1
|
Shakyawar SK, Mishra NK, Vellichirammal NN, Cary L, Helikar T, Powers R, Oberley-Deegan RE, Berkowitz DB, Bayles KW, Singh VK, Guda C. A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures. Radiat Res 2023; 199:89-111. [PMID: 36368026 PMCID: PMC10279411 DOI: 10.1667/rade-21-00187.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Increasing utilization of nuclear power enhances the risks associated with industrial accidents, occupational hazards, and the threat of nuclear terrorism. Exposure to ionizing radiation interferes with genomic stability and gene expression resulting in the disruption of normal metabolic processes in cells and organs by inducing complex biological responses. Exposure to high-dose radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, cerebrovascular, and many other organ-specific injuries. Altered genomic variations, gene expression, metabolite concentrations, and microbiota profiles in blood plasma or tissue samples reflect the whole-body radiation injuries. Hence, multi-omic profiles obtained from high-resolution omics platforms offer a holistic approach for identifying reliable biomarkers to predict the radiation injury of organs and tissues resulting from radiation exposures. In this review, we performed a literature search to systematically catalog the radiation-induced alterations from multi-omic studies and radiation countermeasures. We covered radiation-induced changes in the genomic, transcriptomic, proteomic, metabolomic, lipidomic, and microbiome profiles. Furthermore, we have covered promising multi-omic biomarkers, FDA-approved countermeasure drugs, and other radiation countermeasures that include radioprotectors and radiomitigators. This review presents an overview of radiation-induced alterations of multi-omics profiles and biomarkers, and associated radiation countermeasures.
Collapse
Affiliation(s)
- Sushil K Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nitish K Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neetha N Vellichirammal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lynnette Cary
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Halogen-substituted Arene Linked Selenium-N-Heterocyclic Carbene Compounds Induce Significant Cytotoxicity: Crystal Structures and Molecular Docking Studies. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Cao X, Weil MM, Wu JC. Clinical Trial in a Dish for Space Radiation Countermeasure Discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:140-149. [PMID: 36336359 PMCID: PMC10947779 DOI: 10.1016/j.lssr.2022.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
NASA aims to return humans to the moon within the next five years and to land humans on Mars in a few decades. Space radiation exposure represents a major challenge to astronauts' health during long-duration missions, as it is linked to increased risks of cancer, cardiovascular dysfunctions, central nervous system (CNS) impairment, and other negative outcomes. Characterization of radiation health effects and developing corresponding countermeasures are high priorities for the preparation of long duration space travel. Due to limitations of animal and cell models, the development of novel physiologically relevant radiation models is needed to better predict these individual risks and bridge gaps between preclinical testing and clinical trials in drug development. "Clinical Trial in a Dish" (CTiD) is now possible with the use of human induced pluripotent stem cells (hiPSCs), offering a powerful tool for drug safety or efficacy testing using patient-specific cell models. Here we review the development and applications of CTiD for space radiation biology and countermeasure studies, focusing on progress made in the past decade.
Collapse
Affiliation(s)
- Xu Cao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA 94305, USA; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael M Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA 94305, USA; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Azimzadeh O, Moertl S, Ramadan R, Baselet B, Laiakis EC, Sebastian S, Beaton D, Hartikainen JM, Kaiser JC, Beheshti A, Salomaa S, Chauhan V, Hamada N. Application of radiation omics in the development of adverse outcome pathway networks: an example of radiation-induced cardiovascular disease. Int J Radiat Biol 2022; 98:1722-1751. [PMID: 35976069 DOI: 10.1080/09553002.2022.2110325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epidemiological studies have indicated that exposure of the heart to doses of ionizing radiation as low as 0.5 Gy increases the risk of cardiac morbidity and mortality with a latency period of decades. The damaging effects of radiation to myocardial and endothelial structures and functions have been confirmed radiobiologically at high dose, but much less is known at low dose. Integration of radiation biology and epidemiology data is a recommended approach to improve the radiation risk assessment process. The adverse outcome pathway (AOP) framework offers a comprehensive tool to compile and translate mechanistic information into pathological endpoints which may be relevant for risk assessment at the different levels of a biological system. Omics technologies enable the generation of large volumes of biological data at various levels of complexity, from molecular pathways to functional organisms. Given the quality and quantity of available data across levels of biology, omics data can be attractive sources of information for use within the AOP framework. It is anticipated that radiation omics studies could improve our understanding of the molecular mechanisms behind the adverse effects of radiation on the cardiovascular system. In this review, we explored the available omics studies on radiation-induced cardiovascular disease (CVD) and their applicability to the proposed AOP for CVD. RESULTS The results of 80 omics studies published on radiation-induced CVD over the past 20 years have been discussed in the context of the AOP of CVD proposed by Chauhan et al. Most of the available omics data on radiation-induced CVD are from proteomics, transcriptomics, and metabolomics, whereas few datasets were available from epigenomics and multi-omics. The omics data presented here show great promise in providing information for several key events of the proposed AOP of CVD, particularly oxidative stress, alterations of energy metabolism, extracellular matrix and vascular remodeling. CONCLUSIONS The omics data presented here shows promise to inform the various levels of the proposed AOP of CVD. However, the data highlight the urgent need of designing omics studies to address the knowledge gap concerning different radiation scenarios, time after exposure and experimental models. This review presents the evidence to build a qualitative omics-informed AOP and provides views on the potential benefits and challenges in using omics data to assess risk-related outcomes.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Simone Moertl
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Raghda Ramadan
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Bjorn Baselet
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
| | - Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), 85764 Neuherberg, Germany
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo 201-8511, Japan
| |
Collapse
|
5
|
Abstract
PURPOSE The aim of this article is to describe the technical development in proteomics during the last two decades with the focus on its use in radiation biology. It is written from a subjective point of view and aims not to be a scientific review of the subject. CONCLUSION Proteomics is a fast developing technique and it has already contributed greatly to our understanding of biological mechanisms following radiation exposure. Novel proteomics approaches can be used in adequately designed cellular and animal experiments and above all in big clinical trials to investigate effects of ionizing radiation in the future.
Collapse
Affiliation(s)
- Soile Tapio
- Institute of Radiation Biology and Institute for Biological and Medical Imaging, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
6
|
Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiother Oncol 2021; 158:21-32. [PMID: 33581220 DOI: 10.1016/j.radonc.2021.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022]
Abstract
Radiation-induced endothelial/vascular injury is a major complicating factor in radiotherapy and a leading cause of morbidity and mortality in nuclear or radiological catastrophes. Exposure of tissue to ionizing radiation (IR) leads to the release of oxygen radicals and proteases that result in loss of endothelial barrier function and leukocyte dysfunction leading to tissue injury and organ damage. Microvascular endothelial cells are particularly sensitive to IR and radiation-induced alterations in endothelial cell function are thought to be a critical factor in organ damage through endothelial cell activation, enhanced leukocyte-endothelial cell interactions, increased barrier permeability and initiation of apoptotic pathways. These radiation-induced inflammatory responses are important in early and late radiation pathologies in various organs. A better understanding of mechanisms of radiation-induced endothelium dysfunction is therefore vital, as radiobiological response of endothelium is of major importance for medical management and therapeutic development for radiation injuries. In this review, we summarize the current knowledge of cellular and molecular mechanisms of radiation-induced endothelium damage and their impact on early and late radiation injury. Furthermore, we review established and emerging in vivo and in vitro models that have been developed to study the mechanisms of radiation-induced endothelium damage and to design, develop and rapidly screen therapeutics for treatment of radiation-induced vascular damage. Currently there are no specific therapeutics available to protect against radiation-induced loss of endothelial barrier function, leukocyte dysfunction and resulting organ damage. Developing therapeutics to prevent endothelium dysfunction and normal tissue damage during radiotherapy can serve as the urgently needed medical countermeasures.
Collapse
|
7
|
Gramatyka M, Sokół M. Radiation metabolomics in the quest of cardiotoxicity biomarkers: the review. Int J Radiat Biol 2020; 96:349-359. [PMID: 31976800 DOI: 10.1080/09553002.2020.1704299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: Ionizing radiation is a risk factor to the whole organism, including the heart. Cardiac damage is considered to be a late effect of radiation exposure. While the acute cardiotoxicity of high doses is well characterized, the knowledge about nature and magnitude of the cardiac risk following lower doses exposure is incomplete. It has been shown that the cardiotoxic effects of radiation are source-, dose- and time-dependent. This paper provides an overview on these dependencies with regard to the molecular responses at the cellular and tissue levels. Main focus is put on the Nuclear Magnetic Resonance (NMR)-based and Mass Spectrometry (MS)-based metabolomic approaches in search of toxicity markers of relatively small doses of radiation.Conclusions: Available literature indicates that radiation exposure affects metabolites associated with: energy production, degradation of proteins and cell membranes, expression of proteins and stress response. Such effects are common for both animal and human studies. However, the specific metabolic response depends on several factors, including the examined organ. Radiation metabolomics can be used to explain the mechanisms of development of radiation-induced heart disease and to find an organ-specific biomarker of radiation exposure. The main aim of this review was to collect the information on the human cardiotoxicity biomarkers. In addition it also summarizes results of the studies on the metabolic responses to ionizing radiation for other organs, as well as the comparative data concerning animal studies.
Collapse
Affiliation(s)
- Michalina Gramatyka
- Department of Medical Physics, Maria Sklodowska-Curie Memorial Center and Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Sklodowska-Curie Memorial Center and Institute of Oncology Gliwice Branch, Gliwice, Poland
| |
Collapse
|
8
|
Effect of Ionizing Radiation on Human EA.hy926 Endothelial Cells under Inflammatory Conditions and Their Interactions with A549 Tumour Cells. J Immunol Res 2019; 2019:9645481. [PMID: 31565662 PMCID: PMC6745109 DOI: 10.1155/2019/9645481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/23/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose Most tumours are characterized by an inflammatory microenvironment, and correlations between inflammation and cancer progression have been shown. Endothelial cells (ECs), as part of the tumour microenvironment, play a crucial role in inflammatory processes as well as in angiogenesis and could be critical targets of cancer therapy like irradiation. Therefore, in the present study we investigated the effect of ionizing radiation on endothelial cells under inflammatory conditions and their interactions with tumour cells. Methods Nonactivated and TNF-α treatment-activated human EC EA.hy926 were irradiated with doses between 0.1 Gy and 6 Gy with a linear accelerator. Using a multiplex assay, the accumulation of various chemokines (IL-8, MCP-1, E-selectin, and P-selectin) and soluble adhesion molecules (sICAM-1 and VCAM-1) as well as protein values of the vascular endothelial growth factor (VEGF) was measured in the supernatant at different time points. The adhesion capability of irradiated and nonirradiated A549 tumour cells to EA.hy926 cells was measured using flow cytometry, and the migration of tumour cells was investigated with a scratch motility assay. Results In contrast to unirradiated cells, IR of ECs resulted in a modified release of chemokines IL-8 and MCP-1 as well as the adhesion molecules sICAM-1 and VCAM-1 in the EC, whereas concentrations of E-selectin and P-selectin as well as VEGF were not influenced. IR always affected the adhesion capability of tumour cells to ECs with the effect dependent on the IR-treated cell type. TNF-α treatment generally increased adhesion ability of the tumour cells. Tumour cell migration was clearly inhibited after IR. This inhibitory effect was eliminated for radiation doses from 0.5 to 2 Gy when, additionally, an inflammatory environment was predominant. Conclusions Our results support past findings suggesting that ECs, as part of the inflammatory microenvironment of tumours, are important regulators of the actual tumour response to radiation therapy.
Collapse
|
9
|
O'Leary VB, Ovsepian SV, Smida J, Atkinson MJ. PARTICLE - The RNA podium for genomic silencers. J Cell Physiol 2019; 234:19464-19470. [PMID: 31058319 DOI: 10.1002/jcp.28739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 12/31/2022]
Abstract
Radiation exposure can evoke cellular stress responses. Emerging recognition that long non-coding RNAs (lncRNAs) act as regulators of gene expression has broadened the spectra of molecules controlling the genomic landscape upon alterations in environmental conditions. Knowledge of the mechanisms responding to low dose irradiation (LDR) exposure is very limited yet most likely involve subtle ancillary molecular pathways other than those protecting the cell from direct cellular damage. The discovery that transcription of the lncRNA PARTICLE (promoter of MAT2A- antisense radiation-induced circulating lncRNA; PARTICL) becomes dramatically instigated within a day after LDR exposure introduced a new gene regulator onto the biological landscape. PARTICLE affords an RNA binding platform for genomic silencers such as DNA methyltransferase 1 and histone tri-methyltransferases to reign in the expression of tumor suppressors such as its neighboring MAT2A in cis as well as WWOX in trans. In silico evidence offers scope to speculate that PARTICLE exploits the abundance of Hoogsten bonds that exist throughout mammalian genomes for triplex formation, presumably a vital feature within this RNA silencer. PARTICLE may provide a buffering riboswitch platform for S-adenosylmethionine. The correlation of PARTICLE triplex formation sites within tumor suppressor genes and their abundance throughout the genome at cancer-related hotspots offers an insight into potential avenues worth exploring in future therapeutic endeavors.
Collapse
Affiliation(s)
- Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská, Prague, Czech Republic.,Institute of Radiation Biology, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Saak V Ovsepian
- RP1 Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Jan Smida
- Institute of Radiation Biology, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Bavaria, Germany.,Chair of Radiation Biology, Technical University Munich, Munich, Germany
| |
Collapse
|
10
|
Venkatesulu BP, Sanders KL, Hsieh C, Kim BK, Krishnan S. Biomarkers of radiation-induced vascular injury. Cancer Rep (Hoboken) 2019; 2:e1152. [PMID: 32721134 PMCID: PMC7941417 DOI: 10.1002/cnr2.1152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Cancer survivorship has thrown the spotlight on the incidence of nonmalignant chronic diseases in cancer patients. Endothelial injury is increasingly recognized as a consequence of cancer treatment, particularly after radiation therapy (RT). This review is to provide a current understanding on the pathophysiological mechanisms and predictive biomarkers of radiation-induced vascular injury. RECENT FINDINGS Radiation directly impacts vasculature by causing endothelial apoptosis and senescence, and alterations in normal homeostasis. This altered milieu at the endothelial surface may contribute to a systemic chronic inflammatory state that is superimposed upon the cascade of normal senescence processes leading to acceleration of age-related disorders, atherosclerosis, and chronic fibrosis. Vasculature imaging, blood-based or cell-component biomarkers, and signatures of genomics, proteomics, metabolomics, and radiomics are potential tools for detection of vascular damage after irradiation. CONCLUSIONS Development of a valid prediction model by combining an array of imaging tools, blood-based biomarkers, coupled with novel predictors like exosomes and metabolic degradation products can serve to identify RT-induced vascular injury early for subsequent introduction of newer therapeutic approaches to counter radiation morbidity.
Collapse
Affiliation(s)
- Bhanu Prasad Venkatesulu
- Departments of Experimental Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
| | - Keith L. Sanders
- Departments of Experimental Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
| | - Cheng‐En Hsieh
- Departments of Experimental Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
- Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
- The University of Texas MD Anderson Cancer Center‐UT Health Graduate School of Biomedical SciencesHoustonTexas
- Departments of Radiation Oncology, Chang Gung Memorial HospitalLinkou and Chang Gung UniversityTaoyuanTaiwan, ROC
| | - Byung Kyu Kim
- Departments of Experimental Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
- The University of Texas MD Anderson Cancer Center‐UT Health Graduate School of Biomedical SciencesHoustonTexas
| | - Sunil Krishnan
- Departments of Experimental Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
- Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
- The University of Texas MD Anderson Cancer Center‐UT Health Graduate School of Biomedical SciencesHoustonTexas
| |
Collapse
|
11
|
Baselet B, Sonveaux P, Baatout S, Aerts A. Pathological effects of ionizing radiation: endothelial activation and dysfunction. Cell Mol Life Sci 2019; 76:699-728. [PMID: 30377700 PMCID: PMC6514067 DOI: 10.1007/s00018-018-2956-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
Abstract
The endothelium, a tissue that forms a single layer of cells lining various organs and cavities of the body, especially the heart and blood as well as lymphatic vessels, plays a complex role in vascular biology. It contributes to key aspects of vascular homeostasis and is also involved in pathophysiological processes, such as thrombosis, inflammation, and hypertension. Epidemiological data show that high doses of ionizing radiation lead to cardiovascular disease over time. The aim of this review is to summarize the current knowledge on endothelial cell activation and dysfunction after ionizing radiation exposure as a central feature preceding the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Pierre Sonveaux
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
| |
Collapse
|
12
|
Cheema AK, Byrum SD, Sharma NK, Altadill T, Kumar VP, Biswas S, Balgley BM, Hauer-Jensen M, Tackett AJ, Ghosh SP. Proteomic Changes in Mouse Spleen after Radiation-Induced Injury and its Modulation by Gamma-Tocotrienol. Radiat Res 2018; 190:449-463. [PMID: 30070965 PMCID: PMC6297072 DOI: 10.1667/rr15008.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-tocotrienol (GT3), a naturally occurring vitamin E isomer, a promising radioprotector, has been shown to protect mice against radiation-induced hematopoietic and gastrointestinal injuries. We analyzed changes in protein expression profiles of spleen tissue after GT3 treatment in mice exposed to gamma radiation to gain insights into the molecular mechanism of radioprotective efficacy. Male CD2F1 mice, 12-to-14 weeks old, were treated with either vehicle or GT3 at 24 h prior to 7 Gy total-body irradiation. Nonirradiated vehicle, nonirradiated GT3 and age-matched naïve animals were used as controls. Blood and tissues were harvested on days 0, 1, 2, 4, 7, 10 and 14 postirradiation. High-resolution mass-spectrometry-based radioproteomics was used to identify differentially expressed proteins in spleen tissue with or without drug treatment. Subsequent bioinformatic analyses helped delineate molecular markers of biological pathways and networks regulating the cellular radiation responses in spleen. Our results show a robust alteration in spleen proteomic profiles including upregulation of the Wnt signaling pathway and actin-cytoskeleton linked proteins in mediating the radiation injury response in spleen. Furthermore, we show that 24 h pretreatment with GT3 attenuates radiation-induced hematopoietic injury in the spleen by modulating various cell signaling proteins. Taken together, our results show that the radioprotective effects of GT3 are mediated, via alleviation of radiation-induced alterations in biochemical pathways, with wide implications on overall hematopoietic injury.
Collapse
Affiliation(s)
- Amrita K. Cheema
- Departments of Oncology, Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Stephanie D. Byrum
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Neel Kamal Sharma
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland
| | - Tatiana Altadill
- Departments of Oncology, Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
- Institut d’Investigacio Biomedica de Bellvitge (IDIBELL), Gynecological Department, Vall Hebron University Hospital, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland
| | - Shukla Biswas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland
| | | | - Martin Hauer-Jensen
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Alan J. Tackett
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland
| |
Collapse
|
13
|
Schröder S, Juerß D, Kriesen S, Manda K, Hildebrandt G. Immunomodulatory properties of low-dose ionizing radiation on human endothelial cells. Int J Radiat Biol 2018; 95:23-32. [DOI: 10.1080/09553002.2018.1486515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Sabine Schröder
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock, Germany
| | - Dajana Juerß
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock, Germany
| | - Stephan Kriesen
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock, Germany
| | - Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock, Germany
| |
Collapse
|
14
|
Andrews RN, Caudell DL, Metheny-Barlow LJ, Peiffer AM, Tooze JA, Bourland JD, Hampson RE, Deadwyler SA, Cline JM. Fibronectin Produced by Cerebral Endothelial and Vascular Smooth Muscle Cells Contributes to Perivascular Extracellular Matrix in Late-Delayed Radiation-Induced Brain Injury. Radiat Res 2018; 190:361-373. [PMID: 30016219 DOI: 10.1667/rr14961.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Late-delayed radiation-induced brain injury (RIBI) is a major adverse effect of fractionated whole-brain irradiation (fWBI). Characterized by progressive cognitive dysfunction, and associated cerebrovascular and white matter injury, RIBI deleteriously affects quality of life for cancer patients. Despite extensive morphological characterization of the injury, the pathogenesis is unclear, thus limiting the development of effective therapeutics. We previously reported that RIBI is associated with increased gene expression of the extracellular matrix (ECM) protein fibronectin (FN1). We hypothesized that fibronectin contributes to perivascular ECM, which may impair diffusion to the dependent parenchyma, thus contributing to the observed cognitive decline. The goal of this study was to determine the localization of fibronectin in RIBI and further characterize the composition of perivascular ECM, as well as identify the cell of origin for FN1 by in situ hybridization. Briefly, fibronectin localized to the vascular basement membrane of morphologically normal blood vessels from control comparators and animals receiving fWBI, and to the perivascular space of edematous and fibrotic vascular phenotypes of animals receiving fWBI. Additional mild diffuse parenchymal staining in areas of vascular injury suggested blood-brain-barrier disruption and plasma fibronectin extravasation. Perivascular ECM lacked amyloid and contained lesser amounts of collagens I and IV, which localized to the basement membrane. These changes occurred in the absence of alterations in microvascular area fraction or microvessel density. Fibronectin transcripts were rarely expressed in control comparators, and were most strongly induced within cerebrovascular endothelial and vascular smooth muscle cells after fWBI. Our results demonstrate that fibronectin is produced by cerebrovascular endothelial and smooth muscle cells in late-delayed RIBI and contributes to perivascular ECM, which we postulate may contribute to diffusion barrier formation. We propose that pathways that antagonize fibronectin deposition and matrix assembly or enhance degradation may serve as potential therapeutic targets in RIBI.
Collapse
Affiliation(s)
| | | | - Linda J Metheny-Barlow
- b Radiation Oncology.,e Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Ann M Peiffer
- b Radiation Oncology.,e Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | | | - J Daniel Bourland
- b Radiation Oncology.,e Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | - J Mark Cline
- b Radiation Oncology.,e Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|
15
|
Donis N, Oury C, Moonen M, Lancellotti P. Treating cardiovascular complications of radiotherapy: a role for new pharmacotherapies. Expert Opin Pharmacother 2018; 19:431-442. [DOI: 10.1080/14656566.2018.1446080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nathalie Donis
- Laboratory of Thrombosis, Haemostasis and Valvular Heart Diseases, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Liège, Liège, Belgium
| | - Cécile Oury
- Laboratory of Thrombosis, Haemostasis and Valvular Heart Diseases, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Liège, Liège, Belgium
| | - Marie Moonen
- Laboratory of Thrombosis, Haemostasis and Valvular Heart Diseases, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Liège, Liège, Belgium
| | - Patrizio Lancellotti
- Laboratory of Thrombosis, Haemostasis and Valvular Heart Diseases, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Liège, Liège, Belgium
- Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| |
Collapse
|
16
|
Azimzadeh O, Tapio S. Proteomics landscape of radiation-induced cardiovascular disease: somewhere over the paradigm. Expert Rev Proteomics 2017; 14:987-996. [PMID: 28976223 DOI: 10.1080/14789450.2017.1388743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Epidemiological studies clearly show that thoracic or whole body exposure to ionizing radiation increases the risk of cardiac morbidity and mortality. Radiation-induced cardiovascular disease (CVD) has been intensively studied during the last ten years but the underlying molecular mechanisms are still poorly understood. Areas covered: Heart proteomics is a powerful tool holding promise for the future research. The central focus of this review is to compare proteomics data on radiation-induced CVD with data arising from proteomics of healthy and diseased cardiac tissue in general. In this context we highlight common and unique features of radiation-related and other heart pathologies. Future prospects and challenges of the field are discussed. Expert commentary: Data from comprehensive cardiac proteomics have deepened the knowledge of molecular mechanisms involved in radiation-induced cardiac dysfunction. State-of-the-art proteomics has the potential to identify novel diagnostic and therapeutic markers of this disease.
Collapse
Affiliation(s)
- Omid Azimzadeh
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| | - Soile Tapio
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| |
Collapse
|
17
|
Azimzadeh O, Subramanian V, Ständer S, Merl-Pham J, Lowe D, Barjaktarovic Z, Moertl S, Raj K, Atkinson MJ, Tapio S. Proteome analysis of irradiated endothelial cells reveals persistent alteration in protein degradation and the RhoGDI and NO signalling pathways. Int J Radiat Biol 2017; 93:920-928. [DOI: 10.1080/09553002.2017.1339332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Vikram Subramanian
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Susanne Ständer
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, München, Germany
| | - Donna Lowe
- Biological Effects Department, Centre for Radiation, Chemicals and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Zarko Barjaktarovic
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Simone Moertl
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Ken Raj
- Biological Effects Department, Centre for Radiation, Chemicals and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Michael J. Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Radiation Biology, Technical University Munich, Munich, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
18
|
Tapio S. Using proteomics to explore the effects of radiation on the heart - impacts for medicine. Expert Rev Proteomics 2017; 14:277-279. [DOI: 10.1080/14789450.2017.1294067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| |
Collapse
|
19
|
Baselet B, Rombouts C, Benotmane AM, Baatout S, Aerts A. Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review). Int J Mol Med 2016; 38:1623-1641. [PMID: 27748824 PMCID: PMC5117755 DOI: 10.3892/ijmm.2016.2777] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/07/2016] [Indexed: 12/27/2022] Open
Abstract
Traditionally, non-cancer diseases are not considered as health risks following exposure to low doses of ionizing radiation. Indeed, non-cancer diseases are classified as deterministic tissue reactions, which are characterized by a threshold dose. It is judged that below an absorbed dose of 100 mGy, no clinically relevant tissue damage occurs, forming the basis for the current radiation protection system concerning non-cancer effects. Recent epidemiological findings point, however, to an excess risk of non-cancer diseases following exposure to lower doses of ionizing radiation than was previously thought. The evidence is the most sound for cardiovascular disease (CVD) and cataract. Due to limited statistical power, the dose-risk relationship is undetermined below 0.5 Gy; however, if this relationship proves to be without a threshold, it may have considerable impact on current low-dose health risk estimates. In this review, we describe the CVD risk related to low doses of ionizing radiation, the clinical manifestation and the pathology of radiation-induced CVD, as well as the importance of the endothelium models in CVD research as a way forward to complement the epidemiological data with the underlying biological and molecular mechanisms.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Charlotte Rombouts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Abderrafi Mohammed Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| |
Collapse
|
20
|
Karapiperis C, Kempf SJ, Quintens R, Azimzadeh O, Vidal VL, Pazzaglia S, Bazyka D, Mastroberardino PG, Scouras ZG, Tapio S, Benotmane MA, Ouzounis CA. Brain Radiation Information Data Exchange (BRIDE): integration of experimental data from low-dose ionising radiation research for pathway discovery. BMC Bioinformatics 2016; 17:212. [PMID: 27170263 PMCID: PMC4865096 DOI: 10.1186/s12859-016-1068-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. RESULTS We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains information from the literature as well as experimental information from transcriptomics and proteomics studies. It deploys a hybrid, distributed solution using both local storage and cloud technology. CONCLUSIONS BRIDE can act as a knowledge broker for LDIR researchers, to facilitate molecular research on the systems biology of LDIR response in mammals. Its flexible design can capture a range of experimental information for genomics, epigenomics, transcriptomics, and proteomics. The data collection is available at: .
Collapse
Affiliation(s)
- Christos Karapiperis
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessalonica, 54124, Thessalonica, Greece
| | - Stefan J Kempf
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
- Present address: Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), B-2400, Mol, Belgium
| | - Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Victoria Linares Vidal
- School of Medicine, IISPV, "Rovira i Virgili" University, Sant Llorens 21, 43201, Reus, Spain
| | - Simonetta Pazzaglia
- Laboratory of Radiation Biology & Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA) Centro Ricerche Casaccia, 00123, Rome, Italy
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Melnykov str. 53, Kyiv, 04050, Ukraine
| | | | - Zacharias G Scouras
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessalonica, 54124, Thessalonica, Greece
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.
| | | | - Christos A Ouzounis
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessalonica, 54124, Thessalonica, Greece.
- Biological Process & Computation Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), Thessalonica, 57001, Greece.
| |
Collapse
|
21
|
Bhattacharya S, Asaithamby A. Ionizing radiation and heart risks. Semin Cell Dev Biol 2016; 58:14-25. [PMID: 26849909 DOI: 10.1016/j.semcdb.2016.01.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/07/2016] [Accepted: 01/29/2016] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality worldwide. As advancements in radiation therapy (RT) have significantly increased the number of cancer survivors, the risk of radiation-induced cardiovascular disease (RICD) in this group is a growing concern. Recent epidemiological data suggest that accidental or occupational exposure to low dose radiation, in addition to therapeutic ionizing radiation, can result in cardiovascular complications. The progression of radiation-induced cardiotoxicity often takes years to manifest but is also multifaceted, as the heart may be affected by a variety of pathologies. The risk of cardiovascular disease development in RT cancer survivors has been known for 40 years and several risk factors have been identified in the last two decades. However, most of the early work focused on clinical symptoms and manifestations, rather than understanding cellular processes regulating homeostatic processes of the cardiovascular system in response to radiation. Recent studies have suggested that a different approach may be needed to refute the risk of cardiovascular disease following radiation exposure. In this review, we will focus on how different radiation types and doses may induce cardiovascular complications, highlighting clinical manifestations and the mechanisms involved in the pathophysiology of radiation-induced cardiotoxicity. We will finally discuss how current and future research on heart development and homeostasis can help reduce the incidence of RICD.
Collapse
Affiliation(s)
- Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
22
|
O'Leary VB, Ovsepian SV, Carrascosa LG, Buske FA, Radulovic V, Niyazi M, Moertl S, Trau M, Atkinson MJ, Anastasov N. PARTICLE, a Triplex-Forming Long ncRNA, Regulates Locus-Specific Methylation in Response to Low-Dose Irradiation. Cell Rep 2016; 11:474-85. [PMID: 25900080 DOI: 10.1016/j.celrep.2015.03.043] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/31/2015] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
Exposure to low-dose irradiation causes transiently elevated expression of the long ncRNA PARTICLE (gene PARTICLE, promoter of MAT2A-antisense radiation-induced circulating lncRNA). PARTICLE affords both a cytosolic scaffold for the tumor suppressor methionine adenosyltransferase (MAT2A) and a nuclear genetic platform for transcriptional repression. In situ hybridization discloses that PARTICLE and MAT2A associate together following irradiation. Bromouridine tracing and presence in exosomes indicate intercellular transport, and this is supported by ex vivo data from radiotherapy-treated patients. Surface plasmon resonance indicates that PARTICLE forms a DNA-lncRNA triplex upstream of a MAT2A promoter CpG island. We show that PARTICLE represses MAT2A via methylation and demonstrate that the radiation-induced PARTICLE interacts with the transcription-repressive complex proteins G9a and SUZ12 (subunit of PRC2). The interplay of PARTICLE with MAT2A implicates this lncRNA in intercellular communication and as a recruitment platform for gene-silencing machineries through triplex formation in response to irradiation.
Collapse
|
23
|
Barjaktarovic Z, Kempf SJ, Sriharshan A, Merl-Pham J, Atkinson MJ, Tapio S. Ionizing radiation induces immediate protein acetylation changes in human cardiac microvascular endothelial cells. JOURNAL OF RADIATION RESEARCH 2015; 56:623-32. [PMID: 25840449 PMCID: PMC4497387 DOI: 10.1093/jrr/rrv014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/21/2015] [Accepted: 02/16/2015] [Indexed: 05/20/2023]
Abstract
Reversible lysine acetylation is a highly regulated post-translational protein modification that is known to regulate several signaling pathways. However, little is known about the radiation-induced changes in the acetylome. In this study, we analyzed the acute post-translational acetylation changes in primary human cardiac microvascular endothelial cells 4 h after a gamma radiation dose of 2 Gy. The acetylated peptides were enriched using anti-acetyl conjugated agarose beads. A total of 54 proteins were found to be altered in their acetylation status, 23 of which were deacetylated and 31 acetylated. Pathway analyses showed three protein categories particularly affected by radiation-induced changes in the acetylation status: the proteins involved in the translation process, the proteins of stress response, and mitochondrial proteins. The activation of the canonical and non-canonical Wnt signaling pathways affecting actin cytoskeleton signaling and cell cycle progression was predicted. The protein expression levels of two nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 1 and sirtuin 3, were significantly but transiently upregulated 4 but not 24 h after irradiation. The status of the p53 protein, a target of sirtuin 1, was found to be rapidly stabilized by acetylation after radiation exposure. These findings indicate that post-translational modification of proteins by acetylation and deacetylation is essentially affecting the radiation response of the endothelium.
Collapse
Affiliation(s)
- Zarko Barjaktarovic
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Stefan J Kempf
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | | | - Juliane Merl-Pham
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Michael J Atkinson
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Soile Tapio
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| |
Collapse
|
24
|
Environmental carcinogens and mutational pathways in atherosclerosis. Int J Hyg Environ Health 2015; 218:293-312. [DOI: 10.1016/j.ijheh.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 02/07/2023]
|
25
|
Azimzadeh O, Sievert W, Sarioglu H, Merl-Pham J, Yentrapalli R, Bakshi MV, Janik D, Ueffing M, Atkinson MJ, Multhoff G, Tapio S. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res 2015; 14:1203-19. [PMID: 25590149 DOI: 10.1021/pr501141b] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Epidemiological data from radiotherapy patients show the damaging effect of ionizing radiation on heart and vasculature. The endothelium is the main target of radiation damage and contributes essentially to the development of cardiac injury. However, the molecular mechanisms behind the radiation-induced endothelial dysfunction are not fully understood. In the present study, 10-week-old C57Bl/6 mice received local X-ray heart doses of 8 or 16 Gy and were sacrificed after 16 weeks; the controls were sham-irradiated. The cardiac microvascular endothelial cells were isolated from the heart tissue using streptavidin-CD31-coated microbeads. The cells were lysed and proteins were labeled with duplex isotope-coded protein label methodology for quantification. All samples were analyzed by LC-ESI-MS/MS and Proteome Discoverer software. The proteomics data were further studied by bioinformatics tools and validated by targeted transcriptomics, immunoblotting, immunohistochemistry, and serum profiling. Radiation-induced endothelial dysfunction was characterized by impaired energy metabolism and perturbation of the insulin/IGF-PI3K-Akt signaling pathway. The data also strongly suggested premature endothelial senescence, increased oxidative stress, decreased NO availability, and enhanced inflammation as main causes of radiation-induced long-term vascular dysfunction. Detailed data on molecular mechanisms of radiation-induced vascular injury as compiled here are essential in developing radiotherapy strategies that minimize cardiovascular complications.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Helmholtz Zentrum München - German Research Centre for Environmental Health, Institute of Radiation Biology , Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rödel F, Frey B, Multhoff G, Gaipl U. Contribution of the immune system to bystander and non-targeted effects of ionizing radiation. Cancer Lett 2015; 356:105-13. [DOI: 10.1016/j.canlet.2013.09.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/13/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022]
|
27
|
BECK MICHAËL, ROMBOUTS CHARLOTTE, MOREELS MARJAN, AERTS AN, QUINTENS ROEL, TABURY KEVIN, MICHAUX ARLETTE, JANSSEN ANN, NEEFS MIEKE, ERNST ERIC, DIERIKS BIRGER, LEE RYONFA, DE VOS WINNOKH, LAMBERT CHARLES, VAN OOSTVELDT PATRICK, BAATOUT SARAH. Modulation of gene expression in endothelial cells in response to high LET nickel ion irradiation. Int J Mol Med 2014; 34:1124-32. [DOI: 10.3892/ijmm.2014.1893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 05/06/2014] [Indexed: 11/06/2022] Open
|
28
|
Quantitative Proteomic Profiling of Low-Dose Ionizing Radiation Effects in a Human Skin Model. Proteomes 2014; 2:382-398. [PMID: 28250387 PMCID: PMC5302749 DOI: 10.3390/proteomes2030382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/08/2014] [Accepted: 07/18/2014] [Indexed: 01/14/2023] Open
Abstract
To assess responses to low-dose ionizing radiation (LD-IR) exposures potentially encountered during medical diagnostic procedures, nuclear accidents or terrorist acts, a quantitative proteomic approach was used to identify changes in protein abundance in a reconstituted human skin tissue model treated with 0.1 Gy of ionizing radiation. To improve the dynamic range of the assay, subcellular fractionation was employed to remove highly abundant structural proteins and to provide insight into radiation-induced alterations in protein localization. Relative peptide quantification across cellular fractions, control and irradiated samples was performing using 8-plex iTRAQ labeling followed by online two-dimensional nano-scale liquid chromatography and high resolution MS/MS analysis. A total of 107 proteins were detected with statistically significant radiation-induced change in abundance (>1.5 fold) and/or subcellular localization compared to controls. The top biological pathways identified using bioinformatics include organ development, anatomical structure formation and the regulation of actin cytoskeleton. From the proteomic data, a change in proteolytic processing and subcellular localization of the skin barrier protein, filaggrin, was identified, and the results were confirmed by western blotting. This data indicate post-transcriptional regulation of protein abundance, localization and proteolytic processing playing an important role in regulating radiation response in human tissues.
Collapse
|
29
|
Cervelli T, Panetta D, Navarra T, Andreassi MG, Basta G, Galli A, Salvadori PA, Picano E, Del Turco S. Effects of single and fractionated low-dose irradiation on vascular endothelial cells. Atherosclerosis 2014; 235:510-8. [PMID: 24953491 DOI: 10.1016/j.atherosclerosis.2014.05.932] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE An increasing number of epidemiological studies suggest that chronic low-dose irradiation increases the risk of atherosclerosis. We evaluated and compared the in vitro biological effects of both single and fractionated low-doses of X-ray irradiation on endothelial cells. METHODS Human umbilical vein endothelial cells (HUVECs) were irradiated with X-rays, with single doses of 0.125, 0.25 and 0.5 Gy or fractionated doses of 2 × 0.125 Gy and 2 × 0.25 Gy, with 24 h interfraction interval. Survival, apoptosis, reactive oxygen species (ROS) production, nuclear factor-κB (NF-κB) activation, intercellular adhesion molecule-1 (ICAM-1) expression, HUVEC adhesiveness and DNA damage were investigated. RESULTS We did not observe any effect on viability and apoptosis. Both single and fractionated doses induced ROS generation, NF-κB activation, ICAM-1 protein expression and HUVEC adhesiveness, but only fractionated doses increase significantly ICAM-1 mRNA. The effects measured after fractionated dose result always higher than those induced by the single dose. Moreover, we observed that DNA double strand break (DSB), visualized with γ-H2AX foci, is dose-dependent and that the kinetics of γ-H2AX foci is not affected by fractionated doses. CONCLUSIONS We showed that single and fractionated low-dose irradiations with low energy X-rays do not affect cell viability and DNA repair. Interestingly, the greater increase of ICAM-1 surface exposure and endothelial adhesiveness observed after fractionated irradiation, suggests that fractionated low-doses may accelerate chronic vascular inflammation, from which the atherosclerotic process can arise.
Collapse
Affiliation(s)
- Tiziana Cervelli
- CNR, Institute of Clinical Physiology, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy.
| | - Daniele Panetta
- CNR, Institute of Clinical Physiology, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Teresa Navarra
- CNR, Institute of Clinical Physiology, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Maria Grazia Andreassi
- CNR, Institute of Clinical Physiology, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Giuseppina Basta
- CNR, Institute of Clinical Physiology, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Alvaro Galli
- CNR, Institute of Clinical Physiology, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Piero A Salvadori
- CNR, Institute of Clinical Physiology, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Eugenio Picano
- CNR, Institute of Clinical Physiology, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Serena Del Turco
- CNR, Institute of Clinical Physiology, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy
| |
Collapse
|
30
|
Zhang Q, Matzke M, Schepmoes AA, Moore RJ, Webb-Robertson BJ, Hu Z, Monroe ME, Qian WJ, Smith RD, Morgan WF. High and low doses of ionizing radiation induce different secretome profiles in a human skin model. PLoS One 2014; 9:e92332. [PMID: 24642900 PMCID: PMC3958549 DOI: 10.1371/journal.pone.0092332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome – the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.
Collapse
Affiliation(s)
- Qibin Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| | - Melissa Matzke
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Bobbie-Jo Webb-Robertson
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Zeping Hu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Matthew E. Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - William F. Morgan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
31
|
Leszczynski D. Radiation proteomics: A brief overview. Proteomics 2014; 14:481-8. [DOI: 10.1002/pmic.201300390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/30/2013] [Accepted: 12/01/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Dariusz Leszczynski
- STUK - Radiation and Nuclear Safety Authority; Helsinki Finland
- Department of Biosciences and Biotechnology; University of Helsinki; Helsinki Finland
| |
Collapse
|
32
|
Azimzadeh O, Atkinson MJ, Tapio S. Proteomics in radiation research: present status and future perspectives. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:31-8. [PMID: 24105449 DOI: 10.1007/s00411-013-0495-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/17/2013] [Indexed: 05/23/2023]
Abstract
Rapidly developing postgenome research has made proteins an attractive target for biological analysis. The well-established term of proteome is defined as the complete set of proteins expressed in a given cell, tissue or organism. Unlike the genome, a proteome is rapidly changing as it tends to adapt to microenvironmental signals. The systematic analysis of the proteome at a given time and state is referred to as proteomics. This technique provides information on the molecular and cellular mechanisms that regulate physiology and pathophysiology of the cell. Applications of proteome profiling in radiation research are increasing. However, the large-scale proteomics data sets generated need to be integrated into other fields of radiation biology to facilitate the interpretation of radiation-induced cellular and tissue effects. The aim of this review is to introduce the most recent developments in the field of radiation proteomics.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | | |
Collapse
|
33
|
Kraemer A, Barjaktarovic Z, Sarioglu H, Winkler K, Eckardt-Schupp F, Tapio S, Atkinson MJ, Moertl S. Cell survival following radiation exposure requires miR-525-3p mediated suppression of ARRB1 and TXN1. PLoS One 2013; 8:e77484. [PMID: 24147004 PMCID: PMC3797807 DOI: 10.1371/journal.pone.0077484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) are non-coding RNAs that alter the stability and translation efficiency of messenger RNAs. Ionizing radiation (IR) induces rapid and selective changes in miRNA expression. Depletion of the miRNA processing enzymes Dicer or Ago2 reduces the capacity of cells to survive radiation exposure. Elucidation of critical radiation-regulated miRNAs and their target proteins offers a promising approach to identify new targets to increase the therapeutic effectiveness of the radiation treatment of cancer. PRINCIPAL FINDINGS Expression of miR-525-3p is rapidly up-regulated in response to radiation. Manipulation of miR-525-3p expression in irradiated cells confirmed that this miRNA mediates the radiosensitivity of a variety of non-transformed (RPE, HUVEC) and tumor-derived cell lines (HeLa, U2-Os, EA.hy926) cell lines. Thus, anti-miR-525-3p mediated inhibition of the increase in miR-525-3p elevated radiosensitivity, while overexpression of precursor miR-525-3p conferred radioresistance. Using a proteomic approach we identified 21 radiation-regulated proteins, of which 14 were found to be candidate targets for miR-525-3p-mediated repression. Luciferase reporter assays confirmed that nine of these were indeed direct targets of miR-525-3p repression. Individual analysis of these direct targets by RNAi-mediated knockdown established that ARRB1, TXN1 and HSPA9 are essential miR-525-3p-dependent regulators of radiation sensitivity. CONCLUSION The transient up-regulation of miR-525-3p, and the resultant repression of its direct targets ARRB1, TXN1 and HSPA9, is required for cell survival following irradiation. The conserved function of miR-525-3p across several cell types makes this microRNA pathway a promising target for modifying the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Anne Kraemer
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Zarko Barjaktarovic
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Hakan Sarioglu
- Helmholtz Center Munich, German Research Center for Environmental Health, Department of Protein Science, Proteomics Core Facility, Neuherberg, Germany
| | - Klaudia Winkler
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Friederike Eckardt-Schupp
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Soile Tapio
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Michael J. Atkinson
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- Chair of Radiation Biology, Technical University Munich, Munich, Germany
| | - Simone Moertl
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
34
|
Borghini A, Luca Gianicolo EA, Picano E, Andreassi MG. Ionizing radiation and atherosclerosis: Current knowledge and future challenges. Atherosclerosis 2013; 230:40-7. [DOI: 10.1016/j.atherosclerosis.2013.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/13/2013] [Accepted: 06/12/2013] [Indexed: 11/16/2022]
|
35
|
Yentrapalli R, Azimzadeh O, Sriharshan A, Malinowsky K, Merl J, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Becker KF, Haghdoost S, Tapio S. The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation. PLoS One 2013; 8:e70024. [PMID: 23936371 PMCID: PMC3731291 DOI: 10.1371/journal.pone.0070024] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/20/2013] [Indexed: 11/18/2022] Open
Abstract
The etiology of radiation-induced cardiovascular disease (CVD) after chronic exposure to low doses of ionizing radiation is only marginally understood. We have previously shown that a chronic low-dose rate exposure (4.1 mGy/h) causes human umbilical vein endothelial cells (HUVECs) to prematurely senesce. We now show that a dose rate of 2.4 mGy/h is also able to trigger premature senescence in HUVECs, primarily indicated by a loss of growth potential and the appearance of the senescence-associated markers ß-galactosidase (SA-ß-gal) and p21. In contrast, a lower dose rate of 1.4 mGy/h was not sufficient to inhibit cellular growth or increase SA-ß-gal-staining despite an increased expression of p21. We used reverse phase protein arrays and triplex Isotope Coded Protein Labeling with LC-ESI-MS/MS to study the proteomic changes associated with chronic radiation-induced senescence. Both technologies identified inactivation of the PI3K/Akt/mTOR pathway accompanying premature senescence. In addition, expression of proteins involved in cytoskeletal structure and EIF2 signaling was reduced. Age-related diseases such as CVD have been previously associated with increased endothelial cell senescence. We postulate that a similar endothelial aging may contribute to the increased rate of CVD seen in populations chronically exposed to low-dose-rate radiation.
Collapse
Affiliation(s)
- Ramesh Yentrapalli
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Arundhathi Sriharshan
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | | | - Juliane Merl
- Research Unit Protein Science, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mats Harms-Ringdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Michael J. Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
36
|
Rombouts C, Aerts A, Beck M, De Vos WH, Van Oostveldt P, Benotmane MA, Baatout S. Differential response to acute low dose radiation in primary and immortalized endothelial cells. Int J Radiat Biol 2013; 89:841-50. [PMID: 23692394 DOI: 10.3109/09553002.2013.806831] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The low dose radiation response of primary human umbilical vein endothelial cells (HUVEC) and its immortalized derivative, the EA.hy926 cell line, was evaluated and compared. MATERIAL AND METHODS DNA damage and repair, cell cycle progression, apoptosis and cellular morphology in HUVEC and EA.hy926 were evaluated after exposure to low (0.05-0.5 Gy) and high doses (2 and 5 Gy) of acute X-rays. RESULTS Subtle, but significant increases in DNA double-strand breaks (DSB) were observed in HUVEC and EA.hy926 30 min after low dose irradiation (0.05 Gy). Compared to high dose irradiation (2 Gy), relatively more DSB/Gy were formed after low dose irradiation. Also, we observed a dose-dependent increase in apoptotic cells, down to 0.5 Gy in HUVEC and 0.1 Gy in EA.hy926 cells. Furthermore, radiation induced significantly more apoptosis in EA.hy926 compared to HUVEC. CONCLUSIONS We demonstrated for the first time that acute low doses of X-rays induce DNA damage and apoptosis in endothelial cells. Our results point to a non-linear dose-response relationship for DSB formation in endothelial cells. Furthermore, the observed difference in radiation-induced apoptosis points to a higher radiosensitivity of EA.hy926 compared to HUVEC, which should be taken into account when using these cells as models for studying the endothelium radiation response.
Collapse
Affiliation(s)
- Charlotte Rombouts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure. Radiother Oncol 2013; 106:404-10. [PMID: 23522698 DOI: 10.1016/j.radonc.2013.01.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/19/2012] [Accepted: 01/29/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE Radiotherapy of thoracic and chest-wall tumours increases the long-term risk of radiation-induced heart disease. The aim of this study was to investigate the long-term effect of local heart irradiation on cardiac mitochondria. METHODS C57BL/6 and atherosclerosis-prone ApoE(-/-) mice received local heart irradiation with a single X-ray dose of 2 Gy. To investigate the low-dose effect, C57BL/6 mice also received a single heart dose of 0.2 Gy. Functional and proteomic alterations of cardiac mitochondria were evaluated after 40 weeks, compared to age-matched controls. RESULTS The respiratory capacity of irradiated C57BL/6 cardiac mitochondria was significantly reduced at 40 weeks. In parallel, protein carbonylation was increased, suggesting enhanced oxidative stress. Considerable alterations were found in the levels of proteins of mitochondria-associated cytoskeleton, respiratory chain, ion transport and lipid metabolism. Radiation induced similar but less pronounced effects in the mitochondrial proteome of ApoE(-/-) mice. In ApoE(-/-), no significant change was observed in mitochondrial respiration or protein carbonylation. The dose of 0.2 Gy had no significant effects on cardiac mitochondria. CONCLUSION This study suggests that ionising radiation causes non-transient alterations in cardiac mitochondria, resulting in oxidative stress that may ultimately lead to malfunctioning of the heart muscle.
Collapse
|
38
|
Barjaktarovic Z, Anastasov N, Azimzadeh O, Sriharshan A, Sarioglu H, Ueffing M, Tammio H, Hakanen A, Leszczynski D, Atkinson MJ, Tapio S. Integrative proteomic and microRNA analysis of primary human coronary artery endothelial cells exposed to low-dose gamma radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:87-98. [PMID: 23138885 DOI: 10.1007/s00411-012-0439-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/23/2012] [Indexed: 06/01/2023]
Abstract
High doses of ionising radiation significantly increase the risk of cardiovascular disease (CVD), the vascular endothelium representing one of the main targets. Whether radiation doses lower than 500 mGy induce cardiovascular damage is controversial. The aim of this study was to investigate radiation-induced expression changes on protein and microRNA (miRNA) level in primary human coronary artery endothelial cells after a single 200 mGy radiation dose (Co-60). Using a multiplex gel-based proteomics technology (2D-DIGE), we identified 28 deregulated proteins showing more than ±1.5-fold expression change in comparison with non-exposed cells. A great majority of the proteins showed up-regulation. Bioinformatics analysis indicated "cellular assembly and organisation, cellular function and maintenance and molecular transport" as the most significant radiation-responsive network. Caspase-3, a central regulator of this network, was confirmed to be up-regulated using immunoblotting. We also analysed radiation-induced alterations in the level of six miRNAs known to play a role either in CVD or in radiation response. The expression of miR-21 and miR-146b showed significant radiation-induced deregulation. Using miRNA target prediction, three proteins found differentially expressed in this study were identified as putative candidates for miR-21 regulation. A negative correlation was observed between miR-21 levels and the predicted target proteins, desmoglein 1, phosphoglucomutase and target of Myb protein. This study shows for the first time that a low-dose exposure has a significant impact on miRNA expression that is directly related to protein expression alterations. The data presented here may facilitate the discovery of low-dose biomarkers of radiation-induced cardiovascular damage.
Collapse
Affiliation(s)
- Zarko Barjaktarovic
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ionizing Radiation Effects on Cells, Organelles and Tissues on Proteome Level. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 990:37-48. [DOI: 10.1007/978-94-007-5896-4_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S, El Saghire H, Gomolka M, Guertler A, Harms-Ringdahl M, Jeggo P, Kreuzer M, Laurier D, Lindholm C, Mkacher R, Quintens R, Rothkamm K, Sabatier L, Tapio S, de Vathaire F, Cardis E. Ionizing radiation biomarkers for potential use in epidemiological studies. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:258-286. [DOI: 10.1016/j.mrrev.2012.05.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/04/2012] [Accepted: 05/28/2012] [Indexed: 02/07/2023]
|
41
|
Rödel F, Frey B, Manda K, Hildebrandt G, Hehlgans S, Keilholz L, Seegenschmiedt MH, Gaipl US, Rödel C. Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose x-irradiation. Front Oncol 2012; 2:120. [PMID: 23057008 PMCID: PMC3457026 DOI: 10.3389/fonc.2012.00120] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/03/2012] [Indexed: 01/12/2023] Open
Abstract
Inflammatory diseases are the result of complex and pathologically unbalanced multicellular interactions. For decades, low-dose X-irradiation therapy (LD-RT) has been clinically documented to exert an anti-inflammatory effect on benign diseases and chronic degenerative disorders. By contrast, experimental studies to confirm the effectiveness and to reveal underlying cellular and molecular mechanisms are still at their early stages. During the last decade, however, the modulation of a multitude of immunological processes by LD-RT has been explored in vitro and in vivo. These include leukocyte/endothelial cell adhesion, adhesion molecule and cytokine/chemokine expression, apoptosis induction, and mononuclear/polymorphonuclear cell metabolism and activity. Interestingly, these mechanisms display comparable dose dependences and dose-effect relationships with a maximum effect in the range between 0.3 and 0.7 Gy, already empirically identified to be most effective in the clinical routine. This review summarizes data and models exploring the mechanisms underlying the immunomodulatory properties of LD-RT that may serve as a prerequisite for further systematic analyses to optimize low-dose irradiation procedures in future clinical practice.
Collapse
Affiliation(s)
- Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital of Frankfurt, Johann Wolfgang-Goethe Universität Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Proteomic analysis by SILAC and 2D-DIGE reveals radiation-induced endothelial response: Four key pathways. J Proteomics 2012; 75:2319-30. [DOI: 10.1016/j.jprot.2012.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/20/2011] [Accepted: 02/01/2012] [Indexed: 11/22/2022]
|