1
|
Fang J, Li Z, Wang P, Zhang X, Mao S, Li Y, Yu D, Li X, Xing Y, Shi H, Yin S. Inhibition of the NLRP3 inflammasome attenuates spiral ganglion neuron degeneration in aminoglycoside-induced hearing loss. Neural Regen Res 2025; 20:3025-3039. [PMID: 39610108 PMCID: PMC11826467 DOI: 10.4103/nrr.nrr-d-23-01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 03/28/2024] [Indexed: 11/30/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00031/figure1/v/2024-11-26T163120Z/r/image-tiff Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum. However, their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target. In addition, the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure. To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides, we used a C57BL/6J mouse model treated with kanamycin. We found that the mice exhibited auditory deficits following the acute loss of outer hair cells. Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time. Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response, particularly those related to the NLRP3 inflammasome. Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed, accompanied by infiltration of macrophages and the release of proinflammatory cytokines. Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model. These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration. Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.
Collapse
Affiliation(s)
- Jia Fang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuangzhuang Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Pengjun Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiaoxu Zhang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Song Mao
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yini Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Dongzhen Yu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiaoyan Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yazhi Xing
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Shi
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
2
|
Xu B, Huang Y, Yu D, Chen Y. Advancements of ROS-based biomaterials for sensorineural hearing loss therapy. Biomaterials 2025; 316:123026. [PMID: 39705924 DOI: 10.1016/j.biomaterials.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a substantial global health challenge, primarily driven by oxidative stress-induced damage within the auditory system. Excessive reactive oxygen species (ROS) play a pivotal role in this pathological process, leading to cellular damage and apoptosis of cochlear hair cells, culminating in irreversible hearing impairment. Recent advancements have introduced ROS-scavenging biomaterials as innovative, multifunctional platforms capable of mitigating oxidative stress. This comprehensive review systematically explores the mechanisms of ROS-mediated oxidative stress in SNHL, emphasizing etiological factors such as aging, acoustic trauma, and ototoxic medication exposure. Furthermore, it examines the therapeutic potential of ROS-scavenging biomaterials, positioning them as promising nanomedicines for targeted antioxidant intervention. By critically assessing recent advances in biomaterial design and functionality, this review thoroughly evaluates their translational potential for clinical applications. It also addresses the challenges and limitations of ROS-neutralizing strategies, while highlighting the transformative potential of these biomaterials in developing novel SNHL treatment modalities. This review advocates for continued research and development to integrate ROS-scavenging biomaterials into future clinical practice, aiming to address the unmet needs in SNHL management and potentially revolutionize the treatment landscape for this pervasive health issue.
Collapse
Affiliation(s)
- Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Institute of Materdicine, Shanghai, 200012, China.
| |
Collapse
|
3
|
Yi Y, Wu MY, Chen KT, Chen AH, Li LQ, Xiong Q, Wang XR, Lei WB, Xiong GX, Fang SB. LDHA-mediated glycolysis in stria vascularis endothelial cells regulates macrophages function through CX3CL1-CX3CR1 pathway in noise-induced oxidative stress. Cell Death Dis 2025; 16:65. [PMID: 39900910 PMCID: PMC11791080 DOI: 10.1038/s41419-025-07394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
According to the World Health Organization, more than 12% of the world's population suffers from noise-induced hearing loss (NIHL). Oxidative stress-mediated damage to the stria vascularis (SV) is one of the pathogenic mechanisms of NIHL. Recent studies indicate that glycolysis plays a critical role in endothelial cells (ECs)-related diseases. However, the specific role of glycolysis in dysfunction of SV-ECs remain largely unknown. In this study, we investigated the effects of glycolysis on SV-ECs in vitro and on the SV in vivo. Our previous research identified the glycolysis pathway as a potential mechanism underlying the SV-ECs injuries induced by oxidative stress. We further examined the expression levels of glycolytic genes in SV-ECs under H2O2 stimulation and in noise-exposed mice. We found that the gene and protein expression levels of glycolytic-related enzyme LDHA significantly decreased at early phase after oxidative stress injury both in vitro and in vivo, and exhibited anti-inflammatory effects on macrophages (Mφ). Moreover, we analyzed the differential secretomes of SV-ECs with and without inhibition of LDHA using LC-MS/MS technology, identifying CX3CL1 as a candidate mediator for cellular communication between SV-ECs and Mφ. We found that CX3CL1 secretion from SV-ECs was decreased following LDHA inhibition and exhibited anti-inflammatory effects on Mφ via the CX3CR1 pathway. Similarly, the pro-inflammatory effect of LDHA-overexpressing SV-ECs was attenuated following inhibition of CX3CL1. In conclusion, our study revealed that glycolysis-related LDHA was reduced in oxidative stress-induced SV-ECs, and that LDHA inhibition in SV-ECs elicited anti-inflammatory effects on Mφ, at least partially through the CX3CL1-CX3CR1 pathway. These findings suggest that LDHA represent a novel therapeutic strategy for the treatment of NIHL.
Collapse
Affiliation(s)
- Ying Yi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Min-Yu Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Kai-Tian Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - An-Hai Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Lin-Qiu Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Qin Xiong
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Xian-Ren Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Wen-Bin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| | - Guan-Xia Xiong
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| | - Shu-Bin Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
4
|
Jia F, Wang F, Li S, Cui Y, Yu Y. Transcriptome sequencing reveals regulatory genes associated with neurogenic hearing loss. BMC Med Genomics 2025; 18:11. [PMID: 39810209 PMCID: PMC11734420 DOI: 10.1186/s12920-024-02067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Hearing loss is a prevalent condition with a significant impact on individuals' quality of life. However, comprehensive studies investigating the differential gene expression and regulatory mechanisms associated with hearing loss are lacking, particularly in the context of diverse patient samples. In this study, we integrated data from 10 patients across different regions, age groups, and genders, with their data retrieved from a public transcriptome database, to explore the molecular basis of hearing loss. These samples are mainly from fibroblasts and keratinocytes. Through differential gene expression analysis, we identified key genes, including ICAM1, SLC1A1, and CD24, which have already been shown to play important roles in neurogenic hearing loss. Furthermore, we predicted potential transcriptional regulatory factors that may modulate the expression of these genes. Enrichment analysis revealed biological processes and pathways associated with hearing loss, highlighting the involvement of circadian rhythm disruption and other neuro-related disorders. Although our study is limited by the sample size and the absence of larger-scale investigations, the identified genes and regulatory factors provide valuable insights into the molecular mechanisms underlying hearing loss. Further molecular and cellular experiments are necessary to validate these findings and elucidate the precise regulatory mechanisms involved. In conclusion, our study contributes to the understanding of hearing loss pathogenesis and offers potential targets for molecular diagnostics and gene-based therapies. This provides a foundation for further research into personalized approaches to diagnosing and treating hearing loss.
Collapse
Affiliation(s)
- Fengfeng Jia
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China
| | - Fang Wang
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China
| | - Song Li
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China
| | - Yunhua Cui
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China
| | - Yongmei Yu
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China.
| |
Collapse
|
5
|
Zhang X, Wu J, Wang M, Chen L, Wang P, Jiang Q, Yang C. The role of gene mutations and immune responses in sensorineural hearing loss. Int Immunopharmacol 2024; 143:113515. [PMID: 39486181 DOI: 10.1016/j.intimp.2024.113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Sensorineural hearing loss (SNHL) is a prevalent clinical condition primarily attributed to dysfunction within various components of the auditory pathway, spanning from the inner ear to the auditory cortex. Recent research has illuminated immune and inflammation-mediated disorders of the inner ear as critical contributors to SNHL. Disruptions in the equilibrium of inflammatory mediators, chemokines, the complement system, and inflammatory vesicles within the cochlea provoke aberrations in immune cell activity, fostering a chronic pro-inflammatory milieu that detrimentally affects the structural and functional integrity of the inner ear, culminating in hearing impairment. Specific genetic mutations, especially those affecting auditory structures, play an important role in SNHL. These mutations regulate inflammatory mediators and cellular responses, thereby altering the inflammatory dynamics within the cochlea. This review delves into the pathogenesis of sensorineural hearing loss, emphasizing the impact of genetic alterations, immune responses within the inner ear, and inflammatory mediators on auditory function. It highlights the significance of Transmembrane Serine Protease 3 (TMPRSS3) and connexin gene mutations as pivotal genetic elements in SNHL, underscoring the central role of inflammatory responses in cochlear damage. Furthermore, the paper discusses the promise of gene therapy and targeted molecular interventions, underscoring the necessity for continued exploration into the specific actions of various inflammatory agents to refine personalized therapeutic strategies.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Junyi Wu
- Department of Otolaryngology-Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu Province, China
| | - Maohua Wang
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Foshan, Hearing and Balance Medical Engineering Technology Center of Guangdong, Foshan, 528000, China
| | - Li Chen
- Department of Otolaryngology-Head and Neck Surgery, The Second People's Hospital of Yibin City, Sichuan Province, 644000, China
| | - Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Jiangsu Province, 225200, China
| | - Qiao Jiang
- Department of Neurology, Deyang Fifth Hospital, Sichuan Province, 618000, China.
| | - Chunping Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
6
|
Yaşar NG, Yiğman Z, Billur D, Tufan A, Gündüz B, Kamişli GIŞ, Karamert R. Comparison of IL-1 Receptor Antagonist and Dexamethasone in Noise-Induced Hearing Loss: Animal Model. Otolaryngol Head Neck Surg 2024. [PMID: 39709545 DOI: 10.1002/ohn.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE This study aimed to attenuate cochlear inflammation following noise-induced hearing loss by targeting IL-1. We evaluated the effectiveness of IL-1 inhibition through auditory and histological assessments in an animal model. STUDY DESIGN Experimental animal study. SETTING Gazi University Faculty of Medicine, Ankara, Turkey. METHODS Twenty-four rats were randomly assigned into 3 groups: Anakinra, dexamethasone, and control groups. All animals were exposed to broadband noise (110 dB SPL, 8 hours), auditory brainstem response (ABR) tests were conducted before noise exposure, immediately after, and on Day 14. Anakinra, dexamethasone, and saline were administered intraperitoneally, cochlear tissues were harvested for histological and immunohistochemical evaluation. RESULTS On Day 14, ABR thresholds in Anakinra group were better than the control group across all frequencies, with a significant difference observed at 8 kHz (P = .036). The mean number of OHC was significantly higher in Anakinra group compared to the control group (P < .05). The mean number of IHC in the Anakinra group was greater than in the dexamethasone group. IL-1β immunopositivity in the stria vascularis and spiral ganglia was significantly higher in Anakinra group compared to dexamethasone group (P = .022 and P = .013, respectively). TNF-α immunopositivity in the stria vascularis and spiral ganglia was significantly greater in control group than in Anakinra group (P = .037 and P = .01, respectively). CONCLUSION The comparable efficacy of Anakinra and dexamethasone in both histological and auditory assessments suggests that Anakinra may serve as a promising therapeutic option for noise-induced hearing loss.
Collapse
Affiliation(s)
- Nagihan G Yaşar
- Department of Otolaryngology-Head and Neck Surgery, Ankara City Hospital, Ankara, Turkey
| | - Zeynep Yiğman
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
- Neuroscience and Neurotechnology Center of Excellence NOROM, Gazi University, Ankara, Turkey
| | - Deniz Billur
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Abdurrahman Tufan
- Department of Internal Medicine, Division of Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Bülent Gündüz
- Department of Audiology, Gazi University Faculty of Health Sciences, Ankara, Turkey
| | - Gurbet I Ş Kamişli
- Department of Audiology, Gazi University Faculty of Health Sciences, Ankara, Turkey
| | - Recep Karamert
- Department of Otorhinolaryngology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
7
|
Waring R, Mitchell S. Noise - an insidious stressor affecting xenobiotic metabolism? Xenobiotica 2024:1-3. [PMID: 39668708 DOI: 10.1080/00498254.2024.2441675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Affiliation(s)
- Rosemary Waring
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
8
|
Zhang J, Guo T, Chen Y, Wang X, Wu L, Xie H. Investigating the causal relationship between inflammation and multiple types of hearing loss: a multi-omics approach combining Mendelian randomization and molecular docking. Front Neurol 2024; 15:1422241. [PMID: 39677857 PMCID: PMC11638537 DOI: 10.3389/fneur.2024.1422241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Background Hearing loss affects over 10% of the global population. Inflammation is a key factor in hearing loss caused by noise, infection, and aging, damaging various hearing-related tissues (e.g., spiral ligament, stria vascularis). Mendelian randomization (MR) can help identify potential causal relationships and therapeutic targets. Methods We conducted MR analyses on 91 inflammatory proteins (n = 14,824) and genome-wide association study results for various hearing loss types in European ancestry populations, including sensorineural hearing loss (SNHL; ncases = 15,952, ncontrols = 196,592), sudden idiopathic hearing loss (SIHL; ncases = 1,491, ncontrols = 196,592), and other hearing loss (OHL; ncases = 4,157, ncontrols = 196,592). Additionally, hearing loss with difficulty in hearing (ncases = 14,654, ncontrols = 474,839) served as a validation set. To predict inflammatory protein-enriched pathways and tissues, we performed enrichment analysis, functional annotation, and tissue analyses using "OmicsNet2.0" and "FUMA" platforms. We also combined "CoreMine" and molecular docking to explore potential drugs targeting inflammatory proteins and investigate binding efficacy. Results CCL19 was identified as a common risk factor for SNHL and OHL, which was validated in the hearing loss with difficulty in hearing dataset. Tissue analysis revealed that SIHL-related inflammatory proteins were enriched in the amygdala. Multi-omics research indicated associations between inflammatory proteins and neurodegenerative diseases. Molecular docking studies suggested that Chuanxiong Rhizoma and Uncariae Ramulus Cumuncis are potential drugs for targeting CCL19. Conclusion This study identified CCL19 as a common risk factor for various types of hearing loss through MR analysis, highlighting the crucial role of inflammatory proteins in hearing loss. The enrichment of related inflammatory proteins in the amygdala and their association with neurodegenerative diseases provide new insights into the mechanisms of hearing loss.
Collapse
Affiliation(s)
- Jingqi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaxin Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Lijiao Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Pinninti SG, Britt WJ, Boppana SB. Auditory and Vestibular Involvement in Congenital Cytomegalovirus Infection. Pathogens 2024; 13:1019. [PMID: 39599572 PMCID: PMC11597862 DOI: 10.3390/pathogens13111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Congenital cytomegalovirus infection (cCMV) is a frequent cause of non-hereditary sensorineural hearing loss (SNHL) and developmental disabilities. The contribution of cCMV to childhood hearing loss has been estimated to be about 25% of all hearing loss in children at 4 years of age. Although the vestibular insufficiency (VI) in cCMV has not been well-characterized and therefore, underestimated, recent studies suggest that VI is also frequent in children with cCMV and can lead to adverse neurodevelopmental outcomes. The pathogenesis of SNHL and VI in children with cCMV has been thought to be from direct viral cytopathic effects as well as local inflammatory responses playing a role. Hearing loss in cCMV can be of varying degrees of severity, unilateral or bilateral, present at birth or develop later (late-onset), and can progress or fluctuate in early childhood. Therefore, newborn hearing screening fails to identify a significant number of children with CMV-related SNHL. Although the natural history of cCMV-associated VI has not been well characterized, recent data suggests that it is likely that VI also varies considerably with respect to the laterality, timing of onset, degree of the deficit, and continued deterioration during early childhood. This article summarizes the current understanding of the natural history and pathogenesis of auditory and vestibular disorders in children with cCMV.
Collapse
Affiliation(s)
- Swetha G. Pinninti
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.G.P.); (W.J.B.)
| | - William J. Britt
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.G.P.); (W.J.B.)
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh B. Boppana
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.G.P.); (W.J.B.)
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
10
|
Samara P, Athanasopoulos M, Markatos N, Athanasopoulos I. From sound waves to molecular and cellular mechanisms: Understanding noise‑induced hearing loss and pioneering preventive approaches (Review). MEDICINE INTERNATIONAL 2024; 4:60. [PMID: 39114262 PMCID: PMC11304036 DOI: 10.3892/mi.2024.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Noise-induced hearing loss (NIHL) is a significant and urgent global public health concern, arising from prolonged exposure to elevated levels of noise. This auditory impairment harms delicate inner ear structures, particularly the essential hair cells transmitting auditory signals to the brain. Recognized by the World Health Organization as a major contributor to worldwide hearing loss, NIHL requires a comprehensive examination of its molecular and cellular mechanisms. Animal models emerge as indispensable tools for unraveling these intricacies, allowing researchers to simulate and study the impact of noise exposure on auditory structures, shedding light on the interplay of oxidative stress, inflammation and immune responses-crucial factors in NIHL progression. The present review focuses on elucidating the molecular mechanisms of NIHL, with a specific emphasis on findings derived from animal models, alongside the exploration of thorough preventive strategies, including protective measures and probing potential interventions. Understanding the molecular underpinnings not only provides insight into targeted treatment approaches, but also unlocks pathways for exploring and implementing preventive actions. This approach not only deepens the current comprehension of NIHL, but also has the potential to influence the shaping of public health policies, offering a nuanced perspective on this prevalent auditory disorder.
Collapse
Affiliation(s)
- Pinelopi Samara
- Children's Oncology Unit ‘Marianna V. Vardinoyannis-ELPIDA’, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | | | - Nikolaos Markatos
- Otolaryngology-Head and Neck Surgery, Athens Pediatric Center, 15125 Athens, Greece
| | | |
Collapse
|
11
|
Zhang L, Liao H, Li Z, Yuan J. Individual and combined effects of noise exposure and diabetes mellitus on hearing. Noise Health 2024; 26:449-460. [PMID: 39787545 PMCID: PMC11813245 DOI: 10.4103/nah.nah_71_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 10/11/2024] [Indexed: 01/12/2025] Open
Abstract
Hearing loss (HL) is a prevalent health concern with a significant impact on society and the economy. Several factors contribute to the development of hearing impairment, with noise overexposure being the primary culprit. Diabetes mellitus (DM) is also a factor in hearing impairment, and studies have shown a positive correlation between DM and HL; however, the exact causal relationship and pathogenesis remain contentious. Given the ubiquity of noise exposure and the high incidence of DM, individuals may develop diabetes while being chronically exposed to noise. It is particularly important to explore the independent and combined effects of noise and DM on hearing, which can help healthcare professionals understand the potential risks posed by these factors and inspire prevention strategies and potential interventions for hearing impairment. This review summarizes the current research advancements in noise-induced HL and diabetes-related HL and discusses their characteristics and potential mechanisms. Furthermore, this review focuses on the combined effects of noise exposure and DM on hearing, setting the stage for further research and development of intervention strategies to address HL.
Collapse
Affiliation(s)
- Lan Zhang
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
| | - Hui Liao
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
| | - Zongnan Li
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
- School of Public Health, Guangdong Medical University, Dongguan 523000, Guangdong, China
| | - Jianhui Yuan
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
- School of Public Health, Guangdong Medical University, Dongguan 523000, Guangdong, China
| |
Collapse
|
12
|
Karayay B, Olze H, Szczepek AJ. Mammalian Inner Ear-Resident Immune Cells-A Scoping Review. Cells 2024; 13:1528. [PMID: 39329712 PMCID: PMC11430779 DOI: 10.3390/cells13181528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Several studies have demonstrated the presence of resident immune cells in the healthy inner ear. AIM This scoping review aimed to systematize this knowledge by collecting the data on resident immune cells in the inner ear of different species under steady-state conditions. METHODS The databases PubMed, MEDLINE (Ovid), CINAHL (EBSCO), and LIVIVO were used to identify articles. Systematic reviews, experimental studies, and clinical data in English and German were included without time limitations. RESULTS The search yielded 49 eligible articles published between 1979 and 2022. Resident immune cells, including macrophages, lymphocytes, leukocytes, and mast cells, have been observed in various mammalian inner ear structures under steady-state conditions. However, the physiological function of these cells in the healthy cochlea remains unclear, providing an opportunity for basic research in inner ear biology. CONCLUSIONS This review highlights the need for further investigation into the role of these cells, which is crucial for advancing the development of therapeutic methods for treating inner ear disorders, potentially transforming the field of otolaryngology and immunology.
Collapse
Affiliation(s)
- Betül Karayay
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Góra, 65-046 Zielona Góra, Poland
| |
Collapse
|
13
|
Liu J, Bai Y, Feng Y, Liu X, Pang B, Zhang S, Jiang M, Chen A, Huang H, Chen Y, Ling J, Mei L. ABCC1 deficiency potentiated noise-induced hearing loss in mice by impairing cochlear antioxidant capacity. Redox Biol 2024; 74:103218. [PMID: 38870779 PMCID: PMC11225891 DOI: 10.1016/j.redox.2024.103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
The ABCC1 gene belongs to the ATP-binding cassette membrane transporter superfamily, which plays a crucial role in the efflux of various endogenous and exogenous substances. Mutations in ABCC1 can result in autosomal dominant hearing loss. However, the specific roles of ABCC1 in auditory function are not fully understood. Through immunofluorescence, we found that ABCC1 was expressed in microvascular endothelial cells (ECs) of the stria vascularis (StV) in the murine cochlea. Then, an Abcc1 knockout mouse model was established by using CRISPR/Cas9 technology to elucidate the role of ABCC1 in the inner ear. The ABR threshold did not significantly differ between WT and Abcc1-/- mice at any age studied. After noise exposure, the ABR thresholds of the WT and Abcc1-/- mice were significantly elevated. Interestingly, after 14 days of noise exposure, ABR thresholds largely returned to pre-exposure levels in WT mice but not in Abcc1-/- mice. Our subsequent experiments showed that microvascular integrity in the StV was compromised and that the number of outer hair cells and the number of ribbons were significantly decreased in the cochleae of Abcc1-/- mice post-exposure. Besides, the production of ROS and the accumulation of 4-HNE significantly increased. Furthermore, StV microvascular ECs were cultured to elucidate the role of ABCC1 in these cells under glucose oxidase challenge. Notably, 30 U/L glucose oxidase (GO) induced severe oxidative stress damage in Abcc1-/- cells. Compared with WT cells, the ROS and 4-HNE levels and the apoptotic rate were significantly elevated in Abcc1-/- cells. In addition, the reduced GSH/GSSG ratio was significantly decreased in Abcc1-/- cells after GO treatment. Taken together, Abcc1-/- mice are more susceptible to noise-induced hearing loss, possibly because ABCC1 knockdown compromises the GSH antioxidant system of StV ECs. The exogenous antioxidant N-acetylcysteine (NAC) may protect against oxidative damage in Abcc1-/- murine cochleae and ECs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yijiang Bai
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Feng
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Otolaryngology-Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Xianlin Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bo Pang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Shuai Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengzhu Jiang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anhai Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huping Huang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongjia Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Ling
- Medical Functional Experiment Center, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Lingyun Mei
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Wagle SR, Kovacevic B, Foster T, Ionescu CM, Jones M, Mikov M, Wise A, Mooranian A, Al-Salami H. Probucol-bile acid nanoparticles: a novel approach and promising solution to prevent cellular oxidative stress in sensorineural hearing loss. J Drug Target 2024; 32:737-755. [PMID: 38758361 DOI: 10.1080/1061186x.2024.2349111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The use of antioxidants could thus prove an effective medication to prevent or facilitate recovery from oxidative stress-induced sensorineural hearing loss (SNHL). One promising strategy to prevent SNHL is developing probucol (PB)-based nanoparticles using encapsulation technology and administering them to the inner ear via the established intratympanic route. The preclinical, clinical and epidemiological studies support that PB is a proven antioxidant that could effectively prevent oxidative stress in different study models. Such findings suggest its applicability in preventing oxidative stress within the inner ear and its associated neural cells. However, several hurdles, such as overcoming the blood-labyrinth barrier, ensuring sustained release, minimising systemic side effects and optimising targeted delivery in the intricate inner ear structures, must be overcome to efficiently deliver PB to the inner ear. This review explores the background and pathogenesis of hearing loss, the potential of PB in treating oxidative stress and its cellular mechanisms, and the obstacles linked to inner ear drug delivery for effectively introducing PB to the inner ear.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
15
|
Maniaci A, La Via L, Lechien JR, Sangiorgio G, Iannella G, Magliulo G, Pace A, Mat Q, Lavalle S, Lentini M. Hearing Loss and Oxidative Stress: A Comprehensive Review. Antioxidants (Basel) 2024; 13:842. [PMID: 39061910 PMCID: PMC11274311 DOI: 10.3390/antiox13070842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Hearing loss is a prevalent condition affecting millions of people worldwide. Hearing loss has been linked to oxidative stress as a major factor in its onset and progression. The goal of this thorough analysis is to investigate the connection between oxidative stress and hearing loss, with an emphasis on the underlying mechanisms and possible treatments. The review addressed the many forms of hearing loss, the role of reactive oxygen species (ROS) in causing damage to the cochlea, and the auditory system's antioxidant defensive mechanisms. The review also goes over the available data that support the use of antioxidants and other methods to lessen hearing loss brought on by oxidative stress. We found that oxidative stress is implicated in multiple types of hearing loss, including age-related, noise-induced, and ototoxic hearing impairment. The cochlea's unique anatomical and physiological characteristics, such as high metabolic activity and limited blood supply, make it particularly susceptible to oxidative damage. Antioxidant therapies have shown promising results in both animal models and clinical studies for preventing and mitigating hearing loss. Emerging therapeutic approaches, including targeted drug delivery systems and gene therapy, offer new possibilities for addressing oxidative stress in the auditory system. The significance of this review lies in its comprehensive analysis of the intricate relationship between oxidative stress and hearing loss. By synthesizing current knowledge and identifying gaps in understanding, this review provides valuable insights for both researchers and clinicians. It highlights the potential of antioxidant-based interventions and emphasizes the need for further research into personalized treatment strategies. Our findings on oxidative stress mechanisms may also affect clinical practice and future research directions. This review serves as a foundation for developing novel therapeutic approaches and may inform evidence-based strategies for the prevention and treatment of hearing loss, ultimately contributing to improved quality of life for millions affected by this condition worldwide.
Collapse
Affiliation(s)
- A. Maniaci
- Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy;
- ASP Ragusa-Hospital Giovanni Paolo II, 97100 Ragusa, Italy;
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
| | - L. La Via
- Department of Anaesthesia and Intensive Care, University Hospital Policlinico-San Marco, 95125 Catania, Italy
| | - J. R. Lechien
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), 7000 Mons, Belgium
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), 78180 Paris, France
- Department of Otolaryngology-Head & Neck Surgery, EpiCURA Hospital, 7301 Hornu, Belgium
| | - G. Sangiorgio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - G. Iannella
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
- Department of ‘Organi di Senso’, University “Sapienza”, 00185 Rome, Italy;
| | - G. Magliulo
- Department of ‘Organi di Senso’, University “Sapienza”, 00185 Rome, Italy;
| | - A. Pace
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
- Department of ‘Organi di Senso’, University “Sapienza”, 00185 Rome, Italy;
| | - Q. Mat
- Otology Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (J.R.L.); (G.I.); (A.P.); (Q.M.)
- Department of Otorhinolaryngology, C.H.U. Charleroi, Chaussée de Bruxelles 140, 6042 Charleroi, Belgium
| | - S. Lavalle
- Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy;
| | - M. Lentini
- ASP Ragusa-Hospital Giovanni Paolo II, 97100 Ragusa, Italy;
| |
Collapse
|
16
|
Liu W, Li H, Kämpfe Nordström C, Danckwardt-Lillieström N, Agrawal S, Ladak HM, Rask-Andersen H. Immuno-surveillance and protection of the human cochlea. Front Neurol 2024; 15:1355785. [PMID: 38817543 PMCID: PMC11137295 DOI: 10.3389/fneur.2024.1355785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/21/2024] [Indexed: 06/01/2024] Open
Abstract
Background Despite its location near infection-prone areas, the human inner ear demonstrates remarkable resilience. This suggests that there are inherent instruments deterring the invasion and spread of pathogens into the inner ear. Here, we combined high-resolution light microscopy, super-resolution immunohistochemistry (SR-SIM) and synchrotron phase contrast imaging (SR-PCI) to identify the protection and barrier systems in the various parts of the human inner ear, focusing on the lateral wall, spiral ganglion, and endolymphatic sac. Materials and methods Light microscopy was conducted on mid-modiolar, semi-thin sections, after direct glutaraldehyde/osmium tetroxide fixation. The tonotopic locations were estimated using SR-PCI and 3D reconstruction in cadaveric specimens. The sections were analyzed for leucocyte and macrophage activity, and the results were correlated with immunohistochemistry using confocal microscopy and SR-SIM. Results Light microscopy revealed unprecedented preservation of cell anatomy and several macrophage-like cells that were localized in the cochlea. Immunohistochemistry demonstrated IBA1 cells frequently co-expressing MHC II in the spiral ganglion, nerve fibers, lateral wall, spiral limbus, and tympanic covering layer at all cochlear turns as well as in the endolymphatic sac. RNAscope assays revealed extensive expression of fractalkine gene transcripts in type I spiral ganglion cells. CD4 and CD8 cells occasionally surrounded blood vessels in the modiolus and lateral wall. TMEM119 and P2Y12 were not expressed, indicating that the cells labeled with IBA1 were not microglia. The round window niche, compact basilar membrane, and secondary spiral lamina may form protective shields in the cochlear base. Discussion The results suggest that the human cochlea is surveilled by dwelling and circulating immune cells. Resident and blood-borne macrophages may initiate protective immune responses via chemokine signaling in the lateral wall, spiral lamina, and spiral ganglion at different frequency locations. Synchrotron imaging revealed intriguing protective barriers in the base of the cochlea. The role of the endolymphatic sac in human inner ear innate and adaptive immunity is discussed.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Hao Li
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Charlotta Kämpfe Nordström
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | | | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Hanif M. Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Fukuda M, Okanishi H, Ino D, Ono K, Kawamura S, Wakai E, Miyoshi T, Sato T, Ohta Y, Saito T, Saido TC, Inohara H, Kanai Y, Hibino H. Disturbance in the protein landscape of cochlear perilymph in an Alzheimer's disease mouse model. PLoS One 2024; 19:e0303375. [PMID: 38728348 PMCID: PMC11086917 DOI: 10.1371/journal.pone.0303375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Hearing loss is a pivotal risk factor for dementia. It has recently emerged that a disruption in the intercommunication between the cochlea and brain is a key process in the initiation and progression of this disease. However, whether the cochlear properties can be influenced by pathological signals associated with dementia remains unclear. In this study, using a mouse model of Alzheimer's disease (AD), we investigated the impacts of the AD-like amyloid β (Aβ) pathology in the brain on the cochlea. Despite little detectable change in the age-related shift of the hearing threshold, we observed quantitative and qualitative alterations in the protein profile in perilymph, an extracellular fluid that fills the path of sound waves in the cochlea. Our findings highlight the potential contribution of Aβ pathology in the brain to the disturbance of cochlear homeostasis.
Collapse
Affiliation(s)
- Masatoshi Fukuda
- Department of Pharmacology, Division of Glocal Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroki Okanishi
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisuke Ino
- Department of Pharmacology, Division of Glocal Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuya Ono
- Department of Pharmacology, Division of Glocal Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Satoru Kawamura
- Department of Pharmacology, Division of Glocal Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eri Wakai
- Department of Pharmacology, Division of Glocal Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsuyoshi Miyoshi
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Sato
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yumi Ohta
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya, Aichi, Japan
| | - Takaomi C. Saido
- Lab for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshikatsu Kanai
- Department of Bio-System Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka, Japan
| | - Hiroshi Hibino
- Department of Pharmacology, Division of Glocal Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
- AMED-CREST, AMED, Osaka, Japan
| |
Collapse
|
18
|
YAMAGUCHI T, YONEYAMA M, ONAKA Y, OGITA K. A novel model of sensorineural hearing loss induced by repeated exposure to moderate noise in mice: the preventive effect of resveratrol. J Vet Med Sci 2024; 86:381-388. [PMID: 38369331 PMCID: PMC11061573 DOI: 10.1292/jvms.23-0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/04/2024] [Indexed: 02/20/2024] Open
Abstract
Sensorineural hearing loss (SNHL) induced by noise has increased in recent years due to personal headphone use and noisy urban environments. The study shows a novel model of gradually progressive SNHL induced by repeated exposure to moderate noise (8-kHz octave band noise, 90-dB sound pressure level) for 1 hr exposure per day in BALB/cCr mice. The results showed that the repeated exposure led to gradually progressive SNHL, which was dependent on the number of exposures, and resulted in permanent hearing loss after 5 exposures. Repeated exposure to noise causes a loss of synapses between the inner hair cells and the peripheral terminals of the auditory nerve fibers. Additionally, there is a reduction in the expression levels of c-fos and Arc, both of which are indicators of cochlear nerve responses to noise exposure. Oral administration of resveratrol (RSV, 50 mg/kg/day) during the noise exposure period significantly prevented the noise exposure-induced synapse loss and SNHL. Furthermore, the study found that RSV treatment prevented the noise-induced increase in the gene expression levels of the proinflammatory cytokine interleukin-1β in the cochlea. These results demonstrated the potential usefulness of RSV in preventing noise-induced SNHL in the animal model established as gradually progressive SNHL.
Collapse
Affiliation(s)
- Taro YAMAGUCHI
- Laboratory of Pharmacology, Faculty of Pharmaceutical
Sciences, Setsunan University, Osaka, Japan
| | - Masanori YONEYAMA
- Laboratory of Pharmacology, Faculty of Pharmaceutical
Sciences, Setsunan University, Osaka, Japan
| | - Yusuke ONAKA
- Laboratory of Pharmacology, Faculty of Pharmaceutical
Sciences, Setsunan University, Osaka, Japan
| | - Kiyokazu OGITA
- Faculty of Pharmaceutical Sciences, Setsunan University,
Osaka, Japan
| |
Collapse
|
19
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
20
|
Saidia AR, François F, Casas F, Mechaly I, Venteo S, Veechi JT, Ruel J, Puel JL, Wang J. Oxidative Stress Plays an Important Role in Glutamatergic Excitotoxicity-Induced Cochlear Synaptopathy: Implication for Therapeutic Molecules Screening. Antioxidants (Basel) 2024; 13:149. [PMID: 38397748 PMCID: PMC10886292 DOI: 10.3390/antiox13020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
The disruption of the synaptic connection between the sensory inner hair cells (IHCs) and the auditory nerve fiber terminals of the type I spiral ganglion neurons (SGN) has been observed early in several auditory pathologies (e.g., noise-induced or ototoxic drug-induced or age-related hearing loss). It has been suggested that glutamate excitotoxicity may be an inciting element in the degenerative cascade observed in these pathological cochlear conditions. Moreover, oxidative damage induced by free hydroxyl radicals and nitric oxide may dramatically enhance cochlear damage induced by glutamate excitotoxicity. To investigate the underlying molecular mechanisms involved in cochlear excitotoxicity, we examined the molecular basis responsible for kainic acid (KA, a full agonist of AMPA/KA-preferring glutamate receptors)-induced IHC synapse loss and degeneration of the terminals of the type I spiral ganglion afferent neurons using a cochlear explant culture from P3 mouse pups. Our results demonstrated that disruption of the synaptic connection between IHCs and SGNs induced increased levels of oxidative stress, as well as altered both mitochondrial function and neurotrophin signaling pathways. Additionally, the application of exogenous antioxidants and neurotrophins (NT3, BDNF, and small molecule TrkB agonists) clearly increases synaptogenesis. These results suggest that understanding the molecular pathways involved in cochlear excitotoxicity is of crucial importance for the future clinical trials of drug interventions for auditory synaptopathies.
Collapse
Affiliation(s)
- Anissa Rym Saidia
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Florence François
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - François Casas
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France;
| | - Ilana Mechaly
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Stéphanie Venteo
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Joseph T. Veechi
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Jérôme Ruel
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université-INSERM, 1263-INRAE 1260, 13385 Marseille, France;
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| |
Collapse
|
21
|
Liu YC, Xu K. Macrophage-related immune responses in inner ear: a potential therapeutic target for sensorineural hearing loss. Front Neurosci 2024; 17:1339134. [PMID: 38274500 PMCID: PMC10808290 DOI: 10.3389/fnins.2023.1339134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Hearing loss is the most common sensory disorder in human beings. Cochlear sensory cells are the basis of hearing. Cochlear sensory cells suffer from various acute or chronic injuries, such as excessive sound stimulation, ototoxic drugs, and age-related degeneration. In response to these stresses, the cochlea develops an immune response. In recent years, studies have shown that the immune response of the inner ear has been regarded as one of the important pathological mechanisms of inner ear injury. Therapeutic interventions for inflammatory responses can effectively alleviate different types of inner ear injury. As the main immune cells in the inner ear, macrophages are involved in the process of inner ear injury caused by various exogenous factors. However, its specific role in the immune response of the inner ear is still unclear. This review focuses on discusses the dynamic changes of macrophages during different types of inner ear injury, and clarifies the potential role of macrophage-related immune response in inner ear injury.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Paciello F, Pisani A, Rolesi R, Montuoro R, Mohamed-Hizam V, Boni G, Ripoli C, Galli J, Sisto R, Fetoni AR, Grassi C. Oxidative stress and inflammation cause auditory system damage via glial cell activation and dysregulated expression of gap junction proteins in an experimental model of styrene-induced oto/neurotoxicity. J Neuroinflammation 2024; 21:4. [PMID: 38178142 PMCID: PMC10765700 DOI: 10.1186/s12974-023-02996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Redox imbalance and inflammation have been proposed as the principal mechanisms of damage in the auditory system, resulting in functional alterations and hearing loss. Microglia and astrocytes play a crucial role in mediating oxidative/inflammatory injury in the central nervous system; however, the role of glial cells in the auditory damage is still elusive. OBJECTIVES Here we investigated glial-mediated responses to toxic injury in peripheral and central structures of the auditory pathway, i.e., the cochlea and the auditory cortex (ACx), in rats exposed to styrene, a volatile compound with well-known oto/neurotoxic properties. METHODS Male adult Wistar rats were treated with styrene (400 mg/kg daily for 3 weeks, 5/days a week). Electrophysiological, morphological, immunofluorescence and molecular analyses were performed in both the cochlea and the ACx to evaluate the mechanisms underlying styrene-induced oto/neurotoxicity in the auditory system. RESULTS We showed that the oto/neurotoxic insult induced by styrene increases oxidative stress in both cochlea and ACx. This was associated with macrophages and glial cell activation, increased expression of inflammatory markers (i.e., pro-inflammatory cytokines and chemokine receptors) and alterations in connexin (Cxs) and pannexin (Panx) expression, likely responsible for dysregulation of the microglia/astrocyte network. Specifically, we found downregulation of Cx26 and Cx30 in the cochlea, and high level of Cx43 and Panx1 in the ACx. CONCLUSIONS Collectively, our results provide novel evidence on the role of immune and glial cell activation in the oxidative/inflammatory damage induced by styrene in the auditory system at both peripheral and central levels, also involving alterations of gap junction networks. Our data suggest that targeting glial cells and connexin/pannexin expression might be useful to attenuate oxidative/inflammatory damage in the auditory system.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Anna Pisani
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Raffaele Montuoro
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giammarco Boni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Jacopo Galli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Unit of Audiology, Università Degli Studi di Napoli Federico II, Naples, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
23
|
Tan WJT, Vlajkovic SM. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int J Mol Sci 2023; 24:16545. [PMID: 38003734 PMCID: PMC10671929 DOI: 10.3390/ijms242216545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent with proven efficacy in treating various malignancies, including testicular, ovarian, cervical, breast, bladder, head and neck, and lung cancer. Cisplatin is also used to treat tumors in children, such as neuroblastoma, osteosarcoma, and hepatoblastoma. However, its clinical use is limited by severe side effects, including ototoxicity, nephrotoxicity, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, and retinal toxicity. Cisplatin-induced ototoxicity manifests as irreversible, bilateral, high-frequency sensorineural hearing loss in 40-60% of adults and in up to 60% of children. Hearing loss can lead to social isolation, depression, and cognitive decline in adults, and speech and language developmental delays in children. Cisplatin causes hair cell death by forming DNA adducts, mitochondrial dysfunction, oxidative stress, and inflammation, culminating in programmed cell death by apoptosis, necroptosis, pyroptosis, or ferroptosis. Contemporary medical interventions for cisplatin ototoxicity are limited to prosthetic devices, such as hearing aids, but these have significant limitations because the cochlea remains damaged. Recently, the U.S. Food and Drug Administration (FDA) approved the first therapy, sodium thiosulfate, to prevent cisplatin-induced hearing loss in pediatric patients with localized, non-metastatic solid tumors. Other pharmacological treatments for cisplatin ototoxicity are in various stages of preclinical and clinical development. This narrative review aims to highlight the molecular mechanisms involved in cisplatin-induced ototoxicity, focusing on cochlear inflammation, and shed light on potential antioxidant and anti-inflammatory therapeutic interventions to prevent or mitigate the ototoxic effects of cisplatin. We conducted a comprehensive literature search (Google Scholar, PubMed) focusing on publications in the last five years.
Collapse
Affiliation(s)
- Winston J. T. Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Srdjan M. Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
24
|
Goodarzi Z, Khavanin A, Karami E, Rashidy-Pour A, Belji Kangarlou M, Kiani M, Razmjouei J. Otoprotective Effects of Quercetin Against Oxidative Damage in the Rat's Cochlea Induced by Noise and Silver Nanoparticles. Neuroscience 2023; 531:99-116. [PMID: 37714258 DOI: 10.1016/j.neuroscience.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The aim of this study was to investigate the otoprotective effects of Quercetin (Que) against both noise-induced hearing loss (NIHL) and the ototoxicity of silver nanoparticles (SNPs) in rats. Forty-two male Wistar rats were divided into seven groups (n = 6): control, SNPs, Que (100 mg/kg) plus SNPs (100 mg/kg), noise (104 dB), Que plus noise, noise plus SNPs, and noise plus Que plus SNPs. In the weight change results, there was no significant difference between the groups exposed to noise plus SNPs and SNPs compared to the control group. However, animals had significant changes in DPOAE amplitude at 1 and 3 days post-exposure when compared to baseline. Additionally, the DPOAE value of rats administered with Que plus SNPs was higher than in all other groups. Que also decreased the levels of TACT, MDA, IL-6, TNF-α, and NOX3 in the groups exposed to noise and SNPs and increased the SOD level and expression of myosin heavy chain VII (MYH7) and β-tubulin III (TUBB3) proteins. Furthermore, Que decreased structural changes in the animals' cochlea. Our findings indicate that pretreatment with Que efficiently counteracted the adverse effects of noise and SNPs on inner hair cell, outer hair cell, and nerve cells, which are responsible for high-frequency perception.
Collapse
Affiliation(s)
- Zahra Goodarzi
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Esmaeil Karami
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Marzieh Belji Kangarlou
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mehrafarin Kiani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Jaleh Razmjouei
- Masters of Health, Safety & Environment (HSE), Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran.
| |
Collapse
|
25
|
Hosoya M, Kitama T, Shimanuki MN, Nishiyama T, Oishi N, Okano H, Ozawa H. Distribution of macrophages in the developing cochlea of the common marmoset, a primate model animal. Front Immunol 2023; 14:1229414. [PMID: 37675123 PMCID: PMC10477578 DOI: 10.3389/fimmu.2023.1229414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Macrophages are essential immune cells in the cochlea that contribute to inflammation, tissue repair, and homeostasis. They also play an important role in local cochlear immunity. The developmental immigration and maturation of macrophages in the cochlea have been investigated and are considered essential for normal hearing acquisition. Most of our current knowledge regarding cochlear development is based on rodent models because of the ethical challenges of using human fetal samples for research. However, inter-species differences between rodents and humans have been reported. In this study, we used a primate animal model to investigate the distributions of macrophages in the developing cochlea. The common marmoset (Callithrix jacchus), a small monkey species that inhabits the New World, was used as the model. Methods We investigated the distribution of macrophages in the developing cochlea of the common marmoset by performing immunohistochemical analyses of cochlear tissue from common marmoset embryos at different development stages. Results We revealed detailed distribution changes in the macrophages of a primate animal model cochlea. This observation indicates that most of the changes in the general distribution of macrophages were well preserved between rodents and this primate. The distribution changes observed in the common marmoset were also compatible with observations in the human fetus; although, observations in the human fetus are limited. Our observations in this study also revealed several differences between common marmosets and rodents. Conclusion The time course of immunological development and maturations established in this study will aid in the study of the primate-specific developmental biology of the inner ear. These observations may eventually lead to new therapeutic strategies for hearing loss in humans. In addition, understanding the immunological steady-state of the cochlea may help in the study of age- and genetic-induced hearing loss and in the design of regenerative therapies.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tsubasa Kitama
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Marie N. Shimanuki
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Nishiyama
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Oishi
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Saitama, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Tan WJT, Santos-Sacchi J, Tonello J, Shanker A, Ivanova AV. Pharmacological Modulation of Energy and Metabolic Pathways Protects Hearing in the Fus1/Tusc2 Knockout Model of Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2023; 12:1225. [PMID: 37371955 DOI: 10.3390/antiox12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Tightly regulated and robust mitochondrial activities are critical for normal hearing. Previously, we demonstrated that Fus1/Tusc2 KO mice with mitochondrial dysfunction exhibit premature hearing loss. Molecular analysis of the cochlea revealed hyperactivation of the mTOR pathway, oxidative stress, and altered mitochondrial morphology and quantity, suggesting compromised energy sensing and production. Here, we investigated whether the pharmacological modulation of metabolic pathways using rapamycin (RAPA) or 2-deoxy-D-glucose (2-DG) supplementation can protect against hearing loss in female Fus1 KO mice. Additionally, we aimed to identify mitochondria- and Fus1/Tusc2-dependent molecular pathways and processes critical for hearing. We found that inhibiting mTOR or activating alternative mitochondrial energetic pathways to glycolysis protected hearing in the mice. Comparative gene expression analysis revealed the dysregulation of critical biological processes in the KO cochlea, including mitochondrial metabolism, neural and immune responses, and the cochlear hypothalamic-pituitary-adrenal axis signaling system. RAPA and 2-DG mostly normalized these processes, although some genes showed a drug-specific response or no response at all. Interestingly, both drugs resulted in a pronounced upregulation of critical hearing-related genes not altered in the non-treated KO cochlea, including cytoskeletal and motor proteins and calcium-linked transporters and voltage-gated channels. These findings suggest that the pharmacological modulation of mitochondrial metabolism and bioenergetics may restore and activate processes critical for hearing, thereby protecting against hearing loss.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jane Tonello
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anil Shanker
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Alla V Ivanova
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
27
|
Jones M, Kovacevic B, Ionescu CM, Wagle SR, Quintas C, Wong EYM, Mikov M, Mooranian A, Al-Salami H. The applications of Targeted Delivery for Gene Therapies in Hearing Loss. J Drug Target 2023:1-22. [PMID: 37211674 DOI: 10.1080/1061186x.2023.2216900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/07/2022] [Accepted: 04/09/2023] [Indexed: 05/23/2023]
Abstract
Gene therapies are becoming more abundantly researched for use in a multitude of potential treatments, including for hearing loss. Hearing loss is a condition which impacts an increasing number of the population each year, with significant burdens associated. As such, this review will present the concept that delivering a gene effectively to the inner ear may assist in expanding novel treatment options and improving patient outcomes. Historically, several drawbacks have been associated with the use of gene therapies, some of which may be overcome via targeted delivery. Targeted delivery has the potential to alleviate off-target effects and permit a safer delivery profile. Viral vectors have often been described as a delivery method, however, there is an emerging depiction of the potential for nanotechnology to be used. Resulting nanoparticles may also be tuned to allow for targeted delivery. Therefore, this review will focus on hearing loss, gene delivery techniques and inner ear targets, including highlighting promising research. Targeted delivery is a key concept to permitting gene delivery in a safe effective manner, however, further research is required, both in the determination of genes to use in functional hearing recovery and formulating nanoparticles for targeted delivery.
Collapse
Affiliation(s)
- Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Christina Quintas
- School of human sciences, University of Western Australia, Crawley 6009, Perth, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
28
|
Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res 2023; 434:108783. [PMID: 37167889 DOI: 10.1016/j.heares.2023.108783] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Sensorineural hearing loss (SNHL) can either be genetically inherited or acquired as a result of aging, noise exposure, or ototoxic drugs. Although the precise pathophysiological mechanisms underlying SNHL remain unclear, an overwhelming body of evidence implicates mitochondrial dysfunction and oxidative stress playing a central etiological role. With its high metabolic demands, the cochlea, particularly the sensory hair cells, stria vascularis, and spiral ganglion neurons, is vulnerable to the damaging effects of mitochondrial reactive oxygen species (ROS). Mitochondrial dysfunction and consequent oxidative stress in cochlear cells can be caused by inherited mitochondrial DNA (mtDNA) mutations (hereditary hearing loss and aminoglycoside-induced ototoxicity), accumulation of acquired mtDNA mutations with age (age-related hearing loss), mitochondrial overdrive and calcium dysregulation (noise-induced hearing loss and cisplatin-induced ototoxicity), or accumulation of ototoxic drugs within hair cell mitochondria (drug-induced hearing loss). In this review, we provide an overview of our current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of SNHL caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs. We also explore the advancements in antioxidant therapies for the different forms of acquired SNHL that are being evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand.
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Otolaryngology - Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
29
|
Pisani A, Paciello F, Montuoro R, Rolesi R, Galli J, Fetoni AR. Antioxidant Therapy as an Effective Strategy against Noise-Induced Hearing Loss: From Experimental Models to Clinic. Life (Basel) 2023; 13:life13041035. [PMID: 37109564 PMCID: PMC10144536 DOI: 10.3390/life13041035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Cochlear redox unbalance is the main mechanism of damage involved in the pathogenesis of noise-induced-hearing loss. Indeed, the increased free radical production, in conjunction with a reduced efficacy of the endogenous antioxidant system, plays a key role in cochlear damage induced by noise exposure. For this reason, several studies focused on the possibility to use exogenous antioxidant to prevent or attenuate noise-induce injury. Thus, several antioxidant molecules, alone or in combination with other compounds, have been tested in both experimental and clinical settings. In our findings, we tested the protective effects of several antioxidant enzymes, spanning from organic compounds to natural compounds, such as nutraceuticals of polyphenols. In this review, we summarize and discuss the strengths and weaknesses of antioxidant supplementation focusing on polyphenols, Q-Ter, the soluble form of CoQ10, Vitamin E and N-acetil-cysteine, which showed great otoprotective effects in different animal models of noise induced hearing loss and which has been proposed in clinical trials.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Raffaele Montuoro
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Rolando Rolesi
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Jacopo Galli
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
30
|
Huang X, Kou X, Zhan T, Wei G, He F, Mao X, Yang H. Apoptotic vesicles resist oxidative damage in noise-induced hearing loss through activation of FOXO3a-SOD2 pathway. Stem Cell Res Ther 2023; 14:88. [PMID: 37061707 PMCID: PMC10105953 DOI: 10.1186/s13287-023-03314-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/29/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) transplantation is a promising therapeutic approach for noise-induced hearing loss (NIHL). As the indispensable role of apoptosis in MSC transplantation was raised, the benefits of MSC-derived apoptotic vesicles (apoVs) in several disease models have been proved. However, whether apoVs benefit in NIHL have not been studied yet. METHODS Female CBA/J mice and HEI-OC1 cells were used in this study. Flow cytometry, nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) were used to characterize apoVs. Proteomic analysis was used to identify function proteins in apoVs. Immunofluorescence was used to reveal distribution pattern. Auditory brainstem response (ABR) test was used to measure the effect of apoVs treatment. DCFH-DA staining and MitoSOX staining were used to indicate oxidative damage. Western-blot and qRT-PCR were used to study the signaling pathways. RESULTS We found that apoVs can be endocytosed by hair cells through systemic administration. Importantly, apoVs administration effectively attenuated NIHL and reduced hair cell loss by resisting oxidative damage in vivo. Further, apoVs application activated forkhead box o3 (FOXO3a)-mitochondrial superoxide dismutase 2(SOD2) pathway, which may relate to signal transduction and activators of transcription 3 (STAT3) in apoVs. CONCLUSIONS These findings uncovered the role of apoVs in preventing NIHL and resisting oxidative damage, indicating that apoVs is a promising way for inner ear delivery and a prospective cell-free therapy for NIHL.
Collapse
Affiliation(s)
- Xiaotong Huang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ting Zhan
- Department of Otolaryngology, Zhujiang Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510285, China
| | - Guokun Wei
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Feinan He
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Hearing and Speech Science, Guangzhou Xinhua University, Guangzhou, 510310, China.
| |
Collapse
|
31
|
Chen MB, Li MH, Wu LY, Wang R, Long X, Zhang L, Sun W, Guo WW, Pan Y, Zhang YS, Lin C, Shi X, Yang SM. Oridonin employs interleukin 1 receptor type 2 to treat noise-induced hearing loss by blocking inner ear inflammation. Biochem Pharmacol 2023; 210:115457. [PMID: 36806583 DOI: 10.1016/j.bcp.2023.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasomes trigger the inflammatory cascades and participate in various inflammatory diseases, including noise-induced hearing loss (NIHL) caused by oxidative stress. Recently, the anti-inflammatory traditional medicine oridonin (Ori) has been reported to provide hearing protection in mice after noise exposure by blocking the NLRP3-never in mitosis gene A-related kinase 7 (NEK7)-inflammasome complex assembly. Using RNA sequencing analysis, we further elucidated that interleukin 1 receptor type 2 (IL1R2) may be another crucial factor regulated by Ori to protect NIHL. We observed that IL1R2 expression was localized in spiral ganglion neurons, inner and outer hair cells, in Ori-treated mouse cochleae. Additionally, we confirmed that ectopic overexpression of IL1R2 in the inner ears of healthy mice using an adeno-associated virus delivery system significantly reduced noise-induced ribbon synapse lesions and hearing loss by blocking the "cytokine storm" in the inner ear. This study provides a novel theoretical foundation for guiding the clinical treatment of NIHL.
Collapse
Affiliation(s)
- Meng-Bing Chen
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China; College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China; Ankang People's Hospital, Ankang 725000, Shanxi, China
| | - Meng-Hua Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China; Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, Hainan, China; Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Li-Yuan Wu
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang, China
| | - Rong Wang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China; College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xi Long
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Liang Zhang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Wei Sun
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, the State University of New York at Buffalo, Buffalo 14200, NY, USA
| | - Wei-Wei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yong Pan
- Xuzhou Infectious Diseases Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Yun-Shi Zhang
- Xuzhou Infectious Diseases Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Chang Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China.
| | - Xi Shi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China; Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, Hainan, China; Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China.
| | - Shi-Ming Yang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
32
|
Al Aameri RFH, Alanisi EMA, Oluwatosin A, Al Sallami D, Sheth S, Alberts I, Patel S, Rybak LP, Ramkumar V. Targeting CXCL1 chemokine signaling for treating cisplatin ototoxicity. Front Immunol 2023; 14:1125948. [PMID: 37063917 PMCID: PMC10102581 DOI: 10.3389/fimmu.2023.1125948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Cisplatin is chemotherapy used for solid tumor treatment like lung, bladder, head and neck, ovarian and testicular cancers. However, cisplatin-induced ototoxicity limits the utility of this agent in cancer patients, especially when dose escalations are needed. Ototoxicity is associated with cochlear cell death through DNA damage, the generation of reactive oxygen species (ROS) and the consequent activation of caspase, glutamate excitotoxicity, inflammation, apoptosis and/or necrosis. Previous studies have demonstrated a role of CXC chemokines in cisplatin ototoxicity. In this study, we investigated the role of CXCL1, a cytokine which increased in the serum and cochlea by 24 h following cisplatin administration. Adult male Wistar rats treated with cisplatin demonstrated significant hearing loss, assessed by auditory brainstem responses (ABRs), hair cell loss and loss of ribbon synapse. Immunohistochemical studies evaluated the levels of CXCL1 along with increased presence of CD68 and CD45-positive immune cells in cochlea. Increases in CXCL1 was time-dependent in the spiral ganglion neurons and organ of Corti and was associated with progressive increases in CD45, CD68 and IBA1-positive immune cells. Trans-tympanic administration of SB225002, a chemical inhibitor of CXCR2 (receptor target for CXCL1) reduced immune cell migration, protected against cisplatin-induced hearing loss and preserved hair cell integrity. We show that SB225002 reduced the expression of CXCL1, NOX3, iNOS, TNF-α, IL-6 and COX-2. Similarly, knockdown of CXCR2 by trans-tympanic administration of CXCR2 siRNA protected against hearing loss and loss of outer hair cells and reduced ribbon synapses. In addition, SB225002 reduced the expression of inflammatory mediators induced by cisplatin. These results implicate the CXCL1 chemokine as an early player in cisplatin ototoxicity, possibly by initiating the immune cascade, and indicate that CXCR2 is a relevant target for treating cisplatin ototoxicity.
Collapse
Affiliation(s)
- Raheem F. H. Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Entkhab M. A. Alanisi
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, United States
| | - Adu Oluwatosin
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Dheyaa Al Sallami
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, United States
| | - Ian Alberts
- Medical Microbiology, Immunology and Cell Biology (MMICB), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Shree Patel
- Medical Microbiology, Immunology and Cell Biology (MMICB), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Leonard P. Rybak
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Vickram Ramkumar,
| |
Collapse
|
33
|
Gregory GE, Munro KJ, Couper KN, Pathmanaban ON, Brough D. The NLRP3 inflammasome as a target for sensorineural hearing loss. Clin Immunol 2023; 249:109287. [PMID: 36907540 DOI: 10.1016/j.clim.2023.109287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
Sensorineural hearing loss is the most common type of hearing loss in adults and occurs due to damage of the inner ear caused by a range of factors including ageing, excessive noise, toxins, and cancer. Auto-inflammatory disease is also a cause of hearing loss and there is evidence that inflammation could contribute to hearing loss in other conditions. Within the inner ear there are resident macrophage cells that respond to insults and whose activation correlates with damage. The NLRP3 inflammasome is a multi-molecular pro-inflammatory protein complex that forms in activated macrophages and may contribute to hearing loss. The aim of this article is to discuss the evidence for the NLRP3 inflammasome and associated cytokines as potential therapeutic targets for sensorineural hearing loss in conditions ranging from auto-inflammatory disease to tumour-induced hearing loss in vestibular schwannoma.
Collapse
Affiliation(s)
- Grace E Gregory
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK; Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Kevin N Couper
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Omar N Pathmanaban
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK.
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
34
|
Paciello F, Ripoli C, Fetoni AR, Grassi C. Redox Imbalance as a Common Pathogenic Factor Linking Hearing Loss and Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12020332. [PMID: 36829891 PMCID: PMC9952092 DOI: 10.3390/antiox12020332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Experimental and clinical data suggest a tight link between hearing and cognitive functions under both physiological and pathological conditions. Indeed, hearing perception requires high-level cognitive processes, and its alterations have been considered a risk factor for cognitive decline. Thus, identifying common pathogenic determinants of hearing loss and neurodegenerative disease is challenging. Here, we focused on redox status imbalance as a possible common pathological mechanism linking hearing and cognitive dysfunctions. Oxidative stress plays a critical role in cochlear damage occurring during aging, as well as in that induced by exogenous factors, including noise. At the same time, increased oxidative stress in medio-temporal brain regions, including the hippocampus, is a hallmark of neurodegenerative disorders like Alzheimer's disease. As such, antioxidant therapy seems to be a promising approach to prevent and/or counteract both sensory and cognitive neurodegeneration. Here, we review experimental evidence suggesting that redox imbalance is a key pathogenetic factor underlying the association between sensorineural hearing loss and neurodegenerative diseases. A greater understanding of the pathophysiological mechanisms shared by these two diseased conditions will hopefully provide relevant information to develop innovative and effective therapeutic strategies.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-0630154966
| | - Anna Rita Fetoni
- Unit of Audiology, Department of Neuroscience, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
35
|
Xiao L, Zhang Z, Liu J, Zheng Z, Xiong Y, Li C, Feng Y, Yin S. HMGB1 accumulation in cytoplasm mediates noise-induced cochlear damage. Cell Tissue Res 2023; 391:43-54. [PMID: 36287265 DOI: 10.1007/s00441-022-03696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/05/2022] [Indexed: 01/18/2023]
Abstract
Damage-associated molecular pattern molecules (DAMPs) play a critical role in mediating cochlear cell death, which leads to noise-induced hearing loss (NIHL). High-mobility group box 1 (HMGB1), a prototypical DAMP released from cells, has been extensively studied in the context of various diseases. However, whether extracellular HMGB1 contributes to cochlear pathogenesis in NIHL and the potential signals initiating HMGB1 release from cochlear cells are not well understood. Here, through the transfection of the adeno-associated virus with HMGB1-HA-tag, we first investigated early cytoplasmic accumulation of HMGB1 in cochlear hair cells after noise exposure. We found that the cochlear administration of HMGB1-neutralizing antibody immediately after noise exposure significantly alleviated hearing loss and outer hair cells (OHCs) death induced by noise exposure. In addition, activation of signal transducer and activators of transcription 1 (STAT1) and cellular hyperacetylation were verified as potential canonical initiators of HMGB1 cytoplasmic accumulation. These findings reveal the adverse effects of extracellular HMGB1 on the cochlea and the potential signaling events mediating HMGB1 release in hair cells, indicating multiple potential pharmacotherapeutic targets for NIHL.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Zhen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Jianju Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhong Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Yuanping Xiong
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Chunyan Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China.
| |
Collapse
|
36
|
Li P, Qian T, Sun S. Spatial architecture of the cochlear immune microenvironment in noise-induced and age-related sensorineural hearing loss. Int Immunopharmacol 2023; 114:109488. [PMID: 36470117 DOI: 10.1016/j.intimp.2022.109488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
The cochlea encodes sound stimuli and transmits them to the central nervous system, and damage to sensory cells and synapses in the cochlea leads to hearing loss. The inner ear was previously considered to be an immune privileged organ to protect the auditory organ from reactions with the immune system. However, recent studies have revealed the presence of resident macrophages in the cochlea, especially in the spiral ligament, spiral ganglion, and stria vascularis. The tissue-resident macrophages are responsible for the detection, phagocytosis, and clearance of cellular debris and pathogens from the tissues, and they initiate inflammation and influence tissue repair by producing inflammatory cytokines and chemokines. Insult to the cochlea can activate the cochlear macrophages to initiate immune responses. In this review, we describe the distribution and functions of cochlear macrophages in noise-induced hearing impairment and age-related hearing disabilities. We also focus on potential therapeutic interventions concerning hearing loss by modulating local immune responses.
Collapse
Affiliation(s)
- Peifan Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Tingting Qian
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
37
|
Warnecke A, Staecker H, Rohde E, Gimona M, Giesemann A, Szczepek AJ, Di Stadio A, Hochmair I, Lenarz T. Extracellular Vesicles in Inner Ear Therapies-Pathophysiological, Manufacturing, and Clinical Considerations. J Clin Med 2022; 11:jcm11247455. [PMID: 36556073 PMCID: PMC9788356 DOI: 10.3390/jcm11247455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: Sensorineural hearing loss is a common and debilitating condition. To date, comprehensive pharmacologic interventions are not available. The complex and diverse molecular pathology that underlies hearing loss may limit our ability to intervene with small molecules. The current review foccusses on the potential for the use of extracellular vesicles in neurotology. (2) Methods: Narrative literature review. (3) Results: Extracellular vesicles provide an opportunity to modulate a wide range of pathologic and physiologic pathways and can be manufactured under GMP conditions allowing for their application in the human inner ear. The role of inflammation in hearing loss with a focus on cochlear implantation is shown. How extracellular vesicles may provide a therapeutic option for complex inflammatory disorders of the inner ear is discussed. Additionally, manufacturing and regulatory issues that need to be addressed to develop EVs as advanced therapy medicinal product for use in the inner ear are outlined. (4) Conclusion: Given the complexities of inner ear injury, novel therapeutics such as extracellular vesicles could provide a means to modulate inflammation, stress pathways and apoptosis in the inner ear.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, 30625 Hannover, Germany
- Correspondence:
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Rainbow Blvd., Kansas City, KS 66160, USA
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), 5020 Salzburg, Austria
- Department of Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK) Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), 5020 Salzburg, Austria
- Research Program “Nanovesicular Therapies”, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anja Giesemann
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Arianna Di Stadio
- Department GF Ingrassia, University of Catania, 95124 Catania, Italy
| | | | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, 30625 Hannover, Germany
| |
Collapse
|
38
|
Razmovski T, Bester C, Collins A, Tan E, O'Leary SJ. Four-Point Impedance Changes After Cochlear Implantation for Lateral Wall and Perimodiolar Implants. Otol Neurotol 2022; 43:e1107-e1114. [PMID: 36351225 DOI: 10.1097/mao.0000000000003732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Monitor four-point impedance in cochlear implant recipients over time and determine if implant type, surgical approach, and electrode positioning affected impedance measurements. STUDY DESIGN Prospective observational. SETTING Hospital. PATIENTS Adult cochlear implant recipients implanted with a perimodiolar or lateral wall cochlear implant. MAIN OUTCOME MEASURES Mean values for four-point impedances were calculated for all electrode contacts at perioperative and 3 months after surgery. Linear mixed models were applied to the impedance data to compare between implant types and time points. The angular insertion depth and electrode position relative to the medial and lateral wall, commonly termed the Intracochlear Position Index (ICPI), were collected and compared with impedance measurements. RESULTS Perioperatively, the four-point impedance was similar between implant types, with perimodiolar implants having marginally higher impedance values in the basal region. At 3 months after surgery, impedances significantly increased in the basal half of the electrode array for both implants, with higher impedance values for CI532 implants. There were no significant differences in insertion angle depth between implant types. The ICPI values for the seven most basal electrodes were similar for both implants; however, CI532 arrays were significantly more medially placed along the remaining apical portion of the array, which is expected. ICPI values did not correlate with impedance measurements for either implant. CONCLUSIONS Four-point impedance increases at 3 months after surgery may reflect fibrous tissue formation after cochlear implantation. The higher impedance values in perimodiolar implants may reflect a more extensive fibrosis formation as a result of surgical approaches used, requiring drilling of the cochlea bone.
Collapse
Affiliation(s)
- Tayla Razmovski
- Department of Surgery (Otolaryngology), The University of Melbourne
| | | | - Aaron Collins
- Department of Surgery (Otolaryngology), The University of Melbourne
| | - Eren Tan
- Department of Surgery (Otolaryngology), The University of Melbourne
| | | |
Collapse
|
39
|
Claussen AD, Quevedo RV, Kirk JR, Higgins T, Mostaert B, Rahman MT, Oleson J, Hernandez R, Hirose K, Hansen MR. Chronic cochlear implantation with and without electric stimulation in a mouse model induces robust cochlear influx of CX3CR1 +/GFP macrophages. Hear Res 2022; 426:108510. [PMID: 35527124 PMCID: PMC9596618 DOI: 10.1016/j.heares.2022.108510] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/27/2022] [Accepted: 04/23/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cochlear implantation is an effective auditory rehabilitation strategy for those with profound hearing loss, including those with residual low frequency hearing through use of hybrid cochlear implantation techniques. Post-mortem studies demonstrate the nearly ubiquitous presence of intracochlear fibrosis and neo-ossification following cochlear implantation. Current evidence suggests post-implantation intracochlear fibrosis is associated with delayed loss of residual acoustic hearing in hybrid cochlear implant (CI) recipients and may also negatively influence outcomes in traditional CI recipients. This study examined the contributions of surgical trauma, foreign body response and electric stimulation to intracochlear fibrosis and the innate immune response to cochlear implantation and the hierarchy of these contributions. METHODS Normal hearing CX3CR1+/GFP mice underwent either round window opening (sham), acute CI insertion or chronic CI insertion with no, low- or high-level electric stimulation. Electric stimulation levels were based on neural response telemetry (NRT), beginning post-operative day 7 for 5 h per day. Subjects (n=3 per timepoint) were sacrificed at 4 h, 1,4,7,8,11,14 and 21 days. An unoperated group (n=3) served as controls. Cochleae were harvested at each time-point and prepared for immunohistochemistry with confocal imaging. The images were analyzed to obtain CX3CR1+ macrophage cell number and density in the lateral wall (LW), scala tympani (ST) and Rosenthal's canal (RC). RESULTS A ST peri-implant cellular infiltrate and fibrosis occurred exclusively in the chronically implanted groups starting on day 7 with a concurrent infiltration of CX3CR1+ macrophages not seen in the other groups. CX3CR1+ macrophage infiltration was seen in the LW and RC in all experimental groups within the first week, being most prominent in the 3 chronically implanted groups during the second and third week. CONCLUSIONS The cochlear immune response was most prominent in the presence of chronic cochlear implantation, regardless of electric stimulation level. Further, the development of intracochlear ST fibrosis was dependent on the presence of the indwelling CI foreign body. An innate immune response was evoked by surgical trauma alone (sham and acute CI groups) to a lesser degree. These data suggest that cochlear inflammation and intrascalar fibrosis after cochlear implantation are largely dependent on the presence of a chronic indwelling foreign body and are not critically dependent on electrical stimulation. Also, these data support a role for surgical trauma in inciting the initial innate immune response.
Collapse
Affiliation(s)
- Alexander D Claussen
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States; Department of Otolaryngology Head and Neck Surgery, University of California San Diego, San Diego, CA 92103, United States.
| | - René Vielman Quevedo
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States; Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, United States
| | | | - Timon Higgins
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States
| | - Brian Mostaert
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States
| | - Muhammad Taifur Rahman
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States
| | - Jacob Oleson
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, United States
| | - Reyna Hernandez
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, United States
| | - Keiko Hirose
- Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Marlan R Hansen
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
40
|
Wu T, Zhou J, Qiu J, Song Y, Guo W, Cui L, Song X, Sun Y. Tumor necrosis factor-α mediated inflammation versus apoptosis in age-related hearing loss. Front Aging Neurosci 2022; 14:956503. [PMID: 36158549 PMCID: PMC9491822 DOI: 10.3389/fnagi.2022.956503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022] Open
Abstract
An almost universal phenomenon occurring during aging is a state of chronic, low-grade, sterile inflammation. Inflammation is a crucial contributor to various age-related pathologies and natural processes in aging tissues. Tumor necrosis factor-α (TNF-α), a master regulator of the immune system, plays an important role in the propagation of inflammation. Recent research has found correlations between hearing loss and markers such as TNF-α. However, the intrinsic molecular mechanism by which TNF-α influences aging individuals’ increased risk of hearing loss remains unclear. In this study, we found that TNF-α expression gradually increased with age in DBA/2J mice. We then used recombinant TNF-α to upregulate TNF-α levels in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and found that low concentrations of TNF-α could activate the nuclear factor kappa B (NF-κB) transcriptional response to mediate hair cell survival, while high concentrations of TNF-α could activate the Caspase-3 cascade to mediate hair cell apoptosis, which preliminarily confirmed that a TNF-α mediated signaling pathway plays an important role in the pathogenesis of age-related hearing loss.
Collapse
Affiliation(s)
- Ting Wu
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jiamin Zhou
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jingjing Qiu
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yuwan Song
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Wentao Guo
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Limei Cui
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Limei Cui,
| | - Xicheng Song
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Xicheng Song,
| | - Yan Sun
- Department of Otolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- *Correspondence: Yan Sun,
| |
Collapse
|
41
|
Reiss LA, Kirk J, Claussen AD, Fallon JB. Animal Models of Hearing Loss after Cochlear Implantation and Electrical Stimulation. Hear Res 2022; 426:108624. [DOI: 10.1016/j.heares.2022.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/28/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
|
42
|
Zhang X, Li N, Cui Y, Wu H, Jiao J, Yu Y, Gu G, Chen G, Zhang H, Yu S. Plasma metabolomics analyses highlight the multifaceted effects of noise exposure and the diagnostic power of dysregulated metabolites for noise-induced hearing loss in steel workers. Front Mol Biosci 2022; 9:907832. [PMID: 36060246 PMCID: PMC9437629 DOI: 10.3389/fmolb.2022.907832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Noise exposure can lead to various kinds of disorders. Noise-induced hearing loss (NIHL) is one of the leading disorders confusing the noise-exposed workers. It is essential to identify NIHL markers for its early diagnosis and new therapeutic targets for its treatment. In this study, a total of 90 plasma samples from 60 noise-exposed steel factory male workers (the noise group) with (NIHL group, n = 30) and without NIHL (non-NIHL group, n = 30) and 30 male controls without noise exposure (control group) were collected. Untargeted human plasma metabolomic profiles were determined with HPLC-MS/MS. The levels of the metabolites in the samples were normalized to total peak intensity, and the processed data were subjected to multivariate data analysis. The Wilcoxon test and orthogonal partial least square-discriminant analysis (OPLS-DA) were performed. With the threshold of p < 0.05 and the variable importance of projection (VIP) value >1, 469 differential plasma metabolites associated with noise exposure (DMs-NE) were identified, and their associated 58 KEGG pathways were indicated. In total, 33 differential metabolites associated with NIHL (DMs-NIHL) and their associated 12 KEGG pathways were identified. There were six common pathways associated with both noise exposure and NIHL. Through multiple comparisons, seven metabolites were shown to be dysregulated in the NIHL group compared with the other two groups. Through LASSO regression analysis, two risk models were constructed for NIHL status predication which could discriminate NIHL from non-NIHL workers with the area under the curve (AUC) values of 0.840 and 0.872, respectively, indicating their efficiency in NIHL diagnosis. To validate the results of the metabolomics, cochlear gene expression comparisons between susceptible and resistant mice in the GSE8342 dataset from Gene Expression Omnibus (GEO) were performed. The immune response and cell death-related processes were highlighted for their close relations with noise exposure, indicating their critical roles in noise-induced disorders. We concluded that there was a significant difference between the metabolite’s profiles between NIHL cases and non-NIHL individuals. Noise exposure could lead to dysregulations of a variety of biological pathways, especially immune response and cell death-related processes. Our results might provide new clues for noise exposure studies and NIHL diagnosis.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Ningning Li
- Department of Scientific Research and Foreign Affairs, Henan Medical College, Zhengzhou, Henan, China
| | - Yanan Cui
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Wu
- Henan Institute for Occupational Health, Zhengzhou, Henan, China
| | - Jie Jiao
- Henan Institute for Occupational Health, Zhengzhou, Henan, China
| | - Yue Yu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guizhen Gu
- Henan Institute for Occupational Health, Zhengzhou, Henan, China
| | - Guoshun Chen
- Wugang Institute for Occupational Health, Wugang, Henan, China
| | - Huanling Zhang
- Wugang Institute for Occupational Health, Wugang, Henan, China
| | - Shanfa Yu
- School of Public Health, Henan Medical College, Zhengzhou, Henan, China
- *Correspondence: Shanfa Yu,
| |
Collapse
|
43
|
Han JS, Kim YL, Yu HJ, Park JM, Kim Y, Park SY, Park SN. Safety and Efficacy of Intratympanic Alpha-Lipoic Acid Injection in a Mouse Model of Noise-Induced Hearing Loss. Antioxidants (Basel) 2022; 11:antiox11081423. [PMID: 35892625 PMCID: PMC9331721 DOI: 10.3390/antiox11081423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Alpha-lipoic acid (ALA) is an antioxidant with oto-protective effects. In the present study, the safety and effectiveness of ALA therapy after noise-induced hearing loss was confirmed based on the administration method. The safety of intratympanic ALA (IT-ALA) was evaluated with oto-endoscopy and middle ear mucosa morphologic study. Perilymph ALA concentrations according to the administration routes were compared, and the efficacy of ALA was investigated through hearing tests and cochlear histological studies. The middle ear mucosa was swollen 1 week after IT-ALA but completely recovered within 3 weeks. ALA concentration in the perilymph was significantly higher in the IT-ALA group. Recovery of organ of Corti morphology and hearing levels were predominant in the IT-ALA group compared with the intraperitoneal injection group (IP-ALA) and showed similar rescue effects in the IT-dexamethasone group (IT-DEX). Interleukin-1 beta and nuclear factor-kappa B expression was significantly downregulated in the IT-ALA group. IT-ALA showed better cochlear recovery from acoustic trauma with higher inner ear penetration rate than IP-ALA. The rescue effect of IT-ALA after noise-induced hearing loss was similar to IT-DEX; however, the ALA and DEX mechanisms are different. IT-ALA appears to be another safe and effective treatment modality after acoustic trauma and comparable to IT-DEX.
Collapse
Affiliation(s)
- Jae Sang Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (J.S.H.); (Y.K.)
| | - Ye Lin Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (Y.L.K.); (H.J.Y.)
| | - Hyo Jeong Yu
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (Y.L.K.); (H.J.Y.)
| | - Jung Mee Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Gangneung Asan Hospital, College of Medicine University of Ulsan, 38 Bangdong-gil, Sacheon-myeon, Gangneung-si 25440, Korea;
| | - Yeonji Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (J.S.H.); (Y.K.)
| | - So Young Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea;
| | - Shi Nae Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; (J.S.H.); (Y.K.)
- Correspondence: ; Tel.: +82-2-2258-6215; Fax: +82-2-595-1354
| |
Collapse
|
44
|
Sargsyan L, Swisher AR, Hetrick AP, Li H. Effects of Combined Gentamicin and Furosemide Treatment on Cochlear Macrophages. Int J Mol Sci 2022; 23:ijms23137343. [PMID: 35806348 PMCID: PMC9266920 DOI: 10.3390/ijms23137343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Combining aminoglycosides and loop diuretics often serves as an effective ototoxic approach to deafen experimental animals. The treatment results in rapid hair cell loss with extended macrophage presence in the cochlea, creating a sterile inflammatory environment. Although the early recruitment of macrophages is typically neuroprotective, the delay in the resolution of macrophage activity can be a complication if the damaged cochlea is used as a model to study subsequent therapeutic strategies. Here, we applied a high dose combination of systemic gentamicin and furosemide in C57 BL/6 and CBA/CaJ mice and studied the ototoxic consequences in the cochlea, including hair cell survival, ribbon synaptic integrity, and macrophage activation up to 15-day posttreatment. The activity of macrophages in the basilar membrane was correlated to the severity of cochlear damage, particularly the hair cell damage. Comparatively, C57 BL/6 cochleae were more vulnerable to the ototoxic challenge with escalated macrophage activation. In addition, the ribbon synaptic deterioration was disproportionately limited when compared to the degree of outer hair cell loss in CBA/CaJ mice. The innate and differential otoprotection in CBA/CaJ mice appears to be associated with the rapid activation of cochlear macrophages and a certain level of synaptogenesis after the combined gentamicin and furosemide treatment.
Collapse
Affiliation(s)
- Liana Sargsyan
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Austin R. Swisher
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Alisa P. Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA
- Correspondence: or ; Tel.: +1-(909)-825-7084 (ext. 2816); Fax: +1-(909)-796-4508
| |
Collapse
|
45
|
Zhang Y, Li Q, Han C, Geng F, Zhang S, Qu Y, Tang W. Superoxide dismutase@zeolite Imidazolate Framework-8 Attenuates Noise-Induced Hearing Loss in Rats. Front Pharmacol 2022; 13:885113. [PMID: 35662706 PMCID: PMC9159373 DOI: 10.3389/fphar.2022.885113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) and inflammation have been considered major contributors to noise-induced hearing loss (NIHL) that constituted a public health threat worldwide. Nanoantioxidants, with high antioxidant activity and good stability, have been extensively used in the study of ROS-related diseases. In this study, we constructed a superoxide dismutase (SOD)@zeolite imidazolate framework-8 (ZIF-8) nanoparticle based on biomimetic mineralization and applied it to a rat model of NIHL. Our results showed that SOD@ZIF-8 effectively protected the animals from hearing loss and hair cell loss caused by noise. ROS, oxidative damage, and inflammation of noise-damaged cochlea were attenuated considerably after SOD@ZIF-8 administration. Importantly, we found that SOD@ZIF-8 achieved nanotherapy for NIHL in rats via a primary effect on the Sirtuin-3 (SIRT3)/superoxide dismutase2 (SOD2) signaling pathway without obvious adverse side effects. Therefore, our study is expected to open up a new field for NIHL treatment, and lay a foundation for the application of nanomaterials in other ROS-related inner ear diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Otolaryngology, Hebei Medical University, Shijiazhuang, China.,Department of Otolaryngology, Tangshan People's Hospital, Tangshan, China
| | - Qing Li
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengzhou Han
- Department of Otolaryngology, Hebei Medical University, Shijiazhuang, China
| | - Fang Geng
- Department of Otolaryngology, Hebei Medical University, Shijiazhuang, China
| | - Sen Zhang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Qu
- Department of Otolaryngology, Hebei Medical University, Shijiazhuang, China
| | - Wenxue Tang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Chan J, Telang R, Kociszewska D, Thorne PR, Vlajkovic SM. A High-Fat Diet Induces Low-Grade Cochlear Inflammation in CD-1 Mice. Int J Mol Sci 2022; 23:5179. [PMID: 35563572 PMCID: PMC9101486 DOI: 10.3390/ijms23095179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
There is growing evidence for a relationship between gut dysbiosis and hearing loss. Inflammatory bowel disease, diet-induced obesity (DIO), and type 2 diabetes have all been linked to hearing loss. Here, we investigated the effect of a chronic high-fat diet (HFD) on the development of inner ear inflammation using a rodent model. Three-week-old CD-1 (Swiss) mice were fed an HFD or a control diet for ten weeks. After ten weeks, mouse cochleae were harvested, and markers of cochlear inflammation were assessed at the protein level using immunohistochemistry and at the gene expression level using quantitative real-time RT-PCR. We identified increased immunoexpression of pro-inflammatory biomarkers in animals on an HFD, including intracellular adhesion molecule 1 (ICAM1), interleukin 6 receptor α (IL6Rα), and toll-like-receptor 2 (TLR2). In addition, increased numbers of ionized calcium-binding adapter molecule 1 (Iba1) positive macrophages were found in the cochlear lateral wall in mice on an HFD. In contrast, gene expression levels of inflammatory markers were not affected by an HFD. The recruitment of macrophages to the cochlea and increased immunoexpression of inflammatory markers in mice fed an HFD provide direct evidence for the association between HFD and cochlear inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Srdjan M. Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (J.C.); (R.T.); (D.K.); (P.R.T.)
| |
Collapse
|
47
|
Shin SH, Jung J, Park HR, Sim NS, Choi JY, Bae SH. The Time Course of Monocytes Infiltration After Acoustic Overstimulation. Front Cell Neurosci 2022; 16:844480. [PMID: 35496904 PMCID: PMC9039292 DOI: 10.3389/fncel.2022.844480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cochlea macrophages regulate cochlea inflammation and may harbors the potentials to protect hearing function from injury, including acoustic overstimulation. Cochlea macrophage numbers increase at 3–7 days after acoustic stimulation. However, the exact timing of macrophage infiltration and maturation from inflammatory monocytes is unclear. Furthermore, neutrophils may also be involved in this process. Therefore, in this study, we investigated time-dependent immune cell infiltration, macrophage transformation, and neutrophil involvement following acoustic stimulation. Flow cytometry and immunofluorescence were conducted in C-X3-C motif chemokine receptor 1 (CX3CR1)+/GFP mice after acoustic overstimulation (at baseline and at 1, 2, 3, and 5 days after exposure to 120 dB for 1 h) to identify inflammatory monocytes in the cochlea. RNA-sequencing and quantitative polymerase chain reaction were performed to identify differentially expressed genes. Inflammatory monocytes infiltrated into the lower portion of the lateral wall within 2 days after acoustic overstimulation (dpn), followed by transformation into macrophages at 3–5 dpn via CX3CR1 upregulation and Ly6C downregulation. In addition, inflammatory monocytes were aggregated inside the collecting venule only at 1 dpn. Neutrophils were not a major type of phagocyte during this response. The gene encoding C-C motif chemokine ligand 2 gene was significantly upregulated as early as 3 h after acoustic overstimulation. Given these results, treatment to control immune response after a noise-induced hearing loss should be applied as soon as possible.
Collapse
Affiliation(s)
- Seung Ho Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Haeng Ran Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Suk Sim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Seong Hoon Bae
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Seong Hoon Bae,
| |
Collapse
|
48
|
Miwa T, Okano T. Role of Inner Ear Macrophages and Autoimmune/Autoinflammatory Mechanisms in the Pathophysiology of Inner Ear Disease. Front Neurol 2022; 13:861992. [PMID: 35463143 PMCID: PMC9019483 DOI: 10.3389/fneur.2022.861992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 12/02/2022] Open
Abstract
Macrophages play important roles in tissue homeostasis and inflammation. Recent studies have revealed that macrophages are dispersed in the inner ear and may play essential roles in eliciting an immune response. Autoinflammatory diseases comprise a family of immune-mediated diseases, some of which involve sensorineural hearing loss, indicating that similar mechanisms may underlie the pathogenesis of immune-mediated hearing loss. Autoimmune inner ear disease (AIED) is an idiopathic disorder characterized by unexpected hearing loss. Tissue macrophages in the inner ear represent a potential target for modulation of the local immune response in patients with AIED/autoinflammatory diseases. In this review, we describe the relationship between cochlear macrophages and the pathophysiology of AIED/autoinflammatory disease.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Otolaryngology-Head and Neck Surgery, Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
- *Correspondence: Toru Miwa
| | - Takayuki Okano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
49
|
Shin SH, Bae SH, Yoo JE, Jung J, Choi JY. Inflammatory monocytes infiltrate the spiral ligament and migrate to the basilar membrane after noise exposure. Clin Exp Otorhinolaryngol 2022; 15:153-159. [PMID: 35255664 PMCID: PMC9149233 DOI: 10.21053/ceo.2021.00857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives Noise exposure leads to an increase in the macrophage population. This increment is thought to be caused by the transformation of infiltrated monocytes into macrophages rather than by proliferation of the cochlear resident macrophages. However, studies on infiltrated monocytes in the cochlea are scarce. Thus, we aimed to investigate the infiltration of monocytes and their transformation into macrophages after noise exposure. Methods In wild-type and CX3CR1+/GFP C57/B6 mice, inflammatory monocytes were identified by immunofluorescence of mouse cochlear cells. The findings were confirmed and quantitated by flow cytometry. Results One day after noise exposure, monocytes were identified in the spiral ligament. Flow cytometric analysis confirmed that the monocyte population peaked on post-noise exposure day 1 and decreased thereafter. On day 3 after noise exposure, amoeboid-type macrophages increased in the crista basilaris, and on day 5, they spread to the basilar membrane. Conclusion Infiltrated monocytes were successfully observed 1 day after noise exposure, preceding the increase in the macrophage population. This finding supports the proposal that infiltrated monocytes transform into macrophages.
Collapse
|
50
|
Mahshid SS, Higazi AM, Ogier JM, Dabdoub A. Extracellular Biomarkers of Inner Ear Disease and Their Potential for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104033. [PMID: 34957708 PMCID: PMC8948604 DOI: 10.1002/advs.202104033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Rapid diagnostic testing has become a mainstay of patient care, using easily obtained samples such as blood or urine to facilitate sample analysis at the point-of-care. These tests rely on the detection of disease or organ-specific biomarkers that have been well characterized for a particular disorder. Currently, there is no rapid diagnostic test for hearing loss, which is one of the most prevalent sensory disorders in the world. In this review, potential biomarkers for inner ear-related disorders, their detection, and quantification in bodily fluids are described. The authors discuss lesion-specific changes in cell-free deoxyribonucleic acids (DNAs), micro-ribonucleic acids (microRNAs), proteins, and metabolites, in addition to recent biosensor advances that may facilitate rapid and precise detection of these molecules. Ultimately, these biomarkers may be used to provide accurate diagnostics regarding the site of damage in the inner ear, providing practical information for individualized therapy and assessment of treatment efficacy in the future.
Collapse
Affiliation(s)
- Sahar Sadat Mahshid
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
| | - Aliaa Monir Higazi
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
- Department of Clinical and Chemical PathologyMinia UniversityMinia61519Egypt
| | - Jacqueline Michelle Ogier
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
| | - Alain Dabdoub
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
- Department of Otolaryngology–Head & Neck SurgeryUniversity of TorontoTorontoONM5G 2C4Canada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM5S 1A8Canada
| |
Collapse
|