1
|
Meng Y, Li C, Liang Y, Jiang Y, Zhang H, Ouyang J, Zhang W, Deng R, Tan Q, Yu X, Luo Z. Umbilical Cord Mesenchymal-Stem-Cell-Derived Exosomes Exhibit Anti-Oxidant and Antiviral Effects as Cell-Free Therapies. Viruses 2023; 15:2094. [PMID: 37896871 PMCID: PMC10612094 DOI: 10.3390/v15102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The oxidative stress induced by the accumulation of reactive oxygen species (ROS) can lead to cell aging and death. Equally, the skeletal muscle usually hosts enteroviral persistent infection in inflammatory muscle diseases. As excellent bioactive products, the exosomes derived from umbilical cord mesenchymal stem cells (ucMSCs) have been proven to be safe and have low immunogenicity with a potential cell-free therapeutic function. Here, exosomes derived from ucMSCs (ucMSC-EXO) were extracted and characterized. In a model of oxidative damage to skin fibroblasts (HSFs) under exposure to H2O2, ucMSC-EXO had an observable repairing effect for the HSFs suffering from oxidative damage. Furthermore, ucMSC-EXO inhibited mitogen-activated protein kinases (MAPK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-B (NF-κB) signaling pathways, thereby promoting p21 protein expression while decreasing lamin B1 protein expression, and finally alleviated oxidative stress-induced cell damage and aging. In a model of rhabdomyosarcoma (RD) cells being infected by enterovirus 71 (EV71) and coxsackievirus B3 (CVB3), the ucMSC-EXO enhanced the expression of interferon-stimulated gene 15 (ISG15) and ISG56 to inhibit enteroviral replication, whereafter reducing the virus-induced proinflammatory factor production. This study provides a promising therapeutic strategy for ucMSC-EXO in anti-oxidative stress and antiviral effects, which provides insight into extending the function of ucMSC-EXO in cell-free therapy.
Collapse
Affiliation(s)
- Yi Meng
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Chengcheng Li
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Yicong Liang
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Yu Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Haonan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Jianhua Ouyang
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology Company, Foshan 528315, China; (W.Z.); (Q.T.)
| | - Rumei Deng
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
| | - Qiuping Tan
- Guangdong Longfan Biological Science and Technology Company, Foshan 528315, China; (W.Z.); (Q.T.)
| | - Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Zhen Luo
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
2
|
Theurot D, Dupuy O, Louis J, Douzi W, Morin R, Arc-Chagnaud C, Dugué B. Partial-body cryostimulation does not impact peripheral microvascular responsiveness but reduces muscular metabolic O 2 consumption (mV˙O 2) at rest. Cryobiology 2023; 112:104561. [PMID: 37499963 DOI: 10.1016/j.cryobiol.2023.104561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
This study aimed to investigate the effect of partial-body cryostimulation (PBC) on microvascular responsiveness and muscular metabolic O2 consumption rate (mV˙O2). Twenty healthy young adults (ten males and ten females) underwent a post-occlusive reactive hyperemia (PORH) test at the flexor digitorum superficialis area before and after a 3-min PBC session and a 3-min control session. Using near-infrared spectroscopy, occlusion and reperfusion slopes were calculated: oxyhemoglobin ([HbO2]) decrease rate ([HbO2] slope 1), deoxyhaemoglobin ([HHb]) increase rate ([HHb] slope 1), [HbO2] increase rate ([HbO2] slope 2), and [HHb] increase rate ([HHb] slope 2. Using HbO2 kinetics during the occlusion, mV˙O2 was also calculated to characterize myocytes' metabolic O2 consumption. HbO2 slope 1 value was lower after PBC than before PBC (-0.15 ± 0.08 vs -0.24 ± 0.11 s-1; respectively; P < 0.05) in male participants only. A lower [HHb] slope 1 was also observed after PBC compared to before PBC (0.18 ± 0.10 vs 0.24 ± 0.16 s-1; P < 0.05) with no interaction for sex categories. mV˙O2 was significantly lower after PBC than before (pre values 14.75 ± 3.94 vs 18.47 ± 5.73 μMO2Hb.s-1; respectively; P < 0.01) with no interaction between sex categories. No changes in the calculated slope 2 were observed. These findings suggest that a single session of PBC reduces the muscular metabolic O2 needs at rest; however, it does not alter the vascular ability to provide O2 to the myocytes.
Collapse
Affiliation(s)
- Dimitri Theurot
- University of Poitiers, Laboratory MOVE (UR 20296), Faculty of Sport Sciences, Poitiers, France.
| | - Olivier Dupuy
- University of Poitiers, Laboratory MOVE (UR 20296), Faculty of Sport Sciences, Poitiers, France; Ecole de Kinésiologie et des Sciences de l'Activité Physique (EKSAP), Faculté de Medicine, Université de Montreal, Canada
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Wafa Douzi
- University of Poitiers, Laboratory MOVE (UR 20296), Faculty of Sport Sciences, Poitiers, France
| | - Renée Morin
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Coralie Arc-Chagnaud
- University of Poitiers, Laboratory MOVE (UR 20296), Faculty of Sport Sciences, Poitiers, France
| | - Benoit Dugué
- University of Poitiers, Laboratory MOVE (UR 20296), Faculty of Sport Sciences, Poitiers, France
| |
Collapse
|
3
|
Frank L, Brandt S, Wabitsch M. Subcutaneous fat necrosis in newborns: a systematic literature review of case reports and model of pathophysiology. Mol Cell Pediatr 2022; 9:18. [PMID: 36427118 PMCID: PMC9700527 DOI: 10.1186/s40348-022-00151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Subcutaneous fat necrosis of the newborn (SCFN) is a rare disease occurring in the first days of life. Characteristically, the infants show hard nodules in subcutaneous tissue, purple or erythematous in color and appear on the upper back, cheeks, buttocks and limbs. In most cases, SCFN is a self-limiting disease, as the nodules disappear in up to 6 months. A severe complication associated with SCFN is hypercalcaemia. Pathophysiological mechanisms causing SCFN or associated hypercalcaemia are not fully understood yet. METHODS A systematic literature research including the six biggest databases for medical research has been used to identify all published case reports of SCFN. N = 206 publications has been identified containing n = 320 case reports. All cases have been classified into four subgroups (depending on reported serum-calcium-level): hypercalcaemia, normocalcaemia, hypocalcaemia or no information given. Reported maternal factors, birth characteristics, details about SCFN, diagnostics, therapy and long-term observations have been extracted from publications. RESULTS This is the first systematic literature research that summed up all published cases of SCFN from 1948 up to 2018. Information about serum calcium level was given in 64.3% of the cases. From those, the majority showed hypercalcaemia (70.5%) (normocalcaemia 25.1%, hypocalcemia 4.3%). 89.3% of newborns with hypercalcaemia showed suppressed levels of the parathormone. Maternal gestational diabetes, maternal hypertensive diseases during pregnancy, macrosomia (> 4000g), asphyxia and therapeutic hypothermia are risk factors for SCFN. Histological findings showed a granulomatous inflammation in 98% of cases. CONCLUSION We identified that maternal, birth characteristics and therapeutic measures are probably risk factors for SCFN. These risk factors should be taken into account within the care of neonates.
Collapse
Affiliation(s)
- Leonie Frank
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- Department of Orthopaedics and Trauma Surgery, Oberschwaben Clinic Wangen im Allgäu, Wangen im Allgäu, Germany
| | - Stephanie Brandt
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
4
|
Anaerobic performance after 3-day consecutive CO 2-rich cold-water immersion in physically active males. J Exerc Sci Fit 2022; 20:148-154. [PMID: 35356104 PMCID: PMC8921317 DOI: 10.1016/j.jesf.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/12/2022] [Accepted: 02/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background Objective We investigated the effects of a 3-day consecutive CO2-rich cold (20 °C) water immersion (CCWI) following a high-intensity intermittent test (HIIT) on subjects' sublingual temperature (Tsub), blood lactate ([La]b), and heart rate (HR) compared to cold (20 °C) tap-water immersion (CWI) or passive recovery (PAS). Methods Thirty-two subjects were randomly allocated into three groups (CCWI, CWI, and PAS), each of which completed 4 consecutive days of cycling experiments. HR, Tsub, and [La]b were recorded on each day of exercise testing (immersion from Day 1 to Day 3 and Day 4). HIIT consisted of 8 sets of 20-sec maximum exercise at an intensity of 120% of VO2max with 10-sec passive rest. The mean and peak power, and peak pedal repetitions (PPR) within HIIT were averaged and the decline in PPR (ΔPPR) from Day 1 to Day 4 was measured. Results In CCWI and CWI, HR declined significantly following each immersion, with CCWI showing the larger reduction (p < 0.001). At Day 2, CCWI showed a significantly lower [La]b compared to PAS (p < 0.01). The changes in mean and peak power from Day 1 to Day 4 did not differ among the groups (p = 0.302). ΔPPR of HIIT was significantly correlated with the HR and [La]b values after immersions (ΔPPR-HR: r2 = 0.938, p < 0.001, ΔPPR-[La]b: r2 = 0.999, p < 0.001). Conclusions These findings indicate that CCWI is a promising intervention for maintaining peak performance in high-intensity intermittent exercise, which is associated with a reduction in [La]b and HR.
Collapse
|
5
|
Evaluation of the optimal cooling temperature for the face measured by the tissue perfusion during hilotherapy using laser Doppler spectrophotometry. Sci Rep 2021; 11:9805. [PMID: 33963203 PMCID: PMC8105374 DOI: 10.1038/s41598-021-89313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/16/2021] [Indexed: 11/23/2022] Open
Abstract
After craniofacial trauma, symptoms like swelling and pain occur. Cooling reduces these symptoms but the optimal cooling temperature for a maximum benefit without adverse effects is unclear. 30 participants were cooled at 10 °C, 15 °C, 20 °C, 25 °C and 30 °C for 30 min. Before cooling and at 15, 30, 45 and 60 min after cooling, the skin blood flow, oxygen saturation (SO) and haemoglobin concentration (Hb) were measured by laser Doppler spectrophotometry at 2 mm and 8 mm depth. The skin temperature was measured, and the participant’s satisfaction was marked on a visual analogue scale. There were significant differences between males and females in the blood flow, SO and Hb (p < 0.0001). After cooling, the blood flow, SO and Hb was reduced. The measured values rose slightly above the initial values 60 min after cooling. Depending on the cooling temperature the decrease in blood flow, SO and Hb was significantly different. Both sexes were most comfortable with a 25 °C cooling temperature and satisfaction decreased with lower temperatures. Significant differences for the satisfaction between both sexes were measured (10 °C: p < 0.0001, 15 °C: p < 0.0001, 20 °C: p = 0.0168, 25 °C: p = 0.0293). After 60 min, the males and females exhibited mild skin hyperthermia. The optimal cooling temperatures their physiological effects and their perception for females and males were different. For females, around 20 °C is an optimal cooling temperature. For males, it is around 15–20 °C.
Collapse
|
6
|
Kwiecien SY, McHugh MP. The cold truth: the role of cryotherapy in the treatment of injury and recovery from exercise. Eur J Appl Physiol 2021; 121:2125-2142. [PMID: 33877402 DOI: 10.1007/s00421-021-04683-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/05/2021] [Indexed: 01/08/2023]
Abstract
Cryotherapy is utilized as a physical intervention in the treatment of injury and exercise recovery. Traditionally, ice is used in the treatment of musculoskeletal injury while cold water immersion or whole-body cryotherapy is used for recovery from exercise. In humans, the primary benefit of traditional cryotherapy is reduced pain following injury or soreness following exercise. Cryotherapy-induced reductions in metabolism, inflammation, and tissue damage have been demonstrated in animal models of muscle injury; however, comparable evidence in humans is lacking. This absence is likely due to the inadequate duration of application of traditional cryotherapy modalities. Traditional cryotherapy application must be repeated to overcome this limitation. Recently, the novel application of cooling with 15 °C phase change material (PCM), has been administered for 3-6 h with success following exercise. Although evidence suggests that chronic use of cryotherapy during resistance training blunts the anabolic training effect, recovery using PCM does not compromise acute adaptation. Therefore, following exercise, cryotherapy is indicated when rapid recovery is required between exercise bouts, as opposed to after routine training. Ultimately, the effectiveness of cryotherapy as a recovery modality is dependent upon its ability to maintain a reduction in muscle temperature and on the timing of treatment with respect to when the injury occurred, or the exercise ceased. Therefore, to limit the proliferation of secondary tissue damage that occurs in the hours after an injury or a strenuous exercise bout, it is imperative that cryotherapy be applied in abundance within the first few hours of structural damage.
Collapse
Affiliation(s)
- Susan Y Kwiecien
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY, USA.
| | - Malachy P McHugh
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY, USA
| |
Collapse
|
7
|
Impact of acute partial-body cryostimulation on cognitive performance, cerebral oxygenation, and cardiac autonomic activity. Sci Rep 2021; 11:7793. [PMID: 33833278 PMCID: PMC8032750 DOI: 10.1038/s41598-021-87089-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/24/2021] [Indexed: 11/28/2022] Open
Abstract
We assessed the effects of a 3-min partial-body cryostimulation (PBC) exposure—where the whole body is exposed to extreme cold, except the head—on cognitive inhibition performance and the possible implications of parasympathetic cardiac control and cerebral oxygenation. In a randomized controlled counterbalanced cross-over design, eighteen healthy young adults (nine males and nine females) completed a cognitive Stroop task before and after one single session of PBC (3-min exposure at − 150 °C cold air) and a control condition (3 min at room temperature, 20 °C). During the cognitive task, heart rate variability (HRV) and cerebral oxygenation of the prefrontal cortex were measured using heart rate monitoring and near-infrared spectroscopy methods. We also recorded the cerebral oxygenation during the PBC session. Stroop performance after PBC exposure was enhanced (562.0 ± 40.2 ms) compared to pre-PBC (602.0 ± 56.4 ms; P < 0.042) in males only, accompanied by an increase (P < 0.05) in HRV indices of parasympathetic tone, in greater proportion in males compared to females. During PBC, cerebral oxygenation decreased in a similar proportion in males and females but the cerebral extraction (deoxyhemoglobin: ΔHHb) remained higher after exposure in males, only. These data demonstrate that a single PBC session enhances the cognitive inhibition performance on a Stroop task in males, partly mediated by a greater parasympathetic cardiac control and greater cerebral oxygenation. The effects of PBC on cognitive function seem different in females, possibly explained by a different sensitivity to cold stimulation.
Collapse
|
8
|
Inoue K, Yamashita N, Kume M, Yoshida T. Differences in the Repeated Sprint Performance Between the First and Latter Halves of Trials Under Conditions of Several Thermal States in Exercising Muscles. J Strength Cond Res 2021; 35:782-790. [PMID: 30161087 DOI: 10.1519/jsc.0000000000002793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Inoue, K, Yamashita, N, Kume, M, and Yoshida, T. Differences in the repeated sprint performance between the first and latter halves of trials under conditions of several thermal states in exercising muscles. J Strength Cond Res 35(3): 782-790, 2021-The purpose of this study was to determine whether the effects of thermal states in exercising muscle on repeated sprint cycling (RSC) performance differ between the first and latter half of trials. Nine male subjects performed 8 × 8 seconds of RSC with a 40-second rest period. The subjects wore water-perfused trousers with water at 6° C (COLD), 17° C (COOL), 30° C (WARM), or 44° C (HOT). During the first half of trials, the peak power output (PPO), mean power output (MPO), and sum of work output (SWO) were significantly (p < 0.05) greater under the WARM and HOT conditions than under the COLD and COOL conditions, and a difference in the PPO and MPO between WARM and HOT was noted in the second sprint bout during the first half of the exercise. However, during the latter half of trials, there was no significant difference in the PPO, MPO, and SWO among the 4 conditions. The tympanic temperature (Tty) was significantly elevated under the HOT condition but fell under the COLD and COOL conditions, whereas the Tty under the WARM condition did not change significantly (p < 0.05) during the experiment. The total sweat loss was significantly (p < 0.05) greater in the HOT condition than in the other conditions. These results suggest that the effect of thermal states in exercising muscle on the RSC performance is greater in the first half of exercise than in the latter half, possibly because of the elevation of the core temperature and sweat loss under HOT conditions.
Collapse
Affiliation(s)
- Keiko Inoue
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Naoyuki Yamashita
- Faculty of Arts and Sciences, Kyoto Institute of Technology, Kyoto, Japan; and
| | - Masashi Kume
- Department of Food and Nutrition, Kyoto Bunkyo Junior College, Kyoto, Japan
| | - Tetsuya Yoshida
- Faculty of Arts and Sciences, Kyoto Institute of Technology, Kyoto, Japan; and
| |
Collapse
|
9
|
Sasaki R, Sakamoto J, Kondo Y, Oga S, Takeshita I, Honda Y, Kataoka H, Origuchi T, Okita M. Effects of Cryotherapy Applied at Different Temperatures on Inflammatory Pain During the Acute Phase of Arthritis in Rats. Phys Ther 2021; 101:6039322. [PMID: 33351944 DOI: 10.1093/ptj/pzaa211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/21/2020] [Accepted: 11/03/2020] [Indexed: 11/14/2022]
Abstract
OBJECTIVE The biological mechanisms of cryotherapy for managing acute pain remain unclear. Additionally, it is unknown whether the effectiveness of cryotherapy depends on the applied temperature. This study aimed to clarify the biological effects of cryotherapy and to examine the therapeutic effects of cryotherapy applied at different temperatures in rats. METHODS This was an experimental study using a rat knee joint arthritis model. Thirty-five Wistar rats were randomly divided into arthritis (AR), arthritis with 5°C cryotherapy (CR-5), arthritis with 10°C cryotherapy (CR-10), and sham-arthritis control (CON) groups. Arthritis was induced by injecting a mixture of kaolin/carrageenan into the right knee joint. Cryotherapy was applied for 7 days starting the day after injection by immersing the right knee joint in 5°C or 10°C water. Joint transverse diameter, pressure pain threshold, and pain-related behaviors were assessed for 7 days. The number of CD68-positive cells in the knee joint and the expression of calcitonin gene-related peptide in the spinal dorsal horn 8 days after injection were analyzed by immunohistochemical staining. RESULTS Improvements in transverse diameter, pressure pain threshold, and pain-related behaviors were observed in the CR-5 and CR-10 groups on the 3rd day compared with the AR group. The number of CD68-positive cells and the expression of calcitonin gene-related peptide in the CR-5 and CR-10 groups were significantly decreased compared with the AR group. There were no significant differences in all results between the CR-5 and CR-10 groups. CONCLUSIONS Cryotherapy can ameliorate inflammatory pain through reduction of synovium and central sensitization. Additionally, the effects of cryotherapy lower than 10°C are observed independent of applied temperature. IMPACT Cryotherapy may be beneficial as a physical therapy modality for pain and swelling management in the acute phase of inflammation. Translational human study is needed to determine the effective cryotherapy temperature for the inflammatory pain.
Collapse
Affiliation(s)
- Ryo Sasaki
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Juzenkai Hospital, Nagasaki, Japan
| | - Junya Sakamoto
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasutaka Kondo
- Department of Rehabilitation, Japan Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Satoshi Oga
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Japan Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Idumi Takeshita
- Department of Rehabilitation, Faculty of Medicine, University of Miyazaki Hospital, Miyazaki, Japan
| | - Yuichiro Honda
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Kataoka
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Nagasaki Memorial Hospital, Nagasaki, Japan
| | - Tomoki Origuchi
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Minoru Okita
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
10
|
Rasmussen PS, Aasvang EK, Olsen RM, Haahr‐Raunkjaer C, Elvekjaer M, Sørensen HBD, Meyhoff CS. Continuous peripheral perfusion index in patients admitted to hospital wards - An observational study. Acta Anaesthesiol Scand 2021; 65:257-265. [PMID: 32959371 DOI: 10.1111/aas.13711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Risk patients admitted to hospital wards may quickly develop haemodynamic deterioration and early recognition has high priority to allow preventive intervention. The peripheral perfusion index (PPI) may be an indicator of circulatory distress by assessing peripheral perfusion non-invasively from photoplethysmography. We aimed to describe the characteristics of PPI in hospitalized patients since this is not well-studied. MATERIALS AND METHODS Patients admitted due to either acute exacerbation of chronic obstructive pulmonary disease (AECOPD) or after major abdominal cancer surgery were included in this study. Patients were monitored continuously up to 96 hours with a pulse oximeter. Comparisons between median PPI each day, time of day and admission type were described with mean difference (MD) and were analysed using Wilcoxon rank sum test and related to morbidity and mortality. RESULTS PPI data from 291 patients were recorded for a total of 9279 hours. Median PPI fell from 1.4 (inter quartile range, IQR 0.9-2.3) on day 1 to 1.0 (IQR 0.6-1.6) on day 4. Significant differences occurred between PPI day vs evening (MD = 0.18, 95% CI 0.16-0.20, P = .028), day vs night (MD = 0.56, 95% CI 0.49-0.62, P < .0001) and evening vs night (MD = 0.38, 95% CI 0.33-0.42, P = .002). No significant difference in median PPI between AECOPD and surgical patients was found (MD = 0.15, 95% CI -0.08-0.38, P = .62). CONCLUSION Lower PPI during daytime vs evening and night-time were seen for both populations. The highest frequency of serious adverse events and mortality was seen among patients with low median PPI. The clinical impact of PPI monitoring needs further confirmation.
Collapse
Affiliation(s)
- Patrick S. Rasmussen
- Department of Anaesthesia and Intensive Care, Bispebjerg and Frederiksberg Hospital University of Copenhagen Copenhagen Denmark
- Copenhagen Center for Translational Research Copenhagen University Hospital, Bispebjerg and Frederiksberg Copenhagen Denmark
- Department of Anaesthesiology, Centre for Cancer and Organ Diseases Rigshospitalet, University of Copenhagen Copenhagen Denmark
| | - Eske K. Aasvang
- Department of Anaesthesiology, Centre for Cancer and Organ Diseases Rigshospitalet, University of Copenhagen Copenhagen Denmark
- Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Rasmus M. Olsen
- Biomedical Engineering, Department of Health Technology Technical University of Denmark Kgs. Lyngby Denmark
| | - Camilla Haahr‐Raunkjaer
- Department of Anaesthesia and Intensive Care, Bispebjerg and Frederiksberg Hospital University of Copenhagen Copenhagen Denmark
- Copenhagen Center for Translational Research Copenhagen University Hospital, Bispebjerg and Frederiksberg Copenhagen Denmark
- Department of Anaesthesiology, Centre for Cancer and Organ Diseases Rigshospitalet, University of Copenhagen Copenhagen Denmark
| | - Mikkel Elvekjaer
- Department of Anaesthesia and Intensive Care, Bispebjerg and Frederiksberg Hospital University of Copenhagen Copenhagen Denmark
- Copenhagen Center for Translational Research Copenhagen University Hospital, Bispebjerg and Frederiksberg Copenhagen Denmark
- Department of Anaesthesiology, Centre for Cancer and Organ Diseases Rigshospitalet, University of Copenhagen Copenhagen Denmark
| | - Helge B. D. Sørensen
- Biomedical Engineering, Department of Health Technology Technical University of Denmark Kgs. Lyngby Denmark
| | - Christian S. Meyhoff
- Department of Anaesthesia and Intensive Care, Bispebjerg and Frederiksberg Hospital University of Copenhagen Copenhagen Denmark
- Copenhagen Center for Translational Research Copenhagen University Hospital, Bispebjerg and Frederiksberg Copenhagen Denmark
- Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
| |
Collapse
|
11
|
Vikulina AS, Feoktistova NA, Balabushevich NG, von Klitzing R, Volodkin D. Cooling-Triggered Release from Mesoporous Poly( N-isopropylacrylamide) Microgels at Physiological Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57401-57409. [PMID: 33290041 PMCID: PMC7760096 DOI: 10.1021/acsami.0c15370] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/24/2020] [Indexed: 05/14/2023]
Abstract
Poly(N-isopropylacrylamide) (pNIPAM) hydrogels have broad potential applications as drug delivery vehicles because of their thermoresponsive behavior. pNIPAM loading/release performances are directly affected by the gel network structure. Therefore, there is a need with the approaches for accurate design of 3D pNIPAM assemblies with the structure ordered at the nanoscale. This study demonstrates size-selective spontaneous loading of macromolecules (dextrans 10-500 kDa) into pNIPAM microgels by microgel heating from 22 to 35 °C (microgels collapse and trap dextrans) followed by the dextran release upon further cooling down to 22 °C (microgels swell back) . This temperature-mediated behavior is fully reversible. The structure of pNIPAM microgels was tailored via hard templating and cross-linking of the hydrogel using sacrificial mesoporous cores of vaterite CaCO3 microcrystals. In addition, the fabrication of hollow thermoresponsive pNIPAM microshells has been demonstrated, utilizing vaterite microcrystals that had narrower pores. The proposed approach for heating-triggered encapsulation and cooling-triggered release into/from pNIPAM microgels may pave the ways for applications of pNIPAM hydrogels for skin and transdermal cooling-responsive drug delivery in the future.
Collapse
Affiliation(s)
- Anna S. Vikulina
- Fraunhofer Institute
for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, Golm, Potsdam 14476, Germany
- School
of Science and Technology, Nottingham Trent
University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Natalia A. Feoktistova
- Fraunhofer Institute
for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, Golm, Potsdam 14476, Germany
- Department
of Chemistry, Lomonosov Moscow State University, Leninskiye gory 1-3, Moscow 119991, Russia
| | - Nadezhda G. Balabushevich
- Department
of Chemistry, Lomonosov Moscow State University, Leninskiye gory 1-3, Moscow 119991, Russia
| | - Regine von Klitzing
- Department of Physics, Technische
Universität Darmstadt, Hochschulstraße 8, Darmstadt 64289, Germany
| | - Dmitry Volodkin
- School
of Science and Technology, Nottingham Trent
University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
- Department
of Chemistry, Lomonosov Moscow State University, Leninskiye gory 1-3, Moscow 119991, Russia
| |
Collapse
|
12
|
Yoshimura M, Hojo T, Yamamoto H, Tachibana M, Nakamura M, Fukuoka Y. Effects of artificial CO 2-rich cold-water immersion on repeated-cycling work efficiency. Res Sports Med 2020; 30:215-227. [PMID: 33300394 DOI: 10.1080/15438627.2020.1860048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We investigated the acute effects of cold-water immersion (20°C) with higher CO2 concentration (CCWI) following a high-intensity Wingate anaerobic exercise test (WAnT) on subjects' sublingual temperature (Tsub), blood lactate ([La]b), heart rate (HR), and aerobic cycling work efficiency (WE) compared to cold tap-water immersion (20°C; CWI) and passive recovery (PAS). Fifteen subjects completed three testing sessions at 1-week intervals. Each trial consisted of a first WE and WAnT, and a 20-min recovery intervention (randomized: CCWI, CWI, and PAS) before repeating a second WE and WAnT. The WE was measured by the metabolic demand during 50%V̇O2max exercise. HR, Tsub, and [La]b were recorded throughout the testing sessions. There was a significant decline in the WE from 1st bout to 2nd bout at each recovery intervention. The WAnT was also significantly reduced at 2nd bout. Significantly reduced [La]b was achieved at CCWI compared to PAS, but not to the CWI. Likewise, the reduction in HR following immersion was the largest at CCWI compared to the other conditions. These findings indicate that CCWI is an effective intervention for maintaining repeated cycling work efficiency, which might be associated with reduced [La]b and HR.
Collapse
Affiliation(s)
- Miho Yoshimura
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - Tatsuya Hojo
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - Hayato Yamamoto
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - Misato Tachibana
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - Masatoshi Nakamura
- Department of Physical Therapy, Niigata University of Health and Warfare, Niigata, Japan
| | - Yoshiyuki Fukuoka
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
13
|
Inoue K, Yamashita N, Kume M, Yoshida T. Changes in the physiological strain and graded exercise performance due to warming or cooling of the lower body in a temperate environment. J Sports Med Phys Fitness 2020; 61:18-26. [PMID: 32936567 DOI: 10.23736/s0022-4707.20.10877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The effects of a reduced or mildly elevated exercising muscle temperature on the graded exercise test (GXT) performance have yet to be studied. The present study clarified the effects of a range of exercising muscle temperatures on GXT performance in a temperate environment. METHODS Eight male subjects (age: 24.0±0.5 years old; height: 175±2 cm; weight: 64.8±2.0 kg; peak oxygen consumption [V̇O<inf>2peak</inf>]: 51.1±2.4 mL/kg/min) performed 4 GXTs at different exercising muscle temperatures using a cycle-ergometer in a temperate environment (24.1±0.2 °C). The exercise began at 0.3 kilopond (kp) with 60 revolutions per minute (rpm) and increased 0.3 kp every minute until volitional exhaustion. Subjects passively cooled (averaged deep thigh and calf temperature [Tmm], cold: 31 °C or cool: 33 °C) or warmed (Tmm; warm: 35 °C or hot: 37 °C) the exercising muscle using water perfusion pants throughout the test. The peak oxygen consumption (V̇O<inf>2peak</inf>), exercise time to exhaustion (TTE), heart rate (HR), tympanic (Tty) and mean body temperature (Tb), and total sweat loss were also measured. RESULTS No significant differences were observed in the V̇O<inf>2peak</inf> or TTE among the 4 conditions; however, the HR, Tb, and total sweat loss were significantly higher (P<0.05) under warming conditions than cooling conditions. CONCLUSIONS These results suggest that although the cardiovascular and thermoregulatory strain is higher under warming conditions than cooling conditions, the exercising muscle temperature does not affect the performance of a GXT lasting approximately 15 min in a temperate environment.
Collapse
Affiliation(s)
- Keiko Inoue
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Naoyuki Yamashita
- Faculty of Arts and Sciences, Kyoto Institute of Technology, Kyoto, Japan
| | - Masashi Kume
- Department of Food and Nutrition, Kyoto Bunkyo Junior College, Uji, Japan
| | - Tetsuya Yoshida
- Faculty of Arts and Sciences, Kyoto Institute of Technology, Kyoto, Japan -
| |
Collapse
|
14
|
Gagnon DD, Hancock C, McCue A, Beckett-Brown N, Gagnon J, Williams L, Marsh D, Munten S. Muscle cooling modulates tissue oxidative and biochemical responses but not energy metabolism during exercise. Eur J Appl Physiol 2020; 120:1761-1775. [PMID: 32494860 DOI: 10.1007/s00421-020-04407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE This study investigated whether muscle cooling and its associated effects on skeletal muscle oxidative responses, blood gases, and hormonal concentrations influenced energy metabolism during cycling. METHODS Twelve healthy participants (Males: seven; Females: five) performed two steady-state exercise sessions at 70% of ventilatory threshold on a cycle ergometer. Participants completed one session with pre-exercise leg cooling until muscle temperature (Tm) decreased by 6 °C (LCO), and a separate session without cooling (CON). They exercised until Tm returned to baseline and for an additional 30 min. Cardiovascular, respiratory, metabolic, hemodynamic variables, and skeletal muscle tissue oxidative responses were assessed continuously. Venous blood samples were collected to assess blood gases, and hormones. RESULTS Heart rate, stroke volume, and cardiac output all increased across time but were not different between conditions. V̇O2 was greater in LCO when muscle temperature was restored until the end of exercise (p < 0.05). Cycling in the LCO condition induced lower oxygen availability, tissue oxygenation, blood pH, sO2%, and pO2 (p < 0.05). Insulin concentrations were also higher in LCO vs. CON (p < 0.05). Importantly, stoichiometric equations from respiratory gases indicated no differences in fat and CHO oxidation between conditions. CONCLUSION The present study demonstrated that despite muscle cooling and the associated oxidative and biochemical changes, energy metabolism remained unaltered during cycling. Whether lower local and systemic oxygen availability is counteracted via a cold-induced activation of lipid metabolism pathways needs to be further investigated.
Collapse
Affiliation(s)
- Dominique D Gagnon
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, 935 Ramsey Lake Rd., Ben Avery Building, Sudbury, ON, P3E 2C6, Canada. .,Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, ON, Canada.
| | - Curtis Hancock
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, 935 Ramsey Lake Rd., Ben Avery Building, Sudbury, ON, P3E 2C6, Canada.,Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, ON, Canada
| | - Alexus McCue
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, 935 Ramsey Lake Rd., Ben Avery Building, Sudbury, ON, P3E 2C6, Canada.,Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, ON, Canada
| | - Nicholas Beckett-Brown
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, 935 Ramsey Lake Rd., Ben Avery Building, Sudbury, ON, P3E 2C6, Canada.,Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, ON, Canada
| | - Jeffrey Gagnon
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Laura Williams
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - David Marsh
- Northern Ontario School of Medicine, Sudbury, ON, Canada.,Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Stephanie Munten
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, 935 Ramsey Lake Rd., Ben Avery Building, Sudbury, ON, P3E 2C6, Canada.,Center of Research in Occupational Health and Safety, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
15
|
Dunshee LC, Sullivan MO, Kiick KL. Manipulation of the dually thermoresponsive behavior of peptide-based vesicles through modification of collagen-like peptide domains. Bioeng Transl Med 2020; 5:e10145. [PMID: 31989034 PMCID: PMC6971430 DOI: 10.1002/btm2.10145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
Materials that respond to temporally defined exogenous cues continue to be an active pursuit of research toward on-demand nanoparticle drug delivery applications, and using one or more exogenous temperature stimuli could significantly expand the application of nanoparticle-based drug delivery formulations under both hyperthermal and hypothermal conditions. Previously we have reported the development of a biocompatible and thermoresponsive elastin-b-collagen-like polypeptide (ELP-CLP) conjugate that is capable of self-assembling into vesicles and encapsulating small molecule therapeutics that can be delivered at different rates via a single temperature stimulus. Herein we report the evaluation of multiple ELP-CLP conjugates, demonstrating that the inverse transition temperature (T t) of the ELP-CLPs can be manipulated by modifying the melting temperature (T m) of the CLP domain, and that the overall hydrophilicity of the ELP-CLP conjugate also may alter the T t. Based on these design parameters, we demonstrate that the ELP-CLP sequence (VPGFG)6-(GPO)7GG can self-assemble into stable vesicles at 25°C and dissociate at elevated temperatures by means of the unfolding of the CLP domain above its T m. We also demonstrate here for the first time the ability of this ELP-CLP vesicle to dissociate via a hypothermic temperature stimulus by means of exploiting the inverse transition temperature (T t) phenomena found in ELPs. The development of design rules for manipulating the thermal properties of these bioconjugates will enable future modifications to either the ELP or CLP sequences to more finely tune the transitions of the conjugates for specific biomedical applications.
Collapse
Affiliation(s)
- Lucas C Dunshee
- Department of Chemical and Biomolecular Engineering University of Delaware Newark Delaware
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering University of Delaware Newark Delaware
- Department of Biomedical Engineering University of Delaware Newark Delaware
| | - Kristi L Kiick
- Department of Materials Science and Engineering University of Delaware Newark Delaware
| |
Collapse
|
16
|
Arantes LDPO, Trombini RDM, Tobias YDS, Rocha TC. Comparison of the effects of standard and intermittent cryoimmersion on stability, pain threshold and tolerance in the ankle region in healthy individuals. FISIOTERAPIA EM MOVIMENTO 2020. [DOI: 10.1590/1980-5918.032.ao64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Introduction: Cryotherapy is a technique that involves the application of low temperatures in the treatment of acute injuries, with ice being the simplest and oldest therapeutic modality for this. Objective: To compare two different cold water immersion protocols (standard and intermittent) on the ankle region of healthy volunteers, we analyzed changes in static postural stability, threshold, and pain tolerance immediately after application. Method: This is a quasi-experimental study, controlled clinical trial, and non-probabilistic sampling. The total sample consisted of 40 male patients aged 18 to 30 years. Two different cold water immersion protocols (standard and intermittent) were compared for their effects on pain threshold, tolerance, and static postural stability. Results: There were no significant differences between the groups with regards to the stabilometric variables after the application of both protocols (p > 0.05). There was a significant difference in the threshold and tolerance of the two groups after the application of cold water immersion (p < 0.05); however, there were no significant differences between the groups (p > 0.05). Conclusion: Both cold water immersion protocols proved to be safe for static postural balance, without showing deficits in stabilometric variables. Regarding the analgesic effect, both were effective and significantly increased the threshold and tolerance of ankle pain after cryoimmersion, without any differences between groups. Thus, intermittent 10-minute cold water immersion is sufficient to generate the same analgesic effect as the standard 20-minute pattern, with no change in static postural stability.
Collapse
|
17
|
Matsumoto K, Kimura SI, Itai S, Kondo H, Iwao Y. In vivo temperature-sensitive drug release system trigged by cooling using low-melting-point microcrystalline wax. J Control Release 2019; 303:281-288. [PMID: 31026549 DOI: 10.1016/j.jconrel.2019.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 10/27/2022]
Abstract
Temperature-sensitive formulations are attractive controlled-release formulations, which release an incorporated drug by changes in body temperature induced by external temperature stimulation. Recently, it has been reported that wax matrix (WM) particles composed of a low-melting-point microcrystalline wax (MCW) released only a small amount of the drug at 37 °C, whereas faster drug release occurred at 25 °C. In this study, temperature-sensitive formulations composed of low-melting-point MCW that release drugs triggered by cooling, rather than heating, were developed. In an in vitro dissolution test in which the test medium was repeatedly cooled from 37 to 25 °C, control of the promotion and suppression of drug release was achieved. The drug concentration in the plasma of rats administered the particles was significantly increased by cooling compared with non-cooling, indicating that the drug release from the particles was promoted by cooling both in vitro and in vivo. Therefore, particles composed of low-melting-point MCW should be useful for the development of cooling-triggered, temperature-sensitive formulations.
Collapse
Affiliation(s)
- Kohei Matsumoto
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shin-Ichiro Kimura
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shigeru Itai
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiromu Kondo
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yasunori Iwao
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
18
|
Horiuchi M, Handa-Kirihara Y, Abe D, Fukuoka Y. Combined effects of exposure to hypoxia and cool on walking economy and muscle oxygenation profiles at tibialis anterior. J Sports Sci 2019; 37:1638-1647. [PMID: 30774004 DOI: 10.1080/02640414.2019.1580130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated combined effects of ambient temperature (23°C or 13°C) and fraction of inspired oxygen (21%O2 or 13%O2) on energy cost of walking (Cw: J·kg-1·km-1) and economical speed (ES). Eighteen healthy young adults (11 males, seven females) walked at seven speeds from 0.67 to 1.67 m s-1 (four min per stage). Environmental conditions were set; thermoneutral (N: 23°C) with normoxia (N: 21%O2) = NN; 23°C (N) with hypoxia (H: 13%O2) = NH; cool (C: 13°C) with 21%O2 (N) = CN, and 13°C (C) with 13%O2 (H) = CH. Muscle deoxygenation (HHb) and tissue O2 saturation (StO2) were measured at tibialis anterior. We found a significantly slower ES in NH (1.289 ± 0.091 m s-1) and CH (1.275 ± 0.099 m s-1) than in NN (1.334 ± 0.112 m s-1) and CN (1.332 ± 0.104 m s-1). Changes in HHb and StO2 were related to the ES. These results suggested that the combined effects (exposure to hypoxia and cool) is nearly equal to exposure to hypoxia and cool individually. Specifically, acute moderate hypoxia slowed the ES by approx. 4%, but acute cool environment did not affect the ES. Further, HHb and StO2 may partly account for an individual ES.
Collapse
Affiliation(s)
- Masahiro Horiuchi
- a Division of Human Environmental Science , Mt. Fuji Research Institute , Fuji-yoshdia-city , Japan
| | - Yoko Handa-Kirihara
- a Division of Human Environmental Science , Mt. Fuji Research Institute , Fuji-yoshdia-city , Japan
| | - Daijiro Abe
- b Center for Health and Sports Science , Kyushu Sangyo University , Fukuoka , Japan
| | - Yoshiyuki Fukuoka
- c Faculty of Health and Sports Science , Doshisya University , Kyoto , Japan
| |
Collapse
|
19
|
Matsumoto K, Kimura SI, Noguchi S, Itai S, Kondo H, Iwao Y. Mechanism of Drug Release From Temperature-Sensitive Formulations Composed of Low-Melting-Point Microcrystalline Wax. J Pharm Sci 2019; 108:2086-2093. [PMID: 30677420 DOI: 10.1016/j.xphs.2019.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 11/15/2022]
Abstract
It was reported that wax matrix (WM) particles composed of low-melting-point microcrystalline wax showed unique release behaviors; the particles released only a small amount of the entrapped drug (non-diffusion-controlled release) at 37°C, whereas it showed comparatively fast drug release in a diffusion-controlled manner at 25°C. However, the mechanism of the drug release is still unclear. The objective of this study was to determine the mechanism of drug release from the WM particles using X-ray computed tomography. In the WM particles collected during dissolution tests at 25°C, the void space derived from drug release increased with increasing time, and there was no change in the structure, indicating that the WM particles released drug while maintaining the particle shape at 25°C. In the WM particles collected during dissolution tests at 37°C, the void space was confirmed at initial time point; however, at subsequent time points, the void space was disappeared, and the roughness of the surface was evident. This structural change may have blocked the conveyance pathway of the outer medium, which would inhibit the drug release. The difference between the drug-release mechanisms of the WM particles at the 2 temperatures will be valuable for developing cooling-triggered, temperature-sensitive formulations.
Collapse
Affiliation(s)
- Kohei Matsumoto
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shin-Ichiro Kimura
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shuji Noguchi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shigeru Itai
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiromu Kondo
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yasunori Iwao
- Department of Pharmaceutical Engineering and Drug Delivery Science, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
20
|
Kalsi KK, Chiesa ST, Trangmar SJ, Ali L, Lotlikar MD, González-Alonso J. Mechanisms for the control of local tissue blood flow during thermal interventions: influence of temperature-dependent ATP release from human blood and endothelial cells. Exp Physiol 2018; 102:228-244. [PMID: 27859767 PMCID: PMC5363389 DOI: 10.1113/ep085910] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/14/2016] [Indexed: 12/17/2022]
Abstract
New Findings What is the central question of this study? Skin and muscle blood flow increases with heating and decreases with cooling, but the temperature‐sensitive mechanisms underlying these responses are not fully elucidated. What is the main finding and its importance? We found that local tissue hyperaemia was related to elevations in ATP release from erythrocytes. Increasing intravascular ATP augmented skin and tissue perfusion to levels equal or above thermal hyperaemia. ATP release from isolated erythrocytes was altered by heating and cooling. Our findings suggest that erythrocytes are involved in thermal regulation of blood flow via modulation of ATP release.
Local tissue perfusion changes with alterations in temperature during heating and cooling, but the thermosensitivity of the vascular ATP signalling mechanisms for control of blood flow during thermal interventions remains unknown. Here, we tested the hypotheses that the release of the vasodilator mediator ATP from human erythrocytes, but not from endothelial cells or other blood constituents, is sensitive to both increases and reductions in temperature and that increasing intravascular ATP availability with ATP infusion would potentiate thermal hyperaemia in limb tissues. We first measured blood temperature, brachial artery blood flow and plasma [ATP] during passive arm heating and cooling in healthy men and found that they increased by 3.0 ± 1.2°C, 105 ± 25 ml min−1 °C−1 and twofold, respectively, (all P < 0.05) with heating, but decreased or remained unchanged with cooling. In additional men, infusion of ATP into the brachial artery increased skin and deep tissue perfusion to levels equal or above thermal hyperaemia. In isolated erythrocyte samples exposed to different temperatures, ATP release increased 1.9‐fold from 33 to 39°C (P < 0.05) and declined by ∼50% at 20°C (P < 0.05), but no changes were observed in cultured human endothelial cells, plasma or serum samples. In conclusion, increases in plasma [ATP] and skin and deep tissue perfusion with limb heating are associated with elevations in ATP release from erythrocytes, but not from endothelial cells or other blood constituents. Erythrocyte ATP release is also sensitive to temperature reductions, suggesting that erythrocytes may function as thermal sensors and ATP signalling generators for control of tissue perfusion during thermal interventions.
Collapse
Affiliation(s)
- Kameljit K Kalsi
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Scott T Chiesa
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Steven J Trangmar
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Leena Ali
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK.,Department of Anaesthetics, Ealing Hospital NHS Trust, Southall, UK
| | - Makrand D Lotlikar
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK.,Department of Anaesthetics, Ealing Hospital NHS Trust, Southall, UK
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| |
Collapse
|
21
|
Haslerud S, Naterstad IF, Bjordal JM, Lopes-Martins RAB, Magnussen LH, Leonardo PS, Marques RH, Joensen J. Achilles Tendon Penetration for Continuous 810 nm and Superpulsed 904 nm Lasers Before and After Ice Application: An In Situ Study on Healthy Young Adults. Photomed Laser Surg 2017; 35:567-575. [DOI: 10.1089/pho.2017.4269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Sturla Haslerud
- NorPhyPain Research Group, Faculty of Health and Social Sciences, Centre for Evidence Based Practice, Bergen University College, Bergen, Norway
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Ingvill Fjell Naterstad
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Jan Magnus Bjordal
- NorPhyPain Research Group, Faculty of Health and Social Sciences, Centre for Evidence Based Practice, Bergen University College, Bergen, Norway
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Rodrigo Alvaro Brandão Lopes-Martins
- Nucleous of Technological Research—NPT, Post-Graduate Program in Biomedical Engeneering, University of Mogi das Cruzes—UMC, Mogi das Cruzes, Brazil
| | - Liv Heide Magnussen
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational therapy, Physiotherapy and Radiography, Health and Social Sciences, Bergen University College, Bergen, Norway
| | - Patrícia Sardinha Leonardo
- Nucleous of Technological Research—NPT, Post-Graduate Program in Biomedical Engeneering, University of Mogi das Cruzes—UMC, Mogi das Cruzes, Brazil
| | - Ricardo Henrique Marques
- Nucleous of Technological Research—NPT, Post-Graduate Program in Biomedical Engeneering, University of Mogi das Cruzes—UMC, Mogi das Cruzes, Brazil
- Post-Graduate Program in Bioengineering, Universidade Brasil, São Paulo, Brazil
| | - Jon Joensen
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational therapy, Physiotherapy and Radiography, Health and Social Sciences, Bergen University College, Bergen, Norway
| |
Collapse
|
22
|
Haslerud S, Lopes-Martins RAB, Frigo L, Bjordal JM, Marcos RL, Naterstad IF, Magnussen LH, Joensen J. Low-Level Laser Therapy and Cryotherapy as Mono- and Adjunctive Therapies for Achilles Tendinopathy in Rats. Photomed Laser Surg 2017; 35:32-42. [DOI: 10.1089/pho.2016.4150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Sturla Haslerud
- NorPhyPain Research Group, Faculty of Health and Social Sciences, Centre for Evidence Based Practice, Bergen University College, Bergen, Norway
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | - Lúcio Frigo
- Centro de Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Jan Magnus Bjordal
- NorPhyPain Research Group, Faculty of Health and Social Sciences, Centre for Evidence Based Practice, Bergen University College, Bergen, Norway
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Rodrigo Labat Marcos
- Programa de Pós-Graduação em Biofotônica Aplicada as Ciências da Saúde, Universidade Nove de Julho, São Paulo, Brazil
| | - Ingvill Fjell Naterstad
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Liv Heide Magnussen
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Therapy, Physiotherapy and Radiography, Faculty of Health and Social Sciences, Bergen University College, Bergen, Norway
| | - Jon Joensen
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Occupational Therapy, Physiotherapy and Radiography, Faculty of Health and Social Sciences, Bergen University College, Bergen, Norway
| |
Collapse
|
23
|
Gagnon DD, Peltonen JE, Rintamäki H, Gagnon SS, Herzig KH, Kyröläinen H. The effects of skin and core tissue cooling on oxygenation of the vastus lateralis muscle during walking and running. J Sports Sci 2016; 35:1995-2004. [PMID: 27800701 DOI: 10.1080/02640414.2016.1245436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Skin and core tissue cooling modulates skeletal muscle oxygenation at rest. Whether tissue cooling also influences the skeletal muscle deoxygenation response during exercise is unclear. We evaluated the effects of skin and core tissue cooling on skeletal muscle blood volume and deoxygenation during sustained walking and running. Eleven male participants walked or ran six times on a treadmill for 60 min in ambient temperatures of 22°C (Neutral), 0°C for skin cooling (Cold 1), and at 0°C following a core and skin cooling protocol (Cold 2). Difference between oxy/deoxygenated haemoglobin ([diffHb]: deoxygenation index) and total haemoglobin content ([tHb]: total blood volume) in the vastus lateralis (VL) muscle was measured continuously. During walking, lower [tHb] was observed at 1 min in Cold 1 and Cold 2 vs. Neutral (P˂0.05). Lower [diffHb] was seen at 1 and 10 min in Cold 2 vs. Neutral by 13.5 ± 1.2 µM and 15.3 ± 1.4 µM and Cold 1 by 10.4 ± 3.1 µM and 11.1 ± 4.1 µM, respectively (P˂0.05). During running, [tHb] was lower in Cold 2 vs. Neutral at 10 min only (P = 0.004). [diffHb] was lower at 1 min in Cold 2 by 11.3 ± 3.1 µM compared to Neutral and by 13.5 ± 2.8 µM compared to Cold 1 (P˂0.001). Core tissue cooling, prior to exercise, induced greater deoxygenation of the VL muscle during the early stages of exercise, irrespective of changes in blood volume. Skin cooling alone, however, did not influence deoxygenation of the VL during exercise.
Collapse
Affiliation(s)
- Dominique D Gagnon
- a School of Human Kinetics, Faculty of Health , Laurentian University , Sudbury , Canada.,b Center for Research in Occupational Safety and Health , Laurentian University , Sudbury , Canada.,c Research Unit of Biomedicine, Department of Physiology and Biocenter of Oulu , University of Oulu , Oulu , Finland
| | - Juha E Peltonen
- d Department of Sports and Exercise Medicine , Clinicum, University of Helsinki , Helsinki , Finland.,e Clinic for Sports and Exercise Medicine , Foundation for Sports and Exercise Medicine , Helsinki , Finland
| | - Hannu Rintamäki
- c Research Unit of Biomedicine, Department of Physiology and Biocenter of Oulu , University of Oulu , Oulu , Finland.,f Finnish Institute of Occupational Health , Oulu , Finland
| | - Sheila S Gagnon
- g Department of Health and Rehabilitation Sciences , University of Western Ontario , Ontario , Canada
| | - Karl-Heinz Herzig
- c Research Unit of Biomedicine, Department of Physiology and Biocenter of Oulu , University of Oulu , Oulu , Finland.,h Medical Research Center Oulu and Oulu University Hospital , Oulu , Finland.,i Department of Gastroenterology and Metabolism , Poznan University of Medical Sciences , Poznan , Poland
| | - Heikki Kyröläinen
- j Department of Biology of Physical Activity , University of Jyväskylä , Jyväskylä , Finland
| |
Collapse
|
24
|
Khoshnevis S, Craik NK, Matthew Brothers R, Diller KR. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion. J Biomech Eng 2016; 138:4032126. [PMID: 26632263 DOI: 10.1115/1.4032126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 12/13/2022]
Abstract
The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P < 0.001) that persisted throughout the duration of the rewarming period. In addition, there was a hysteresis effect between CVC and skin temperature during the cooling and subsequent rewarming cycle (P < 0.01). Mixed model regression (MMR) showed a significant difference in the slopes of the CVC-skin temperature curves during cooling and rewarming (P < 0.001). Piecewise regression was used to investigate the temperature thresholds for acceleration of CVC during the cooling and rewarming periods. The two thresholds were shown to be significantly different (P = 0.003). The results show that localized cooling causes significant vasoconstriction that continues beyond the active cooling period despite skin temperatures returning toward baseline values. The significant and persistent reduction in skin perfusion may contribute to nonfreezing cold injury (NFCI) associated with cryotherapy.
Collapse
|
25
|
Freire B, Geremia J, Baroni BM, Vaz MA. Effects of cryotherapy methods on circulatory, metabolic, inflammatory and neural properties: a systematic review. FISIOTERAPIA EM MOVIMENTO 2016. [DOI: 10.1590/0103-5150.029.002.ao18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Introduction: The cooling therapy (cryotherapy) is commonly used in clinical environmental for the injuries treatment according to its beneficial effects on pain, local inflammation and the recovery time of patients. However, there is no consensus in the literature about the effects of cryotherapy in the physiological reactions of affected tissues after an injury. Objective: To realize a systematic review to analyze the cryotherapy effects on circulatory, metabolic, inflammatory and neural parameters. Materials and methods: A search was performed in PubMed, SciELO, PEDro and Scopus databases following the eligibility criteria. Included studies were methodologically assessed by PEDro scale. Results: 13 original studies were selected and presented high methodological quality. Discussion: The cryotherapy promotes a significant decrease in blood flow, in venous capillary pressure, oxygen saturation and hemoglobin (only for superficial tissues) and nerve conduction velocity. However, the effect of cryotherapy on the concentration of inflammatory substances induced by exercise, as the creatine kinase enzyme and myoglobin, remains unclear. Conclusion: The physiological reactions to the cryotherapy application are favorable to the use of this therapeutic tool in inflammatory treatment and pain decrease, and demonstrate its importance in the neuromuscular system injuries rehabilitation.
Collapse
Affiliation(s)
- Bruno Freire
- Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - Jeam Geremia
- Universidade Federal do Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
26
|
Lloyd A, Raccuglia M, Hodder S, Havenith G. Interaction between environmental temperature and hypoxia on central and peripheral fatigue during high-intensity dynamic knee extension. J Appl Physiol (1985) 2016; 120:567-79. [PMID: 26769955 DOI: 10.1152/japplphysiol.00876.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/06/2016] [Indexed: 11/22/2022] Open
Abstract
This study investigated causative factors behind the expression of different interaction types during exposure to multistressor environments. Neuromuscular fatigue rates and time to exhaustion (TTE) were investigated in active men (n = 9) exposed to three climates [5 °C, 50% relative humidity (rh); 23 °C, 50% rh; and 42 °C, 70% rh] at two inspired oxygen fractions (0.209 and 0.125 FiO2; equivalent attitude = 4,100 m). After a 40-min rest in the three climatic conditions, participants performed constant-workload (high intensity) knee extension exercise until exhaustion, with brief assessments of neuromuscular function every 110 s. Independent exposure to cold, heat, and hypoxia significantly (P < 0.01) reduced TTE from thermoneutral normoxia (reductions of 190, 405, and 505 s from 915 s, respectively). The TTE decrease was consistent with a faster rate of peripheral fatigue development (P < 0.01) compared with thermoneutral normoxia (increase of 1.6, 3.1, and 4.9%/min from 4.1%/min, respectively). Combined exposure to hypoxic-cold resulted in an even greater TTE reduction (-589 s), likely due to an increase in the rate of peripheral fatigue development (increased by 7.6%/min), but this was without significant interaction between stressors (P > 0.198). In contrast, combined exposure to hypoxic heat reduced TTE by 609 s, showing a significant antagonistic interaction (P = 0.003) similarly supported by an increased rate of peripheral fatigue development (which increased by 8.3%/min). A small decline (<0.4%/min) in voluntary muscle activation was observed only in thermoneutral normoxia. In conclusion, interaction type is influenced by the impact magnitude of the effect of the individual stressors' effect on exercise capacity, whereby the greater the effect of stressors, the greater the probability that one stressor will be abolished by the other. This indicates that humans respond to severe and simultaneous physiological strains on the basis of a worst-strain-takes-precedence principle.
Collapse
Affiliation(s)
- Alex Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Margherita Raccuglia
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Simon Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
27
|
Murray A, Cardinale M. Cold applications for recovery in adolescent athletes: a systematic review and meta analysis. EXTREME PHYSIOLOGY & MEDICINE 2015; 4:17. [PMID: 26464795 PMCID: PMC4603811 DOI: 10.1186/s13728-015-0035-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022]
Abstract
Recovery and regeneration modalities have been developed empirically over the years to help and support training programmes aimed at maximizing athletic performance. Professional athletes undergo numerous training sessions, characterized by differing modalities of varying volumes and intensities, with the aim of physiological adaptation leading to improved performance. Scientific support to athletes focuses on improving the chances of a training programme producing the largest adaptive response. In competition it is mainly targeted at maximizing the chances of optimal performance and recovery when high performance levels are required repeatedly in quick succession (e.g. heats/finals). In recent years, a lot of emphasis has been put on recovery modalities. In particular, emphasis has been placed on the need to reduce the delayed onset of muscle soreness (DOMS) typically evident following training and competitive activities inducing a certain degree of muscle damage. One of the most used recovery modalities consists of cold-water immersion and/or ice/cold applications to muscles affected by DOMS. While the scientific literature has provided a rationale for such modalities to reduce pain in athletes and recreationally active adults, it is doubtful if this rationale is appropriate to aid training with adolescent athletes. In particular, since these methods have been suggested to potentially impair the muscle remodeling process leading to muscle hypertrophy. While this debate is still active in the literature, many coaches adopt such practices in youth populations, simply transferring what they see in elite sportspeople directly; without questioning the rationale, safety or effectiveness as well as the potential for such activity to reduce the adaptive potential of skeletal muscle remodeling in adolescent athletes. The aim of this review was to assess the current knowledge base on the use of ice/cold applications for recovery purposes in adolescent athletes in order to provide useful guidelines for sports scientists, medical practitioners, physiotherapists and coaches working with such populations as well as developing research questions for further research activities in this area. Based on the current evidence, it seems clear that evidence for acute benefits of such interventions are scarce and more work is needed to ascertain the physiological implications on a pre or peri-pubertal population.
Collapse
Affiliation(s)
- Andrew Murray
- />Department of Sports Science, Aspire Academy, Doha, Qatar
- />University of Edinburgh, Edinburgh, UK
| | - Marco Cardinale
- />Department of Sports Science, Aspire Academy, Doha, Qatar
- />Department of Computer Science and Institute of Sport Exercise and Health, University College London, London, UK
| |
Collapse
|
28
|
Muniz TB, Moraes R, Guirro RRJ. Lower limb ice application alters ground reaction force during gait initiation. Braz J Phys Ther 2015; 19:114-21. [PMID: 25993625 PMCID: PMC4481831 DOI: 10.1590/bjpt-rbf.2014.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/27/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND: Cryotherapy is a widely used technique in physical therapy clinics and sports.
However, the effects of cryotherapy on dynamic neuromuscular control are
incompletely explained. OBJECTIVES: To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the
foot in healthy young adults on ground reaction forces during gait initiation.
METHOD: This study evaluated the gait initiation forces, maximum propulsion, braking
forces and impulses of 21 women volunteers through a force platform, which
provided maximum and minimum ground reaction force values. To assess the effects
of cooling, the task - gait initiation - was performed before ice application,
immediately after and 30 minutes after removal of the ice pack. Ice was randomly
applied on separate days to the calf, ankle and sole of the foot of the
participants. RESULTS: It was demonstrated that ice application for 30 minutes to the sole of the foot
and calf resulted in significant changes in the vertical force variables, which
returned to their pre-application values 30 minutes after the removal of the ice
pack. Ice application to the ankle only reduced propulsion impulse. CONCLUSIONS: These results suggest that although caution is necessary when performing
activities that require good gait control, the application of ice to the ankle,
sole of the foot or calf in 30-minute intervals may be safe even preceding such
activities.
Collapse
Affiliation(s)
- Thiago B Muniz
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Renato Moraes
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Rinaldo R J Guirro
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, FMRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
29
|
Wakabayashi H, Oksa J, Tipton MJ. Exercise performance in acute and chronic cold exposure. ACTA ACUST UNITED AC 2015. [DOI: 10.7600/jpfsm.4.177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Juha Oksa
- Physical work capacity team, Finnish Institute of Occupational Health
| | - Michael J Tipton
- Department of Sport & Exercise Science, University of Portsmouth
| |
Collapse
|
30
|
Jones B, Dat M, Cooper CE. Underwater near-infrared spectroscopy measurements of muscle oxygenation: laboratory validation and preliminary observations in swimmers and triathletes. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:127002. [PMID: 25478871 DOI: 10.1117/1.jbo.19.12.127002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
The purpose of this research was to waterproof a near-infrared spectroscopy device (PortaMon, Artinis Medical Systems) to enable NIR measurement during swim exercise. Candidate materials were initially tested for waterproof suitability by comparing light intensity values during phantom-based tissue assessment. Secondary assessment involved repeated isokinetic exercises ensuring reliability of the results obtained from the modified device. Tertiary assessment required analysis of the effect of water immersion and temperature upon device function. Initial testing revealed that merely covering the PortaMon light sources with waterproof materials considerably affected the NIR light intensities. Modifying a commercially available silicone covering through the addition of a polyvinyl chloride material (impermeable to NIR light transmission) produces an acceptable compromise. Bland–Altman analysis indicated that exercise-induced changes in tissue saturation index (TSI %) were within acceptable limits during laboratory exercise. Although water immersion had a small but significant effect upon NIR light intensity, this resulted in a negligible change in the measured TSI (%). We then tested the waterproof device in vivo illustrating oxygenation changes during a 100 m freestyle swim case study. Finally, a full study compared club level swimmers and triathletes. Significant changes in oxygenation profiles when comparing upper and lower extremities for the two groups were revealed, reflecting differences in swim biomechanics.
Collapse
Affiliation(s)
- Ben Jones
- University of Essex, Centre for Sport and Exercise Sciences, School of Biological Sciences, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Marco Dat
- Artinis Medical Systems, A Einsteinweg 17, 6662 PW Elst, The Netherlands
| | - Chris E Cooper
- University of Essex, Centre for Sport and Exercise Sciences, School of Biological Sciences, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
31
|
White GE, Rhind SG, Wells GD. The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. Eur J Appl Physiol 2014; 114:2353-67. [PMID: 25074283 DOI: 10.1007/s00421-014-2954-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/10/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE The purpose of this study was to investigate the effects of different cold-water immersion (CWI) protocols on the inflammatory response to and functional recovery from high-intensity exercise. METHODS Eight healthy recreationally active males completed five trials of a high-intensity intermittent sprint protocol followed by a randomly assigned recovery condition: 1 of 4 CWI protocols (CWI-10 min × 20 °C, CWI-30 min × 20 °C, CWI-10 min × 10 °C, or CWI-30 min × 10 °C) versus passive rest. Circulating mediators of the inflammatory response were measured from EDTA plasma taken pre-exercise (baseline), immediately post-exercise, and at 2, 24, and 48 h post-exercise. Ratings of perceived soreness and impairment were noted on a 10-pt Likert scale, and squat jump and drop jump were performed at these time points. RESULTS IL-6, IL-8, and MPO increased significantly from baseline immediately post-exercise in all conditions. IL-6 remained elevated from baseline at 2 h in the CWI-30 min × 20 °C, CWI-10 min × 10 °C, and CWI-30 min × 10 °C conditions, while further increases were observed for IL-8 and MPO in the CWI-30 min × 20 °C and CWI-30 min × 10 °C conditions. Squat jump and drop jump height were significantly lower in all conditions immediately post-exercise and at 2 h. Drop jump remained below baseline at 24 and 48 h in the CON and CWI-10 min × 20 °C conditions only, while squat jump height returned to baseline in all conditions. CONCLUSIONS Cold-water immersion appears to facilitate restoration of muscle performance in a stretch-shortening cycle, but not concentric power. These changes do not appear to be related to inflammatory modulation. CWI protocols of excessive duration may actually exacerbate the concentration of cytokines in circulation post-exercise; however, the origin of the circulating cytokines is not necessarily skeletal muscle.
Collapse
Affiliation(s)
- Gillian E White
- Graduate Department of Exercise Sciences, University of Toronto, BN 60, 55 Harbord St., Toronto, ON, M5S 2W6, Canada,
| | | | | |
Collapse
|
32
|
Lima A, van Genderen ME, van Bommel J, Klijn E, Jansem T, Bakker J. Nitroglycerin reverts clinical manifestations of poor peripheral perfusion in patients with circulatory shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R126. [PMID: 24946777 PMCID: PMC4229779 DOI: 10.1186/cc13932] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/02/2014] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Recent clinical studies have shown a relationship between abnormalities in peripheral perfusion and unfavorable outcome in patients with circulatory shock. Nitroglycerin is effective in restoring alterations in microcirculatory blood flow. The aim of this study was to investigate whether nitroglycerin could correct the parameters of abnormal peripheral circulation in resuscitated circulatory shock patients. METHODS This interventional study recruited patients who had circulatory shock and who persisted with abnormal peripheral perfusion despite normalization of global hemodynamic parameters. Nitroglycerin started at 2 mg/hour and doubled stepwise (4, 8, and 16 mg/hour) each 15 minutes until an improvement in peripheral perfusion was observed. Peripheral circulation parameters included capillary refill time (CRT), skin-temperature gradient (Tskin-diff), perfusion index (PI), and tissue oxygen saturation (StO2) during a reactive hyperemia test (RincStO2). Measurements were performed before, at the maximum dose, and after cessation of nitroglycerin infusion. Data were analyzed by using linear model for repeated measurements and are presented as mean (standard error). RESULTS Of the 15 patients included, four patients (27%) responded with an initial nitroglycerin dose of 2 mg/hour. In all patients, nitroglycerin infusion resulted in significant changes in CRT, Tskin-diff, and PI toward normal at the maximum dose of nitroglycerin: from 9.4 (0.6) seconds to 4.8 (0.3) seconds (P < 0.05), from 3.3 °C (0.7 °C) to 0.7 °C (0.6 °C) (P < 0.05), and from [log] -0.5% (0.2%) to 0.7% (0.1%) (P < 0.05), respectively. Similar changes in StO2 and RincStO2 were observed: from 75% (3.4%) to 84% (2.7%) (P < 0.05) and 1.9%/second (0.08%/second) to 2.8%/second (0.05%/second) (P < 0.05), respectively. The magnitude of changes in StO2 was more pronounced for StO2 of less than 75%: 11% versus 4%, respectively (P < 0.05). CONCLUSIONS Dose-dependent infusion of nitroglycerin reverted abnormal peripheral perfusion and poor tissue oxygenation in patients following circulatory shock resuscitation. Individual requirements of nitroglycerin dose to improve peripheral circulation vary between patients. A simple and fast physical examination of peripheral circulation at the bedside can be used to titrate nitroglycerin infusion.
Collapse
|
33
|
Ihsan M, Watson G, Lipski M, Abbiss CR. Influence of postexercise cooling on muscle oxygenation and blood volume changes. Med Sci Sports Exerc 2014; 45:876-82. [PMID: 23247707 DOI: 10.1249/mss.0b013e31827e13a2] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The aim of this study was to investigate the effects of postexercise cold water immersion (CWI) on tissue oxygenation and blood volume changes after intense exercise. METHODS Nine physically active men performed 30 min of continuous running (CR) at 70% of their maximal treadmill velocity (Vmax), followed by 10 bouts of intermittent running at Vmax. After exercise, one of the participants' legs was immersed in a cold water bath (10°C, CWI) to the level of their gluteal fold for 15 min. The contralateral leg remained outside the water bath and served as a control (CON). Vastus lateralis (VL) skin temperature (TskVL), VL oxygenation (tissue oxygenation index [TOI]), and blood volume changes (total hemoglobin [tHb] volume) were monitored continuously throughout exercise and CWI using near-infrared spectroscopy. RESULTS TskVL, TOI, and tHb were not significantly different between CON and CWI during continuous running and intermittent running, respectively (P > 0.05). In contrast, TskVL was significantly lower in CWI compared with CON throughout immersion, with peak differences occurring at the end of immersion (CON = 35.1 ± 0.6 vs CWI = 16.9°C ± 1.7°C, P < 0.001). tHb was significantly lower during CWI compared with CON at most time points, with peak differences of 20% ± 4% evident at the end of the 15-min immersion (P < 0.01). Likewise, TOI was significantly higher in CWI compared with CON, with peak differences of 2.5% ± 1% evident at the 12th min of immersion (P < 0.05). CONCLUSIONS Postexercise cooling decreased microvascular perfusion and muscle metabolic activity. These findings are consistent with the suggested mechanisms by which CWI is hypothesized to improve local muscle recovery.
Collapse
Affiliation(s)
- Mohammed Ihsan
- Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| | | | | | | |
Collapse
|
34
|
Stanley J, Peake JM, Coombes JS, Buchheit M. Central and peripheral adjustments during high-intensity exercise following cold water immersion. Eur J Appl Physiol 2013; 114:147-63. [PMID: 24158407 DOI: 10.1007/s00421-013-2755-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/14/2013] [Indexed: 11/26/2022]
Abstract
PURPOSE We investigated the acute effects of cold water immersion (CWI) or passive recovery (PAS) on physiological responses during high-intensity interval training (HIIT). METHODS In a crossover design, 14 cyclists completed 2 HIIT sessions (HIIT1 and HIIT2) separated by 30 min. Between HIIT sessions, they stood in cold water (10 °C) up to their umbilicus, or at room temperature (27 °C) for 5 min. The natural logarithm of square-root of mean squared differences of successive R-R intervals (ln rMSSD) was assessed pre- and post-HIIT1 and HIIT2. Stroke volume (SV), cardiac output (Q), O2 uptake (VO2), total muscle hemoglobin (t Hb) and oxygenation of the vastus lateralis were recorded (using near infrared spectroscopy); heart rate, Q, and VO2 on-kinetics (i.e., mean response time, MRT), muscle de-oxygenation rate, and anaerobic contribution to exercise were calculated for HIIT1 and HIIT2. RESULTS ln rMSSD was likely higher [between-trial difference (90% confidence interval) [+13.2% (3.3; 24.0)] after CWI compared with PAS. CWI also likely increased SV [+5.9% (-0.1; 12.1)], possibly increased Q [+4.4% (-1.0; 10.3)], possibly slowed Q MRT [+18.3% (-4.1; 46.0)], very likely slowed VO2 MRT [+16.5% (5.8; 28.4)], and likely increased the anaerobic contribution to exercise [+9.7% (-1.7; 22.5)]. CONCLUSION CWI between HIIT slowed VO2 on-kinetics, leading to increased anaerobic contribution during HIIT2. This detrimental effect of CWI was likely related to peripheral adjustments, because the slowing of VO2 on-kinetics was twofold greater than that of central delivery of O2 (i.e., Q). CWI has detrimental effects on high-intensity aerobic exercise performance that persist for ≥ 45 min.
Collapse
Affiliation(s)
- Jamie Stanley
- Centre of Excellence for Applied Sport Science Research, Queensland Academy of Sport, Brisbane, Australia,
| | | | | | | |
Collapse
|
35
|
White GE, Wells GD. Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise. EXTREME PHYSIOLOGY & MEDICINE 2013; 2:26. [PMID: 24004719 PMCID: PMC3766664 DOI: 10.1186/2046-7648-2-26] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/12/2013] [Indexed: 01/05/2023]
Abstract
High-intensity exercise is associated with mechanical and/or metabolic stresses that lead to reduced performance capacity of skeletal muscle, soreness and inflammation. Cold-water immersion and other forms of cryotherapy are commonly used following a high-intensity bout of exercise to speed recovery. Cryotherapy in its various forms has been used in this capacity for a number of years; however, the mechanisms underlying its recovery effects post-exercise remain elusive. The fundamental change induced by cold therapy is a reduction in tissue temperature, which subsequently exerts local effects on blood flow, cell swelling and metabolism and neural conductance velocity. Systemically, cold therapy causes core temperature reduction and cardiovascular and endocrine changes. A major hindrance to defining guidelines for best practice for the use of the various forms of cryotherapy is an incongruity between mechanistic studies investigating these physiological changes induced by cold and applied studies investigating the functional effects of cold for recovery from high-intensity exercise. When possible, studies investigating the functional recovery effects of cold therapy for recovery from exercise should concomitantly measure intramuscular temperature and relevant temperature-dependent physiological changes induced by this type of recovery strategy. This review will discuss the acute physiological changes induced by various cryotherapy modalities that may affect recovery in the hours to days (<5 days) that follow high-intensity exercise.
Collapse
Affiliation(s)
- Gillian E White
- Faculty of Kinesiology and Physical Education, The University of Toronto, Toronto, Ontario M5S 2W6, Canada.
| | | |
Collapse
|
36
|
Yanagisawa O, Otsuka S, Fukubayashi T. Effect of cooling during inter-exercise periods on subsequent intramuscular water movement and muscle performance. Scand J Med Sci Sports 2012; 24:11-7. [DOI: 10.1111/j.1600-0838.2012.01477.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2012] [Indexed: 11/28/2022]
Affiliation(s)
- O. Yanagisawa
- Faculty of Sport Sciences; Waseda University; Tokorozawa Japan
| | - S. Otsuka
- Graduate School of Sport Sciences; Waseda University; Tokorozawa Japan
| | - T. Fukubayashi
- Faculty of Sport Sciences; Waseda University; Tokorozawa Japan
| |
Collapse
|
37
|
Lima A, van Genderen ME, Klijn E, Bakker J, van Bommel J. Peripheral vasoconstriction influences thenar oxygen saturation as measured by near-infrared spectroscopy. Intensive Care Med 2012; 38:606-11. [PMID: 22349421 PMCID: PMC3307997 DOI: 10.1007/s00134-012-2486-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/03/2012] [Indexed: 01/04/2023]
Abstract
Purpose Near-infrared spectroscopy has been used as a noninvasive monitoring tool for tissue oxygen saturation (StO2) in acutely ill patients. This study aimed to investigate whether local vasoconstriction induced by body surface cooling significantly influences thenar StO2 as measured by InSpectra model 650. Methods Eight healthy individuals (age 26 ± 6 years) participated in the study. Using a cooling blanket, we aimed to cool the entire body surface to induce vasoconstriction in the skin without any changes in central temperature. Thenar StO2 was noninvasively measured during a 3-min vascular occlusion test using InSpectra model 650 with a 15-mm probe. Measurements were analyzed for resting StO2 values, rate of StO2 desaturation (RdecStO2, %/min), and rate of StO2 recovery (RincStO2, %/s) before, during, and after skin cooling. Measurements also included heart rate (HR), mean arterial pressure (MAP), cardiac output (CO), stroke volume (SV), capillary refill time (CRT), forearm-to-fingertip skin-temperature gradient (Tskin-diff), perfusion index (PI), and tissue hemoglobin index (THI). Results In all subjects MAP, CO, SV, and core temperature did not change during the procedure. Skin cooling resulted in a significant decrease in StO2 from 82% (80–87) to 72% (70–77) (P < 0.05) and in RincStO2 from 3.0%/s (2.8–3.3) to 1.7%/s (1.1–2.0) (P < 0.05). Similar changes in CRT, Tskin-diff, and PI were also observed: from 2.5 s (2.0–3.0) to 8.5 s (7.2–11.0) (P < 0.05), from 1.0°C (−1.6–1.8) to 3.1°C (1.8–4.3) (P < 0.05), and from 10.0% (9.1–11.7) to 2.5% (2.0–3.8), respectively. The THI values did not change significantly. Conclusion Peripheral vasoconstriction due to body surface cooling could significantly influence noninvasive measurements of thenar StO2 using InSpectra model 650 with 15-mm probe spacing.
Collapse
Affiliation(s)
- Alexandre Lima
- Department of Intensive Care Adults, Erasmus MC University Medical Centre Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Krite Svanberg E, Wollmer P, Andersson-Engels S, Åkeson J. Physiological influence of basic perturbations assessed by non-invasive optical techniques in humans. Appl Physiol Nutr Metab 2011; 36:946-57. [DOI: 10.1139/h11-119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
New non-invasive techniques enabling frequent or continuous assessments of various pathophysiological conditions might be used to improve in-hospital outcome by enabling earlier and more reliable bedside detection of medical deterioration. In this preclinical study, three modern non-invasive optical techniques, laser Doppler imaging (LDI), near-infrared spectroscopy (NIRS), and tissue viability imaging (TVI), were all evaluated with respect to the influence of basic physiological perturbations (including local changes in arm positioning, skin temperature, and regional blood flow conditions) on quasi simultaneously obtained values of skin perfusion, muscle tissue oxygenation (StO2), and skin blood volume, recorded in eighteen healthy volunteers. Skin perfusion measured by LDI responded prominently to changes in positioning of the arm, whereas muscle StO2 measured by NIRS did not change significantly. Total haemoglobin count (HbT) measured by NIRS and blood volume estimated by TVI both increased significantly on lowering of the limb. On local cooling, the perfusion and blood volume were both found to increase considerably, while StO2 and HbT did not change. Local heating induced a more than 10-fold increase in skin perfusion and a small increase in blood volume. On progressive venoarterial occlusion, the perfusion, StO2, HbT, and blood volume values decreased, after transient increases in HbT and blood volume before full arterial occlusion occurred, and all values approached the baseline level on release of the occlusion with a slight overshoot of the StO2. The results obtained have potential bearing on future utilization of these non-invasive techniques in the management of severely injured and (or) critically ill patients.
Collapse
Affiliation(s)
- Emilie Krite Svanberg
- Department of Anaesthesiology and Intensive Care Medicine, Lund University, Skåne University Hospital, entrance 42, 3rd floor, SE – 205 02 Malmö, Sweden
| | - Per Wollmer
- Clinical Physiology and Nuclear Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Jonas Åkeson
- Department of Anaesthesiology and Intensive Care Medicine, Lund University, Skåne University Hospital, entrance 42, 3rd floor, SE – 205 02 Malmö, Sweden
| |
Collapse
|
39
|
De Pauw K, De Geus B, Roelands B, Lauwens F, Verschueren J, Heyman E, Meeusen RR. Effect of five different recovery methods on repeated cycle performance. Med Sci Sports Exerc 2011; 43:890-7. [PMID: 21499054 DOI: 10.1249/mss.0b013e318200d25f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The aim of this study was to determine the influence of five different recovery strategies on repeated simulated time trial (TT) performance on a stationary cycle ergometer. METHODS Study 1 (n=8, male, club-level trained; V˙O2max: 56.9 ± 3.8 mL·min·kg) investigated the influence of passive rest with or without upper leg cooling (cooling device set at 0 °C or 10 °C) and compression after a first time trial (TT1) on a second time trial (TT2). Study 2 (n=9, male, club-level trained; V˙O2max: 53.3 ± 5.2 mL·min·kg) examined the influence of active recovery (AR) with or without upper leg cooling (cooling device set at 0 °C) applied after TT1 on TT2. Exhaustive exercise consisted of a cycle exercise at 55% Wmax lasting 30 min, immediately followed by a TT in which subjects had to complete a preset amount of work, equal to 30 min at 75% Wmax, as fast as possible. Immediately after TT1, a different recovery intervention was used for 20 min, and then subjects passively rested for 100 min before starting TT2. TT performance and physiological parameters were registered during the experiments. RESULTS In both studies, we observed that TT performance did not significantly change for either of the recovery interventions. During the cooling interventions, skin temperatures significantly decreased (P<0.05). AR + cooling + compression versus AR (study 2) clearly showed a significantly (P<0.05) faster decrease of the blood lactate concentration ([BLa]) during the recovery period after TT1 and a lower [BLa] during TT2. CONCLUSIONS Twenty minutes after cooling (device set at 0 °C or 10 °C), AR or the combined recovery method had comparable effects as passive recovery on the maintenance of TT2 performance 120 min after the first TT (TT1). After AR, however, subjects seemed to perform slightly better during TT2.
Collapse
Affiliation(s)
- Kevin De Pauw
- Department of Human Physiology and Sports Medicine, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
40
|
de Sousa PL, Vignaud A, Fleury S, Carlier PG. Fast monitoring of T(1) , T(2) , and relative proton density (M(0) ) changes in skeletal muscles using an IR-TrueFISP sequence. J Magn Reson Imaging 2011; 33:921-30. [PMID: 21448959 DOI: 10.1002/jmri.22511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To investigate the feasibility of fast and simultaneous assessment of T(1) , T(2) , and M(0) (relative proton density) changes in skeletal muscle studies using an inversion recovery true fast imaging with steady-state precession (TrueFISP) sequence. MATERIALS AND METHODS NMR signal dynamics in calf muscles were analyzed under four different conditions: intravenous injection of a low-molecular weight Gd contrast agent (CA), postarterial occlusion reactive hyperemia, local cooling, and an exercise bout. Experiments were conducted on a clinical 3T whole-body scanner. RESULTS At rest, average muscle T(1) and T(2) values obtained from the IR-TrueFISP experiments were 1.34 ± 0.13 seconds and 45 ± 5 msec, respectively (median ± standard deviation). 1) Noticeable T(1) decreases (ΔT(1) max ≈-30%) were measured in the calf muscles after CA injection, while no significant changes were observed for T(2) and M(0) . 2) T(2) increased rapidly during reactive hyperemia and reached a peak value (+6%) at about 1 minute postischemia. During ischemia, a significant decrease was observed only in the soleus muscle. No significant paradigm-related changes in M(0) and T(1) were noted in all muscle groups, except in the m. soleus (ΔT(1) ≈+1% during reactive hyperemia). 3) Opposite variations in muscle T(1) (ΔT(1) max ≈-30%) and M(0) (ΔM(0) max ≈+25%) associated with local cooling were detected. 4) Concomitant changes in T(1) (ΔT(1) max ≈+15%), T(2) (ΔT(2) max ≈+35%), and M(0) (ΔM(0) max ≈+16%) were observed in the activated muscles following the exercise bout. CONCLUSION IR-TrueFISP was sufficiently fast and sensitive to detect small and transient T(1) , T(2) , and M(0) changes in the calf muscles under different experimental conditions. The sequence offers a time-resolution adequate to track rapid physiological adaptations in skeletal muscle.
Collapse
|
41
|
Pournot H, Bieuzen F, Louis J, Fillard JR, Barbiche E, Hausswirth C. Time-course of changes in inflammatory response after whole-body cryotherapy multi exposures following severe exercise. PLoS One 2011; 6:e22748. [PMID: 21829501 PMCID: PMC3145670 DOI: 10.1371/journal.pone.0022748] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/29/2011] [Indexed: 12/26/2022] Open
Abstract
The objectives of the present investigation was to analyze the effect of two different recovery modalities on classical markers of exercise-induced muscle damage (EIMD) and inflammation obtained after a simulated trail running race. Endurance trained males (n = 11) completed two experimental trials separated by 1 month in a randomized crossover design; one trial involved passive recovery (PAS), the other a specific whole body cryotherapy (WBC) for 96 h post-exercise (repeated each day). For each trial, subjects performed a 48 min running treadmill exercise followed by PAS or WBC. The Interleukin (IL) -1 (IL-1), IL-6, IL-10, tumor necrosis factor alpha (TNF-α), protein C-reactive (CRP) and white blood cells count were measured at rest, immediately post-exercise, and at 24, 48, 72, 96 h in post-exercise recovery. A significant time effect was observed to characterize an inflammatory state (Pre vs. Post) following the exercise bout in all conditions (p<0.05). Indeed, IL-1β (Post 1 h) and CRP (Post 24 h) levels decreased and IL-1ra (Post 1 h) increased following WBC when compared to PAS. In WBC condition (p<0.05), TNF-α, IL-10 and IL-6 remain unchanged compared to PAS condition. Overall, the results indicated that the WBC was effective in reducing the inflammatory process. These results may be explained by vasoconstriction at muscular level, and both the decrease in cytokines activity pro-inflammatory, and increase in cytokines anti-inflammatory.
Collapse
Affiliation(s)
- Hervé Pournot
- Research Department, National Institute of Sport, Expertise and Performance (INSEP), Paris, France
- Laboratory of Physiological Adaptations, Motor Performance and Health (EA 3837), Faculty of Sport Sciences of Nice-Sophia Antipolis, Nice, France
| | - François Bieuzen
- Research Department, National Institute of Sport, Expertise and Performance (INSEP), Paris, France
| | - Julien Louis
- Laboratory of Physiological Adaptations, Motor Performance and Health (EA 3837), Faculty of Sport Sciences of Nice-Sophia Antipolis, Nice, France
| | - Jean-Robert Fillard
- Medical Department, National Institute of Sport, Expertise and Performance (INSEP), Paris, France
| | | | - Christophe Hausswirth
- Research Department, National Institute of Sport, Expertise and Performance (INSEP), Paris, France
| |
Collapse
|
42
|
Costello JT, Donnelly AE. Cryotherapy and joint position sense in healthy participants: a systematic review. J Athl Train 2011; 45:306-16. [PMID: 20446845 DOI: 10.4085/1062-6050-45.3.306] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To (1) search the English-language literature for original research addressing the effect of cryotherapy on joint position sense (JPS) and (2) make recommendations regarding how soon healthy athletes can safely return to participation after cryotherapy. DATA SOURCES We performed an exhaustive search for original research using the AMED, CINAHL, MEDLINE, and SportDiscus databases from 1973 to 2009 to gather information on cryotherapy and JPS. Key words used were cryotherapy and proprioception, cryotherapy and joint position sense, cryotherapy, and proprioception. STUDY SELECTION The inclusion criteria were (1) the literature was written in English, (2) participants were human, (3) an outcome measure included JPS, (4) participants were healthy, and (5) participants were tested immediately after a cryotherapy application to a joint. DATA EXTRACTION The means and SDs of the JPS outcome measures were extracted and used to estimate the effect size (Cohen d) and associated 95% confidence intervals for comparisons of JPS before and after a cryotherapy treatment. The numbers, ages, and sexes of participants in all 7 selected studies were also extracted. DATA SYNTHESIS The JPS was assessed in 3 joints: ankle (n = 2), knee (n = 3), and shoulder (n = 2). The average effect size for the 7 included studies was modest, with effect sizes ranging from -0.08 to 1.17, with a positive number representing an increase in JPS error. The average methodologic score of the included studies was 5.4/10 (range, 5-6) on the Physiotherapy Evidence Database scale. CONCLUSIONS Limited and equivocal evidence is available to address the effect of cryotherapy on proprioception in the form of JPS. Until further evidence is provided, clinicians should be cautious when returning individuals to tasks requiring components of proprioceptive input immediately after a cryotherapy treatment.
Collapse
Affiliation(s)
- Joseph T Costello
- Department of Physical Education and Sport Sciences, University of Limerick, Castletroy, Limerick, Ireland.
| | | |
Collapse
|
43
|
Yanagisawa O, Fukubayashi T. Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle. Clin Radiol 2010; 65:874-80. [DOI: 10.1016/j.crad.2010.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 06/08/2010] [Accepted: 06/23/2010] [Indexed: 11/25/2022]
|
44
|
Yanagisawa O, Takahashi H, Fukubayashi T. Effects of different cooling treatments on water diffusion, microcirculation, and water content within exercised muscles: Evaluation by magnetic resonance T2-weighted and diffusion-weighted imaging. J Sports Sci 2010; 28:1157-63. [DOI: 10.1080/02640414.2010.504782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Watanabe K, Akima H. Cross-talk from adjacent muscle has a negligible effect on surface electromyographic activity of vastus intermedius muscle during isometric contraction. J Electromyogr Kinesiol 2009; 19:e280-9. [DOI: 10.1016/j.jelekin.2008.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/23/2008] [Accepted: 06/06/2008] [Indexed: 11/26/2022] Open
|
46
|
Janwantanakul P. The effect of quantity of ice and size of contact area on ice pack/skin interface temperature. Physiotherapy 2009; 95:120-5. [PMID: 19627693 DOI: 10.1016/j.physio.2009.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To determine the effect of quantity of ice and contact area on ice pack/skin interface temperature during a 20-minute cooling period. DESIGN Repeated measures. SETTING Laboratory setting in an educational institution. PARTICIPANTS Twenty healthy males aged between 18 and 22 years. INTERVENTIONS An ice pack was applied to the right thigh with compression using an elastic bandage. The effects of three packs measuring 18 cm x 23 cm containing 0.3, 0.6 and 0.8 kg of ice, and one pack measuring 20 cm x 25 m containing 0.6 kg of ice were compared. MAIN OUTCOME MEASURE The reduction in temperature at the ice pack/skin interface during 20-minute ice applications was monitored at 1-minute intervals. RESULTS The application of 0.8-kg and 0.6-kg ice packs led to a significantly greater decrease in the interface temperature compared with the 0.3-kg ice pack [0.8 kg vs. 0.3 kg: -2.35 degrees C, 95% confidence interval (CI) of the difference -3.36 to -1.34 degrees C; 0.6 kg vs. 0.3 kg: -2.95 degrees C, 95% CI -4.07 to -1.83 degrees C]. No significant difference in temperature was found between the 0.6-kg and 0.8-kg ice packs (0.8 kg vs. 0.6 kg: 0.6 degrees C, 95% CI -0.12 to 1.32 degrees C, P>0.05). The size of the contact area did not alter the degree of cooling significantly (difference between smaller and larger pack: 0.05 degrees C, 95% CI -0.93 to 1.03 degrees C, P>0.05). The lowest temperature during ice application was reached after 8-9 minutes of cooling. CONCLUSION Application of an ice pack containing at least 0.6 kg of ice leads to a greater magnitude of cooling compared with application of a 0.3-kg ice pack, regardless of the size of the contact area. Thus, clinicians should consider using ice packs weighing at least 0.6 kg for cold treatment.
Collapse
Affiliation(s)
- Prawit Janwantanakul
- Department of Physical Therapy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
47
|
Yanagisawa O, Shimao D, Maruyama K, Nielsen M, Irie T, Niitsu M. Diffusion-weighted magnetic resonance imaging of human skeletal muscles: gender-, age- and muscle-related differences in apparent diffusion coefficient. Magn Reson Imaging 2009; 27:69-78. [DOI: 10.1016/j.mri.2008.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/19/2008] [Accepted: 05/19/2008] [Indexed: 10/21/2022]
|
48
|
Yanagisawa O, Shimao D, Maruyama K, Nielsen M. Evaluation of exercised or cooled skeletal muscle on the basis of diffusion-weighted magnetic resonance imaging. Eur J Appl Physiol 2008; 105:723-9. [PMID: 19084988 DOI: 10.1007/s00421-008-0954-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
In this study, we assessed the physiological changes after exercising or cooling skeletal muscles on the basis of the apparent diffusion coefficient (ADC) values in magnetic resonance (MR) diffusion-weighted images (DWIs). DWIs of the ankle dorsiflexors were acquired with a 1.5-T MR device before and after exercising (22 subjects) or cooling (19 subjects). The exercise comprised a 5-min walk with the ankles dorsiflexed and a 30-time ankle dorsiflexion. Cooling (0 degrees C) of the ankle dorsiflexors was performed for 30 min. ADC values were calculated as ADC1-reflecting diffusion and perfusion and ADC2-approximating the true diffusion coefficient of the ankle dorsiflexors before and after exercising or cooling. ADC1 and ADC2 significantly increased with exercise and decreased with cooling (P < 0.05). Considering both diffusion and perfusion, ADC values allowed us to evaluate the intramuscular changes induced by exercising or cooling in terms of the motion of water molecules and microcirculation.
Collapse
Affiliation(s)
- Osamu Yanagisawa
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan,
| | | | | | | |
Collapse
|
49
|
Effect of local leg cooling on upper limb trajectories and muscle function and whole body dynamic balance. Eur J Appl Physiol 2008; 105:429-38. [DOI: 10.1007/s00421-008-0920-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
|