1
|
Esteves JV, Stanford KI. Exercise as a tool to mitigate metabolic disease. Am J Physiol Cell Physiol 2024; 327:C587-C598. [PMID: 38981607 PMCID: PMC11427015 DOI: 10.1152/ajpcell.00144.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Metabolic diseases, notably obesity and type 2 diabetes (T2D), have reached alarming proportions and constitute a significant global health challenge, emphasizing the urgent need for effective preventive and therapeutic strategies. In contrast, exercise training emerges as a potent intervention, exerting numerous positive effects on metabolic health through adaptations to the metabolic tissues. Here, we reviewed the major features of our current understanding with respect to the intricate interplay between metabolic diseases and key metabolic tissues, including adipose tissue, skeletal muscle, and liver, describing some of the main underlying mechanisms driving pathogenesis, as well as the role of exercise to combat and treat obesity and metabolic disease.
Collapse
Affiliation(s)
- Joao Victor Esteves
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
2
|
Willis SA, Malaikah S, Bawden SJ, Sherry AP, Sargeant JA, Coull NA, Bradley CR, Rowlands A, Naim I, Ennequin G, Yates T, Waheed G, Gowland P, Stensel DJ, Webb DR, Davies MJ, Aithal GP, King JA. Greater hepatic lipid saturation is associated with impaired glycaemic regulation in men with metabolic dysfunction-associated steatotic liver disease but is not altered by 6 weeks of exercise training. Diabetes Obes Metab 2024; 26:4030-4042. [PMID: 38978184 DOI: 10.1111/dom.15755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
AIMS To examine the impact of impaired glycaemic regulation (IGR) and exercise training on hepatic lipid composition in men with metabolic dysfunction-associated steatotic liver disease (MASLD). MATERIALS AND METHODS In Part A (cross-sectional design), 40 men with MASLD (liver proton density fat fraction [PDFF] ≥5.56%) were recruited to one of two groups: (1) normal glycaemic regulation (NGR) group (glycated haemoglobin [HbA1c] < 42 mmol∙mol-1 [<6.0%]; n = 14) or (2) IGR group (HbA1c ≥ 42 mmol∙mol-1 [≥6.0%]; n = 26). In Part B (randomized controlled trial design), participants in the IGR group were randomized to one of two 6-week interventions: (1) exercise training (EX; 70%-75% maximum heart rate; four sessions/week; n = 13) or (2) non-exercise control (CON; n = 13). Saturated (SI; primary outcome), unsaturated (UI) and polyunsaturated (PUI) hepatic lipid indices were determined using proton magnetic resonance spectroscopy. Additional secondary outcomes included liver PDFF, HbA1c, fasting plasma glucose (FPG), homeostatic model assessment of insulin resistance (HOMA-IR), peak oxygen uptake (VO2 peak), and plasma cytokeratin-18 (CK18) M65, among others. RESULTS In Part A, hepatic SI was higher and hepatic UI was lower in the IGR versus the NGR group (p = 0.038), and this hepatic lipid profile was associated with higher HbA1c levels, FPG levels, HOMA-IR and plasma CK18 M65 levels (rs ≥0.320). In Part B, hepatic lipid composition and liver PDFF were unchanged after EX versus CON (p ≥ 0.257), while FPG was reduced and VO2 peak was increased (p ≤ 0.030). ΔVO2 peak was inversely associated with Δhepatic SI (r = -0.433) and positively associated with Δhepatic UI and Δhepatic PUI (r ≥ 0.433). CONCLUSIONS Impaired glycaemic regulation in MASLD is characterized by greater hepatic lipid saturation; however, this composition is not altered by 6 weeks of moderate-intensity exercise training.
Collapse
Affiliation(s)
- Scott A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Sundus Malaikah
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stephen J Bawden
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Aron P Sherry
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Nicole A Coull
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Christopher R Bradley
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Alex Rowlands
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Iyad Naim
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Gaël Ennequin
- Laboratory of Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université of Clermont Auvergne, Clermont-Ferrand, France
| | - Thomas Yates
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Ghazala Waheed
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - David R Webb
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Melanie J Davies
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| |
Collapse
|
3
|
Ashcroft SP, Stocks B, Egan B, Zierath JR. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab 2024; 36:278-300. [PMID: 38183980 DOI: 10.1016/j.cmet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
The risk associated with multiple cancers, cardiovascular disease, diabetes, and all-cause mortality is decreased in individuals who meet the current recommendations for physical activity. Therefore, regular exercise remains a cornerstone in the prevention and treatment of non-communicable diseases. An acute bout of exercise results in the coordinated interaction between multiple tissues to meet the increased energy demand of exercise. Over time, the associated metabolic stress of each individual exercise bout provides the basis for long-term adaptations across tissues, including the cardiovascular system, skeletal muscle, adipose tissue, liver, pancreas, gut, and brain. Therefore, regular exercise is associated with a plethora of benefits throughout the whole body, including improved cardiorespiratory fitness, physical function, and glycemic control. Overall, we summarize the exercise-induced adaptations that occur within multiple tissues and how they converge to ultimately improve cardiometabolic health.
Collapse
Affiliation(s)
- Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Santos A, Braaten K, MacPherson M, Vasconcellos D, Vis-Dunbar M, Lonsdale C, Lubans D, Jung ME. Rates of compliance and adherence to high-intensity interval training: a systematic review and Meta-analyses. Int J Behav Nutr Phys Act 2023; 20:134. [PMID: 37990239 PMCID: PMC10664287 DOI: 10.1186/s12966-023-01535-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND To determine rates of compliance (i.e., supervised intervention attendance) and adherence (i.e., unsupervised physical activity completion) to high-intensity interval training (HIIT) among insufficiently active adults and adults with a medical condition, and determine whether compliance and adherence rates were different between HIIT and moderate-intensity continuous training (MICT). METHODS Articles on adults in a HIIT intervention and who were either insufficiently active or had a medical condition were included. MEDLINE, EMBASE, PsychINFO, SPORTDiscus, CINAHL, and Web of Science were searched. Article screening and data extraction were completed by two independent reviewers. Risk of bias was assessed using RoB 2.0 or ROBINS-I. Meta-analyses were conducted to discern differences in compliance and adherence between HIIT vs. MICT. Sensitivity analyses, publication bias, sub-group analyses, and quality appraisal were conducted for each meta-analysis. RESULTS One hundred eighty-eight unique studies were included (n = 8928 participants). Compliance to HIIT interventions averaged 89.4% (SD:11.8%), while adherence to HIIT averaged 63% (SD: 21.1%). Compliance and adherence to MICT averaged 92.5% (SD:10.6%) and 68.2% (SD:16.2%), respectively. Based on 65 studies included in the meta-analysis, compliance rates were not different between supervised HIIT and MICT interventions [Hedge's g = 0.015 (95%CI: - 0.088-0.118), p = .78]. Results were robust and low risk of publication bias was detected. No differences were detected based on sub-group analyses comparing medical conditions or risk of bias of studies. Quality of the evidence was rated as moderate over concerns in the directness of the evidence. Based on 10 studies, adherence rates were not different between unsupervised HIIT and MICT interventions [Hedge's g = - 0.313 (95%CI: - 0.681-0.056), p = .096]. Sub-group analysis points to differences in adherence rates dependent on the method of outcome measurement. Adherence results should be interpreted with caution due to very low quality of evidence. CONCLUSIONS Compliance to HIIT and MICT was high among insufficiently active adults and adults with a medical condition. Adherence to HIIT and MICT was relatively moderate, although there was high heterogeneity and very low quality of evidence. Further research should take into consideration exercise protocols employed, methods of outcome measurement, and measurement timepoints. REGISTRATION This review was registered in the PROSPERO database and given the identifier CRD42019103313.
Collapse
Affiliation(s)
- Alexandre Santos
- Faculty of Health and Social Development, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Kyra Braaten
- Faculty of Health and Social Development, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Megan MacPherson
- Faculty of Health and Social Development, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Diego Vasconcellos
- Institute for Positive Psychology & Education, Australian Catholic University, Melbourne, Victoria, Australia
| | - Mathew Vis-Dunbar
- Library, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Chris Lonsdale
- Institute for Positive Psychology & Education, Australian Catholic University, Melbourne, Victoria, Australia
| | - David Lubans
- School of Education, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Mary E Jung
- Faculty of Health and Social Development, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada.
| |
Collapse
|
5
|
Belfort-DeAguiar R, Lomonaco R, Cusi K. Approach to the Patient With Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab 2023; 108:483-495. [PMID: 36305273 DOI: 10.1210/clinem/dgac624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/13/2022] [Indexed: 01/20/2023]
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is associated with obesity and type 2 diabetes (T2D), causing substantial burden from hepatic and extrahepatic complications. However, endocrinologists often follow people who are at the highest risk of its more severe form with nonalcoholic steatohepatitis or NASH (i.e., T2D or obesity with cardiometabolic risk factors). Endocrinologists are in a unique position to prevent cirrhosis in this population with early diagnosis and treatment. OBJECTIVE This work aims to offer endocrinologists a practical approach for the management of patients with NAFLD, including diagnosis, fibrosis risk stratification, and referral to hepatologists. PATIENTS (1) An asymptomatic patient with obesity and cardiometabolic risk factors, found to have hepatic steatosis; (2) a patient with T2D and NASH with clinically significant liver fibrosis; and (3) a liver transplant recipient with a history of NASH cirrhosis, with significant weight regain and with recurrent NAFLD on the transplanted organ. CONCLUSION NASH can be reversed with proper management of obesity and of T2D. While no agents are currently approved for the treatment of NASH, treatment should include lifestyle changes and a broader use of structured weight-loss programs, obesity pharmacotherapy, and bariatric surgery. Diabetes medications such as pioglitazone and some glucagon-like peptide 1 receptor agonists may also improve liver histology and cardiometabolic health. Sodium-glucose cotransporter-2 inhibitors and insulin may ameliorate steatosis, but their effect on steatohepatitis remains unclear. Awareness by endocrinologists about, establishing an early diagnosis of fibrosis (ie, FIB-4, liver elastography) in patients at high-risk of cirrhosis, long-term monitoring, and timely referral to the hepatologist are all critical to curve the looming epidemic of cirrhosis from NAFLD.
Collapse
Affiliation(s)
- Renata Belfort-DeAguiar
- Internal Medicine Department, Endocrinology Section, Yale University, New Haven, Connecticut 06520, USA
| | - Romina Lomonaco
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida 32610, USA
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
6
|
Montemayor S, Bouzas C, Mascaró CM, Casares M, Llompart I, Abete I, Angullo-Martinez E, Zulet MÁ, Martínez JA, Tur JA. Effect of Dietary and Lifestyle Interventions on the Amelioration of NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. Nutrients 2022; 14:2223. [PMID: 35684022 PMCID: PMC9182851 DOI: 10.3390/nu14112223] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Adults with fatty liver present unusual glycaemia and lipid metabolism; as a result, non-alcoholic fatty liver disease (NAFLD) is now considered as part of the metabolic syndrome (MetS). OBJECTIVE To assess the 6- and 12-month effects of customized hypocaloric dietary and enhanced physical activity intervention on intrahepatic fat contents and progression of NAFLD, in patients with MetS. DESIGN Cross-sectional study in 155 participants (40-60 years old) from Balearic Islands and Navarra (Spain) with a diagnosis of NAFLD and MetS, and BMI (body mass index) between 27 and 40 kg/m2; patients were randomized in a 1:1:1 ratio to either Conventional Diet, Mediterranean diet (MD)-high meal frequency, and MD-physical activity groups. METHODS Dietary intake was assessed using a validated food frequency questionnaire. Adherence to Mediterranean diet, anthropometrics, physical activity, and biochemical parameters (fasting glucose, glycated hemoglobin, bilirubin, aspartate aminotransferase, alanine aminotransferase-ALT-, gamma-glutamyl transferase, uric acid, urea, creatinine, albumin, total cholesterol, high-density lipoprotein cholesterol-HDL-cholesterol-, and triglycerides) were also assessed. RESULTS Subjects with NAFLD and MetS had reduced intrahepatic fat contents, and liver stiffness, despite the intervention the participants went through. All participants ameliorated BMI, insulin, Hb1Ac, diastolic blood pressure, HDL-cholesterol, and ALT, and improved consumption of total energy, fish, and legumes. Participants in the MD-HMF group improved waist circumference. CONCLUSIONS Customized hypocaloric dietary and enhanced physical activity interventions may be useful to ameliorate NAFLD.
Collapse
Affiliation(s)
- Sofía Montemayor
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (S.M.); (C.B.); (C.M.M.); (I.L.); (E.A.-M.)
- Health Institute of the Balearic Islands (IDISBA), 07120 Palma de Mallorca, Spain
| | - Cristina Bouzas
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (S.M.); (C.B.); (C.M.M.); (I.L.); (E.A.-M.)
- Health Institute of the Balearic Islands (IDISBA), 07120 Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (I.A.); (M.Á.Z.)
| | - Catalina M. Mascaró
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (S.M.); (C.B.); (C.M.M.); (I.L.); (E.A.-M.)
- Health Institute of the Balearic Islands (IDISBA), 07120 Palma de Mallorca, Spain
| | - Miguel Casares
- Radiodiagnosis Service, Red Asistencial Juaneda, 07011 Palma de Mallorca, Spain;
| | - Isabel Llompart
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (S.M.); (C.B.); (C.M.M.); (I.L.); (E.A.-M.)
- Health Institute of the Balearic Islands (IDISBA), 07120 Palma de Mallorca, Spain
- Clinical Analysis Service, University Hospital Son Espases, 07120 Palma de Mallorca, Spain
| | - Itziar Abete
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (I.A.); (M.Á.Z.)
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain;
| | - Escarlata Angullo-Martinez
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (S.M.); (C.B.); (C.M.M.); (I.L.); (E.A.-M.)
- Health Institute of the Balearic Islands (IDISBA), 07120 Palma de Mallorca, Spain
- Escola Graduada Primary Health Care Center, 07001 Palma de Mallorca, Spain
| | - María Ángeles Zulet
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (I.A.); (M.Á.Z.)
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain;
| | - J. Alfredo Martínez
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain;
- Cardiometabolics Precision Nutrition Program, IMDEA Food, CEI UAM-CSIC, 28049 Madrid, Spain
| | - Josep A. Tur
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain; (S.M.); (C.B.); (C.M.M.); (I.L.); (E.A.-M.)
- Health Institute of the Balearic Islands (IDISBA), 07120 Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (I.A.); (M.Á.Z.)
| |
Collapse
|
7
|
Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, Kashyap S, Mechanick JI, Mouzaki M, Nadolsky K, Rinella ME, Vos MB, Younossi Z. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr Pract 2022; 28:528-562. [PMID: 35569886 DOI: 10.1016/j.eprac.2022.03.010] [Citation(s) in RCA: 481] [Impact Index Per Article: 160.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations regarding the diagnosis and management of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) to endocrinologists, primary care clinicians, health care professionals, and other stakeholders. METHODS The American Association of Clinical Endocrinology conducted literature searches for relevant articles published from January 1, 2010, to November 15, 2021. A task force of medical experts developed evidence-based guideline recommendations based on a review of clinical evidence, expertise, and informal consensus, according to established American Association of Clinical Endocrinology protocol for guideline development. RECOMMENDATION SUMMARY This guideline includes 34 evidence-based clinical practice recommendations for the diagnosis and management of persons with NAFLD and/or NASH and contains 385 citations that inform the evidence base. CONCLUSION NAFLD is a major public health problem that will only worsen in the future, as it is closely linked to the epidemics of obesity and type 2 diabetes mellitus. Given this link, endocrinologists and primary care physicians are in an ideal position to identify persons at risk on to prevent the development of cirrhosis and comorbidities. While no U.S. Food and Drug Administration-approved medications to treat NAFLD are currently available, management can include lifestyle changes that promote an energy deficit leading to weight loss; consideration of weight loss medications, particularly glucagon-like peptide-1 receptor agonists; and bariatric surgery, for persons who have obesity, as well as some diabetes medications, such as pioglitazone and glucagon-like peptide-1 receptor agonists, for those with type 2 diabetes mellitus and NASH. Management should also promote cardiometabolic health and reduce the increased cardiovascular risk associated with this complex disease.
Collapse
Affiliation(s)
- Kenneth Cusi
- Guideine and Algorithm Task Forces Co-Chair, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida
| | - Scott Isaacs
- Guideline and Algorithm Task Forces Co-Chair, Division of Endocrinology, Emory University School of Medicine, Atlanta, Georgia
| | - Diana Barb
- University of Florida, Gainesville, Florida
| | - Rita Basu
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sonia Caprio
- Yale University School of Medicine, New Haven, Connecticut
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jeffrey I Mechanick
- The Marie-Josee and Henry R. Kravis Center for Cardiovascular Health at Mount Sinai Heart, Icahn School of Medicine at Mount Sinai
| | | | - Karl Nadolsky
- Michigan State University College of Human Medicine, Grand Rapids, Michigan
| | - Mary E Rinella
- AASLD Representative, University of Pritzker School of Medicine, Chicago, Illinois
| | - Miriam B Vos
- Center for Clinical and Translational Research, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Zobair Younossi
- AASLD Representative, Inova Medicine, Inova Health System, Falls Church, Virginia
| |
Collapse
|
8
|
Association between Non-Alcoholic Fatty Liver Disease and Mediterranean Lifestyle: A Systematic Review. Nutrients 2021; 14:nu14010049. [PMID: 35010923 PMCID: PMC8746321 DOI: 10.3390/nu14010049] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Background and Aims: Non-alcoholic fatty liver disease (NAFLD) is an excessive accumulation of fat in the liver without alcohol abuse. It is linked to metabolic syndrome (MetS) and no pharmacological treatment exists. This systematic review aims to assess evidence about the effect of Mediterranean lifestyle on the prevention and reversion of NAFLD. Methods: A systematic literature search was performed in MEDLINE via Pubmed. MeSH terms used were: non-alcoholic fatty liver disease [MeSH Major Topic] AND metabolic syndrome [MeSH Term] AND (Diet, Mediterranean [MeSH Term]) OR (Exercise [MeSH Term]). (PROSPERO ID: 2021 CRD42021289495). Results: Thirteen articles were selected and divided into two categories (four focused on Mediterranean diet and NAFLD and nine focused on Mediterranean diet, physical activity, and NAFLD). Information of clinical endpoints was based on NAFLD, as well as MetS, body mass index, fasting glycemia, obesity, cholesterol, triglycerides, transaminases, albuminuria, and hepatic steatosis, among others. All studies found beneficial associations between the clinical parameters of NAFLD/MetS and following a Mediterranean diet and regular physical activity. Conclusions: An effective treatment that prevents, and even reverses, NAFLD is to adapt lifestyle to the Mediterranean one, based on a Mediterranean diet and regular physical activity.
Collapse
|
9
|
O'Gorman P, Norris S. Exercising in the COVID-19 era: implications in non-alcoholic fatty liver disease (NAFLD). BMJ Open Gastroenterol 2021; 8:bmjgast-2020-000568. [PMID: 34168043 PMCID: PMC8228576 DOI: 10.1136/bmjgast-2020-000568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a major public health pandemic. Risk factors for severe infection and poorer outcomes include cardiovascular disease, obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease (NAFLD). Lifestyle interventions, including diet and physical activity modifications, are the current recommended treatment for NAFLD. In this communication, the authors discuss the crossover link between NAFLD and severe COVID-19 infection and the impact of essential public health measures to suppress the spread of COVID-19 on exercise and physical activity participation in patients with NAFLD. The future of exercise prescription and the potential use of digital technology in addressing NAFLD healthcare needs in the COVID-19 era are also explored.
Collapse
Affiliation(s)
- Philip O'Gorman
- School of Physiotherapy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Discipline of Physiotherapy, Trinity College Dublin, Dublin, Ireland
| | - Suzanne Norris
- Department of Hepatology, St James's Hospital, Dublin, Ireland .,Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Khalafi M, Symonds ME. The impact of high intensity interval training on liver fat content in overweight or obese adults: A meta-analysis. Physiol Behav 2021; 236:113416. [PMID: 33823178 DOI: 10.1016/j.physbeh.2021.113416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022]
Abstract
Liver fat is a marker of the metabolic derangements associated with obesity for which exercise training is a potential therapy. We therefore performed a systematic meta-analysis to investigate the effect of high intensity interval training (HIIT) on liver fat content in overweight or obese adults with metabolic disorders. PubMed, Scopus, Web of Science and the Cochrane were searched up to October 2020 for HIIT vs. Control (CON) or HIIT vs. moderate intensity interval training (MICT) studies on liver fat content in overweight and obese individuals with metabolic disorders. Standardized mean differences (SMD) and 95% confidence intervals (95% CIs) were calculated. Ten studies involving 333 participants were included in the meta-analysis. Based on studies that directly compared HIIT and CON (6 studies), HIIT was beneficial for promoting a reduction in liver fat [-0.51 (95% CI: -0.85 to -0.17), p = 0.003]. However, there were no significant evidence for an effect of HIIT on liver fat [-0.07 (95% CI: -0.33 to 0.19), p = 0.59], when compared with MICT (7 studies). These results suggest that a HIIT could induce improvements in liver fat of overweight and obese adults with metabolic disorders despite no weight loss.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.
| | - Michael E Symonds
- The Early Life Research Unit, Academic Division of Child Health and Nottingham Digestive Disease Centre and Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Prevalence of metabolic-associated fatty liver disease (MAFLD) is increasing, and as pharmacological treatment does not exist, lifestyle interventions (i.e. diet and exercise) represent the cornerstone management and treatment strategy. Although the available data clearly demonstrate that changes in lifestyle influence intrahepatic triglyceride (IHTG) content, the mechanisms through which this is achieved are seldom investigated. Here, we review recent evidence demonstrating the influence of lifestyle interventions on hepatic fatty acid metabolism and IHTG content. RECENT FINDINGS Diet and exercise influence IHTG content through various, and often interrelated factors. These include alterations in whole-body and tissue-specific insulin sensitivity, which may influence the flux of fatty acid and lipogenic substrates to the liver, and changes in intrahepatic fatty acid synthesis and partitioning. Notably, there are only a few studies that have investigated intrahepatic fatty acid metabolism in vivo in humans before and after an intervention. SUMMARY Lifestyle interventions represent an effective means of influencing hepatic fatty acid metabolism. IHTG content is decreased without weight-loss either through exercise or by changing the macronutrient composition of the diet, although what the optimal macronutrient composition is to achieve this has yet to be defined.
Collapse
Affiliation(s)
- Sion A Parry
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford
| | - Mark C Turner
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
12
|
Houttu V, Boulund U, Grefhorst A, Soeters MR, Pinto-Sietsma SJ, Nieuwdorp M, Holleboom AG. The role of the gut microbiome and exercise in non-alcoholic fatty liver disease. Therap Adv Gastroenterol 2020; 13:1756284820941745. [PMID: 32973925 PMCID: PMC7495942 DOI: 10.1177/1756284820941745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/08/2020] [Indexed: 02/04/2023] Open
Abstract
In recent years, the human gut microbiome has been found to influence a multitude of non-communicable diseases such as cardiovascular disease and metabolic syndrome, with its components type 2 diabetes mellitus and obesity. It is recognized to be mainly influenced by environmental factors, such as lifestyle, but also genetics may play a role. The interaction of gut microbiota and obesity has been widely studied, but in regard to non-alcoholic fatty liver disease (NAFLD) as a manifestation of obesity and insulin resistance, the causal role of the gut microbiome has not been fully established. The mechanisms by which the gut microbiome influences lipid accumulation, inflammatory responses, and occurrence of fibrosis in the liver are a topic of active research. In addition, the influence of exercise on gut microbiome composition is also being investigated. In clinical trials, exercise reduced hepatic steatosis independently of weight reduction. Other studies indicate that exercise may modulate the gut microbiome. This puts forward the question whether exercise could mediate its beneficial effects on NAFLD via changes in gut microbiome. Yet, the specific mechanisms underlying this potential connection are largely unknown. Thus, associative evidence from clinical trials, as well as mechanistic studies in vivo are called for to elucidate the relationship between exercise and the gut microbiome in NAFLD. Here, we review the current literature on exercise and the gut microbiome in NAFLD.
Collapse
Affiliation(s)
- Veera Houttu
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrika Boulund
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan G. Holleboom
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Zou Y, Qi Z. Understanding the Role of Exercise in Nonalcoholic Fatty Liver Disease: ERS-Linked Molecular Pathways. Mediators Inflamm 2020; 2020:6412916. [PMID: 32774148 PMCID: PMC7397409 DOI: 10.1155/2020/6412916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is globally prevalent and characterized by abnormal lipid accumulation in the liver, frequently accompanied by insulin resistance (IR), enhanced hepatic inflammation, and apoptosis. Recent studies showed that endoplasmic reticulum stress (ERS) at the subcellular level underlies these featured pathologies in the development of NAFLD. As an effective treatment, exercise significantly reduces hepatic lipid accumulation and thus alleviates NAFLD. Confusingly, these benefits of exercise are associated with increased or decreased ERS in the liver. Further, the interaction between diet, medication, exercise types, and intensity in ERS regulation is more confusing, though most studies have confirmed the benefits of exercise. In this review, we focus on understanding the role of exercise-modulated ERS in NAFLD and ERS-linked molecular pathways. Moderate ERS is an essential signaling for hepatic lipid homeostasis. Higher ERS may lead to increased inflammation and apoptosis in the liver, while lower ERS may lead to the accumulation of misfolded proteins. Therefore, exercise acts like an igniter or extinguisher to keep ERS at an appropriate level by turning it up or down, which depends on diet, medications, exercise intensity, etc. Exercise not only enhances hepatic tolerance to ERS but also prevents the malignant development of steatosis due to excessive ERS.
Collapse
Affiliation(s)
- Yong Zou
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
14
|
Abdulla H, Bass JJ, Stokes T, Gorissen SHM, McGlory C, Phillips BE, Phillips SM, Smith K, Idris I, Atherton PJ. The effect of oral essential amino acids on incretin hormone production in youth and ageing. Endocrinol Diabetes Metab 2019; 2:e00085. [PMID: 31592446 PMCID: PMC6775449 DOI: 10.1002/edm2.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/02/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The effect of substantive doses of essential amino acids (EAA) on incretin and insulin production, and the impact of age upon this effect, is ill-defined. METHODS A 15-g oral EAA drink was administered to young (N = 8; 26 ± 4.4 years) and older (N = 8; 69 ± 3.8 years) healthy volunteers. Another group of younger volunteers (N = 9; 21 ± 1.9 years) was given IV infusions to achieve equivalent plasma amino acids (AA) profiles. Plasma AA, insulin, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) were quantified over 2 hours. RESULTS In younger recruits, EAA-induced rapid insulinaemia and aminoacidaemia with total amino acids(AA), EAA and branched chain amino acids (BCAA) matched between oral and IV groups. Insulin peaked at 39 ± 29 pmol L-1 at 30 minutes following oral feeding compared to 22 ± 9 pmol L-1 at 60 minutes following IV feeding (P: NS). EAA peaked at 3395 μmol L-1 at 45 minutes during IV infusion compared to 2892 μmol L-1 following oral intake (Feeding effect: P < 0.0001. Oral vs IV feeding: P: NS). There was an 11% greater increase in insulin levels in the 120 minutes duration of the study in response to oral EAA as opposed to IV EAA. GIP increased following oral EAA (452 pmol L-1 vs 232 pmol L-1, P < 0.05). Age did not impact insulin or incretins production. CONCLUSION Postprandial rises in EAA levels lead to rapid insulinaemia which is higher with oral compared with IV EAA, that is attributed more to GIP and unaffected by age. This finding supports EAA, on their own or as part of high-protein meal, as nutritive therapeutics in impaired glycaemia and ageing.
Collapse
Affiliation(s)
- Haitham Abdulla
- MRC‐ARUK Centre for Musculoskeletal Ageing Research and NIHR BRC, School of MedicineUniversity of NottinghamDerbyUK
- Diabetes and Endocrinology CentreUniversity Hospitals Birmingham NHS Foundation Trust, Heartlands HospitalBirminghamUK
| | - Joseph J. Bass
- MRC‐ARUK Centre for Musculoskeletal Ageing Research and NIHR BRC, School of MedicineUniversity of NottinghamDerbyUK
- Department of Physical Education and Sport SciencesUniversity of LimerickLimerickUK
| | - Tanner Stokes
- Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | | | - Chris McGlory
- Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Bethan E. Phillips
- MRC‐ARUK Centre for Musculoskeletal Ageing Research and NIHR BRC, School of MedicineUniversity of NottinghamDerbyUK
| | | | - Kenneth Smith
- MRC‐ARUK Centre for Musculoskeletal Ageing Research and NIHR BRC, School of MedicineUniversity of NottinghamDerbyUK
| | - Iskandar Idris
- MRC‐ARUK Centre for Musculoskeletal Ageing Research and NIHR BRC, School of MedicineUniversity of NottinghamDerbyUK
- Department of Endocrinology and DiabetesUniversity Hospitals Derby and Burton NHS Foundation TrustDerbyUK
| | - Philip J. Atherton
- MRC‐ARUK Centre for Musculoskeletal Ageing Research and NIHR BRC, School of MedicineUniversity of NottinghamDerbyUK
| |
Collapse
|
15
|
Perspectives on Interval Exercise Interventions for Non-Alcoholic Fatty Liver Disease. MEDICINES 2019; 6:medicines6030083. [PMID: 31374827 PMCID: PMC6789719 DOI: 10.3390/medicines6030083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an increased risk of type 2 diabetes, cardiovascular disease, cirrhosis, and liver cancer. Exercise therapy is the most effective treatment for patients with NAFLD. High-intensity interval training (HIIT) is attracting attention as a time-efficient and an effective exercise modality for treating patients with NAFLD. Previous studies have shown that HIIT can reduce fat mass, visceral adipose tissue, and intrahepatic lipid levels and improve hepatic stiffness. HIIT may be an optimal exercise therapy to improve NAFLD in patients with a lack of time.
Collapse
|
16
|
Sargeant JA, Gray LJ, Bodicoat DH, Willis SA, Stensel DJ, Nimmo MA, Aithal GP, King JA. The effect of exercise training on intrahepatic triglyceride and hepatic insulin sensitivity: a systematic review and meta-analysis. Obes Rev 2018; 19:1446-1459. [PMID: 30092609 DOI: 10.1111/obr.12719] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/12/2022]
Abstract
This systematic review and meta-analysis determined the impact of structured exercise training, and the influence of associated weight loss, on intrahepatic triglyceride (IHTG) in individuals with non-alcoholic fatty liver disease (NAFLD). It also examined its effect on hepatic insulin sensitivity in individuals with or at increased risk of NAFLD. Analyses were restricted to studies using magnetic resonance spectroscopy or liver biopsy for the measurement of IHTG and isotope-labelled glucose tracer for assessment of hepatic insulin sensitivity. Pooling data from 17 studies (373 exercising participants), exercise training for one to 24 weeks (mode: 12 weeks) elicits an absolute reduction in IHTG of 3.31% (95% CI: -4.41 to -2.22%). Exercise reduces IHTG independent of significant weight change (-2.16 [-2.87 to -1.44]%), but benefits are substantially greater when weight loss occurs (-4.87 [-6.64 to -3.11]%). Furthermore, meta-regression identified a positive association between percentage weight loss and absolute reduction in IHTG (β = 0.99 [0.62 to 1.36], P < 0.001). Pooling of six studies (94 participants) suggests that exercise training also improves basal hepatic insulin sensitivity (mean change in hepatic insulin sensitivity index: 0.13 [0.05 to 0.21] mg m-2 min-1 per μU mL-1 ), but available evidence is limited, and the impact of exercise on insulin-stimulated hepatic insulin sensitivity remains unclear.
Collapse
Affiliation(s)
- J A Sargeant
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, UK
| | - L J Gray
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - D H Bodicoat
- National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - S A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, UK
| | - D J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, UK
| | - M A Nimmo
- College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - G P Aithal
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - J A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Leicester, UK
| |
Collapse
|
17
|
Effects of an exercise program on hepatic metabolism, hepatic fat, and cardiovascular health in overweight/obese adolescents from Bogotá, Colombia (the HEPAFIT study): study protocol for a randomized controlled trial. Trials 2018; 19:330. [PMID: 29941024 PMCID: PMC6019229 DOI: 10.1186/s13063-018-2721-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Abstract
Background A considerable proportion of contemporary youth have a high risk of obesity-related disorders such as cardiovascular disease, metabolic syndrome, or non-alcoholic fatty liver disease (NAFLD). Although there is consistent evidence for the positive effects of physical activity on several health aspects, most adolescents in Colombia are sedentary. It is, therefore, important to implement strategies that generate changes in lifestyle. The HEPAFIT study aims to examine whether a 6-month exercise program has benefits for hepatic fat content and cardiovascular health outcomes among overweight/obese adolescents from Bogotá, Colombia. Methods/design Altogether, 100 hundred overweight/obese, sedentary adolescents (aged 11–17 years) attending two public schools in Bogotá, Colombia, will be included in a parallel-group randomized controlled trial. Adolescents will be randomly assigned to an intervention group following one of four curricula: (1) the standard physical education curriculum (60 min per week of physical activity, n = 25) at low-to-moderate intensity; (2) a high-intensity physical education curriculum (HIPE, n = 25), consisting of endurance and resistance games and non-competitive activities, such as running, gymkhanas, lifting, pushing, wrestling, or hauling, for 60-min sessions, three times per week, with an energy expenditure goal of 300 to 500 kcal/session at 75–85% maximum heart rate (HRmax); (3) a low-to-moderate intensity physical education curriculum (LIPE, n = 25) consisting of endurance and resistance games and non-competitive activities (e.g., chasing, sprinting, dribbling, or hopping) for 60-min sessions, three times per week with an energy expenditure goal of 300 kcal/session at 55–75% HRmax; and (4) a combined HIPE and LIPE curriculum (n = 25). The HIPE, LIPE, and combined interventions were performed in addition to the standard physical education curriculum. The primary outcome for effectiveness is liver fat content, as measured by the controlled attenuation parameter 1 week after the end of the intervention program. Discussion The translational focus may be suitable for collecting new information in a school setting on the possible effects of physical activity interventions to reduce liver fat content and to improve metabolic profiles and the cardiometabolic health of overweight/obese adolescents. This may lead to the more efficient use of school physical education resources. Trial registration ClinicalTrials.gov, NCT02753231. Registered on 21 April 2016. Electronic supplementary material The online version of this article (10.1186/s13063-018-2721-5) contains supplementary material, which is available to authorized users.
Collapse
|