULTS PPA variant distribution: 35 lvPPA (80% AD), 28 agPPA (89% tauopathy) and 18 svPPA (72% frontotemporal lobar degeneration-TAR DNA-binding protein (FTLD-TDP)). Apraxia of speech was associated with 4R-tauopathy in agPPA, while pure agrammatic PPA without apraxia was linked to 3R-tauopathy. Longitudinal data revealed language dysfunction remained the predominant deficit for patients with lvPPA, agPPA evolved to corticobasal or progressive supranuclear palsy syndrome (64%) and svPPA progressed to behavioural variant frontotemporal dementia (44%). agPPA-4R-tauopathy exhibited limited pre-supplementary motor area atrophy, lvPPA-AD displayed temporal atrophy extending to the superior temporal sulcus and svPPA-FTLD-TDP had severe temporal pole atrophy. The FDG-PET-based machine learning algorithm accurately predicted clinical diagnoses and underlying pathologies. CONCLUSIONS Distinguishing 3R-taupathy and 4R-tauopathy in agPPA may rely on apraxia of speech presence. Additional linguistic and clinical features can aid neuropathology prediction. Our data-driven brain metabolism decomposition approach effectively predicts underlying neuropathology.
Collapse
Affiliation(s)
- Dror Shir
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Leland Barnard
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Heather M Clark
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rene L Utianski
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Quantitative Health Sciences, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Walter K Kremers
- Department of Quantitative Health Sciences, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary M Machulda
- Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julie A Fields
- Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
16
|
Wang H, Chang TS, Dombroski BA, Cheng PL, Patil V, Valiente-Banuet L, Farrell K, Mclean C, Molina-Porcel L, Rajput A, De Deyn PP, Le Bastard N, Gearing M, Kaat LD, Van Swieten JC, Dopper E, Ghetti BF, Newell KL, Troakes C, de Yébenes JG, Rábano-Gutierrez A, Meller T, Oertel WH, Respondek G, Stamelou M, Arzberger T, Roeber S, Müller U, Hopfner F, Pastor P, Brice A, Durr A, Le Ber I, Beach TG, Serrano GE, Hazrati LN, Litvan I, Rademakers R, Ross OA, Galasko D, Boxer AL, Miller BL, Seeley WW, Van Deerlin VM, Lee EB, White CL, Morris H, de Silva R, Crary JF, Goate AM, Friedman JS, Leung YY, Coppola G, Naj AC, Wang LS, Dalgard C, Dickson DW, Höglinger GU, Schellenberg GD, Geschwind DH, Lee WP. Whole-genome sequencing analysis reveals new susceptibility loci and structural variants associated with progressive supranuclear palsy. Mol Neurodegener 2024; 19:61. [PMID: 39152475 PMCID: PMC11330058 DOI: 10.1186/s13024-024-00747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). METHOD In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. RESULTS Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73 × 10-3) in PSP. CONCLUSIONS Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy S Chang
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishakha Patil
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leopoldo Valiente-Banuet
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kurt Farrell
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catriona Mclean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit. Neurology Service, Hospital Clínic, Fundació Recerca Clínic Barcelona (FRCB). Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Alex Rajput
- Movement Disorders Program, Division of Neurology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk (Antwerp), Belgium
- Department of Neurology, University Medical Center Groningen, NL-9713 AV, Groningen, Netherlands
| | | | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Laura Donker Kaat
- Netherlands Brain Bank and Erasmus University, Rotterdam, Netherlands
| | | | - Elise Dopper
- Netherlands Brain Bank and Erasmus University, Rotterdam, Netherlands
| | - Bernardino F Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, King's College London, London, UK
| | | | - Alberto Rábano-Gutierrez
- Fundación CIEN (Centro de Investigación de Enfermedades Neurológicas) - Centro Alzheimer Fundación Reina Sofía, Madrid, Spain
| | - Tina Meller
- Department of Neurology, Philipps-Universität, Marburg, Germany
| | | | - Gesine Respondek
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maria Stamelou
- Parkinson's Disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece
- European University of Cyprus, Nicosia, Cyprus
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sigrun Roeber
- German Brain Bank, Neurobiobank Munich, Munich, Germany
| | - Ulrich Müller
- German Brain Bank, Neurobiobank Munich, Munich, Germany
| | - Franziska Hopfner
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias I Pujol, Badalona, Barcelona, Spain
- Neurosciences, The Germans Trias I Pujol Research Institute (IGTP) Badalona, Badalona, Spain
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | - Irene Litvan
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Douglas Galasko
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Willian W Seeley
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Vivanna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huw Morris
- Departmento of Clinical and Movement Neuroscience, University College of London, London, UK
| | - Rohan de Silva
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - John F Crary
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Coppola
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Adam C Naj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clifton Dalgard
- Department of Anatomy Physiology and Genetics, the American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Daniel H Geschwind
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Jackson RJ, Melloni A, Fykstra DP, Serrano-Pozo A, Shinobu L, Hyman BT. Astrocyte tau deposition in progressive supranuclear palsy is associated with dysregulation of MAPT transcription. Acta Neuropathol Commun 2024; 12:132. [PMID: 39138580 PMCID: PMC11323491 DOI: 10.1186/s40478-024-01844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by 4R tau deposition in neurons as well as in astrocytes and oligodendrocytes. While astrocytic tau deposits are rarely observed in normal aging (so-called aging-related tau astrogliopathy, ARTAG) and Alzheimer's disease (AD), astrocytic tau in the form of tufted astrocytes is a pathognomonic hallmark of PSP. Classical biochemical experiments emphasized tau synthesis in neurons in the central nervous system, suggesting that astrocytic tau inclusions might be derived from uptake of extracellular neuronal-derived tau. However, recent single-nucleus RNAseq experiments highlight the fact that MAPT, the gene encoding tau, is also expressed by astrocytes, albeit in lower amounts. We, therefore, revisited the question of whether astrocyte-driven expression of tau might contribute to astrocytic tau aggregates in PSP by performing fluorescent in situ hybridization/immunohistochemical co-localization in human postmortem brain specimens from individuals with PSP and AD with ARTAG as well as normal controls. We find that, in PSP but not in AD, tau-immunoreactive astrocytes have higher levels of MAPT mRNA compared to astrocytes that do not have tau aggregates. These results suggest that astrocytic responses in PSP are unique to this tauopathy and support the possibility that fundamental changes in PSP astrocyte-endogenous mRNA biology contribute to increased synthesis of tau protein and underlies the formation of the astrocytic tau deposits characteristic of PSP.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Massachusetts General Hospital, 114 16th Street, Charlestown, MA, 02129, USA
| | - Alexandra Melloni
- Massachusetts General Hospital, 114 16th Street, Charlestown, MA, 02129, USA
| | - Dustin P Fykstra
- Massachusetts General Hospital, 114 16th Street, Charlestown, MA, 02129, USA
| | | | - Leslie Shinobu
- Bristol Myers Squibb, Neuroscience Thematic Research Center, 250 Water Street, Charlestown, MA, 02141, USA
| | - Bradley T Hyman
- Massachusetts General Hospital, 114 16th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
18
|
Buchert R, Huppertz HJ, Wegner F, Berding G, Brendel M, Apostolova I, Buhmann C, Poetter-Nerger M, Dierks A, Katzdobler S, Klietz M, Levin J, Mahmoudi N, Rinscheid A, Quattrone A, Rogozinski S, Rumpf JJ, Schneider C, Stoecklein S, Spetsieris PG, Eidelberg D, Sabri O, Barthel H, Wattjes MP, Höglinger G. Added value of FDG-PET for detection of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-333590. [PMID: 39107038 DOI: 10.1136/jnnp-2024-333590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Diagnostic criteria for progressive supranuclear palsy (PSP) include midbrain atrophy in MRI and hypometabolism in [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) as supportive features. Due to limited data regarding their relative and sequential value, there is no recommendation for an algorithm to combine both modalities to increase diagnostic accuracy. This study evaluated the added value of sequential imaging using state-of-the-art methods to analyse the images regarding PSP features. METHODS The retrospective study included 41 PSP patients, 21 with Richardson's syndrome (PSP-RS), 20 with variant PSP phenotypes (vPSP) and 46 sex- and age-matched healthy controls. A pretrained support vector machine (SVM) for the classification of atrophy profiles from automatic MRI volumetry was used to analyse T1w-MRI (output: MRI-SVM-PSP score). Covariance pattern analysis was applied to compute the expression of a predefined PSP-related pattern in FDG-PET (output: PET-PSPRP expression score). RESULTS The area under the receiver operating characteristic curve for the detection of PSP did not differ between MRI-SVM-PSP and PET-PSPRP expression score (p≥0.63): about 0.90, 0.95 and 0.85 for detection of all PSP, PSP-RS and vPSP. The MRI-SVM-PSP score achieved about 13% higher specificity and about 15% lower sensitivity than the PET-PSPRP expression score. Decision tree models selected the MRI-SVM-PSP score for the first branching and the PET-PSPRP expression score for a second split of the subgroup with normal MRI-SVM-PSP score, both in the whole sample and when restricted to PSP-RS or vPSP. CONCLUSIONS FDG-PET provides added value for PSP-suspected patients with normal/inconclusive T1w-MRI, regardless of PSP phenotype and the methods to analyse the images for PSP-typical features.
Collapse
Affiliation(s)
- Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Georg Berding
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Eppendorf, Hamburg, Germany
| | | | - Alexander Dierks
- Department of Nuclear Medicine, University Hospital Augsburg, Augsburg, Germany
| | - Sabrina Katzdobler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Nima Mahmoudi
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Andreas Rinscheid
- Medical Physics and Radiation Protection, University Hospital Augsburg, Augsburg, Germany
| | - Andrea Quattrone
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | | | - Christine Schneider
- Department of Neurology and Clinical Neurophysiology, University Hospital Augsburg, Augsburg, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Phoebe G Spetsieris
- Feinstein Institutes for Medical Research Manhasset, Manhasset, New York, USA
| | - David Eidelberg
- Feinstein Institutes for Medical Research Manhasset, Manhasset, New York, USA
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Mike P Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Günter Höglinger
- Department of Neurology, Hannover Medical School, Hannover, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Yokota O, Miki T, Nakashima-Yasuda H, Ishizu H, Haraguchi T, Ikeda C, Hasegawa M, Miyashita A, Ikeuchi T, Nishikawa N, Takenoshita S, Sudo K, Terada S, Takaki M. Pure argyrophilic grain disease revisited: independent effects on limbic, neocortical, and striato-pallido-nigral degeneration and the development of dementia in a series with a low to moderate Braak stage. Acta Neuropathol Commun 2024; 12:121. [PMID: 39085955 PMCID: PMC11290173 DOI: 10.1186/s40478-024-01828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Agyrophilic grains (AGs) are age-related limbic-predominant lesions in which four-repeat tau is selectively accumulated. Because previous methodologically heterogeneous studies have demonstrated inconsistent findings on the relationship between AGs and dementia, whether AGs affect cognitive function remains unclear. To address this question, we first comprehensively evaluated the distribution and quantity of Gallyas-positive AGs and the severity of neuronal loss in the limbic, neocortical, and subcortical regions in 30 cases of pure argyrophilic grain disease (pAGD) in Braak stages I-IV and without other degenerative diseases, and 34 control cases that had only neurofibrillary tangles with Braak stages I-IV and no or minimal Aβ deposits. Then, we examined whether AGs have independent effects on neuronal loss and dementia by employing multivariate ordered logistic regression and binomial logistic regression. Of 30 pAGD cases, three were classified in diffuse form pAGD, which had evident neuronal loss not only in the limbic region but also in the neocortex and subcortical nuclei. In all 30 pAGD cases, neuronal loss developed first in the amygdala, followed by temporo-frontal cortex, hippocampal CA1, substantia nigra, and finally, the striatum and globus pallidus with the progression of Saito AG stage. In multivariate analyses of 30 pAGD and 34 control cases, the Saito AG stage affected neuronal loss in the amygdala, hippocampal CA1, temporo-frontal cortex, striatum, globus pallidus, and substantia nigra independent of the age, Braak stage, and limbic-predominant age-related TDP-43 encephalopathy (LATE-NC) stage. In multivariate analyses of 23 pAGD and 28 control cases that lacked two or more lacunae and/or one or more large infarctions, 100 or more AGs per × 400 visual field in the amygdala (OR 10.02, 95% CI 1.12-89.43) and hippocampal CA1 (OR 12.22, 95% CI 1.70-87.81), and the presence of AGs in the inferior temporal cortex (OR 8.18, 95% CI 1.03-65.13) affected dementia independent of age, moderate Braak stages (III-IV), and LATE-NC. Given these findings, the high density of limbic AGs and the increase of AGs in the inferior temporal gyrus may contribute to the occurrence of dementia through neuronal loss, at least in cases in a low to moderate Braak stage.
Collapse
Affiliation(s)
- Osamu Yokota
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan.
- Okayama University Medical School, Okayama, Japan.
- Department of Psychiatry, Kinoko Espoir Hospital, Okayama, Japan.
| | - Tomoko Miki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
- Department of Neuropathology, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS UMR7225, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Hanae Nakashima-Yasuda
- Okayama University Medical School, Okayama, Japan
- Department of Psychiatry, Zikei Hospital, Okayama, Japan
| | - Hideki Ishizu
- Okayama University Medical School, Okayama, Japan
- Department of Psychiatry, Zikei Hospital, Okayama, Japan
| | - Takashi Haraguchi
- Department of Neurology, National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Chikako Ikeda
- Okayama University Medical School, Okayama, Japan
- Department of Psychiatry, Zikei Hospital, Okayama, Japan
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Naoto Nishikawa
- Department of Neuropsychiatry, Okayama University Hospital, Okayama, Japan
| | | | - Koichiro Sudo
- Department of Psychiatry, Tosa Hospital, Kochi, Japan
| | - Seishi Terada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
- Department of Neuropsychiatry, Okayama University Hospital, Okayama, Japan
- Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Manabu Takaki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
- Department of Neuropsychiatry, Okayama University Hospital, Okayama, Japan
- Department of Neuropsychiatry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
20
|
Taghdiri F, Khodadadi M, Sadia N, Mushtaque A, Scott OFT, Hirsch‐Reinhagen V, Tator C, Wennberg R, Kovacs GG, Tartaglia MC. Unusual combinations of neurodegenerative pathologies with chronic traumatic encephalopathy (CTE) complicates clinical prediction of CTE. Eur J Neurol 2024; 31:e16259. [PMID: 38404144 PMCID: PMC11235773 DOI: 10.1111/ene.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND AND PURPOSE Chronic traumatic encephalopathy (CTE) has gained widespread attention due to its association with multiple concussions and contact sports. However, CTE remains a postmortem diagnosis, and the link between clinical symptoms and CTE pathology is poorly understood. This study aimed to investigate the presence of copathologies and their impact on symptoms in former contact sports athletes. METHODS This was a retrospective case series design of 12 consecutive cases of former contact sports athletes referred for autopsy. Analyses are descriptive and include clinical history as well as the pathological findings of the autopsied brains. RESULTS All participants had a history of multiple concussions, and all but one had documented progressive cognitive, psychiatric, and/or motor symptoms. The results showed that 11 of the 12 participants had evidence of CTE in the brain, but also other copathologies, including different combinations of tauopathies, and other rare entities. CONCLUSIONS The heterogeneity of symptoms after repetitive head injuries and the diverse pathological combinations accompanying CTE complicate the prediction of CTE in clinical practice. It is prudent to consider the possibility of multiple copathologies when clinically assessing patients with repetitive head injuries, especially as they age, and attributing neurological or cognitive symptoms solely to presumptive CTE in elderly patients should be discouraged.
Collapse
Affiliation(s)
- Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
| | - Mozhgan Khodadadi
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
| | - Nusrat Sadia
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
| | - Asma Mushtaque
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
| | - Olivia F. T. Scott
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
| | - Veronica Hirsch‐Reinhagen
- Division of NeuropathologyVancouver General HospitalVancouverBritish ColumbiaCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Charles Tator
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Richard Wennberg
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Laboratory Medicine ProgramUniversity Health NetworkTorontoOntarioCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders ClinicToronto Western HospitalTorontoOntarioCanada
| | - M. Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Canadian Concussion CentreKrembil Brain Institute, University Health NetworkTorontoOntarioCanada
- Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
21
|
Orlandi F, Carlos AF, Ali F, Clark HM, Duffy JR, Utianski RL, Botha H, Machulda MM, Stephens YC, Schwarz CG, Senjem ML, Jack CR, Agosta F, Filippi M, Dickson DW, Josephs KA, Whitwell JL. Histologic tau lesions and magnetic resonance imaging biomarkers differ across two progressive supranuclear palsy variants. Brain Commun 2024; 6:fcae113. [PMID: 38660629 PMCID: PMC11040515 DOI: 10.1093/braincomms/fcae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Progressive supranuclear palsy is a neurodegenerative disease characterized by the deposition of four-repeat tau in neuronal and glial lesions in the brainstem, cerebellar, subcortical and cortical brain regions. There are varying clinical presentations of progressive supranuclear palsy with different neuroimaging signatures, presumed to be due to different topographical distributions and burden of tau. The classic Richardson syndrome presentation is considered a subcortical variant, whilst progressive supranuclear palsy with predominant speech and language impairment is considered a cortical variant, although the pathological underpinnings of these variants are unclear. In this case-control study, we aimed to determine whether patterns of regional tau pathology differed between these variants and whether tau burden correlated with neuroimaging. Thirty-three neuropathologically confirmed progressive supranuclear palsy patients with either the Richardson syndrome (n = 17) or speech/language (n = 16) variant and ante-mortem magnetic resonance imaging were included. Tau lesion burden was semi-quantitatively graded in cerebellar, brainstem, subcortical and cortical regions and combined to form neuronal and glial tau scores. Regional magnetic resonance imaging volumes were converted to Z-scores using 33 age- and sex-matched controls. Diffusion tensor imaging metrics, including fractional anisotropy and mean diffusivity, were calculated. Tau burden and neuroimaging metrics were compared between groups and correlated using linear regression models. Neuronal and glial tau burden were higher in motor and superior frontal cortices in the speech/language variant. In the subcortical and brainstem regions, only the glial tau burden differed, with a higher burden in globus pallidus, subthalamic nucleus, substantia nigra and red nucleus in Richardson's syndrome. No differences were observed in the cerebellar dentate and striatum. Greater volume loss was observed in the motor cortex in the speech/language variant and in the subthalamic nucleus, red nucleus and midbrain in Richardson's syndrome. Fractional anisotropy was lower in the midbrain and superior cerebellar peduncle in Richardson's syndrome. Mean diffusivity was greater in the superior frontal cortex in the speech/language variant and midbrain in Richardson's syndrome. Neuronal tau burden showed associations with volume loss, lower fractional anisotropy and higher mean diffusivity in the superior frontal cortex, although these findings did not survive correction for multiple comparisons. Results suggest that a shift in the distribution of tau, particularly neuronal tau, within the progressive supranuclear palsy network of regions is driving different clinical presentations in progressive supranuclear palsy. The possibility of different disease epicentres in these clinical variants has potential implications for the use of imaging biomarkers in progressive supranuclear palsy.
Collapse
Affiliation(s)
- Francesca Orlandi
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology and Neurophysiology, IRCCS San Raffaele University, Milan 20132, Italy
| | - Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Heather M Clark
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rene L Utianski
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Federica Agosta
- Department of Neurology and Neurophysiology, IRCCS San Raffaele University, Milan 20132, Italy
- Division of Neuroscience, Neuroimaging Research Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Massimo Filippi
- Department of Neurology and Neurophysiology, IRCCS San Raffaele University, Milan 20132, Italy
- Division of Neuroscience, Neuroimaging Research Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
22
|
Morderer D, Wren MC, Liu F, Kouri N, Maistrenko A, Khalil B, Pobitzer N, Salemi M, Phinney BS, Dickson DW, Murray ME, Rossoll W. Probe-dependent Proximity Profiling (ProPPr) Uncovers Similarities and Differences in Phospho-Tau-Associated Proteomes Between Tauopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585597. [PMID: 38585836 PMCID: PMC10996607 DOI: 10.1101/2024.03.25.585597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the precise mechanisms underlying the complexity of different types of tau pathology remain incompletely understood. Here we describe an approach for proteomic profiling of aggregate-associated proteomes on slides with formalin-fixed, paraffin-embedded (FFPE) tissue that utilizes proximity labelling upon high preservation of aggregate morphology, which permits the profiling of pathological aggregates regardless of their size. To comprehensively investigate the common and unique protein interactors associated with the variety of tau lesions present across different human tauopathies, Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP), were selected to represent the major tauopathy diseases. Implementation of our widely applicable Probe-dependent Proximity Profiling (ProPPr) strategy, using the AT8 antibody, permitted identification and quantification of proteins associated with phospho-tau lesions in well-characterized human post-mortem tissue. The analysis revealed both common and disease-specific proteins associated with phospho-tau aggregates, highlighting potential targets for therapeutic intervention and biomarker development. Candidate validation through high-resolution co-immunofluorescence of distinct aggregates across disease and control cases, confirmed the association of retromer complex protein VPS35 with phospho-tau lesions across the studied tauopathies. Furthermore, we discovered disease-specific associations of proteins including ferritin light chain (FTL) and the neuropeptide precursor VGF within distinct pathological lesions. Notably, examination of FTL-positive microglia in CBD astrocytic plaques indicate a potential role for microglial involvement in the pathogenesis of these tau lesions. Our findings provide valuable insights into the proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes across different tauopathies enhances our understanding of disease heterogeneity and provides a resource for future functional investigation, as well as development of targeted therapies and diagnostic biomarkers.
Collapse
|
23
|
López A, López-Muñoz S, Caballero G, Castrejon N, Rojo L, Vidal-Robau N, Muñoz A, Ortiz E, Rodrigo M, García A, Cuatrecasas M, Ribalta T, Aldecoa I. Flanagan's condensed protocol for neurodegenerative diseases. Implementation in a clinical autopsy setting with partial supervision of a neuropathologist. Virchows Arch 2024:10.1007/s00428-024-03781-0. [PMID: 38472413 DOI: 10.1007/s00428-024-03781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
The Condensed Protocol (CP) was originally developed for the evaluation of Alzheimer's Disease (AD) and other neurodegenerative diseases as a workable alternative to the complex and costly established autopsy guidelines. The study objective is to examine the degree of implementation of the CP in the pathology department of a third level university hospital in a period of 5 years. Clinical autopsies performed between 2016 and 2021 on patients aged 65 years or over and did not require a specific neuropathological examination were reviewed. Histological screening and staging of neurodegenerative diseases was performed using the original immunohistochemical stains. Out of 255 autopsies, 204 met the inclusion criteria and 190 could be reviewed. The CP was applied to 99 cases; histological signs of neurodegenerative disease were observed in 92. Sampling errors were detected in 59 cases. Immunohistochemical studies were performed in 68 cases. The diseases identified were: 31 cases of AD (12 low grade; 19 intermediate), 18 amyloid angiopathy, 15 primary age-related tauopathy, 6 argyrophilic grain disease, 3 progressive supranuclear palsy, 1 Lewy body disease (of 22 cases), and 2 limbic-predominant age TDP43 encephalopathy (of 5 cases). In 30 out of 83 cases, there was more severe vascular pathology in complete sections of frontal cortex and lentiform nucleus. The CP allows reliable detection and staging of AD and related neurodegenerative diseases in clinical autopsies. However, supervision by a neuropathologist seems necessary for a fully successful implementation of the CP in a clinical hospital setting.
Collapse
Affiliation(s)
- Aitana López
- Graduate Student. Medical School Casanova Campus, University of Barcelona, Barcelona, Spain
| | - Samuel López-Muñoz
- Pathology Department, Hospital Universitario Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Gabriela Caballero
- Pathology Department, Biomedical Diagnostic Center, Hospital Clinic - University of Barcelona, Villarroel 170. 08036, Barcelona, Spain
| | - Natalia Castrejon
- Pathology Department, Biomedical Diagnostic Center, Hospital Clinic - University of Barcelona, Villarroel 170. 08036, Barcelona, Spain
| | - Leonardo Rojo
- Pathology Department, Biomedical Diagnostic Center, Hospital Clinic - University of Barcelona, Villarroel 170. 08036, Barcelona, Spain
| | - Nuria Vidal-Robau
- Pathology Department, Biomedical Diagnostic Center, Hospital Clinic - University of Barcelona, Villarroel 170. 08036, Barcelona, Spain
| | - Abel Muñoz
- Pathology Department, Biomedical Diagnostic Center, Hospital Clinic - University of Barcelona, Villarroel 170. 08036, Barcelona, Spain
| | - Estrella Ortiz
- Pathology Department, Biomedical Diagnostic Center, Hospital Clinic - University of Barcelona, Villarroel 170. 08036, Barcelona, Spain
| | - Maite Rodrigo
- Pathology Department, Biomedical Diagnostic Center, Hospital Clinic - University of Barcelona, Villarroel 170. 08036, Barcelona, Spain
| | - Adriana García
- Pathology Department, Biomedical Diagnostic Center, Hospital Clinic - University of Barcelona, Villarroel 170. 08036, Barcelona, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Biomedical Diagnostic Center, Hospital Clinic - University of Barcelona, Villarroel 170. 08036, Barcelona, Spain
| | - Teresa Ribalta
- Pathology Department, Biomedical Diagnostic Center, Hospital Clinic - University of Barcelona, Villarroel 170. 08036, Barcelona, Spain
| | - Iban Aldecoa
- Pathology Department, Biomedical Diagnostic Center, Hospital Clinic - University of Barcelona, Villarroel 170. 08036, Barcelona, Spain.
- Neurological Tissue Bank of the Biobank-FCRB/IDIBAPS, Hospital Clinic - University of Barcelona, Barcelona, Spain.
| |
Collapse
|
24
|
Mimuro M, Iwasaki Y. Age-Related Pathology in Corticobasal Degeneration. Int J Mol Sci 2024; 25:2740. [PMID: 38473986 DOI: 10.3390/ijms25052740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Elderly human brains are vulnerable to multiple proteinopathies, although each protein has a different transmission pathway. Tau-immunoreactive astrocytes are well-known in elderly brains. In contrast, astrocytic plaques, a hallmark in corticobasal degeneration (CBD), rarely occur in aging and neurodegenerative disease other than CBD. To elucidate the clinicopathological correlation of aging-related pathology in CBD, we examined 21 pathologically proven CBD cases in our institute (12 males and 9 females, with a mean age of death 70.6 years). All CBD cases showed grains and neurofibrillary tangles (NFTs). Fifteen cases (71.4%) showed beta-amyloid deposition such as senile plaques or cerebral amyloid angiopathy. Three cases (14.3%) had Lewy body pathology. One case was classified as amygdala-predominant Lewy body disease, although no cases met the pathological criteria for Alzheimer's disease. Five cases (23.8%) displayed Limbic-predominant and age-related TDP-43 encephalopathy (LATE). NFTs, grains, and TDP-43-positive neuronal inclusions were widely distributed throughout the limbic system of CBD patients, but their densities were low. CBD might a have similar cell vulnerability and transmission pathway to that of multiple proteinopathy in aging brains.
Collapse
Affiliation(s)
- Maya Mimuro
- Department of Pathology, Mie University Hospital, Tsu 514-8507, Japan
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
| | - Yasushi Iwasaki
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
| |
Collapse
|
25
|
Alexander A, Alvarez VE, Huber BR, Alosco ML, Mez J, Tripodis Y, Nicks R, Katz DI, Dwyer B, Daneshvar DH, Martin B, Palmisano J, Goldstein LE, Crary JF, Nowinski C, Cantu RC, Kowall NW, Stern RA, Delalle I, McKee AC, Stein TD. Cortical-sparing chronic traumatic encephalopathy (CSCTE): a distinct subtype of CTE. Acta Neuropathol 2024; 147:45. [PMID: 38407651 PMCID: PMC11348287 DOI: 10.1007/s00401-024-02690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/27/2024]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease caused by repetitive head impacts (RHI) and pathologically defined as neuronal phosphorylated tau aggregates around small blood vessels and concentrated at sulcal depths. Cross-sectional studies suggest that tau inclusions follow a stereotyped pattern that begins in the neocortex in low stage disease, followed by involvement of the medial temporal lobe and subcortical regions with significant neocortical burden in high stage CTE. Here, we define a subset of brain donors with high stage CTE and with a low overall cortical burden of tau inclusions (mean semiquantitative value ≤1) and classify them as cortical-sparing CTE (CSCTE). Of 620 brain donors with pathologically diagnosed CTE, 66 (11%) met criteria for CSCTE. Compared to typical high stage CTE, those with CSCTE had a similar age at death and years of contact sports participation and were less likely to carry apolipoprotein ε4 (p < 0.05). CSCTE had less overall tau pathology severity, but a proportional increase of disease burden in medial temporal lobe and brainstem regions compared to the neocortex (p's < 0.001). CSCTE also had lower prevalence of comorbid neurodegenerative disease. Clinically, CSCTE participants were less likely to have dementia (p = 0.023) and had less severe cognitive difficulties (as reported by informants using the Functional Activities Questionnaire (FAQ); p < 0.001, meta-cognitional index T score; p = 0.002 and Cognitive Difficulties Scale (CDS); p < 0.001,) but had an earlier onset age of behavioral (p = 0.006) and Parkinsonian motor (p = 0.013) symptoms when compared to typical high stage CTE. Other comorbid tauopathies likely contributed in part to these differences: when cases with concurrent Alzheimer dementia or frontal temporal lobar degeneration with tau pathology were excluded, differences were largely retained, but only remained significant for FAQ (p = 0.042), meta-cognition index T score (p = 0.014) and age of Parkinsonian motor symptom onset (p = 0.046). Overall, CSCTE appears to be a distinct subtype of high stage CTE with relatively greater involvement of subcortical and brainstem regions and less severe cognitive symptoms.
Collapse
Affiliation(s)
- Abigail Alexander
- Division of Neuropathology, Lifespan Academic Medical Center, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Douglas I Katz
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph Palmisano
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Radiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA
| | - John F Crary
- Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence and Human Health, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Nowinski
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
| | - Robert C Cantu
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Ivana Delalle
- Division of Neuropathology, Lifespan Academic Medical Center, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA.
- Departments of Pathology and Laboratory Medicine, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- , 150 S. Huntington Avenue, Boston, MA, 02130, USA.
| |
Collapse
|
26
|
Samudra N, Lerner H, Yack L, Walsh CM, Kirsch HE, Kudo K, Yballa C, La Joie R, Gorno‐Tempini ML, Spina S, Seeley WW, Neylan TC, Miller BL, Rabinovici GD, Boxer A, Grinberg LT, Rankin KP, Nagarajan SS, Ranasinghe KG. Spatiotemporal characteristics of neurophysiological changes in patients with four-repeat tauopathies. Ann Clin Transl Neurol 2024; 11:525-535. [PMID: 38226843 PMCID: PMC10863921 DOI: 10.1002/acn3.51974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
INTRODUCTION Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), are the most common four-repeat tauopathies (4RT), and both frequently occur with varying degree of Alzheimer's disease (AD) copathology. Intriguingly, patients with 4RT and patients with AD are at opposite ends of the wakefulness spectrum-AD showing reduced wakefulness and excessive sleepiness whereas 4RT showing decreased homeostatic sleep. The neural mechanisms underlying these distinct phenotypes in the comorbid condition of 4RT and AD are unknown. The objective of the current study was to define the alpha oscillatory spectrum, which is prominent in the awake resting-state in the human brain, in patients with primary 4RT, and how it is modified in comorbid AD-pathology. METHOD In an autopsy-confirmed case series of 4R-tauopathy patients (n = 10), whose primary neuropathological diagnosis was either PSP (n = 7) or CBD (n = 3), using high spatiotemporal resolution magnetoencephalography (MEG), we quantified the spectral power density within alpha-band (8-12 Hz) and examined how this pattern was modified in increasing AD-copathology. For each patient, their regional alpha power was compared to an age-matched normative control cohort (n = 35). RESULT Patients with 4RT showed increased alpha power but in the presence of AD-copathology alpha power was reduced. CONCLUSIONS Alpha power increase in PSP-tauopathy and reduction in the presence of AD-tauopathy is consistent with the observation that neurons activating wakefulness-promoting systems are preserved in PSP but degenerated in AD. These results highlight the selectively vulnerable impacts in 4RT versus AD-tauopathy that may have translational significance on disease-modifying therapies for specific proteinopathies.
Collapse
Affiliation(s)
- Niyatee Samudra
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Hannah Lerner
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Leslie Yack
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
- Department of PsychiatrySan Francisco Veterans Affairs, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Christine M. Walsh
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Heidi E. Kirsch
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCalifornia94143USA
- Epilepsy Center, Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kiwamu Kudo
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCalifornia94143USA
- Medical Imaging Business CenterRicoh CompanyKanazawaJapan
| | - Claire Yballa
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Renaud La Joie
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Maria L. Gorno‐Tempini
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Salvatore Spina
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - William W. Seeley
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Thomas C. Neylan
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
- Department of PsychiatrySan Francisco Veterans Affairs, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Bruce L. Miller
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Gil D. Rabinovici
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCalifornia94143USA
| | - Adam Boxer
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Lea T. Grinberg
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
- Department of PathologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
- Department of PathologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | - Katherine P. Rankin
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCalifornia94143USA
| | - Kamalini G. Ranasinghe
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| |
Collapse
|
27
|
Saltiel N, Tripodis Y, Menzin T, Olaniyan A, Baucom Z, Yhang E, Palmisano JN, Martin B, Uretsky M, Nair E, Abdolmohammadi B, Shah A, Nicks R, Nowinski C, Cantu RC, Daneshvar DH, Dwyer B, Katz DI, Stern RA, Alvarez V, Huber B, Boyle PA, Schneider JA, Mez J, McKee A, Alosco ML, Stein TD. Relative Contributions of Mixed Pathologies to Cognitive and Functional Symptoms in Brain Donors Exposed to Repetitive Head Impacts. Ann Neurol 2024; 95:314-324. [PMID: 37921042 PMCID: PMC10842014 DOI: 10.1002/ana.26823] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE Exposure to repetitive head impacts (RHI) is associated with later-life cognitive symptoms and neuropathologies, including chronic traumatic encephalopathy (CTE). Cognitive decline in community cohorts is often due to multiple pathologies; however, the frequency and contributions of these pathologies to cognitive impairment in people exposed to RHI are unknown. Here, we examined the relative contributions of 13 neuropathologies to cognitive symptoms and dementia in RHI-exposed brain donors. METHODS Neuropathologists examined brain tissue from 571 RHI-exposed donors and assessed for the presence of 13 neuropathologies, including CTE, Alzheimer disease (AD), Lewy body disease (LBD), and transactive response DNA-binding protein 43 (TDP-43) inclusions. Cognitive status was assessed by presence of dementia, Functional Activities Questionnaire, and Cognitive Difficulties Scale. Spearman rho was calculated to assess intercorrelation of pathologies. Additionally, frequencies of pathological co-occurrence were compared to a simulated distribution assuming no intercorrelation. Logistic and linear regressions tested associations between neuropathologies and dementia status and cognitive scale scores. RESULTS The sample age range was 18-97 years (median = 65.0, interquartile range = 46.0-76.0). Of the donors, 77.2% had at least one moderate-severe neurodegenerative or cerebrovascular pathology. Stage III-IV CTE was the most common neurodegenerative disease (43.1%), followed by TDP-43 pathology, AD, and hippocampal sclerosis. Neuropathologies were intercorrelated, and there were fewer unique combinations than expected if pathologies were independent (p < 0.001). The greatest contributors to dementia were AD, neocortical LBD, hippocampal sclerosis, cerebral amyloid angiopathy, and CTE. INTERPRETATION In this sample of RHI-exposed brain donors with wide-ranging ages, multiple neuropathologies were common and correlated. Mixed neuropathologies, including CTE, underlie cognitive impairment in contact sport athletes. ANN NEUROL 2024;95:314-324.
Collapse
Affiliation(s)
- Nicole Saltiel
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Talia Menzin
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Aliyah Olaniyan
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Zach Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Eukyung Yhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N. Palmisano
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Madeline Uretsky
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Evan Nair
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Arsal Shah
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
| | - Raymond Nicks
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
| | | | - Robert C. Cantu
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Daniel H. Daneshvar
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Brigid Dwyer
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Douglas I. Katz
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Robert A. Stern
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Victor Alvarez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
- National Center for PTSD, VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Bertrand Huber
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- National Center for PTSD, VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ann McKee
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
28
|
Wang H, Chang TS, Dombroski BA, Cheng PL, Patil V, Valiente-Banuet L, Farrell K, Mclean C, Molina-Porcel L, Rajput A, De Deyn PP, Bastard NL, Gearing M, Kaat LD, Swieten JCV, Dopper E, Ghetti BF, Newell KL, Troakes C, de Yébenes JG, Rábano-Gutierrez A, Meller T, Oertel WH, Respondek G, Stamelou M, Arzberger T, Roeber S, Müller U, Hopfner F, Pastor P, Brice A, Durr A, Ber IL, Beach TG, Serrano GE, Hazrati LN, Litvan I, Rademakers R, Ross OA, Galasko D, Boxer AL, Miller BL, Seeley WW, Deerlin VMV, Lee EB, White CL, Morris H, de Silva R, Crary JF, Goate AM, Friedman JS, Leung YY, Coppola G, Naj AC, Wang LS, Dickson DW, Höglinger GU, Schellenberg GD, Geschwind DH, Lee WP. Whole-Genome Sequencing Analysis Reveals New Susceptibility Loci and Structural Variants Associated with Progressive Supranuclear Palsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.12.28.23300612. [PMID: 38234807 PMCID: PMC10793533 DOI: 10.1101/2023.12.28.23300612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Background Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy S Chang
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishakha Patil
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leopoldo Valiente-Banuet
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kurt Farrell
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catriona Mclean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Laura Molina-Porcel
- Alzheimer's disease and other cognitive disorders unit. Neurology Service, Hospital Clínic, Fundació Recerca Clínic Barcelona (FRCB). Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Alex Rajput
- Movement Disorders Program, Division of Neurology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk (Antwerp), Belgium
- Department of Neurology, University Medical Center Groningen, NL-9713 AV Groningen, Netherlands
| | | | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Elise Dopper
- Netherlands Brain Bank and Erasmus University, Netherlands
| | - Bernardino F Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, King's College London, London, UK
| | | | - Alberto Rábano-Gutierrez
- Fundación CIEN (Centro de Investigación de Enfermedades Neurológicas) - Centro Alzheimer Fundación Reina Sofía, Madrid, Spain
| | - Tina Meller
- Department of Neurology, Philipps-Universität, Marburg, Germany
| | | | - Gesine Respondek
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maria Stamelou
- Parkinson's disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece
- European University of Cyprus, Nicosia, Cyprus
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital Munich, Ludwig-Maximilians-University Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Germany
| | | | | | - Franziska Hopfner
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Neurosciences, The Germans Trias i Pujol Research Institute (IGTP) Badalona, Badalona, Spain
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | - Irene Litvan
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Douglas Galasko
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Willian W Seeley
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Vivanna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huw Morris
- Departmento of Clinical and Movement Neuroscience, University College of London, London, UK
| | - Rohan de Silva
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - John F Crary
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey S Friedman
- Friedman Bioventure, Inc., Del Mar, CA, USA; Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Coppola
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Adam C Naj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H Geschwind
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Son G, Neylan TC, Grinberg LT. Neuronal and glial vulnerability of the suprachiasmatic nucleus in tauopathies: evidence from human studies and animal models. Mol Neurodegener 2024; 19:4. [PMID: 38195580 PMCID: PMC10777507 DOI: 10.1186/s13024-023-00695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Tauopathies, a group of neurodegenerative diseases that includes Alzheimer's disease, commonly lead to disturbances in sleep-wake patterns and circadian rhythm disorders. The circadian rhythm, a recurring 24-hour cycle governing human biological activity, is regulated by the hypothalamic suprachiasmatic nucleus (SCN) and endogenous transcriptional-translational feedback loops. Surprisingly, little attention has been given to investigating tauopathy-driven neuropathology in the SCN and the repercussions of SCN and circadian gene dysfunction in the human brain affected by tauopathies. This review aims to provide an overview of the current literature on the vulnerability of the SCN in tauopathies in humans. Emphasis is placed on elucidating the neuronal and glial changes contributing to the widespread disruption of the molecular circadian clock. Furthermore, this review identifies areas of knowledge requiring further investigation.
Collapse
Affiliation(s)
- Gowoon Son
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas C Neylan
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
30
|
Theis H, Barbe MT, Drzezga A, Fink GR, Neumaier B, Bischof GN, van Eimeren T. Progressive Supranuclear Palsy: Subcortical Tau Depositions Are Associated with Cortical Perfusion in Frontal and Limbic Regions. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1271-1276. [PMID: 38995804 PMCID: PMC11380218 DOI: 10.3233/jpd-240210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
In progressive supranuclear palsy (PSP), subcortical tau and cortical perfusion can be assessed using the tracer [18F]PI-2620. We investigated if subcortical tau (globus pallidus internus, dentate nucleus) and frontal/limbic perfusion correlate in a cohort of 32 PSP patients. Tau in subcortical regions showed significant negative correlation with perfusion in limbic cortex. Perfusion in frontal regions was negatively associated with tau in both subcortical regions, but the significance threshold was only passed for the dentate nucleus. A reason could be a diaschisis-like phenomenon; that is, subcortical tau could lead to reduced connectivity to frontal regions and, thereby, to decreased perfusion.
Collapse
Affiliation(s)
- Hendrik Theis
- Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Michael T. Barbe
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Gottingen, Germany
- Institute for Neuroscience and Medicine (INM-2), Research Center Jülich, Jülich, Germany
| | - Gereon R. Fink
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
- Institute for Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Cologne, Germany
- Institute of Neuroscience & Medicine (INM-5), Nuclear Chemistry, Research Center Jülich, Jülich, Germany
| | - Gérard N. Bischof
- Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany
- Institute for Neuroscience and Medicine (INM-2), Research Center Jülich, Jülich, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Ichimata S, Yoshida K, Li J, Rogaeva E, Lang AE, Kovacs GG. The molecular spectrum of amyloid-beta (Aβ) in neurodegenerative diseases beyond Alzheimer's disease. Brain Pathol 2024; 34:e13210. [PMID: 37652560 PMCID: PMC10711260 DOI: 10.1111/bpa.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
This study investigated the molecular spectrum of amyloid-beta (Aβ) in neurodegenerative diseases beyond Alzheimer's disease (AD). We analyzed Aβ deposition in the temporal cortex and striatum in 116 autopsies, including Lewy body disease (LBD; N = 51), multiple system atrophy (MSA; N = 10), frontotemporal lobar degeneration-TDP-43 (FTLD-TDP; N = 16), and progressive supranuclear palsy (PSP; N = 39). The LBD group exhibited the most Aβ deposition in the temporal cortex and striatum (90/76%, respectively), followed by PSP (69/28%), FTLD-TDP (50/25%), and the MSA group (50/10%). We conducted immunohistochemical analysis using antibodies targeting eight Aβ epitopes in the LBD and PSP groups. Immunohistochemical findings were evaluated semi-quantitatively and quantitatively using digital pathology. Females with LBD exhibited significantly more severe Aβ deposition, particularly Aβ42 and Aβ43 , along with significantly more severe tau pathology. Furthermore, a quantitative analysis of all Aβ peptides in the LBD group revealed an association with the APOE-ε4 genotypes. No significant differences were observed between males and females in the PSP group. Finally, we compared striatal Aβ deposition in cases with LBD (N = 15), AD without α-synuclein pathology (N = 6), and PSP (N = 5). There were no differences in the pan-Aβ antibody (6F/3D)-immunolabeled deposition burden among the three groups, but the deposition burden of peptides with high aggregation capacity, especially Aβ43 , was significantly higher in the AD and LBD groups than in the PSP group. Furthermore, considerable heterogeneity was observed in the composition of Aβ peptides on a case-by-case basis in the AD and LBD groups, whereas it was relatively uniform in the PSP group. Cluster analysis further supported these findings. Our data suggest that the type of concomitant proteinopathies influences the spectrum of Aβ deposition, impacted also by sex and APOE genotypes.
Collapse
Affiliation(s)
- Shojiro Ichimata
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
- Department of Legal Medicine, Faculty of MedicineUniversity of ToyamaToyamaJapan
| | - Koji Yoshida
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
- Department of Legal Medicine, Faculty of MedicineUniversity of ToyamaToyamaJapan
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
| | - Anthony E. Lang
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Edmond J Safra Program in Parkinson's Disease and Rossy Program in Progressive Supranuclear PalsyToronto Western HospitalTorontoOntarioCanada
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
- Edmond J Safra Program in Parkinson's Disease and Rossy Program in Progressive Supranuclear PalsyToronto Western HospitalTorontoOntarioCanada
- Laboratory Medicine Program and Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
32
|
Backman EA, Luntamo L, Parkkola R, Koikkalainen J, Gardberg M, Kaasinen V. Early cortical atrophy is related to depression in patients with neuropathologically confirmed Parkinson's disease. J Neurol Sci 2023; 455:122804. [PMID: 37992556 DOI: 10.1016/j.jns.2023.122804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVE Depression is a common comorbidity in Parkinson's disease (PD) and other synucleinopathies. In non-PD geriatric patients, cortical atrophy has previously been connected to depression. Here, we investigated cortical atrophy and vascular white matter hyperintensities (WMHs) in autopsy-confirmed parkinsonism patients with the focus on clinical depression. METHODS The sample consisted of 50 patients with a postmortem confirmed neuropathological diagnosis (30 Parkinson's disease [PD], 10 progressive supranuclear palsy [PSP] and 10 multiple system atrophy [MSA]). Each patient had been scanned with brain computerized tomography (CT) antemortem (median motor symptom duration at scanning = 3.0 years), and 19 patients were scanned again after a mean interval of 2.7 years. Medial temporal atrophy (MTA), global cortical atrophy (GCA) and WMHs were evaluated computationally from CT scans using an image quantification tool based on convolutional neural networks. Depression and other clinical parameters were recorded from patient files. RESULTS Depression was associated with increased MTA after controlling for diagnosis, age, symptom duration, and cognition (p = 0.006). A similar finding was observed with GCA (p = 0.017) but not with WMH (p = 0.47). In PD patients alone, the result was confirmed for MTA (p = 0.021) with the same covariates. In the longitudinal analysis, GCA change per year was more severe in depressed patients than in nondepressed patients (p = 0.029). CONCLUSIONS Early medial temporal and global cortical atrophy, as detected with automated analysis of CT-images using convolutional neural networks, is associated with clinical depression in parkinsonism patients. Global cortical atrophy seems to progress faster in depressed patients.
Collapse
Affiliation(s)
- Emmilotta A Backman
- Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter, Turku University Hospital, Turku, Finland.
| | - Laura Luntamo
- Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter, Turku University Hospital, Turku, Finland.
| | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, University of Turku, Turku, Finland.
| | | | - Maria Gardberg
- Tyks Laboratories, Pathology, Turku University Hospital and Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter, Turku University Hospital, Turku, Finland.
| |
Collapse
|
33
|
Blazhenets G, Soleimani-Meigooni DN, Thomas W, Mundada N, Brendel M, Vento S, VandeVrede L, Heuer HW, Ljubenkov P, Rojas JC, Chen MK, Amuiri AN, Miller Z, Gorno-Tempini ML, Miller BL, Rosen HJ, Litvan I, Grossman M, Boeve B, Pantelyat A, Tartaglia MC, Irwin DJ, Dickerson BC, Baker SL, Boxer AL, Rabinovici GD, La Joie R. [ 18F]PI-2620 Binding Patterns in Patients with Suspected Alzheimer Disease and Frontotemporal Lobar Degeneration. J Nucl Med 2023; 64:1980-1989. [PMID: 37918868 PMCID: PMC10690126 DOI: 10.2967/jnumed.123.265856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Tau PET has enabled the visualization of paired helical filaments of 3 or 4 C-terminal repeat tau in Alzheimer disease (AD), but its ability to detect aggregated tau in frontotemporal lobar degeneration (FTLD) spectrum disorders is uncertain. We investigated 2-(2-([18F]fluoro)pyridin-4-yl)-9H-pyrrolo[2,3-b:4,5c']dipyridine ([18F]PI-2620), a newer tracer with ex vivo evidence for binding to FTLD tau, in a convenience sample of patients with suspected FTLD and AD using a static acquisition protocol and parametric SUV ratio (SUVr) images. Methods: We analyzed [18F]PI-2620 PET data from 65 patients with clinical diagnoses associated with AD or FTLD neuropathology; most (60/65) also had amyloid-β (Aβ) PET. Scans were acquired 30-60 min after injection; SUVr maps (reference, inferior cerebellar cortex) were created for the full acquisition and for 10-min truncated sliding windows (30-40, 35-45,…50-60 min). Age- and sex-adjusted z score maps were computed for each patient, relative to 23 Aβ-negative cognitively healthy controls (HC). Mean SUVr in the globus pallidus, substantia nigra, subthalamic nuclei, dentate nuclei, white matter, and temporal gray matter was extracted for the full and truncated windows. Results: Patients with suspected AD neuropathology (Aβ-positive patients with mild cognitive impairment or AD dementia) showed high-intensity temporoparietal cortex-predominant [18F]PI-2620 binding. At the group level, patients with clinical diagnoses associated with FTLD (progressive supranuclear palsy with Richardson syndrome [PSP Richardson syndrome], corticobasal syndrome, and nonfluent-variant primary progressive aphasia) exhibited higher globus pallidus SUVr than did HCs; pallidal retention was highest in the PSP Richardson syndrome group, in whom SUVr was correlated with symptom severity (ρ = 0.53, P = 0.05). At the individual level, only half of PSP Richardson syndrome, corticobasal syndrome, and nonfluent-variant primary progressive aphasia patients had a pallidal SUVr above that of HCs. Temporal SUVr discriminated AD patients from HCs with high accuracy (area under the receiver operating characteristic curve, 0.94 [95% CI, 0.83-1.00]) for all time windows, whereas discrimination between patients with PSP Richardson syndrome and HCs using pallidal SUVr was fair regardless of time window (area under the receiver operating characteristic curve, 0.77 [95% CI, 0.61-0.92] at 30-40 min vs. 0.81 [95% CI, 0.66-0.96] at 50-60 min; P = 0.67). Conclusion: [18F]PI-2620 SUVr shows an intense and consistent signal in AD but lower-intensity, heterogeneous, and rapidly decreasing binding in patients with suspected FTLD. Further work is needed to delineate the substrate of [18F]PI-2620 binding and the usefulness of [18F]PI2620 SUVr quantification outside the AD continuum.
Collapse
Affiliation(s)
- Ganna Blazhenets
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Wesley Thomas
- Lawrence Berkeley National Laboratory, Berkeley, California
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Stephanie Vento
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Lawren VandeVrede
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Hilary W Heuer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Peter Ljubenkov
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Julio C Rojas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Miranda K Chen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Alinda N Amuiri
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Maria L Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Howie J Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Irene Litvan
- University of California, San Diego, San Diego, California
| | - Murray Grossman
- Penn FTD Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - David J Irwin
- Penn FTD Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California;
| |
Collapse
|
34
|
Whitney K, Song WM, Sharma A, Dangoor DK, Farrell K, Krassner MM, Ressler HW, Christie TD, Walker RH, Nirenberg MJ, Zhang B, Frucht SJ, Riboldi GM, Crary JF, Pereira AC. Single-cell transcriptomic and neuropathologic analysis reveals dysregulation of the integrated stress response in progressive supranuclear palsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567587. [PMID: 38014079 PMCID: PMC10680842 DOI: 10.1101/2023.11.17.567587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Progressive supranuclear palsy (PSP) is a sporadic neurodegenerative tauopathy variably affecting brainstem and cortical structures and characterized by tau inclusions in neurons and glia. The precise mechanism whereby these protein aggregates lead to cell death remains unclear. To investigate the contribution of these different cellular abnormalities to PSP pathogenesis, we performed single-nucleus RNA sequencing and analyzed 45,559 high quality nuclei targeting the subthalamic nucleus and adjacent structures from human post-mortem PSP brains with varying degrees of pathology compared to controls. Cell-type specific differential expression and pathway analysis identified both common and discrete changes in numerous pathways previously implicated in PSP and other neurodegenerative disorders. This included EIF2 signaling, an adaptive pathway activated in response to diverse stressors, which was the top activated pathway in vulnerable cell types. Using immunohistochemistry, we found that activated eIF2α was positively correlated with tau pathology burden in vulnerable brain regions. Multiplex immunofluorescence localized activated eIF2α positivity to hyperphosphorylated tau (p-tau) positive neurons and ALDH1L1-positive astrocytes, supporting the increased transcriptomic EIF2 activation observed in these vulnerable cell types. In conclusion, these data provide insights into cell-type-specific pathological changes in PSP and support the hypothesis that failure of adaptive stress pathways play a mechanistic role in the pathogenesis and progression of PSP.
Collapse
|
35
|
Min Y, Wang X, İş Ö, Patel TA, Gao J, Reddy JS, Quicksall ZS, Nguyen T, Lin S, Tutor-New FQ, Chalk JL, Mitchell AO, Crook JE, Nelson PT, Van Eldik LJ, Golde TE, Carrasquillo MM, Dickson DW, Zhang K, Allen M, Ertekin-Taner N. Cross species systems biology discovers glial DDR2, STOM, and KANK2 as therapeutic targets in progressive supranuclear palsy. Nat Commun 2023; 14:6801. [PMID: 37919278 PMCID: PMC10622416 DOI: 10.1038/s41467-023-42626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by cell-type-specific tau lesions in neurons and glia. Prior work uncovered transcriptome changes in human PSP brains, although their cell-specificity is unknown. Further, systematic data integration and experimental validation platforms to prioritize brain transcriptional perturbations as therapeutic targets in PSP are currently lacking. In this study, we combine bulk tissue (n = 408) and single nucleus RNAseq (n = 34) data from PSP and control brains with transcriptome data from a mouse tauopathy and experimental validations in Drosophila tau models for systematic discovery of high-confidence expression changes in PSP with therapeutic potential. We discover, replicate, and annotate thousands of differentially expressed genes in PSP, many of which reside in glia-enriched co-expression modules and cells. We prioritize DDR2, STOM, and KANK2 as promising therapeutic targets in PSP with striking cross-species validations. We share our findings and data via our interactive application tool PSP RNAseq Atlas ( https://rtools.mayo.edu/PSP_RNAseq_Atlas/ ). Our findings reveal robust glial transcriptome changes in PSP, provide a cross-species systems biology approach, and a tool for therapeutic target discoveries in PSP with potential application in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuhao Min
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Tulsi A Patel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Junli Gao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Joseph S Reddy
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Zachary S Quicksall
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Thuy Nguyen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Shu Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jessica L Chalk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Julia E Crook
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Todd E Golde
- Department of Pharmacology and Chemical Biology, Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | | | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
36
|
Danics K, Visanji NP, Ichimata S, Mathur S, Sára-Klausz G, Kovacs GG. Prevalence and Distribution of Lewy Pathology in a Homeless Population. Can J Neurol Sci 2023:1-7. [PMID: 37793895 DOI: 10.1017/cjn.2023.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
BACKGROUND The homeless population experience significant inequalities in health, and there is an increasing appreciation of the potential of lifestyle factors in the development of neurodegenerative diseases, including Parkinson's disease. We performed a study on the prevalence and distribution of pathological alpha-synuclein deposition throughout the central and peripheral nervous systems in a homeless population. METHODS Forty-four homeless individuals consecutively available for autopsy were recruited. Immunohistochemistry was performed using 5G4 antibody recognizing disease-associated forms of alpha-synuclein, complemented by phospho-synuclein antibody on autopsy tissues collected from 18 regions of the brain and spinal cord, as well as the right and left olfactory bulb, the cauda equina, the extramedullary portion of the vagus nerve, and 27 sites of peripheral organs. RESULTS The study cohort consisted of 38 males and 6 females, median age 58 years (range 32-67). Lewy-related pathology was present in the brains of three male cases. One showed Braak stage 2 (60 years old), and two stage 4 (56 and 59 years old). One of the Braak stage 4 cases had Lewy-related pathology in the spinal cord, the cauda equina, and the extramedullary portion of the vagus nerve. Examination of 27 sites of peripheral organs found that all three cases with Lewy-related pathology present in the brain were devoid of peripheral organ alpha-synuclein pathology. Multiple system-type alpha-synuclein pathology was not found. CONCLUSION Our study, representing a snapshot of the homeless population that came to autopsy, suggests that alpha-synuclein pathology is prevalent in the homeless supporting further study of this vulnerable population.
Collapse
Affiliation(s)
- Krisztina Danics
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Naomi P Visanji
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Shojiro Ichimata
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
| | - Sarika Mathur
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
| | - Gabriella Sára-Klausz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
37
|
Boon BDC, Labuzan SA, Peng Z, Matchett BJ, Kouri N, Hinkle KM, Lachner C, Ross OA, Ertekin-Taner N, Carter RE, Ferman TJ, Duara R, Dickson DW, Graff-Radford NR, Murray ME. Retrospective Evaluation of Neuropathologic Proxies of the Minimal Atrophy Subtype Compared With Corticolimbic Alzheimer Disease Subtypes. Neurology 2023; 101:e1412-e1423. [PMID: 37580158 PMCID: PMC10573142 DOI: 10.1212/wnl.0000000000207685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/07/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) is neuropathologically classified into 3 corticolimbic subtypes based on the neurofibrillary tangle distribution throughout the hippocampus and association cortices: limbic predominant, typical, and hippocampal sparing. In vivo, a fourth subtype, dubbed "minimal atrophy," was identified using structural MRI. The objective of this study was to identify a neuropathologic proxy for the neuroimaging-defined minimal atrophy subtype. METHODS We applied 2 strategies in the Florida Autopsied Multi-Ethnic (FLAME) cohort to evaluate a neuropathologic proxy for the minimal atrophy subtype. In the first strategy, we selected AD cases with a Braak tangle stage IV (Braak IV) because of the relative paucity of neocortical tangle involvement compared with Braak >IV. Braak IV cases were compared with the 3 AD subtypes. In the alternative strategy, typical AD was stratified by brain weight and cases having a relatively high brain weight (>75th percentile) were defined as minimal atrophy. RESULTS Braak IV cases (n = 37) differed from AD subtypes (limbic predominant [n = 174], typical [n = 986], and hippocampal sparing [n = 187] AD) in having the least years of education (median 12 years, group-wise p < 0.001) and the highest brain weight (median 1,140 g, p = 0.002). Braak IV cases most resembled the limbic predominant cases owing to their high proportion of APOE ε4 carriers (75%, p < 0.001), an amnestic syndrome (100%, p < 0.001), as well as older age of cognitive symptom onset and death (median 79 and 85 years, respectively, p < 0.001). Only 5% of Braak IV cases had amygdala-predominant Lewy bodies (the lowest frequency observed, p = 0.017), whereas 32% had coexisting pathology of Lewy body disease, which was greater than the other subtypes (p = 0.005). Nearly half (47%) of the Braak IV samples had coexisting limbic predominant age-related TAR DNA-binding protein 43 encephalopathy neuropathologic change. Cases with a high brain weight (n = 201) were less likely to have amygdala-predominant Lewy bodies (14%, p = 0.006) and most likely to have Lewy body disease (31%, p = 0.042) compared with those with middle (n = 455) and low (n = 203) brain weight. DISCUSSION The frequency of Lewy body disease was increased in both neuropathologic proxies of the minimal atrophy subtype. We hypothesize that Lewy body disease may underlie cognitive decline observed in minimal atrophy cases.
Collapse
Affiliation(s)
- Baayla D C Boon
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Sydney A Labuzan
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Zhongwei Peng
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Billie J Matchett
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Naomi Kouri
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Kelly M Hinkle
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Christian Lachner
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Owen A Ross
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Nilufer Ertekin-Taner
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Rickey E Carter
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Tanis J Ferman
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Ranjan Duara
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Dennis W Dickson
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Neill R Graff-Radford
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL
| | - Melissa E Murray
- From the Department of Neuroscience (B.D.C.B., S.A.L., B.J.M., N.K., K.M.H., O.A.R., N.E.-T., D.W.D., M.E.M.), Department of Quantitative Health Sciences (Z.P., R.E.C.), Department of Neurology (C.L., N.E.-T., N.R.G.-R.), and Department of Psychiatry & Psychology (C.L., T.J.F.), Mayo Clinic, Jacksonville; and Wien Center for Alzheimer's Disease and Memory Disorders (R.D.), Mount Sinai Medical Center, Miami Beach, FL.
| |
Collapse
|
38
|
Berger-Sieczkowski E, Endmayr V, Haider C, Ricken G, Jauk P, Macher S, Pirker W, Högl B, Heidbreder A, Schnider P, Bradley-Zechmeister E, Mariotto S, Koneczny I, Reinecke R, Kasprian G, Weber C, Bergmann M, Milenkovic I, Berger T, Gaig C, Sabater L, Graus F, Gelpi E, Höftberger R. Analysis of inflammatory markers and tau deposits in an autopsy series of nine patients with anti-IgLON5 disease. Acta Neuropathol 2023; 146:631-645. [PMID: 37646790 PMCID: PMC10499680 DOI: 10.1007/s00401-023-02625-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
Anti-IgLON5 disease is a rare neurological, probably autoimmune, disorder associated in many cases with a specific tauopathy. Only a few post-mortem neuropathological studies have been reported so far. Little is known about the pathogenic mechanisms that result in neurodegeneration. We investigated the neuropathology of anti-IgLON5 disease and characterized cellular and humoral inflammation. We included nine cases (six of them previously published). Median age of patients was 71 years (53-82 years), the median disease duration was 6 years (0.5-13 years), and the female to male ratio was 5:4. Six cases with a median disease duration of 9 years presented a prominent tauopathy. Five of them had a classical anti-IgLON5-related brainstem tauopathy and another presented a prominent neuronal and glial 4-repeat tauopathy, consistent with progressive supranuclear palsy (PSP). Three cases with short disease duration (median 1.25 years) only showed a primary age-related neurofibrillary pathology. Inflammatory infiltrates of T and B cells were mild to moderate and did not significantly differ between anti-IgLON5 disease cases with or without tauopathy. In contrast, we found an extensive neuropil deposition of IgG4 in the tegmentum of the brainstem, olivary nucleus, and cerebellar cortex that was most prominent in two patients with short disease duration without the typical IgLON5-related tauopathy. The IgG4 deposits were particularly prominent in the cerebellar cortex and in these regions accompanied by mild IgG1 deposits. Activated complement deposition (C9neo) was absent. Our study indicates that IgLON5-related tau pathology occurs in later disease stages and may also present a PSP-phenotype with exclusively 4-repeat neuronal and glial tau pathology. The prominent deposition of anti-IgLON5 IgG4 at predilection sites for tau pathology suggests that anti-IgLON5 antibodies precede the tau pathology. Early start of immunotherapy might prevent irreversible neuronal damage and progression of the disease, at least in a subgroup of patients.
Collapse
Affiliation(s)
- Evelyn Berger-Sieczkowski
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Verena Endmayr
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Carmen Haider
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gerda Ricken
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Philipp Jauk
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Stefan Macher
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Walter Pirker
- Department of Neurology, Klinik Ottakring, Vienna, Austria
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Heidbreder
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Schnider
- Department of Neurology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | | | - Sara Mariotto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Inga Koneczny
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Raphael Reinecke
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gregor Kasprian
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Corinna Weber
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Melanie Bergmann
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Milenkovic
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Carles Gaig
- Neurology Service, Hospital Clínic of Barcelona, Barcelona, Spain
- Neuroimmunology Laboratory-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lidia Sabater
- Neuroimmunology Laboratory-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Graus
- Neuroimmunology Laboratory-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ellen Gelpi
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain.
| | - Romana Höftberger
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
39
|
Wattjes MP, Huppertz HJ, Mahmoudi N, Stöcklein S, Rogozinski S, Wegner F, Klietz M, Apostolova I, Levin J, Katzdobler S, Buhmann C, Quattrone A, Berding G, Brendel M, Barthel H, Sabri O, Höglinger G, Buchert R. Brain MRI in Progressive Supranuclear Palsy with Richardson's Syndrome and Variant Phenotypes. Mov Disord 2023; 38:1891-1900. [PMID: 37545102 DOI: 10.1002/mds.29527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Brain magnetic resonance imaging (MRI) is used to support the diagnosis of progressive supranuclear palsy (PSP). However, the value of visual descriptive, manual planimetric, automatic volumetric MRI markers and fully automatic categorization is unclear, particularly regarding PSP predominance types other than Richardson's syndrome (RS). OBJECTIVES To compare different visual reading strategies and automatic classification of T1-weighted MRI for detection of PSP in a typical clinical cohort including PSP-RS and (non-RS) variant PSP (vPSP) patients. METHODS Forty-one patients (21 RS, 20 vPSP) and 46 healthy controls were included. Three readers using three strategies performed MRI analysis: exclusively visual reading using descriptive signs (hummingbird, morning-glory, Mickey-Mouse), visual reading supported by manual planimetry measures, and visual reading supported by automatic volumetry. Fully automatic classification was performed using a pre-trained support vector machine (SVM) on the results of atlas-based volumetry. RESULTS All tested methods achieved higher specificity than sensitivity. Limited sensitivity was driven to large extent by false negative vPSP cases. Support by automatic volumetry resulted in the highest accuracy (75.1% ± 3.5%) among the visual strategies, but performed not better than the midbrain area (75.9%), the best single planimetric measure. Automatic classification by SVM clearly outperformed all other methods (accuracy, 87.4%), representing the only method to provide clinically useful sensitivity also in vPSP (70.0%). CONCLUSIONS Fully automatic classification of volumetric MRI measures using machine learning methods outperforms visual MRI analysis without and with planimetry or volumetry support, particularly regarding diagnosis of vPSP, suggesting the use in settings with a broad phenotypic PSP spectrum. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mike P Wattjes
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | | | - Nima Mahmoudi
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Quattrone
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Georg Berding
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Günter Höglinger
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
40
|
Buchert R, Wegner F, Huppertz HJ, Berding G, Brendel M, Apostolova I, Buhmann C, Dierks A, Katzdobler S, Klietz M, Levin J, Mahmoudi N, Rinscheid A, Rogozinski S, Rumpf JJ, Schneider C, Stöcklein S, Spetsieris PG, Eidelberg D, Wattjes MP, Sabri O, Barthel H, Höglinger G. Automatic covariance pattern analysis outperforms visual reading of 18 F-fluorodeoxyglucose-positron emission tomography (FDG-PET) in variant progressive supranuclear palsy. Mov Disord 2023; 38:1901-1913. [PMID: 37655363 DOI: 10.1002/mds.29581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND To date, studies on positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) in progressive supranuclear palsy (PSP) usually included PSP cohorts overrepresenting patients with Richardson's syndrome (PSP-RS). OBJECTIVES To evaluate FDG-PET in a patient sample representing the broad phenotypic PSP spectrum typically encountered in routine clinical practice. METHODS This retrospective, multicenter study included 41 PSP patients, 21 (51%) with RS and 20 (49%) with non-RS variants of PSP (vPSP), and 46 age-matched healthy controls. Two state-of-the art methods for the interpretation of FDG-PET were compared: visual analysis supported by voxel-based statistical testing (five readers) and automatic covariance pattern analysis using a predefined PSP-related pattern. RESULTS Sensitivity and specificity of the majority visual read for the detection of PSP in the whole cohort were 74% and 72%, respectively. The percentage of false-negative cases was 10% in the PSP-RS subsample and 43% in the vPSP subsample. Automatic covariance pattern analysis provided sensitivity and specificity of 93% and 83% in the whole cohort. The percentage of false-negative cases was 0% in the PSP-RS subsample and 15% in the vPSP subsample. CONCLUSIONS Visual interpretation of FDG-PET supported by voxel-based testing provides good accuracy for the detection of PSP-RS, but only fair sensitivity for vPSP. Automatic covariance pattern analysis outperforms visual interpretation in the detection of PSP-RS, provides clinically useful sensitivity for vPSP, and reduces the rate of false-positive findings. Thus, pattern expression analysis is clinically useful to complement visual reading and voxel-based testing of FDG-PET in suspected PSP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Georg Berding
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Dierks
- Department of Nuclear Medicine, University Hospital Augsburg, Augsburg, Germany
| | - Sabrina Katzdobler
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital of Munich, LMU, Munich, Germany
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital of Munich, LMU, Munich, Germany
| | - Nima Mahmoudi
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Andreas Rinscheid
- Medical Physics and Radiation Protection, University Hospital Augsburg, Augsburg, Germany
| | | | | | - Christine Schneider
- Department of Neurology and Clinical Neurophysiology, University Hospital Augsburg, Augsburg, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital of Munich, LMU, Munich, Germany
| | - Phoebe G Spetsieris
- The Feinstein Institutes for Medical Research Manhasset, Manhasset, New York, USA
| | - David Eidelberg
- The Feinstein Institutes for Medical Research Manhasset, Manhasset, New York, USA
| | - Mike P Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Günter Höglinger
- Department of Neurology, Hannover Medical School, Hannover, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Department of Neurology, University Hospital of Munich, LMU, Munich, Germany
| |
Collapse
|
41
|
Rexach JE, Cheng Y, Chen L, Polioudakis D, Lin LC, Mitri V, Elkins A, Yin A, Calini D, Kawaguchi R, Ou J, Huang J, Williams C, Robinson J, Gaus SE, Spina S, Lee EB, Grinberg LT, Vinters H, Trojanowski JQ, Seeley WW, Malhotra D, Geschwind DH. Disease-specific selective vulnerability and neuroimmune pathways in dementia revealed by single cell genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560245. [PMID: 37808727 PMCID: PMC10557766 DOI: 10.1101/2023.09.29.560245] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNAseq and ATACseq in Alzheimer disease (AD), Frontotemporal degeneration (FTD), and Progressive Supranuclear Palsy (PSP), analyzing 40 participants, yielding over 1.4M cells from three brain regions ranging in vulnerability and pathological burden. We identify 35 shared disease-associated cell types and 14 that are disease-specific, replicating those previously identified in AD. Disease - specific cell states represent molecular features of disease-specific glial-immune mechanisms and neuronal vulnerability in each disorder, layer 4/5 intra-telencephalic neurons in AD, layer 2/3 intra-telencephalic neurons in FTD, and layer 5/6 near-projection neurons in PSP. We infer intrinsic disease-associated gene regulatory networks, which we empirically validate by chromatin footprinting. We find that causal genetic risk acts in specific neuronal and glial cells that differ across disorders, primarily non-neuronal cells in AD and specific neuronal subtypes in FTD and PSP. These data illustrate the heterogeneous spectrum of glial and neuronal composition and gene expression alterations in different dementias and identify new therapeutic targets by revealing shared and disease-specific cell states.
Collapse
|
42
|
Martinez-Valbuena I, Lee S, Santamaria E, Irigoyen JF, Forrest S, Li J, Tanaka H, Couto B, Reyes NG, Qamar H, Karakani AM, Kim A, Senkevich K, Rogaeva E, Fox SH, Tartaglia C, Visanji NP, Andrews T, Lang AE, Kovacs GG. 4R-Tau seeding activity unravels molecular subtypes in patients with Progressive Supranuclear Palsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559953. [PMID: 37808843 PMCID: PMC10557711 DOI: 10.1101/2023.09.28.559953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Progressive Supranuclear palsy (PSP) is a 4-repeat (4-R) tauopathy. We hypothesized that the molecular diversity of tau could explain the heterogeneity seen in PSP disease progression. To test this hypothesis, we performed an extensive biochemical characterisation of the high molecular weight tau species (HMW-Tau) in 20 different brain regions of 25 PSP patients. We found a correlation between the HMW-Tau species and tau seeding capacity in the primary motor cortex, where we confirmed that an elevated 4R-Tau seeding activity correlates with a shorter disease duration. To identify factors that contribute to these differences, we performed proteomic and spatial transcriptomic analysis that revealed key mechanistic pathways, in particular those involving the immune system, that defined patients demonstrating high and low tau seeding capacity. These observations suggest that differences in the tau seeding activity may contribute to the considerable heterogeneity seen in disease progression of patients suffering from PSP.
Collapse
|
43
|
Forrest SL, Lee S, Nassir N, Martinez-Valbuena I, Sackmann V, Li J, Ahmed A, Tartaglia MC, Ittner LM, Lang AE, Uddin M, Kovacs GG. Cell-specific MAPT gene expression is preserved in neuronal and glial tau cytopathologies in progressive supranuclear palsy. Acta Neuropathol 2023; 146:395-414. [PMID: 37354322 PMCID: PMC10412651 DOI: 10.1007/s00401-023-02604-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Microtubule-associated protein tau (MAPT) aggregates in neurons, astrocytes and oligodendrocytes in a number of neurodegenerative diseases, including progressive supranuclear palsy (PSP). Tau is a target of therapy and the strategy includes either the elimination of pathological tau aggregates or reducing MAPT expression, and thus the amount of tau protein made to prevent its aggregation. Disease-associated tau affects brain regions in a sequential manner that includes cell-to-cell spreading. Involvement of glial cells that show tau aggregates is interpreted as glial cells taking up misfolded tau assuming that glial cells do not express enough MAPT. Although studies have evaluated MAPT expression in human brain tissue homogenates, it is not clear whether MAPT expression is compromised in cells accumulating pathological tau. To address these perplexing aspects of disease pathogenesis, this study used RNAscope combined with immunofluorescence (AT8), and single-nuclear(sn) RNAseq to systematically map and quantify MAPT expression dynamics across different cell types and brain regions in controls (n = 3) and evaluated whether tau cytopathology affects MAPT expression in PSP (n = 3). MAPT transcripts were detected in neurons, astrocytes and oligodendrocytes, and varied between brain regions and within each cell type, and were preserved in all cell types with tau aggregates in PSP. These results propose a complex scenario in all cell types, where, in addition to the ingested misfolded tau, the preserved cellular MAPT expression provides a pool for local protein production that can (1) be phosphorylated and aggregated, or (2) feed the seeding of ingested misfolded tau by providing physiological tau, both accentuating the pathological process. Since tau cytopathology does not compromise MAPT gene expression in PSP, a complete loss of tau protein expression as an early pathogenic component is less likely. These observations provide rationale for a dual approach to therapy by decreasing cellular MAPT expression and targeting removal of misfolded tau.
Collapse
Affiliation(s)
- Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Nasna Nassir
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Valerie Sackmann
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Awab Ahmed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
- University Health Network Memory Clinic, Krembil Brain Institute, Toronto, ON, Canada
| | - Lars M Ittner
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
44
|
Batra R, Krumsiek J, Wang X, Allen M, Blach C, Kastenmüller G, Arnold M, Ertekin-Taner N, Kaddurah-Daouk RF. Comparative brain metabolomics reveals shared and distinct metabolic alterations in Alzheimer's disease and progressive supranuclear palsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.25.23293055. [PMID: 37546878 PMCID: PMC10402214 DOI: 10.1101/2023.07.25.23293055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Metabolic dysregulation is a hallmark of neurodegenerative diseases, including Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). While metabolic dysregulation is a common link between these two tauopathies, a comprehensive brain metabolic comparison of the diseases has not yet been performed. We analyzed 342 postmortem brain samples from the Mayo Clinic Brain Bank and examined 658 metabolites in the cerebellar cortex and the temporal cortex between the two tauopathies. Our findings indicate that both diseases display oxidative stress associated with lipid metabolism, mitochondrial dysfunction linked to lysine metabolism, and an indication of tau-induced polyamine stress response. However, specific to AD, we detected glutathione-related neuroinflammation, deregulations of enzymes tied to purines, and cognitive deficits associated with vitamin B. Taken together, our findings underscore vast alterations in the brain's metabolome, illuminating shared neurodegenerative pathways and disease-specific traits in AD and PSP.
Collapse
Affiliation(s)
- Richa Batra
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Rima F Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
45
|
Ichimata S, Martinez-Valbuena I, Lee S, Li J, Karakani AM, Kovacs GG. Distinct Molecular Signatures of Amyloid-Beta and Tau in Alzheimer's Disease Associated with Down Syndrome. Int J Mol Sci 2023; 24:11596. [PMID: 37511361 PMCID: PMC10380583 DOI: 10.3390/ijms241411596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Limited comparative data exist on the molecular spectrum of amyloid-beta (Aβ) and tau deposition in individuals with Down syndrome (DS) and sporadic Alzheimer's disease (sAD). We assessed Aβ and tau deposition severity in the temporal lobe and cerebellum of ten DS and ten sAD cases. Immunohistochemistry was performed using antibodies against eight different Aβ epitopes (6F/3D, Aβ38, Aβ39, Aβ40, Aβ42, Aβ43, pyroglutamate Aβ at third glutamic acid (AβNp3E), phosphorylated- (p-)Aβ at 8th serine (AβpSer8)), and six different pathological tau epitopes (p-Ser202/Thr205, p-Thr231, p-Ser396, Alz50, MC1, GT38). Findings were evaluated semi-quantitatively and quantitatively using digital pathology. DS cases had significantly higher neocortical parenchymal deposition (Aβ38, Aβ42, and AβpSer8), and cerebellar parenchymal deposition (Aβ40, Aβ42, AβNp3E, and AβpSer8) than sAD cases. Furthermore, DS cases had a significantly larger mean plaque size (6F/3D, Aβ42, AβNp3E) in the temporal lobe, and significantly greater deposition of cerebral and cerebellar Aβ42 than sAD cases in the quantitative analysis. Western blotting corroborated these findings. Regarding tau pathology, DS cases had significantly more severe cerebral tau deposition than sAD cases, especially in the white matter (p-Ser202/Thr205, p-Thr231, Alz50, and MC1). Greater total tau deposition in the white matter (p-Ser202/Thr205, p-Thr231, and Alz50) of DS cases was confirmed by quantitative analysis. Our data suggest that the Aβ and tau molecular signatures in DS are distinct from those in sAD.
Collapse
Affiliation(s)
- Shojiro Ichimata
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
| | - Ali M. Karakani
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 2S8, Canada; (S.I.); (I.M.-V.); (S.L.); (J.L.); (A.M.K.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Edmond J. Safra Program in Parkinson’s Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
- Laboratory Medicine Program, Krembil Brain Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
46
|
Shir D, Pham NTT, Botha H, Koga S, Kouri N, Ali F, Knopman DS, Petersen RC, Boeve BF, Kremers WK, Nguyen AT, Murray ME, Reichard RR, Dickson DW, Graff-Radford N, Josephs KA, Whitwell J, Graff-Radford J. Clinicoradiologic and Neuropathologic Evaluation of Corticobasal Syndrome. Neurology 2023; 101:e289-e299. [PMID: 37268436 PMCID: PMC10382268 DOI: 10.1212/wnl.0000000000207397] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Corticobasal syndrome (CBS) is a clinical phenotype characterized by asymmetric parkinsonism, rigidity, myoclonus, and apraxia. Originally believed secondary to corticobasal degeneration (CBD), mounting clinicopathologic studies have revealed heterogenous neuropathologies. The objectives of this study were to determine the pathologic heterogeneity of CBS, the clinicoradiologic findings associated with different underlying pathologies causing CBS, and the positive predictive value (PPV) of current diagnostic criteria for CBD among patients with a CBS. METHODS Clinical data, brain MRI, and neuropathologic data of patients followed at Mayo Clinic and diagnosed with CBS antemortem were reviewed according to neuropathology category at autopsy. RESULTS The cohort consisted of 113 patients with CBS, 61 (54%) female patients. Mean ± SD disease duration was 7 ± 3.7 years; mean ± SD age at death was 70.5 ± 9.1 years. The primary neuropathologic diagnoses were 43 (38%) CBD, 27 (24%) progressive supranuclear palsy (PSP), 17 (15%) Alzheimer disease (AD), 10 (9%) frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein 43 (TDP) inclusions, 7 (6%) diffuse Lewy body disease (DLBD)/AD, and 9 (8%) with other diagnoses. Patients with CBS-AD or CBS-DLBD/AD were youngest at death (median [interquartile range]: 64 [13], 64 [11] years) while CBS-PSP were oldest (77 [12.5] years, p = 0.024). Patients with CBS-DLBD/AD had the longest disease duration (9 [6] years), while CBS-other had the shortest (3 [4.25] years, p = 0.04). Posterior cortical signs and myoclonus were more characteristic of patients with CBS-AD and patients with CBS-DLBD/AD. Patients with CBS-DLBD/AD displayed more features of Lewy body dementia. Voxel-based morphometry revealed widespread cortical gray matter loss characteristic of CBS-AD, while CBS-CBD and CBS-PSP predominantly involved premotor regions with greater amount of white matter loss. Patients with CBS-DLBD/AD showed atrophy in a focal parieto-occipital region, and patients with CBS-FTLD-TDP had predominant prefrontal cortical loss. Patients with CBS-PSP had the lowest midbrain/pons ratio (p = 0.012). Of 67 cases meeting clinical criteria for possible CBD at presentation, 27 were pathology-proven CBD, yielding a PPV of 40%. DISCUSSION A variety of neurodegenerative disorders can be identified in patients with CBS, but clinical and regional imaging differences aid in predicting underlying neuropathology. PPV analysis of the current CBD diagnostic criteria revealed suboptimal performance. Biomarkers adequately sensitive and specific for CBD are needed.
Collapse
Affiliation(s)
- Dror Shir
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Nha Trang Thu Pham
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Hugo Botha
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Shunsuke Koga
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Naomi Kouri
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Farwa Ali
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - David S Knopman
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Ronald C Petersen
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Brad F Boeve
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Walter K Kremers
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Aivi T Nguyen
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Melissa E Murray
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - R Ross Reichard
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Dennis W Dickson
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Neill Graff-Radford
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL.
| | - Keith Anthony Josephs
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Jennifer Whitwell
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Jonathan Graff-Radford
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
47
|
Sakuwa M, Adachi T, Suzuki Y, Takigawa H, Hanajima R. Neuropathological analysis of cognitive impairment in progressive supranuclear palsy. J Neurol Sci 2023; 451:120718. [PMID: 37385026 DOI: 10.1016/j.jns.2023.120718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Cognitive impairment is an important symptom in progressive supranuclear palsy (PSP), but the pathological changes underlying the cognitive impairment are unclear. This study aimed to elucidate relationships between the severity of cognitive impairment and PSP-related pathology. METHODS We investigated the clinicopathological characteristics of 10 autopsy cases of PSP, including neuronal loss/gliosis and the burden of PSP-related tau pathology by using a semiquantitative score in 17 brain regions. Other concurrent pathologies such as Braak neurofibrillary tangle stage, Thal amyloid phase, Lewy-related pathology, argyrophilic grains, and TDP-43-related pathology were also assessed. We retrospectively divided the patients into a normal cognition group (PSP-NC) and cognitive impairment group (PSP-CI) based on antemortem clinical information about cognitive impairment and compared the pathological changes between these groups. RESULTS Seven patients were categorized into the PSP-CI group (men = 4) and three into the PSP-NC group (men = 3). The severity of neuronal loss/gliosis and concurrent pathologies were not different between the two groups. However, the total load of tau pretangles/neurofibrillary tangles was higher in the PSP-CI group than in the PSP-NC group. In addition, the burden of tufted astrocytes in the subthalamic nucleus and medial thalamus was higher in the PSP-CI group than in the PSP-NC group. CONCLUSION Cognitive impairment in PSP may be associated with the amount of tufted astrocyte pathology in the subthalamic nucleus and medial thalamus.
Collapse
Affiliation(s)
- Mayuko Sakuwa
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tadashi Adachi
- Division of Neuropathology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan.
| | - Yuki Suzuki
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiroshi Takigawa
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
48
|
van Amerongen S, Kamps S, Kaijser KKM, Pijnenburg YAL, Scheltens P, Teunissen CE, Barkhof F, Ossenkoppele R, Rozemuller AJM, Stern RA, Hoozemans JJM, Vijverberg EGB. Severe CTE and TDP-43 pathology in a former professional soccer player with dementia: a clinicopathological case report and review of the literature. Acta Neuropathol Commun 2023; 11:77. [PMID: 37161501 PMCID: PMC10169296 DOI: 10.1186/s40478-023-01572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
In the last decades, numerous post-mortem case series have documented chronic traumatic encephalopathy (CTE) in former contact-sport athletes, though reports of CTE pathology in former soccer players are scarce. This study presents a clinicopathological case of a former professional soccer player with young-onset dementia. The patient experienced early onset progressive cognitive decline and developed dementia in his mid-50 s, after playing soccer for 12 years at a professional level. While the clinical picture mimicked Alzheimer's disease, amyloid PET imaging did not provide evidence of elevated beta-amyloid plaque density. After he died in his mid-60 s, brain autopsy showed severe phosphorylated tau (p-tau) abnormalities fulfilling the neuropathological criteria for high-stage CTE, as well as astrocytic and oligodendroglial tau pathology in terms of tufted astrocytes, thorn-shaped astrocytes, and coiled bodies. Additionally, there were TAR DNA-binding protein 43 (TDP-43) positive cytoplasmic inclusions in the frontal lobe and hippocampus, and Amyloid Precursor Protein (APP) positivity in the axons of the white matter. A systematic review of the literature revealed only 13 other soccer players with postmortem diagnosis of CTE. Our report illustrates the complex clinicopathological correlation of CTE and the need for disease-specific biomarkers.
Collapse
Affiliation(s)
- Suzan van Amerongen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands.
- Department of Neurology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| | - Suzie Kamps
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Kyra K M Kaijser
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Yolande A L Pijnenburg
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Philip Scheltens
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- EQT Life Sciences, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Rik Ossenkoppele
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Annemieke J M Rozemuller
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Robert A Stern
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Departments of Neurosurgery, and Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | - Everard G B Vijverberg
- Department of Neurology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
49
|
Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023; 30:512-529. [PMID: 37084729 PMCID: PMC10201979 DOI: 10.1016/j.stem.2023.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Cell-based therapies are being developed for various neurodegenerative diseases that affect the central nervous system (CNS). Concomitantly, the roles of individual cell types in neurodegenerative pathology are being uncovered by genetic and single-cell studies. With a greater understanding of cellular contributions to health and disease and with the arrival of promising approaches to modulate them, effective therapeutic cell products are now emerging. This review examines how the ability to generate diverse CNS cell types from stem cells, along with a deeper understanding of cell-type-specific functions and pathology, is advancing preclinical development of cell products for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
50
|
Driver-Dunckley ED, Zhang N, Serrano GE, Dunckley NA, Sue LI, Shill HA, Mehta SH, Belden C, Tremblay C, Atri A, Adler CH, Beach TG. Low clinical sensitivity and unexpectedly high incidence for neuropathologically diagnosed progressive supranuclear palsy. J Neuropathol Exp Neurol 2023; 82:438-451. [PMID: 37040756 PMCID: PMC10117158 DOI: 10.1093/jnen/nlad025] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
The objective of this study was to determine the prevalence, incidence, and clinical diagnostic accuracy for neuropathologically diagnosed progressive supranuclear palsy (PSP) with data from a longitudinal clinicopathological study using Rainwater criteria to define neuropathological PSP. Of 954 autopsy cases, 101 met Rainwater criteria for the neuropathologic diagnosis of PSP. Of these, 87 were termed clinicopathological PSP as they also had either dementia or parkinsonism or both. The prevalence of clinicopathologically defined PSP subjects in the entire autopsy dataset was 9.1%, while the incidence rate was estimated at 780 per 100 000 persons per year, roughly 50-fold greater than most previous clinically determined PSP incidence estimates. A clinical diagnosis of PSP was 99.6% specific but only 9.2% sensitive based on first examination, and 99.3% specific and 20.7% sensitive based on the final clinical exam. Of the clinicopathologically defined PSP cases, 35/87 (∼40%) had no form of parkinsonism at first assessment, while this decreased to 18/83 (21.7%) at final assessment. Our study confirms a high specificity but low sensitivity for the clinical diagnosis of PSP. The low clinical sensitivity for PSP is likely primarily responsible for previous underestimates of the PSP population incidence rate.
Collapse
Affiliation(s)
- Erika D Driver-Dunckley
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Nan Zhang
- Department of Quantitative Health Sciences, Section of Biostatistics, Mayo Clinic, Scottsdale, Arizona, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Banner Health, Sun City, Arizona, USA
| | | | - Lucia I Sue
- Banner Sun Health Research Institute, Banner Health, Sun City, Arizona, USA
| | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Shyamal H Mehta
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Christine Belden
- Banner Sun Health Research Institute, Banner Health, Sun City, Arizona, USA
| | - Cecilia Tremblay
- Banner Sun Health Research Institute, Banner Health, Sun City, Arizona, USA
| | - Alireza Atri
- Banner Sun Health Research Institute, Banner Health, Sun City, Arizona, USA
- Department of Neurology, Center for Mind/Brain Medicine, Brigham & Women’s Hospital & Harvard Medical School, Boston, Massachusetts, USA
| | - Charles H Adler
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Banner Health, Sun City, Arizona, USA
| |
Collapse
|