1
|
Chamley RR, Holland JL, Collins J, Pierce K, Watson WD, Green PG, O'Brien D, O'Sullivan O, Barker-Davies R, Ladlow P, Neubauer S, Bennett A, Nicol ED, Holdsworth DA, Rider OJ. Exercise capacity following SARS-CoV-2 infection is related to changes in cardiovascular and lung function in military personnel. Int J Cardiol 2024; 395:131594. [PMID: 37979795 DOI: 10.1016/j.ijcard.2023.131594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Since the COVID-19 pandemic, post-COVID syndrome (persistent symptoms/complications lasting >12 weeks) continues to pose medical and economic challenges. In military personnel, where optimal fitness is crucial, prolonged limitations affecting their ability to perform duties has occupational and psychological implications, impacting deployability and retention. Research investigating post-COVID syndrome exercise capacity and cardiopulmonary effects in military personnel is limited. METHODS UK military personnel were recruited from the Defence Medical Services COVID-19 Recovery Service. Participants were separated into healthy controls without prior SARS-CoV-2 infection (group one), and participants with prolonged symptoms (>12 weeks) after mild-moderate (community-treated) and severe (hospitalised) COVID-19 illness (group 2 and 3, respectively). Participants underwent cardiac magnetic resonance imaging (CMR) and spectroscopy, echocardiography, pulmonary function testing and cardiopulmonary exercise testing (CPET). RESULTS 113 participants were recruited. When compared in ordered groups (one to three), CPET showed stepwise decreases in peak work, work at VT1 and VO2 max (all p < 0.01). There were stepwise decreases in FVC (p = 0.002), FEV1 (p = 0.005), TLC (p = 0.002), VA (p < 0.001), and DLCO (p < 0.002), and a stepwise increase in A-a gradient (p < 0.001). CMR showed stepwise decreases in LV/RV volumes, stroke volumes and LV mass (LVEDVi/RVEDVi p < 0.001; LVSV p = 0.003; RVSV p = 0.001; LV mass index p = 0.049). CONCLUSION In an active military population, post-COVID syndrome is linked to subclinical changes in maximal exercise capacity. Alongside disease specific changes, many of these findings share the phenotype of deconditioning following prolonged illness or bedrest. Partitioning of the relative contribution of pathological changes from COVID-19 and deconditioning is challenging in post-COVID syndrome recovery.
Collapse
Affiliation(s)
- Rebecca R Chamley
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom; Defence COVID-19 Recovery Service, Stanford Hall, Loughborough, UK; Academic Department of Military Medicine, Birmingham, UK; Royal Centre for Defence Medicine (South), Oxford, UK
| | - Jennifer L Holland
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | - Jonathan Collins
- Defence COVID-19 Recovery Service, Stanford Hall, Loughborough, UK; Royal Centre for Defence Medicine (South), Oxford, UK
| | - Kayleigh Pierce
- Defence COVID-19 Recovery Service, Stanford Hall, Loughborough, UK; Royal Centre for Defence Medicine (South), Oxford, UK
| | - William D Watson
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | - Peregrine G Green
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | - David O'Brien
- Defence COVID-19 Recovery Service, Stanford Hall, Loughborough, UK; Royal Centre for Defence Medicine (South), Oxford, UK
| | - Oliver O'Sullivan
- Defence COVID-19 Recovery Service, Stanford Hall, Loughborough, UK; Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, UK; Royal Centre for Defence Medicine (South), Oxford, UK
| | - Robert Barker-Davies
- Defence COVID-19 Recovery Service, Stanford Hall, Loughborough, UK; Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, UK; School of Sport Exercise and Health Sciences, Loughborough University, Loughborough, UK.; Royal Centre for Defence Medicine (South), Oxford, UK
| | - Peter Ladlow
- Defence COVID-19 Recovery Service, Stanford Hall, Loughborough, UK; Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, UK; Royal Centre for Defence Medicine (South), Oxford, UK
| | - Stefan Neubauer
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | - Alexander Bennett
- Defence COVID-19 Recovery Service, Stanford Hall, Loughborough, UK; Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, UK; Departments of Cardiology and Radiology, Royal Brompton Hospital, Sydney Street, London, UK; Royal Centre for Defence Medicine (South), Oxford, UK
| | - Edward D Nicol
- Defence COVID-19 Recovery Service, Stanford Hall, Loughborough, UK; Departments of Cardiology and Radiology, Royal Brompton Hospital, Sydney Street, London, UK; School of Biomedical Engineering and Imaging Sciences, Kings College, London, United Kingdom; Royal Centre for Defence Medicine (South), Oxford, UK
| | - David A Holdsworth
- Defence COVID-19 Recovery Service, Stanford Hall, Loughborough, UK; Academic Department of Military Medicine, Birmingham, UK; Royal Centre for Defence Medicine (South), Oxford, UK
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom.
| |
Collapse
|
2
|
Giraldo-Vallejo JE, Cardona-Guzmán MÁ, Rodríguez-Alcivar EJ, Kočí J, Petro JL, Kreider RB, Cannataro R, Bonilla DA. Nutritional Strategies in the Rehabilitation of Musculoskeletal Injuries in Athletes: A Systematic Integrative Review. Nutrients 2023; 15:819. [PMID: 36839176 PMCID: PMC9965375 DOI: 10.3390/nu15040819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
It is estimated that three to five million sports injuries occur worldwide each year. The highest incidence is reported during competition periods with mainly affectation of the musculoskeletal tissue. For appropriate nutritional management and correct use of nutritional supplements, it is important to individualize based on clinical effects and know the adaptive response during the rehabilitation phase after a sports injury in athletes. Therefore, the aim of this PRISMA in Exercise, Rehabilitation, Sport Medicine and Sports Science PERSiST-based systematic integrative review was to perform an update on nutritional strategies during the rehabilitation phase of musculoskeletal injuries in elite athletes. After searching the following databases: PubMed/Medline, Scopus, PEDro, and Google Scholar, a total of 18 studies met the inclusion criteria (Price Index: 66.6%). The risk of bias assessment for randomized controlled trials was performed using the RoB 2.0 tool while review articles were evaluated using the AMSTAR 2.0 items. Based on the main findings of the selected studies, nutritional strategies that benefit the rehabilitation process in injured athletes include balanced energy intake, and a high-protein and carbohydrate-rich diet. Supportive supervision should be provided to avoid low energy availability. The potential of supplementation with collagen, creatine monohydrate, omega-3 (fish oils), and vitamin D requires further research although the effects are quite promising. It is worth noting the lack of clinical research in injured athletes and the higher number of reviews in the last 10 years. After analyzing the current quantitative and non-quantitative evidence, we encourage researchers to conduct further clinical research studies evaluating doses of the discussed nutrients during the rehabilitation process to confirm findings, but also follow international guidelines at the time to review scientific literature.
Collapse
Affiliation(s)
- John E. Giraldo-Vallejo
- Grupo de Investigación NUTRAL, Facultad de Ciencias de Nutrición y Alimentos, Universidad CES, Medellín 050021, Colombia
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
| | - Miguel Á. Cardona-Guzmán
- Grupo de Investigación NUTRAL, Facultad de Ciencias de Nutrición y Alimentos, Universidad CES, Medellín 050021, Colombia
| | - Ericka J. Rodríguez-Alcivar
- Grupo de Investigación NUTRAL, Facultad de Ciencias de Nutrición y Alimentos, Universidad CES, Medellín 050021, Colombia
| | - Jana Kočí
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
- Department of Education, Faculty of Education, Charles University, 11636 Prague, Czech Republic
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA
| | - Roberto Cannataro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
- Galascreen Laboratories, Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Diego A. Bonilla
- Grupo de Investigación NUTRAL, Facultad de Ciencias de Nutrición y Alimentos, Universidad CES, Medellín 050021, Colombia
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
- Department of Education, Faculty of Education, Charles University, 11636 Prague, Czech Republic
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
3
|
Robin A, Wang L, Custaud MA, Liu J, Yuan M, Li Z, Lloret JC, Liu S, Dai X, Zhang J, Lv K, Li W, Gauquelin-Koch G, Wang H, Li K, Li X, Qu L, Navasiolava N, Li Y. Running vs. resistance exercise to counteract deconditioning induced by 90-day head-down bedrest. Front Physiol 2022; 13:902983. [PMID: 36117704 PMCID: PMC9473647 DOI: 10.3389/fphys.2022.902983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Spaceflight is associated with enhanced inactivity, resulting in muscular and cardiovascular deconditioning. Although physical exercise is commonly used as a countermeasure, separate applications of running and resistive exercise modalities have never been directly compared during long-term bedrest. This study aimed to compare the effectiveness of two exercise countermeasure programs, running and resistance training, applied separately, for counteracting cardiovascular deconditioning induced by 90-day head-down bedrest (HDBR). Maximal oxygen uptake (V˙O2max), orthostatic tolerance, continuous ECG and blood pressure (BP), body composition, and leg circumferences were measured in the control group (CON: n = 8), running exercise group (RUN: n = 7), and resistive exercise group (RES: n = 7). After HDBR, the decrease in V˙O2max was prevented by RUN countermeasure and limited by RES countermeasure (−26% in CON p < 0.05, −15% in RES p < 0.05, and −4% in RUN ns). Subjects demonstrated surprisingly modest orthostatic tolerance decrease for different groups, including controls. Lean mass loss was limited by RES and RUN protocols (−10% in CON vs. −5% to 6% in RES and RUN). Both countermeasures prevented the loss in thigh circumference (−7% in CON p < 0.05, −2% in RES ns, and −0.6% in RUN ns) and limited loss in calf circumference (−10% in CON vs. −7% in RES vs. −5% in RUN). Day–night variations in systolic BP were preserved during HDBR. Decrease in V˙O2max positively correlated with decrease in thigh (r = 0.54 and p = 0.009) and calf (r = 0.52 and p = 0.012) circumferences. During this 90-day strict HDBR, running exercise successfully preserved V˙O2max, and resistance exercise limited its decline. Both countermeasures limited loss in global lean mass and leg circumferences. The V˙O2max reduction seems to be conditioned more by muscular than by cardiovascular parameters.
Collapse
Affiliation(s)
- Adrien Robin
- Univ Angers, CHU Angers, CRC, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Angers, France
| | - Linjie Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Marc-Antoine Custaud
- Univ Angers, CHU Angers, CRC, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Angers, France
| | - Jiexin Liu
- Beijing Tiantan Hospital, Medical Capital University, Beijing, China
| | - Min Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zhili Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | | | - Shujuan Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoqian Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianfeng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ke Lv
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wenjiong Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | | | - Huijuan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Kai Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaotao Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Nastassia Navasiolava
- Univ Angers, CHU Angers, CRC, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Angers, France
- *Correspondence: Nastassia Navasiolava, ; Yinghui Li,
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Nastassia Navasiolava, ; Yinghui Li,
| |
Collapse
|
4
|
Hedge ET, Patterson CA, Mastrandrea CJ, Sonjak V, Hajj-Boutros G, Faust A, Morais JA, Hughson RL. Implementation of exercise countermeasures during spaceflight and microgravity analogue studies: Developing countermeasure protocols for bedrest in older adults (BROA). Front Physiol 2022; 13:928313. [PMID: 36017336 PMCID: PMC9395735 DOI: 10.3389/fphys.2022.928313] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in the development of countermeasures to attenuate the negative consequences of prolonged exposure to microgravity on astronauts’ bodies. Deconditioning of several organ systems during flight includes losses to cardiorespiratory fitness, muscle mass, bone density and strength. Similar deconditioning also occurs during prolonged bedrest; any protracted time immobile or inactive, especially for unwell older adults (e.g., confined to hospital beds), can lead to similar detrimental health consequences. Due to limitations in physiological research in space, the six-degree head-down tilt bedrest protocol was developed as ground-based analogue to spaceflight. A variety of exercise countermeasures have been tested as interventions to limit detrimental changes and physiological deconditioning of the musculoskeletal and cardiovascular systems. The Canadian Institutes of Health Research and the Canadian Space Agency recently provided funding for research focused on Understanding the Health Impact of Inactivity to study the efficacy of exercise countermeasures in a 14-day randomized clinical trial of six-degree head-down tilt bedrest study in older adults aged 55–65 years old (BROA). Here we will describe the development of a multi-modality countermeasure protocol for the BROA campaign that includes upper- and lower-body resistance exercise and head-down tilt cycle ergometry (high-intensity interval and continuous aerobic exercise training). We provide reasoning for the choice of these modalities following review of the latest available information on exercise as a countermeasure for inactivity and spaceflight-related deconditioning. In summary, this paper sets out to review up-to-date exercise countermeasure research from spaceflight and head-down bedrest studies, whilst providing support for the proposed research countermeasure protocols developed for the bedrest study in older adults.
Collapse
Affiliation(s)
- Eric T. Hedge
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | | | | | - Vita Sonjak
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Guy Hajj-Boutros
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andréa Faust
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - José A. Morais
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
- Division of Geriatric Medicine, McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Richard L. Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- *Correspondence: Richard L. Hughson,
| |
Collapse
|
5
|
Zuccarelli L, Baldassarre G, Magnesa B, Degano C, Comelli M, Gasparini M, Manferdelli G, Marzorati M, Mavelli I, Pilotto A, Porcelli S, Rasica L, Šimunič B, Pišot R, Narici M, Grassi B. Peripheral impairments of oxidative metabolism after a 10-day bed rest are upstream of mitochondrial respiration. J Physiol 2021; 599:4813-4829. [PMID: 34505290 PMCID: PMC9293208 DOI: 10.1113/jp281800] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Abstract In order to identify peripheral biomarkers of impaired oxidative metabolism during exercise following a 10‐day bed rest, 10 males performed an incremental exercise (to determine peak pulmonary V̇O2 (V̇O2p)) and moderate‐intensity exercises, before (PRE) and after (POST) bed rest. Blood flow response was evaluated in the common femoral artery by Eco‐Doppler during 1 min of passive leg movements (PLM). The intramuscular matching between O2 delivery and O2 utilization was evaluated by near‐infrared spectroscopy (NIRS). Mitochondrial respiration was evaluated ex vivo by high‐resolution respirometry in isolated muscle fibres, and in vivo by NIRS by the evaluation of skeletal muscle V̇O2 (V̇O2m) recovery kinetics. Resting V̇O2m was estimated by NIRS. Peak V̇O2p was lower in POST vs. PRE. The area under the blood flow vs. time curve during PLM was smaller (P = 0.03) in POST (274 ± 233 mL) vs. PRE (427 ± 291). An increased (P = 0.03) overshoot of muscle deoxygenation during a metabolic transition was identified in POST. Skeletal muscle citrate synthase activity was not different (P = 0.11) in POST (131 ± 16 nmol min–1 mg–1) vs. PRE (138 ± 19). Maximal ADP‐stimulated mitochondrial respiration (66 ± 18 pmol s–1 mg–1 (POST) vs. 72 ± 14 (PRE), P = 0.41) was not affected by bed rest. Apparent Km for ADP sensitivity of mitochondrial respiration was reduced in POST vs. PRE (P = 0.04). The V̇O2m recovery time constant was not different (P = 0.79) in POST (22 ± 6 s) vs. PRE (22 ± 6). Resting V̇O2m was reduced by 25% in POST vs. PRE (P = 0.006). Microvascular‐endothelial function was impaired following a 10‐day bed rest, whereas mitochondrial mass and function (both in vivo and ex vivo) were unaffected or slightly enhanced. Key points Ten days of horizontal bed rest impaired in vivo oxidative function during exercise. Microvascular impairments were identified by different methods. Mitochondrial mass and mitochondrial function (evaluated both in vivo and ex vivo) were unchanged or even improved (i.e. enhanced mitochondrial sensitivity to submaximal [ADP]). Resting muscle oxygen uptake was significantly lower following bed rest, suggesting that muscle catabolic processes induced by bed rest/inactivity are less energy‐consuming than anabolic ones.
Collapse
Affiliation(s)
| | | | | | | | - Marina Comelli
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Giorgio Manferdelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Mauro Marzorati
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Irene Mavelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Andrea Pilotto
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Simone Porcelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Letizia Rasica
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Boštjan Šimunič
- Institute of Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Rado Pišot
- Institute of Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
6
|
Del Torto A, Capelli C, Peressutti R, di Silvestre A, Livi U, Nalli C, Sponga S, Amici G, Baccarani U, Lazzer S. Effect of small vs large muscle mass endurance training on maximal oxygen uptake in organ transplanted recipients. Appl Physiol Nutr Metab 2021; 46:994-1003. [PMID: 34315281 DOI: 10.1139/apnm-2020-0987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maximal oxygen consumption (V̇O2max) is impaired in heart (HTx), kidney (KTx), and liver (LTx) transplanted recipients and the contribution of the cardiovascular, central, and peripheral (muscular) factors in affecting V̇O2max improvement after endurance training (ET) has never been quantified in these patients. ET protocols involving single leg cycling (SL) elicit larger improvements of the peripheral factors affecting O2 diffusion and utilization than the double leg (DL) cycling ET. Therefore, this study aimed to compare the effects of SL-ET vs DL-ET on V̇O2max. We determined the DL-V̇O2max and maximal cardiac output before and after 24 SL-ET vs DL-ET sessions on 33 patients (HTx = 13, KTx = 11 and LTx = 9). The DL-V̇O2max increased by 13.8% ± 8.7 (p < 0.001) following the SL-ET, due to a larger maximal O2 systemic extraction; meanwhile, V̇O2max in DL-ET increased by 18.6% ± 12.7 (p < 0.001) because of concomitant central and peripheral adaptations. We speculate that in transplanted recipients, SL-ET is as effective as DL-ET to improve V̇O2max and that the impaired peripheral O2 extraction and/or utilization play an important role in limiting V̇O2max in these types of patients. Novelty: SL-ET increases V̇O2max in transplanted recipients because of improved peripheral O2 extraction and/or utilization. SL-ET is as successful as DL-ET to improve the cardiorespiratory fitness in transplanted recipients. The model of V̇O2max limitation indicates the peripheral factors as a remarkable limitation to the V̇O2max in these patients.
Collapse
Affiliation(s)
- Alessio Del Torto
- Department of Medicine, University of Udine, Udine, Italy.,School of Sport Sciences, University of Udine, Udine, Italy
| | - Carlo Capelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Roberto Peressutti
- Regional Transplantation Centre, Friuli Venezia Giulia Region, Udine, Italy
| | | | - Ugolino Livi
- Department of Medicine, University of Udine, Udine, Italy.,Cardiac Surgery Unit, University Hospital of Udine, Udine, Italy
| | - Chiara Nalli
- Department of Medicine, University of Udine, Udine, Italy.,Cardiac Surgery Unit, University Hospital of Udine, Udine, Italy
| | - Sandro Sponga
- Department of Medicine, University of Udine, Udine, Italy.,Cardiac Surgery Unit, University Hospital of Udine, Udine, Italy
| | - Gianpaolo Amici
- Nephrology and Dialysis Unit, San Daniele del Friuli Hospital, Udine, Italy
| | - Umberto Baccarani
- Department of Medicine, University of Udine, Udine, Italy.,Liver-Kidney Transplant Unit, University Hospital of Udine, Udine, Italy
| | - Stefano Lazzer
- Department of Medicine, University of Udine, Udine, Italy.,School of Sport Sciences, University of Udine, Udine, Italy
| |
Collapse
|
7
|
Fagoni N, Ferretti G, Piva S, Barbieri S, Rasulo F, Latronico N, Gobbo M. A reappraisal of the strength-duration test to assess neuromuscular impairment of critically ill patients. J Electromyogr Kinesiol 2021; 59:102555. [PMID: 34000696 DOI: 10.1016/j.jelekin.2021.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Neuromuscular impairment (NMI) affects almost half of critically ill patients. The purpose was to investigate the role of neuromuscular electrical stimulation (NMES) to gain more insight into the nature of the NMI associated with ICU admission. To this aim, we analyzed the strength-duration (S-D) curves of the rectus femoris muscles of ICU patients compared to healthy volunteers. METHODS S-D curves were recorded from 44 healthy volunteers and 29 ICU patients. Three electrophysiological parameters were used to classify the neuromuscular function, from grade 0 (normal function), to grade 3 (no evocable muscle contraction). ICU patients underwent electroneurographic peroneal nerve testing (PENT) to analyze NMI by electroneurography (ENG). RESULTS Three patients were classified as Grade 0; nine as mild NMI (Grade 1), 13 as Grade 2, and four showed unexcitable muscles (Grade 3). Mean CMAP amplitudes were 6.1, 3.4, 2.9 and 0.81 mV from Grade 0 to Grade 3, respectively. CMAP was inversely correlated to NMI grade (-1.7 mV, R2 = 0.946, p < 0.05). CONCLUSIONS The normative parameters of the S-D curves obtained by NMES in healthy volunteers allowed identification of NMI in ICU patients. NMES was an affordable tool to evaluate NMI in ICU patients, providing additional information to that obtained by ENG.
Collapse
Affiliation(s)
- Nazzareno Fagoni
- Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Switzerland; AAT Brescia, Azienda Regionale Emergenza Urgenza (AREU), ASST Spedali Civili di Brescia, Italy.
| | - Guido Ferretti
- Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Switzerland; Department of Molecular and Translational Medicine, University of Brescia, Italy; Laboratory of Integrative and Clinical Physiology (FCI lab), University of Brescia, Italy
| | - Simone Piva
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Italy; Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili of Brescia, Italy
| | - Silvia Barbieri
- Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili of Brescia, Italy
| | - Frank Rasulo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Italy; Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili of Brescia, Italy
| | - Nicola Latronico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Italy; Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili of Brescia, Italy
| | - Massimiliano Gobbo
- Laboratory of Integrative and Clinical Physiology (FCI lab), University of Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Italy
| |
Collapse
|
8
|
Kramer A, Venegas-Carro M, Zange J, Sies W, Maffiuletti NA, Gruber M, Degens H, Moreno-Villanueva M, Mulder E. Daily 30-min exposure to artificial gravity during 60 days of bed rest does not maintain aerobic exercise capacity but mitigates some deteriorations of muscle function: results from the AGBRESA RCT. Eur J Appl Physiol 2021; 121:2015-2026. [PMID: 33811556 PMCID: PMC8192329 DOI: 10.1007/s00421-021-04673-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/28/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Spaceflight impairs physical capacity. Here we assessed the protective effect of artificial gravity (AG) on aerobic exercise capacity and muscle function during bed rest, a spaceflight analogue. METHODS 24 participants (33 ± 9 years, 175 ± 9 cm, 74 ± 10 kg, 8 women) were randomly allocated to one of three groups: continuous AG (cAG), intermittent AG (iAG) or control (CTRL). All participants were subjected to 60 days of six-degree head-down tilt bed rest, and subjects of the intervention groups completed 30 min of centrifugation per day: cAG continuously and iAG for 6 × 5 min, with an acceleration of 1g at the center of mass. Physical capacity was assessed before and after bed rest via maximal voluntary contractions, cycling spiroergometry, and countermovement jumps. RESULTS AG had no significant effect on aerobic exercise capacity, flexor muscle function and isometric knee extension strength or rate of force development (RFD). However, AG mitigated the effects of bed rest on jumping power (group * time interaction of the rmANOVA p < 0.001; iAG - 25%, cAG - 26%, CTRL - 33%), plantar flexion strength (group * time p = 0.003; iAG - 35%, cAG - 31%, CTRL - 48%) and plantar flexion RFD (group * time p = 0.020; iAG - 28%, cAG - 12%, CTRL - 40%). Women showed more pronounced losses than men in jumping power (p < 0.001) and knee extension strength (p = 0.010). CONCLUSION The AG protocols were not suitable to maintain aerobic exercise capacity, probably due to the very low cardiorespiratory demand of this intervention. However, they mitigated some losses in muscle function, potentially due to the low-intensity muscle contractions during centrifugation used to avoid presyncope.
Collapse
Affiliation(s)
- Andreas Kramer
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany.
| | - María Venegas-Carro
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Wolfram Sies
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - María Moreno-Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, 78457, Konstanz, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
9
|
Sagarra-Romero L, Viñas-Barros A. COVID-19: Short and Long-Term Effects of Hospitalization on Muscular Weakness in the Elderly. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8715. [PMID: 33255233 PMCID: PMC7727674 DOI: 10.3390/ijerph17238715] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has recently been the cause of a global public health emergency. Frequently, elderly patients experience a marked loss of muscle mass and strength during hospitalization, resulting in a significant functional decline. This paper describes the impact of prolonged immobilization and current pharmacological treatments on muscular metabolism. In addition, the scientific evidence for an early strength intervention, neuromuscular electrical stimulation or the application of heat therapy during hospitalization to help prevent COVID-19 functional sequels is analyzed. This review remarks the need to: (1) determine which potential pharmacological interventions have a negative impact on muscle quality and quantity; (2) define a feasible and reliable pharmacological protocol to achieve a balance between desired and undesired medication effects in the treatment of this novel disease; (3) implement practical strategies to reduce muscle weakness during bed rest hospitalization and (4) develop a specific, early and safe protocol-based care of functional interventions for older adults affected by COVID-19 during and after hospitalization.
Collapse
|
10
|
Kenny HC, Tascher G, Ziemianin A, Rudwill F, Zahariev A, Chery I, Gauquelin-Koch G, Barielle MP, Heer M, Blanc S, O'Gorman DJ, Bertile F. Effectiveness of Resistive Vibration Exercise and Whey Protein Supplementation Plus Alkaline Salt on the Skeletal Muscle Proteome Following 21 Days of Bed Rest in Healthy Males. J Proteome Res 2020; 19:3438-3451. [PMID: 32609523 DOI: 10.1021/acs.jproteome.0c00256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Muscle atrophy is a deleterious consequence of physical inactivity and is associated with increased morbidity and mortality. The aim of this study was to decipher the mechanisms involved in disuse muscle atrophy in eight healthy men using a 21 day bed rest with a cross-over design (control, with resistive vibration exercise (RVE), or RVE combined with whey protein supplementation and an alkaline salt (NEX)). The main physiological findings show a significant reduction in whole-body fat-free mass (CON -4.1%, RVE -4.3%, NEX -2.7%, p < 0.05), maximal oxygen consumption (CON -20.5%, RVE -6.46%, NEX -7.9%, p < 0.05), and maximal voluntary contraction (CON -15%, RVE -12%, and NEX -9.5%, p < 0.05) and a reduction in mitochondrial enzyme activity (CON -30.7%, RVE -31.3%, NEX -17%, p < 0.05). The benefits of nutrition and exercise countermeasure were evident with an increase in leg lean mass (CON -1.7%, RVE +8.9%, NEX +15%, p < 0.05). Changes to the vastus lateralis muscle proteome were characterized using mass spectrometry-based label-free quantitative proteomics, the findings of which suggest alterations to cell metabolism, mitochondrial metabolism, protein synthesis, and degradation pathways during bed rest. The observed changes were partially mitigated during RVE, but there were no significant pathway changes during the NEX trial. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD006882. In conclusion, resistive vibration exercise, when combined with whey/alkalizing salt supplementation, could be an effective strategy to prevent skeletal muscle protein changes, muscle atrophy, and insulin sensitivity during medium duration bed rest.
Collapse
Affiliation(s)
- Helena C Kenny
- 3U Diabetes Partnership, School of Health and Human Performance, Dublin City University, Dublin 9, Ireland.,National Institute for Cellular and Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Georg Tascher
- Département Sciences Analytiques, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg 67087, France.,Centre National d'Etudes Spatiales (CNES), Paris 75001, France.,Institute of Biochemistry II, Goethe University Hospital, D-60590 Frankfurt am Main, Germany
| | - Anna Ziemianin
- Département Sciences Analytiques, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg 67087, France.,Centre National d'Etudes Spatiales (CNES), Paris 75001, France
| | - Floriane Rudwill
- Départment d'Ecologie, Physiologie et Ethologie, Université de Strasbourg, Institut Pluridisiplinaire Hubert Curien. CNRS, UMR 7178, Strasbourg 67087, France
| | - Alexandre Zahariev
- Départment d'Ecologie, Physiologie et Ethologie, Université de Strasbourg, Institut Pluridisiplinaire Hubert Curien. CNRS, UMR 7178, Strasbourg 67087, France
| | - Isabelle Chery
- Départment d'Ecologie, Physiologie et Ethologie, Université de Strasbourg, Institut Pluridisiplinaire Hubert Curien. CNRS, UMR 7178, Strasbourg 67087, France
| | | | | | - Martina Heer
- Profil, Hellersbergstrasse 9, Neuss D-41460, Germany.,Institute of Nutrition and Food Sciences, University of Bonn, Bonn D-53113, Germany
| | - Stephane Blanc
- Départment d'Ecologie, Physiologie et Ethologie, Université de Strasbourg, Institut Pluridisiplinaire Hubert Curien. CNRS, UMR 7178, Strasbourg 67087, France
| | - Donal J O'Gorman
- 3U Diabetes Partnership, School of Health and Human Performance, Dublin City University, Dublin 9, Ireland.,National Institute for Cellular and Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Fabrice Bertile
- Département Sciences Analytiques, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg 67087, France
| |
Collapse
|
11
|
Ramos-Álvarez JJ, Lorenzo-Capellá I, Calderón-Montero FJ. Disadvantages of Automated Respiratory Gas Exchange Analyzers. Front Physiol 2020; 11:19. [PMID: 32116743 PMCID: PMC7020608 DOI: 10.3389/fphys.2020.00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 01/13/2020] [Indexed: 11/16/2022] Open
Abstract
The use of automated gas exchange analysis systems in exercise studies is common throughout the industrialized world and are frequently used in sports medicine laboratories for the measurement of maximal oxygen uptake (VO2max), as an integrative parameter that allows the physical condition to be assessed, in spite of its limitations. Actually, the fundamental principles behind the measurement of respiratory gas exchange (RGE) have not changed for a century. It was used a manual Douglas bag method together with separate chemical analyses. The need for faster and more efficient techniques, has conditioned the traditional procedures and determined the emergence of automated systems. However, the validity and reliability of all these different systems is not well known. The common features associates with these systems, also have disadvantages that must be evaluated at the time of the acquisition of an automated equipment: (1) regular quality control checks, which entails other added economic costs, (2) the validity and reliability of the results, which it is necessary to verify, and (3) the user does not know the equations that determine the values of oxygen consumption and carbon dioxide production. This work aims to clarify the disadvantages of these automated systems. At maximum intensities, the variation of VO2max or VO2peak can be very significant in athletes and even more relevant in sick people undergoing a training program. Therefore, considerable care is needed when comparing RGE data with automated systems.
Collapse
|
12
|
Pediatric Traumatic Brain Injury and Exercise Medicine: A Narrative Review. Pediatr Exerc Sci 2019; 31:393-400. [PMID: 30955443 DOI: 10.1123/pes.2017-0286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 11/18/2022]
Abstract
The multidisciplinary field of pediatric traumatic brain injury (TBI) and exercise medicine is of growing importance. There is active study into the diagnostic and therapeutic potential of exercise in pediatric TBI as well as the effects of TBI on postinjury fitness. With the evidence-based growing, a literature review can help establish the state of the science and inform future research. Therefore, the authors performed a narrative review (based on a search of 6 health sciences databases) to summarize evidence on pediatric TBI and cardiorespiratory fitness, muscular fitness and neuromotor control, and obesity. To date, studies related to cardiorespiratory fitness have centered on exercise tolerance and readiness to return to play, and indicate that protracted rest may not facilitate symptom recovery; this suggests a role for exercise in concussion management. Furthermore, strength and gait may be impaired following pediatric brain injury, and interventions designed to train these impairments may lead to their improvement. Pediatric brain injury can also lead to changes in body composition (which may be related to poorer cognitive recovery), but additional research is required to better understand such associations. This narrative review of pediatric TBI and exercise medicine can serve as a reference for researchers and clinicians alike.
Collapse
|
13
|
Valenzuela PL, Castillo-García A, Morales JS, Izquierdo M, Serra-Rexach JA, Santos-Lozano A, Lucia A. Physical Exercise in the Oldest Old. Compr Physiol 2019; 9:1281-1304. [PMID: 31688965 DOI: 10.1002/cphy.c190002] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Societies are progressively aging, with the oldest old (i.e., those aged >80-85 years) being the most rapidly expanding population segment. However, advanced aging comes at a price, as it is associated with an increased incidence of the so-called age-related conditions, including a greater risk for loss of functional independence. How to combat sarcopenia, frailty, and overall intrinsic capacity decline in the elderly is a major challenge for modern medicine, and exercise appears to be a potential solution. In this article, we first summarize the physiological mechanisms underlying the age-related deterioration in intrinsic capacity, particularly regarding those phenotypes related to functional decline. The main methods available for the physical assessment of the oldest old are then described, and finally the multisystem benefits that exercise (or "exercise mimetics" in those situations in which volitional exercise is not feasible) can provide to this population segment are reviewed. In summary, lifetime physical exercise can help to attenuate the loss of many of the properties affected by aging, especially when the latter is accompanied by an inactive lifestyle and benefits can also be obtained in frail individuals who start exercising at an advanced age. Multicomponent programs combining mainly aerobic and resistance training should be included in the oldest old, particularly during disuse situations such as hospitalization. However, evidence is still needed to support the effectiveness of passive physical strategies including neuromuscular electrical stimulation or vibration for the prevention of disuse-induced negative adaptations in those oldest old people who are unable to do physical exercise. © 2019 American Physiological Society. Compr Physiol 9:1281-1304, 2019.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Department of Systems Biology, University of Alcalá, Madrid, Spain
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain
| | | | - Javier S Morales
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Mikel Izquierdo
- Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Health Sciences, Public University of Navarra, Navarrabiomed, Idisna, Pamplona, Spain
| | - José A Serra-Rexach
- Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Geriatric, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH, European University Miguel de Cervantes, Valladolid, Spain and Research Institute Hospital 12 de Octubre (ì+12'), Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
14
|
Kehler DS, Theou O, Rockwood K. Bed rest and accelerated aging in relation to the musculoskeletal and cardiovascular systems and frailty biomarkers: A review. Exp Gerontol 2019; 124:110643. [PMID: 31255732 DOI: 10.1016/j.exger.2019.110643] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022]
Abstract
Prolonged bed rest and lifelong physical inactivity cause deleterious effects to multiple physiological systems that appear to hasten aging processes. Many such changes are similar to those seen with microgravity in space, but at a much faster rate. Head down tilt bed rest models are used to study whole-body changes that occur with spaceflight. We propose that bed rest can be used to quantify accelerated human aging in relation to frailty. In particular, frailty as a measure of the accumulation of deficits estimates the variability in aging across systems, and moves away from the traditional single-system approach. Here, we provide an overview of the impact of bed rest on the musculoskeletal and cardiovascular systems as well as frailty-related biological markers and inflammatory cytokines. We also propose future inquiries to study the accumulation of deficits with head down bed rest and bed rest in the clinical setting, specifically to understand how unrepaired and unremoved subclinical and subcellular damage give rise to clinically observable health problems.
Collapse
Affiliation(s)
- D S Kehler
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - O Theou
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - K Rockwood
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
15
|
Physical strategies to prevent disuse-induced functional decline in the elderly. Ageing Res Rev 2018; 47:80-88. [PMID: 30031068 DOI: 10.1016/j.arr.2018.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/08/2018] [Accepted: 07/09/2018] [Indexed: 01/07/2023]
Abstract
Disuse situations can have serious adverse health consequences in the elderly, including mainly functional impairment with subsequent increase in the risk of falls or morbimortality. The present review provides clinicians and care givers with detailed and practical information on the feasibility and effectiveness of physical strategies that are currently available to prevent or attenuate the functional decline that occurs secondarily to disuse situations in the elderly, notably in the hospital setting. In this context, active approaches such as resistance exercises and maximal voluntary contractions, which can be performed both isometrically and dynamically, are feasible during most immobilization situations including in hospitalized old people and represent powerful tools for the prevention of muscle atrophy. Aerobic exercise should also be prescribed whenever possible to reduce the loss of cardiovascular capacity associated with disuse periods. Other feasible strategies for patients who are unwilling or unable to perform volitional exercise comprise neuromuscular electrical stimulation, vibration, and blood flow restriction. However, they should ideally be applied synchronously with voluntary exercise to obtain synergistic benefits.
Collapse
|
16
|
Ried-Larsen M, Aarts HM, Joyner MJ. Effects of strict prolonged bed rest on cardiorespiratory fitness: systematic review and meta-analysis. J Appl Physiol (1985) 2017; 123:790-799. [DOI: 10.1152/japplphysiol.00415.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/29/2022] Open
Abstract
The aim of this systematic review and meta-analysis [International Prospective Register of Systematic Reviews (PROSPERO) CRD42017055619] was to assess the effects of strict prolonged bed rest (without countermeasures) on maximal oxygen uptake (V̇o2max) and to explore sources of variation therein. Since 1949, 80 studies with a total of 949 participants (>90% men) have been published with data on strict bed rest and V̇o2max. The studies were conducted mainly in young participants [median age (interquartile range) 24.5 (22.4–34.0) yr]. The duration of bed rest ranged from 1 to 90 days. V̇o2max declined linearly across bed rest duration. No statistical difference in the decline among studies reporting V̇o2max as l/min (−0.3% per day) compared with studies reporting V̇o2max normalized to body weight (ml·kg−1·min−1; −0.43% per day) was observed. Although both total body weight and lean body mass declined in response to bed rest, we did not see any associations with the decline in V̇o2max. However, 15–26% of the variation in the decline in V̇o2max was explained by the pre-bed-rest V̇o2max levels, independent of the duration of bed rest (i.e., higher pre-bed-rest V̇o2max levels were associated with larger declines in V̇o2max). Furthermore, the systematic review revealed a gap in the knowledge about the cardiovascular response to extreme physical inactivity, particularly in older subjects and women of any age group. In addition to its relevance to spaceflight, this lack of data has significant translational implications because younger women sometimes undergo prolonged periods of bed rest associated with the complications of pregnancy and the incidence of hospitalization including prolonged periods of bed rest increases with age. NEW & NOTEWORTHY Large interindividual responses of maximal oxygen uptake (V̇o2max) to aerobic exercise training exist. However, less is known about the variability in the response of V̇o2max to prolonged bed rest. This systematic review and meta-analysis showed that pre-bed-rest V̇o2max values were inversely associated with the change in V̇o2max independent of the duration of bed rest. Moreover, we identified a large knowledge gap about the causes of decline in V̇o2max, particularly in postmenopausal women, which may have clinical implications.
Collapse
Affiliation(s)
- Mathias Ried-Larsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark; and
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Hugo M. Aarts
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Kenny HC, Rudwill F, Breen L, Salanova M, Blottner D, Heise T, Heer M, Blanc S, O'Gorman DJ. Bed rest and resistive vibration exercise unveil novel links between skeletal muscle mitochondrial function and insulin resistance. Diabetologia 2017; 60:1491-1501. [PMID: 28500394 DOI: 10.1007/s00125-017-4298-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
AIMS/HYPOTHESIS Physical inactivity has broad implications for human disease including insulin resistance, sarcopenia and obesity. The present study tested the hypothesis that (1) impaired mitochondrial respiration is linked with blunted insulin sensitivity and loss of muscle mass in healthy young men, and (2) resistive vibration exercise (RVE) would mitigate the negative metabolic effects of bed rest. METHODS Participants (n = 9) were maintained in energy balance during 21 days of bed rest with RVE and without (CON) in a crossover study. Mitochondrial respiration was determined by high-resolution respirometry in permeabilised fibre bundles from biopsies of the vastus lateralis. A hyperinsulinaemic-euglycaemic clamp was used to determine insulin sensitivity, and body composition was assessed by dual-energy x-ray absorptiometry (DEXA). RESULTS Body mass (-3.2 ± 0.5 kg vs -2.8 ± 0.4 kg for CON and RVE, respectively, p < 0.05), fat-free mass (-2.9 ± 0.5 kg vs -2.7 ± 0.5 kg, p < 0.05) and peak oxygen consumption ([Formula: see text]) (10-15%, p < 0.05) were all reduced following bed rest. Bed rest decreased insulin sensitivity in the CON group (0.04 ± 0.002 mg kgFFM-1 [pmol l-1] min-1 vs 0.03 ± 0.002 mg kgFFM-1 [pmol l-1] min-1 for baseline vs post-CON), while RVE mitigated this response (0.04 ± 0.003 mg kgFFM-1 [pmol l-1] min-1). Mitochondrial respiration (oxidative phosphorylation and electron transport system capacity) decreased in the CON group but not in the RVE group when expressed relative to tissue weight but not when normalised for citrate synthase activity. LEAK respiration, indicating a decrease in mitochondrial uncoupling, was the only component to remain significantly lower in the CON group after normalisation for citrate synthase. This was accompanied by a significant decrease in adenine nucleotide translocase protein content. CONCLUSIONS/INTERPRETATION Reductions in muscle mitochondrial respiration occur concomitantly with insulin resistance and loss of muscle mass during bed rest and may play a role in the adaptations to physical inactivity. Significantly, we show that RVE is an effective strategy to partially prevent some of the deleterious metabolic effects of bed rest.
Collapse
Affiliation(s)
- Helena C Kenny
- 3U Diabetes Consortium, School of Health and Human Performance, Dublin City University, Glasnevin, Dublin 9, D09 NR58, Ireland
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
| | - Floriane Rudwill
- Université de Strasbourg, Institut Pluridisiplinaire Hubert Curien, Départment d'Ecologie, Physiologie et Ethologie, CNRS, UMR7178, Strasbourg, France
| | - Laura Breen
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
| | | | | | | | - Martina Heer
- Profil, Neuss, Germany
- Institute of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Stephane Blanc
- Université de Strasbourg, Institut Pluridisiplinaire Hubert Curien, Départment d'Ecologie, Physiologie et Ethologie, CNRS, UMR7178, Strasbourg, France
| | - Donal J O'Gorman
- 3U Diabetes Consortium, School of Health and Human Performance, Dublin City University, Glasnevin, Dublin 9, D09 NR58, Ireland.
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
18
|
|
19
|
Keramidas ME, Mekjavic IB, Eiken O. LunHab: interactive effects of a 10 day sustained exposure to hypoxia and bedrest on aerobic exercise capacity in male lowlanders. Exp Physiol 2017; 102:694-710. [DOI: 10.1113/ep086167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/20/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Michail E. Keramidas
- Department of Environmental Physiology; Swedish Aerospace Physiology Center; School of Technology and Health; Royal Institute of Technology; Stockholm Sweden
| | - Igor B. Mekjavic
- Department of Automation; Biocybernetics and Robotics; Jozef Stefan Institute; Ljubljana Slovenia
- Department of Biomedical Physiology and Kinesiology; Simon Fraser University; Burnaby BC Canada
| | - Ola Eiken
- Department of Environmental Physiology; Swedish Aerospace Physiology Center; School of Technology and Health; Royal Institute of Technology; Stockholm Sweden
| |
Collapse
|
20
|
Ade CJ, Broxterman RM, Moore AD, Barstow TJ. Decreases in maximal oxygen uptake following long-duration spaceflight: Role of convective and diffusive O 2 transport mechanisms. J Appl Physiol (1985) 2017; 122:968-975. [PMID: 28153941 DOI: 10.1152/japplphysiol.00280.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 12/19/2016] [Accepted: 01/19/2017] [Indexed: 01/22/2023] Open
Abstract
We have previously predicted that the decrease in maximal oxygen uptake (V̇o2max) that accompanies time in microgravity reflects decrements in both convective and diffusive O2 transport to the mitochondria of the contracting myocytes. The aim of this investigation was therefore to quantify the relative changes in convective O2 transport (Q̇o2) and O2 diffusing capacity (Do2) following long-duration spaceflight. In nine astronauts, resting hemoglobin concentration ([Hb]), V̇o2max, maximal cardiac output (Q̇Tmax), and differences in arterial and venous O2 contents ([Formula: see text]-[Formula: see text]) were obtained retrospectively for International Space Station Increments 19-33 (April 2009-November 2012). Q̇o2 and Do2 were calculated from these variables via integration of Fick's Principle of Mass Conservation and Fick's Law of Diffusion. V̇o2max significantly decreased from pre- to postflight (-53.9 ± 45.5%, P = 0.008). The significant decrease in Q̇Tmax (-7.8 ± 9.1%, P = 0.05), despite an unchanged [Hb], resulted in a significantly decreased Q̇o2 (-11.4 ± 10.5%, P = 0.02). Do2 significantly decreased from pre- to postflight by -27.5 ± 24.5% (P = 0.04), as did the peak [Formula: see text]-[Formula: see text] (-9.2 ± 7.5%, P = 0.007). With the use of linear regression analysis, changes in V̇o2max were significantly correlated with changes in Do2 (R2 = 0.47; P = 0.04). These data suggest that spaceflight decreases both convective and diffusive O2 transport. These results have practical implications for future long-duration space missions and highlight the need to resolve the specific mechanisms underlying these spaceflight-induced changes along the O2 transport pathway.NEW & NOTEWORTHY Long-duration spaceflight elicited a significant decrease in maximal oxygen uptake. Given the adverse physiological adaptations to microgravity along the O2 transport pathway that have been reported, an integrative approach to the determinants of postflight maximal oxygen uptake is needed. We demonstrate that both convective and diffusive oxygen transport are decreased following ~6 mo International Space Station missions.
Collapse
Affiliation(s)
- C J Ade
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma; .,Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - R M Broxterman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - A D Moore
- Department of Health and Kinesiology, Lamar University, Beaumont, Texas; and
| | - T J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
21
|
Bosutti A, Salanova M, Blottner D, Buehlmeier J, Mulder E, Rittweger J, Yap MH, Ganse B, Degens H. Whey protein with potassium bicarbonate supplement attenuates the reduction in muscle oxidative capacity during 19 days of bed rest. J Appl Physiol (1985) 2016; 121:838-848. [DOI: 10.1152/japplphysiol.00936.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 08/02/2016] [Indexed: 12/29/2022] Open
Abstract
The effectiveness of whey protein plus potassium bicarbonate-enriched diet (WP+KHCO3) in mitigating disuse-induced changes in muscle fiber oxidative capacity and capillarization was investigated in a 21-day crossover design bed rest study. Ten healthy men (31 ± 6 yr) once received WP+KHCO3 and once received a standardized isocaloric diet. Muscle biopsies were taken 2 days before and during the 19th day of bed rest (BR) from the soleus (SOL) and vastus lateralis (VL) muscle. Whole-body aerobic power (V̇o2 max), muscle fatigue, and isometric strength of knee extensor and plantar flexor muscles were monitored. Muscle fiber types and capillaries were identified by immunohistochemistry. Fiber oxidative capacity was determined as the optical density (OD) at 660 nm of succinate dehydrogenase (SDH)-stained sections. The product of fiber cross-sectional area and SDH-OD (integrated SDH) indicated the maximal oxygen consumption of that fiber. The maximal oxygen consumption supported by a capillary was calculated as the integrated SDH in its supply area. BR reduced isometric strength of knee extensor muscles ( P < 0.05), and the fiber oxidative capacity ( P < 0.001) and V̇o2 max ( P = 0.042), but had no significant impact on muscle capillarization or fatigue resistance of thigh muscles. The maximal oxygen consumption supported by a capillary was reduced by 24% in SOL and 16% in VL ( P < 0.001). WP+KHCO3 attenuated the disuse-induced reduction in fiber oxidative capacity in both muscles ( P < 0.01). In conclusion, following 19 days of bed rest, the decrement in fiber oxidative capacity is proportionally larger than the loss of capillaries. WP+KHCO3 appears to attenuate disuse-induced reductions in fiber oxidative capacity.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | | | - Dieter Blottner
- Center for Space Medicine Berlin (ZWMB), Berlin, Germany
- Charité Universitätsmedizin Berlin, Vegetative Anatomy, Berlin, Germany
| | - Judith Buehlmeier
- University of Bonn, Department of Nutrition and Food Science, Bonn, Germany
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Moi Hoon Yap
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Bergita Ganse
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany; and
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
22
|
Haisma J, Bussmann J, Stam H, Sluis T, Bergen M, Post M, Dallmeijer A, van der Woude L. Physical fitness in people with a spinal cord injury: the association with complications and duration of rehabilitation. Clin Rehabil 2016; 21:932-40. [DOI: 10.1177/0269215507079134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective: To assess the association between physical fitness and its recovery over time on the one hand, and complications and duration of phases of rehabilitation on the other. Design and setting: Prospective cohort study at eight rehabilitation centres. Subjects: People with a spinal cord injury were assessed four times: at the start of active rehabilitation (n = 110), three months later (n = 92), at discharge (n = 137) and a year after discharge from inpatient rehabilitation (n = 91). Main measures: Physical fitness was defined as aerobic capacity, determined at each occasion by the peak oxygen uptake (peak Vo2; L/min) and the peak power output (peak PO; W) during a maximal exercise test. On these occasions, spasticity, musculoskeletal and neurogenic pain were determined (1 = present; 0 = absent). During inpatient rehabilitation, complications (urinary tract infection, pulmonary infection or pressure sore) and bed rest were registered (1 = complication; 0 = no complications, and 1 = bed rest; 0 = no bed rest). Complications and bed rest occurring during the year after discharge were registered similarly. Results: Multilevel random coefficient analyses revealed associations in multivariate models (P ≤ 0.05). The peak oxygen uptake was negatively associated with complications after discharge. The recovery of peak power output over time was negatively associated with bed rest and spasticity. Both physical fitness and its recovery were negatively associated with the duration of active rehabilitation. Conclusion: Results suggest that limiting complications, spasticity or bed rest may improve fitness. A longer duration of active rehabilitation is not associated with an increase in physical fitness.
Collapse
Affiliation(s)
- J.A. Haisma
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center, Rotterdam,
| | - J.B.J. Bussmann
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center, Rotterdam
| | - H.J. Stam
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center, Rotterdam
| | | | | | - M.W.M. Post
- Rehabilitation Center De Hoogstraat, Utrecht
| | - A.J. Dallmeijer
- Department of Rehabilitation Medicine, VU Medical Center Amsterdam, Amsterdam
| | | |
Collapse
|
23
|
Ade CJ, Broxterman RM, Barstow TJ. VO(2max) and Microgravity Exposure: Convective versus Diffusive O(2) Transport. Med Sci Sports Exerc 2016; 47:1351-61. [PMID: 25380479 DOI: 10.1249/mss.0000000000000557] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exposure to a microgravity environment decreases the maximal rate of O2 uptake (VO(2max)) in healthy individuals returning to a gravitational environment. The magnitude of this decrease in VO(2max) is, in part, dependent on the duration of microgravity exposure, such that long exposure may result in up to a 38% decrease in VO(2max). This review identifies the components within the O(2) transport pathway that determine the decrease in postmicrogravity VO(2max) and highlights the potential contributing physiological mechanisms. A retrospective analysis revealed that the decline in VO(2max) is initially mediated by a decrease in convective and diffusive O(2) transport that occurs as the duration of microgravity exposure is extended. Mechanistically, the attenuation of O(2) transport is the combined result of a deconditioning across multiple organ systems including decreases in total blood volume, red blood cell mass, cardiac function and mass, vascular function, skeletal muscle mass, and, potentially, capillary hemodynamics, which become evident during exercise upon re-exposure to the head-to-foot gravitational forces of upright posture on Earth. In summary, VO(2max) is determined by the integration of central and peripheral O(2) transport mechanisms, which, if not maintained during microgravity, will have a substantial long-term detrimental impact on space mission performance and astronaut health.
Collapse
Affiliation(s)
- Carl J Ade
- 1Department of Health and Exercise Science, University of Oklahoma, Norman, OK; 2Department of Kinesiology, Kansas State University, Manhattan, KS; and 3Department of Anatomy and Physiology, Kansas State University, Manhattan, KS
| | | | | |
Collapse
|
24
|
Arentson-Lantz EJ, English KL, Paddon-Jones D, Fry CS. Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults. J Appl Physiol (1985) 2016; 120:965-75. [PMID: 26796754 DOI: 10.1152/japplphysiol.00799.2015] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/20/2016] [Indexed: 01/06/2023] Open
Abstract
Bed rest, a ground-based spaceflight analog, induces robust atrophy of skeletal muscle, an effect that is exacerbated with increasing age. We examined the effect of 14 days of bed rest on skeletal muscle satellite cell content and fiber type atrophy in middle-aged adults, an understudied age demographic with few overt signs of muscle aging that is representative of astronauts who perform long-duration spaceflight. Muscle biopsies were obtained from the vastus lateralis of healthy middle-aged adults [n= 7 (4 male, 3 female); age: 51 ± 1 yr] before (Pre-BR) and after (Post-BR) 14 days of bed rest. Immunohistochemical analyses were used to quantify myosin heavy chain (MyHC) isoform expression, cross-sectional area (CSA), satellite cell and myonuclear content, and capillary density. Peak oxygen consumption, knee extensor strength, and body composition were also measured Pre-BR and Post-BR. Post-BR MyHC type 2a fiber percentage was reduced, and mean CSA decreased in all fiber types (-24 ± 5%;P< 0.05). Satellite cell content was also reduced Post-BR (-39 ± 9%;P< 0.05), and the change in satellite cell content was significantly correlated with the change in mean fiber CSA (r(2)= 0.60;P< 0.05). A decline in capillary density was observed Post-BR (-23 ± 6%;P< 0.05), and Post-BR capillary content was significantly associated with Post-BR peak aerobic capacity (r(2)= 0.59;P< 0.05). A subtle decline in myonuclear content occurred during bed rest (-5 ± 1%;P< 0.05). The rapid maladaptation of skeletal muscle to 14 days of mechanical unloading in middle-aged adults emphasizes the need for robust countermeasures to preserve muscle function in astronauts.
Collapse
Affiliation(s)
- Emily J Arentson-Lantz
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas; Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Kirk L English
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas; Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Douglas Paddon-Jones
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas; Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas; Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas; Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas; Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
25
|
The Aetiology of Reduced Cardiorespiratory Fitness Among Adults with Severe Traumatic Brain Injury and the Relationship with Physical Activity: A Narrative Review. BRAIN IMPAIR 2015. [DOI: 10.1017/brimp.2015.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reduced cardiorespiratory fitness or cardiorespiratory deconditioning is a secondary physical impairment commonly reported to affect people after traumatic brain injury (TBI), both in the short- and long-term. Eleven studies have measured peak oxygen uptake${\rm ({\dot V}O}_{{\rm 2peak}} )$to evaluate fitness in this population. The mean (SD)${\rm \dot VO}_{{\rm 2peak}}$from these studies was 27.2 (6.7) mL.kg−1·min−1, which is markedly below the average fitness level of age-matched healthy individuals. The aetiology of cardiorespiratory deconditioning has not been well evaluated among people with TBI; however, studies on prolonged bed rest and studies on the acute consequences of TBI inform our current understanding. The primary aim of this paper is to present a model to describe the physiological factors contributing to the development of cardiorespiratory deconditioning among people with severe TBI. We propose that both central and peripheral factors contribute to reduced fitness, and that these changes occur because of both the initial brain damage and trauma sustained and the prolonged and initially extreme physical inactivity that is commonly experienced after this type of injury. Reduced fitness can significantly affect the ability to return to pre-injury activities. Given that reintegration into the community is a key goal of rehabilitation among people with TBI, interventions that can prevent or reverse reduced fitness need to be implemented.
Collapse
|
26
|
Hoffmann U, Moore AD, Koschate J, Drescher U. V̇O2 and HR kinetics before and after International Space Station missions. Eur J Appl Physiol 2015; 116:503-11. [PMID: 26662601 DOI: 10.1007/s00421-015-3298-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/11/2015] [Indexed: 11/30/2022]
Abstract
PURPOSE Heart rate (HR), pulmonary and muscle oxygen uptake ([Formula: see text]O2pulm, [Formula: see text]O2musc) kinetics after changes of work rate (WR) indicate regulatory characteristics related to aerobic metabolism. We analysed whether the kinetics of HR, [Formula: see text]O2pulm and [Formula: see text]O2musc are slowed after missions to the International Space Station (ISS). The changes of the kinetics were correlated with [Formula: see text]O2peak data. METHODS 10 astronauts [4 females, 6 males, age: 48.0 ± 3.8 years, height: 176 ± 7 cm, mass: 74.5 ± 15.9 kg (mean ± SD)] performed an incremental test to determine [Formula: see text]O2peak (before missions on L-110 days, after return on R+1/+10/+36 days), and a cardio-respiratory kinetics test (CRKT) with randomized 30-80 W WR changes to determine HR, [Formula: see text]O2pulm and [Formula: see text]O2musc kinetics by time-series analysis (L-236/-73, R+6/+21). Kinetics were summarized by maximum and related lag of cross-correlation function (CCFmax, CCFlag) of WR with the analysed parameter. RESULTS Statistically, significant changes were also found for CCFmax([Formula: see text]O2musc) between L-236 and R+6 (P = 0.010), L-236 and R+21 (P = 0.030), L-72 and R+6 (P = 0.043). Between pre-to-post mission change in [Formula: see text]O2peak and CCFmax(HR), a correlation was shown (r SP = 0.67, P = 0.017). CONCLUSION The [Formula: see text]O2musc kinetics changes indicate aerobic detraining effects which are present up to 21 days following space flight. The correlations between changes in [Formula: see text]O2peak and HR kinetics illustrate the key role of cardiovascular regulation in [Formula: see text]O2peak. The addition of CRKT to ISS flight is recommended to obtain information regarding the potential muscular and cardiovascular deconditioning. This allows a reduction in the frequency of higher intensity testing during flight.
Collapse
Affiliation(s)
- U Hoffmann
- Institute of Physiology and Anatomy, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | - A D Moore
- Lamar University, Beaumont, TX, 77710, USA
| | - J Koschate
- Institute of Physiology and Anatomy, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - U Drescher
- Institute of Physiology and Anatomy, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
27
|
Murias JM, Edwards JA, Paterson DH. Effects of short-term training and detraining on VO2 kinetics: Faster VO2 kinetics response after one training session. Scand J Med Sci Sports 2015; 26:620-9. [PMID: 25946038 DOI: 10.1111/sms.12487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 11/28/2022]
Abstract
This study examined the time course of short-term training and detraining-induced changes in oxygen uptake ( V ˙ O 2 ) kinetics. Twelve men (24 ± 3 years) were assigned to either a 50% or a 70% of V ˙ O 2 m a x training intensity (n = 6 per group). V ˙ O 2 was measured breath-by-breath. Changes in deoxygenated-hemoglobin concentration (Δ[HHb]) were measured by near-infrared spectroscopy. Moderate-intensity exercise on-transient V ˙ O 2 and Δ[HHb] were modeled with a mono-exponential and normalized (0-100% of response) and the [ H H b ] / V ˙ O 2 ratio was calculated. Similar changes in time constant of V ˙ O 2 ( t V ˙ O 2 ) were observed in both groups. The combined group mean for t V ˙ O 2 decreased ∼14% (32.3 to 27.9 s, P < 0.05) after one training session with a further ∼11% decrease (27.9 to 24.8 s, P < 0.05) following two training sessions. The t V ˙ O 2 p remained unchanged throughout the remaining of training and detraining. A significant "overshoot" in the [ H H b ] / V ˙ O 2 ratio was decreased (albeit not significant) after one training session, and abolished (P < 0.05) after the second one, with no overshoot observed thereafter. Speeding of V ˙ O 2 kinetics was remarkably quick with no further changes being observed with continuous training or during detraining. Improve matching of local O2 delivery to O2 utilization is a mechanism proposed to influence this response.
Collapse
Affiliation(s)
- J M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - J A Edwards
- Canadian Centre for Activity and Aging, Ontario, London, Canada.,School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - D H Paterson
- Canadian Centre for Activity and Aging, Ontario, London, Canada.,School of Kinesiology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
28
|
Caloric restriction decreases orthostatic tolerance independently from 6° head-down bedrest. PLoS One 2015; 10:e0118812. [PMID: 25915488 PMCID: PMC4411149 DOI: 10.1371/journal.pone.0118812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
Astronauts consume fewer calories during spaceflight and return to earth with an increased risk of orthostatic intolerance. Whether a caloric deficiency modifies orthostatic responses is not understood. Thus, we determined the effects of a hypocaloric diet (25% caloric restriction) during 6° head down bedrest (an analog of spaceflight) on autonomic neural control during lower body negative pressure (LBNP). Nine healthy young men completed a randomized crossover bedrest study, consisting of four (2 weeks each) interventions (normocaloric bedrest, normocaloric ambulatory, hypocaloric bedrest, hypocaloric ambulatory), each separated by 5 months. Muscle sympathetic nerve activity (MSNA) was recorded at baseline following normocaloric and hypocaloric interventions. Heart rate (HR) and arterial pressure were recorded before, during, and after 3 consecutive stages (7 min each) of LBNP (-15, -30, -45 mmHg). Caloric and posture effects during LBNP were compared using two-way ANOVA with repeated measures. There was a strong trend toward reduced basal MSNA following caloric restriction alone (normcaloric vs. hypocaloric: 22±3 vs. 14±4 burst/min, p = 0.06). Compared to the normocaloric ambulatory, both bedrest and caloric restriction were associated with lower systolic blood pressure during LBNP (p<0.01); however, HR responses were directionally opposite (i.e., increase with bedrest, decrease with caloric restriction). Survival analysis revealed a significant reduction in orthostatic tolerance following caloric restriction (normocaloric finishers: 12/16; hypocaloric finishers: 6/16; χ2, p = 0.03). Caloric restriction modifies autonomic responses to LBNP, which may decrease orthostatic tolerance after spaceflight.
Collapse
|
29
|
Short-arm centrifugation as a partially effective musculoskeletal countermeasure during 5-day head-down tilt bed rest—results from the BRAG1 study. Eur J Appl Physiol 2015; 115:1233-44. [DOI: 10.1007/s00421-015-3120-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/30/2015] [Indexed: 11/25/2022]
|
30
|
Ferretti G. Maximal oxygen consumption in healthy humans: theories and facts. Eur J Appl Physiol 2014; 114:2007-36. [PMID: 24986693 DOI: 10.1007/s00421-014-2911-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/12/2014] [Indexed: 12/17/2022]
Abstract
This article reviews the concept of maximal oxygen consumption ([Formula: see text]) from the perspective of multifactorial models of [Formula: see text] limitation. First, I discuss procedural aspects of [Formula: see text] measurement: the implications of ramp protocols are analysed within the theoretical work of Morton. Then I analyse the descriptive physiology of [Formula: see text], evidencing the path that led to the view of monofactorial cardiovascular or muscular [Formula: see text] limitation. Multifactorial models, generated by the theoretical work of di Prampero and Wagner around the oxygen conductance equation, represented a radical change of perspective. These models are presented in detail and criticized with respect to the ensuing experimental work. A synthesis between them is proposed, demonstrating how much these models coincide and converge on the same conclusions. Finally, I discuss the cases of hypoxia and bed rest, the former as an example of the pervasive effects of the shape of the oxygen equilibrium curve, the latter as a neat example of adaptive changes concerning the entire respiratory system. The conclusion is that the concept of cardiovascular [Formula: see text] limitation is reinforced by multifactorial models, since cardiovascular oxygen transport provides most of the [Formula: see text] limitation, at least in normoxia. However, the same models show that the role of peripheral resistances is significant and cannot be neglected. The role of peripheral factors is greater the smaller is the active muscle mass. In hypoxia, the intervention of lung resistances as limiting factors restricts the role played by cardiovascular and peripheral factors.
Collapse
Affiliation(s)
- Guido Ferretti
- Département des Neurosciences Fondamentales, Université de Genève, 1 Rue Michel Servet, 1211, Geneva 4, Switzerland,
| |
Collapse
|
31
|
Affiliation(s)
- Heinrich Binder
- Department of Neurology, Otto Wagner Hospital, Vienna, Austria.
| |
Collapse
|
32
|
Salvadego D, Lazzer S, Marzorati M, Porcelli S, Rejc E, Simunic B, Pisot R, di Prampero PE, Grassi B. Functional impairment of skeletal muscle oxidative metabolism during knee extension exercise after bed rest. J Appl Physiol (1985) 2011; 111:1719-26. [PMID: 21921243 DOI: 10.1152/japplphysiol.01380.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A functional evaluation of skeletal muscle oxidative metabolism during dynamic knee extension (KE) incremental exercises was carried out following a 35-day bed rest (BR) (Valdoltra 2008 BR campaign). Nine young male volunteers (age: 23.5 ± 2.2 yr; mean ± SD) were evaluated. Pulmonary gas exchange, heart rate and cardiac output (by impedance cardiography), skeletal muscle (vastus lateralis) fractional O(2) extraction, and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined during incremental KE. Values at exhaustion were considered "peak". Peak heart rate (147 ± 18 beats/min before vs. 146 ± 17 beats/min after BR) and peak cardiac output (17.8 ± 3.3 l/min before vs. 16.1 ± 1.8 l/min after BR) were unaffected by BR. As expected, brain oxygenation did not decrease during KE. Peak O(2) uptake was lower after vs. before BR, both when expressed as liters per minute (0.99 ± 0.17 vs. 1.26 ± 0.27) and when normalized per unit of quadriceps muscle mass (46.5 ± 6.4 vs. 56.9 ± 11.0 ml·min(-1)·100 g(-1)). Skeletal muscle peak fractional O(2) extraction, expressed as a percentage of the maximal values obtained during a transient limb ischemia, was lower after (46.3 ± 12.1%) vs. before BR (66.5 ± 11.2%). After elimination, by the adopted exercise protocol, of constraints related to cardiovascular O(2) delivery, a decrease in peak O(2) uptake and muscle peak capacity of fractional O(2) extraction was found after 35 days of BR. These findings suggest a substantial impairment of oxidative function at the muscle level, "downstream" with respect to bulk blood flow to the exercising muscles, that is possibly at the level of blood flow distribution/O(2) utilization inside the muscle, peripheral O(2) diffusion, and intracellular oxidative metabolism.
Collapse
Affiliation(s)
- Desy Salvadego
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The dangers of inactivity; exercise and inactivity physiology for the manual therapist. ACTA ACUST UNITED AC 2011; 16:209-16. [DOI: 10.1016/j.math.2011.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/22/2010] [Accepted: 01/22/2011] [Indexed: 12/16/2022]
|
34
|
Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise. Eur J Appl Physiol 2011; 111:2907-17. [PMID: 21437604 DOI: 10.1007/s00421-011-1917-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
Abstract
The aim of this paper was to develop a model from experimental data allowing a prediction of the cardiopulmonary responses to steady-state submaximal exercise in varying gravitational environments, with acceleration in the G(z) axis (a (g)) ranging from 0 to 3 g. To this aim, we combined data from three different experiments, carried out at Buffalo, at Stockholm and inside the Mir Station. Oxygen consumption, as expected, increased linearly with a (g). In contrast, heart rate increased non-linearly with a (g), whereas stroke volume decreased non-linearly: both were described by quadratic functions. Thus, the relationship between cardiac output and a (g) was described by a fourth power regression equation. Mean arterial pressure increased with a (g) non linearly, a relation that we interpolated again with a quadratic function. Thus, total peripheral resistance varied linearly with a (g). These data led to predict that maximal oxygen consumption would decrease drastically as a (g) is increased. Maximal oxygen consumption would become equal to resting oxygen consumption when a (g) is around 4.5 g, thus indicating the practical impossibility for humans to stay and work on the biggest Planets of the Solar System.
Collapse
|
35
|
Moriggi M, Vasso M, Fania C, Capitanio D, Bonifacio G, Salanova M, Blottner D, Rittweger J, Felsenberg D, Cerretelli P, Gelfi C. Long term bed rest with and without vibration exercise countermeasures: Effects on human muscle protein dysregulation. Proteomics 2010; 10:3756-74. [DOI: 10.1002/pmic.200900817] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
Drinkard BE, Keyser RE, Paul SM, Arena R, Plehn JF, Yanovski JA, Di Prospero NA. Exercise capacity and idebenone intervention in children and adolescents with Friedreich ataxia. Arch Phys Med Rehabil 2010; 91:1044-50. [PMID: 20599042 DOI: 10.1016/j.apmr.2010.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine the exercise capacity of children and adolescents with Friedreich's Ataxia (FA) and to evaluate the effects of 6 months of idebenone treatment on exercise capacity. DESIGN Exploratory endpoint in a randomized double-blind, placebo-controlled, phase II clinical trial designed to investigate the effects of idebenone on a biomarker of oxidative stress. SETTING Exercise physiology laboratory in a single clinical research center. PARTICIPANTS Ambulatory subjects (N=48; age range, 9-17 y) with genetically confirmed FA. INTERVENTION Idebenone administered orally 3 times a day for a total daily dose of approximately 5, 15, and 45 mg/kg or matching placebo for 6 months. MAIN OUTCOME MEASURES Peak oxygen consumption per unit time (peak VO(2)) and peak work rate (WR) were measured during incremental exercise testing at baseline and after treatment. Echocardiography and neurologic assessments were also completed before and after treatment. RESULTS Baseline mean peak VO(2) +/- SD was 746+/-246 mL/min (16.2+/-5.8 mL/kg/min), and WR was 40+/-23 W for all subjects. Peak VO(2) and WR were correlated with short guanine-adenine-adenine allele length and neurologic function. Relative left ventricular wall thickness was increased but left ventricular ejection fraction was normal in most subjects; there was no relationship between any exercise and echocardiographic measures. There were no significant changes in mean peak VO(2) or WR after idebenone treatment at any dose level relative to placebo. CONCLUSIONS Exercise capacity in children and adolescents with FA was significantly impaired. The basis for the impairment appears to be multifactorial and correlated to the degree of neurologic impairment. Although idebenone has previously been shown potentially to improve features of FA, idebenone treatment did not increase exercise capacity relative to placebo.
Collapse
Affiliation(s)
- Bart E Drinkard
- Rehabilitation Medicine Department, Hatfield Clinical Research Center, National Institutes of Health, Bethesda, MD 20892-1604, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Porcelli S, Marzorati M, Lanfranconi F, Vago P, Pišot R, Grassi B. Role of skeletal muscles impairment and brain oxygenation in limiting oxidative metabolism during exercise after bed rest. J Appl Physiol (1985) 2010; 109:101-11. [DOI: 10.1152/japplphysiol.00782.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
“Central” and “peripheral” limitations to oxidative metabolism during exercise were evaluated in 10 young males following a 35-day horizontal bed rest (BR). Incremental exercise (IE) and moderate- and heavy-intensity constant-load exercises (CLE) were carried out on a cycloergometer before and 1–2 days after BR. Pulmonary gas exchange, cardiac output (Q̇; by impedance cardiography), skeletal muscle (vastus lateralis), and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined. After BR, “peak” (values at exhaustion during IE) workload, peak O2 uptake (V̇o2peak), peak stroke volume, Q̇peak, and peak skeletal muscle O2 extraction were decreased (−18, −18, −22, −19, and −33%, respectively). The gas exchange threshold was ∼60% of V̇o2peak both before and after BR. At the highest workloads, brain oxygenation data suggest an increased O2 extraction, which was unaffected by BR. V̇o2 kinetics during CLE (same percentage of peak workload before and after BR) were slower (time constant of the “fundamental” component: 31.1 ± 2.0 s before vs. 40.0 ± 2.2 s after BR); the amplitude of the “slow component” was unaffected by BR, thus it would be greater, after BR, at the same absolute workload. A more pronounced “overshoot” of skeletal muscle O2 extraction during CLE was observed after BR, suggesting an impaired adjustment of skeletal muscle O2 delivery. The role of skeletal muscles in the impairment of oxidative metabolism during submaximal and maximal exercise after BR was identified. The reduced capacity of peak cardiovascular O2 delivery did not determine a “competition” for the available O2 between skeletal muscles and brain.
Collapse
Affiliation(s)
- Simone Porcelli
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Milan
- Facoltà di Scienze Motorie, Università Telematica Internazionale, Milan
| | - Mauro Marzorati
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Milan
| | - Francesca Lanfranconi
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, Milan, Italy
| | - Paola Vago
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, Milan, Italy
| | - Rado Pišot
- Institute for Kinesiology Research, Science and Research Center, University of Primorska, Koper, Slovenia; and
| | - Bruno Grassi
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
38
|
Bringard A, Pogliaghi S, Adami A, De Roia G, Lador F, Lucini D, Pizzinelli P, Capelli C, Ferretti G. Cardiovascular determinants of maximal oxygen consumption in upright and supine posture at the end of prolonged bed rest in humans. Respir Physiol Neurobiol 2010. [DOI: 10.101610.1016/j.resp.2010.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Bringard A, Pogliaghi S, Adami A, De Roia G, Lador F, Lucini D, Pizzinelli P, Capelli C, Ferretti G. Cardiovascular determinants of maximal oxygen consumption in upright and supine posture at the end of prolonged bed rest in humans. Respir Physiol Neurobiol 2010; 172:53-62. [PMID: 20348037 DOI: 10.1016/j.resp.2010.03.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/19/2010] [Accepted: 03/19/2010] [Indexed: 11/13/2022]
Abstract
We tested the hypothesis that, after bed rest, maximal oxygen consumption ( VO₂max ) decreases more upright than supine, because of adequate cardiovascular response supine, but not upright. On 9 subjects, we determined VO₂max and maximal cardiac output (Q ) upright and supine, before and after (reambulation day upright, the following day supine) 35-day bed rest, by classical steady state protocol. Oxygen consumption, heart rate (f(H)) and stroke volume (Q(st)) were measured by a metabolic cart, electrocardiography and Modelflow from pulse pressure profiles, respectively. We computed Q as f(H) times Q(st), and systemic oxygen flow ( QaO₂) as Q. times arterial oxygen concentration, obtained after haemoglobin and arterial oxygen saturation measurements. Before bed rest, all parameters at maximal exercise were similar upright and supine. After bed rest, VO₂max was lower (p<0.05) than before, both upright (-38.6%) and supine (-17.0%), being 30.8% higher supine than upright. Maximal Q(st) decreased upright (-44.3%), but not supine (+3.7%), being 98.9% higher supine than upright. Maximal Q decreased upright (-45.1%), but not supine (+9.0%), being higher supine than upright (+98.4%). Maximal QaO₂ decreased upright (-37.8%), but not supine (+14.8%), being higher (+74.8%) upright than supine. After bed rest, the cardiovascular response (i) did not affect VO₂max supine, (ii) partially explained the VO₂max decrease upright, and (iii) caused the VO₂max differences between postures. We speculate that impaired peripheral oxygen transfer and/or utilisation may explain the VO₂max decrease supine and the fraction of VO₂max decrease upright unexplained by cardiovascular responses.
Collapse
Affiliation(s)
- Aurélien Bringard
- Département des Neurosciences Fondamentales, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211 Geneve 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bonjour J, Capelli C, Antonutto G, Calza S, Tam E, Linnarsson D, Ferretti G. Determinants of oxygen consumption during exercise on cycle ergometer: the effects of gravity acceleration. Respir Physiol Neurobiol 2010; 171:128-34. [PMID: 20206305 DOI: 10.1016/j.resp.2010.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/10/2010] [Accepted: 02/24/2010] [Indexed: 11/27/2022]
Abstract
The hypothesis that changes in gravity acceleration (a(g)) affect the linear relationships between oxygen consumption VO2 and mechanical power (w ) so that at any w, VO2 increases linearly with a(g) was tested under conditions where the weight of constant-mass legs was let to vary by inducing changes in a(g) in a human centrifuge. The effects of a(g) on the VO2/w relationship were studied on 14 subjects at two pedalling frequencies (f(p), 1.0 and 1.5 Hz), during four work loads on a cycle ergometer (25, 50, 75 and 100 W) and at four a(g) levels (1.0, 1.5, 2.0 and 2.5 times normal gravity). VO2 increased linearly with w. The slope did not differ significantly at various a(g) and f(p), suggesting invariant mechanical efficiency during cycling, independent of f(p) and a(g). Conversely, the y-intercept of the VO2/w relationship, defined as constant b, increased linearly with a(g). Constant b is the sum of resting VO2 plus internal metabolic power (E (i)). Since the former was the same at all investigated a(g), the increase in constant b was entirely due to an increase in E (i). Since the VO2 versus w lines had similar slopes, the changes in E (i) entirely explained the higher VO2 at each w, as a(g) was increased. In conclusion, the effects of a(g) on VO2 are mediated through changes in E (i), and not in w or in resting VO2.
Collapse
Affiliation(s)
- Julien Bonjour
- Département de Neurosciences Fondamentales, Université de Genève, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
SCHNEIDER SUZANNEM, LEE STUARTMC, MACIAS BRANDONR, WATENPAUGH DONALDE, HARGENS ALANR. WISE-2005. Med Sci Sports Exerc 2009; 41:2165-76. [DOI: 10.1249/mss.0b013e3181aa04e5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Maximal O2 consumption: Effects of gravity withdrawal and resumption. Respir Physiol Neurobiol 2009; 169 Suppl 1:S50-4. [DOI: 10.1016/j.resp.2009.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/20/2022]
|
43
|
Standards for the use of cardiopulmonary exercise testing for the functional evaluation of cardiac patients: a report from the Exercise Physiology Section of the European Association for Cardiovascular Prevention and Rehabilitation. ACTA ACUST UNITED AC 2009; 16:249-67. [PMID: 19440156 DOI: 10.1097/hjr.0b013e32832914c8] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiopulmonary exercise testing (CPET) is a methodology that has profoundly affected the approach to patients' functional evaluation, linking performance and physiological parameters to the underlying metabolic substratum and providing highly reproducible exercise capacity descriptors. This study provides professionals with an up-to-date review of the rationale sustaining the use of CPET for functional evaluation of cardiac patients in both the clinical and research settings, describing parameters obtainable either from ramp incremental or step constant-power CPET and illustrating the wealth of information obtainable through an experienced use of this powerful tool. The choice of parameters to be measured will depend on the specific goals of functional evaluation in the individual patient, namely, exercise tolerance assessment, training prescription, treatment efficacy evaluation, and/or investigation of exercise-induced adaptations of the oxygen transport/utilization system. The full potentialities of CPET in the clinical and research setting still remain largely underused and strong efforts are recommended to promote a more widespread use of CPET in the functional evaluation of cardiac patients.
Collapse
|
44
|
Exploratory analysis of the relationships between aerobic capacity and self-reported fatigue in patients with rheumatoid arthritis, polymyositis, and chronic fatigue syndrome. PM R 2009; 1:620-8. [PMID: 19627955 DOI: 10.1016/j.pmrj.2009.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 04/16/2009] [Accepted: 04/22/2009] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To determine if self-reported levels of physical activity and fatigue are related to peak oxygen uptake (VO(2peak)) and whether these relationships differ among the patient groups (rheumatoid arthritis [RA], polymyositis [PM], and chronic fatigue syndrome [CFS]). DESIGN Correlational investigation. SETTING Two ambulatory research clinics at the National Institutes of Health, Clinical Center, Bethesda, MD. PARTICIPANTS There were 9 patients with PM, 10 with RA, and 10 with CFS. All patients met case criteria for their respective diagnoses. METHODS/MAIN OUTCOME MEASUREMENTS: VO(2peak) during bicycle ergometry and self-reported fatigability, fatigue, and physical activity. VO(2peak) was used as the criterion measurement of physiological fatigue with which the self-reported variables were compared. RESULTS The Pearson r revealed that self-reported physical activity correlated with VO(2peak) (r = 61, P = .01). However, fatigability and fatigue did not correlate with VO(2peak). Linear regression analysis was performed to assess the effects of diagnosis group, self-reported activity level or fatigue, and their interaction. A trend in the data showed a distinctive relationship between fatigue/fatigability within the 3 groups. In addition, when controlling for group status, self-reported activity predicted aerobic capacity as measured by VO(2peak). CONCLUSIONS This study confirms that patients with chronic, but stable RA, PM, or CFS are fatigued and have significantly decreased aerobic capacity. Self-reports of physical activity predicted VO(2peak), and may be used as an indicator of activity-based aerobic capacity. Self-reports of fatigue, however, did not correlate with VO(2peak) and hence are assessing something other than an index of aerobic capacity, and provide additional information about patients' perceptions, which will require further investigation.
Collapse
|
45
|
Oxygen deficits and oxygen delivery kinetics during submaximal intensity exercise in humans after 14 days of head-down tilt-bed rest. Eur J Appl Physiol 2009; 107:51-9. [DOI: 10.1007/s00421-009-1098-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2009] [Indexed: 12/20/2022]
|
46
|
Capelli C, Antonutto G, Cautero M, Tam E, Ferretti G. Metabolic and cardiovascular responses during sub-maximal exercise in humans after 14 days of head-down tilt bed rest and inactivity. Eur J Appl Physiol 2008; 104:909-18. [DOI: 10.1007/s00421-008-0848-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2008] [Indexed: 11/28/2022]
|
47
|
Solving the Fick principle using whole body measurements can be used to discriminate ‘‘central’’ and ‘‘peripheral’’ adaptations to training. Eur J Appl Physiol 2008; 103:733-5; author reply 737-8. [DOI: 10.1007/s00421-008-0778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
|
48
|
Drinkard B, Roberts MD, Ranzenhofer LM, Han JC, Yanoff LB, Merke DP, Savastano DM, Brady S, Yanovski JA. Oxygen-uptake efficiency slope as a determinant of fitness in overweight adolescents. Med Sci Sports Exerc 2008; 39:1811-6. [PMID: 17909409 PMCID: PMC2266873 DOI: 10.1249/mss.0b013e31812e52b3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Peak oxygen uptake (VO2peak) is frequently difficult to assess in overweight individuals; therefore, submaximal measures that predict VO2peak are proposed as substitutes. Oxygen uptake efficiency slope (OUES) has been suggested as a submaximal measurement of cardiorespiratory fitness that is independent of exercise intensity. There are few data examining its value as a predictor of V O2peak in severely overweight adolescents. METHODS One hundred seven severely overweight (BMI Z 2.50 +/- 0.34) and 43 nonoverweight (BMI Z 0.13 +/- 0.84) adolescents, performed a maximal cycle ergometer test with respiratory gas-exchange measurements. OUES was calculated through three exercise intensities: lactate inflection point (OUES LI), 150% of lactate inflection point (OUES 150), and VO2peak (OUES PEAK). RESULTS When adjusted for lean body mass, VO2peak and OUES at all exercise intensities were lower in overweight subjects (VO2peak: 35.3 +/- 6.4 vs 46.8 +/- 7.9 mL.kg(-1) LBM.min(-1), P < 0.001; OUES LI: 37.9 +/- 10.0 vs 43.7 +/- 9.2 mL.kg(-1) LBM.min(-1).logL(-1) P < 0.001; OUES 150: 41.6 +/- 9.0 vs 49.8 +/- 11.1 mL.kg(-1) LBM.min(-1).logL(-1) P < 0.001; and OUES PEAK: 45.1 +/- 8.7 vs 52.8 +/- 9.6 mL.kg(-1) LBM.min(-1).logL(-1) P < 0.001). There was a significant increase in OUES with increasing exercise intensity in both groups (P < 0.001). OUES at all exercise intensities was a significant predictor of VO2peak for both groups (r2 = 0.35-0.83, P < 0.0001). However, limits of agreement for predicted VO2peak relative to actual VO2peak were wide (+/- 478 to +/- 670 mL.min(-1)). CONCLUSIONS OUES differs significantly in overweight and nonoverweight adolescents. The wide interindividual variation and the exercise intensity dependence of OUES preclude its use in clinical practice as a predictor of VO2peak.
Collapse
Affiliation(s)
- Bart Drinkard
- Rehabilitation Medicine Department, Mark O. Hatfield Clinical Research Center, National Institutes of Health, Bethesda, MD
| | - Mary D. Roberts
- Unit on Growth and Obesity, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, MD
| | - Lisa M. Ranzenhofer
- Unit on Growth and Obesity, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, MD
| | - Joan C. Han
- Unit on Growth and Obesity, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, MD
| | - Lisa B. Yanoff
- Unit on Growth and Obesity, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, MD
| | - Deborah P. Merke
- Reproductive Biology and Medicine Branch, National Institute of Child Health and Human Development, Bethesda, MD
- NIH Clinical Center, National Institutes of Health, Bethesda, MD
| | - David M. Savastano
- Unit on Growth and Obesity, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, MD
| | - Sheila Brady
- Unit on Growth and Obesity, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, MD
| | - Jack A. Yanovski
- Unit on Growth and Obesity, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, MD
| |
Collapse
|