1
|
Modi AD, Khan AN, Cheng WYE, Modi DM. KCCs, NKCCs, and NCC: Potential targets for cardiovascular therapeutics? A comprehensive review of cell and region specific expression and function. Acta Histochem 2023; 125:152045. [PMID: 37201245 DOI: 10.1016/j.acthis.2023.152045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Cardiovascular diseases, the leading life-threatening conditions, involve cardiac arrhythmia, coronary artery disease, myocardial infarction, heart failure, cardiomyopathy, and heart valve disease that are associated with the altered functioning of cation-chloride cotransporters. The decreased number of cation-chloride cotransporters leads to reduced reactivity to adrenergic stimulation. The KCC family is crucial for numerous physiological processes including cell proliferation and invasion, regulation of membrane trafficking, maintaining ionic and osmotic homeostasis, erythrocyte swelling, dendritic spine formation, maturation of postsynaptic GABAergic inhibition, and inhibitory/excitatory signaling in neural tracts. KCC2 maintains intracellular chlorine homeostasis and opposes β-adrenergic stimulation-induced Cl- influx to prevent arrhythmogenesis. KCC3-inactivated cardiac tissue shows increased vascular resistance, aortic distensibility, heart size and weight (i.e. hypertrophic cardiomyopathy). Due to KCC4's high affinity for K+, it plays a vital role in cardiac ischemia with increased extracellular K+. The NKCC and NCC families play a vital role in the regulation of saliva volume, establishing the potassium-rich endolymph in the cochlea, sodium uptake in astrocytes, inhibiting myogenic response in microcirculatory beds, regulation of smooth muscle tone in resistance vessels, and blood pressure. NKCC1 regulates chlorine homeostasis and knocking it out impairs cardiomyocyte depolarization and cardiac contractility as well as impairs depolarization and contractility of vascular smooth muscle rings in the aorta. The activation of NCC in vascular cells promotes the formation of the abdominal aortic aneurysm. This narrative review provides a deep insight into the structure and function of KCCs, NKCCs, and NCC in human physiology and cardiac pathobiology. Also, it provides cell-specific (21 cell types) and region-specific (6 regions) expression of KCC1, KCC2, KCC3, KCC4, NKCC1, NKCC2, and NCC in heart.
Collapse
Affiliation(s)
- Akshat D Modi
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Genetics and Development, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada.
| | - Areej Naim Khan
- Department of Human Biology, University of Toronto, Toronto, Ontario M5S 3J6, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wing Yan Elizabeth Cheng
- Department of Neuroscience, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Biochemistry, University of Toronto, Scarborough, Ontario M1C 1A4, Canada
| | | |
Collapse
|
2
|
Xu JF, Xia J, Wan Y, Yang Y, Wu JJ, Peng C, Ao H. Vasorelaxant Activities and its Underlying Mechanisms of Magnolia Volatile Oil on Rat Thoracic Aorta Based on Network Pharmacology. Front Pharmacol 2022; 13:812716. [PMID: 35308213 PMCID: PMC8926352 DOI: 10.3389/fphar.2022.812716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Objective: Magnolia volatile oil (MVO) is a mixture mainly containing eudesmol and its isomers. This study was to investigate the vasorelaxant effects and the underlying mechanism of MVO in rat thoracic aortas. Method: The present study combined gas chromatography–mass spectrometry (GC-MS) and network pharmacology analysis with in vitro experiments to clarify the mechanisms of MVO against vessel contraction. A compound–target network, compound–target–disease network, protein–protein interaction network, compound–target–pathway network, gene ontology, and pathway enrichment for hypertension were applied to identify the potential active compounds, drug targets, and pathways. Additionally, the thoracic aortic rings with or without endothelium were prepared to explore the underlying mechanisms. The roles of the PI3K-Akt-NO pathways, neuroreceptors, K+ channels, and Ca2+ channels on the vasorelaxant effects of MVO were evaluated through the rat thoracic aortic rings. Results: A total of 29 compounds were found in MVO, which were identified by GC-MS, of which 21 compounds with a content of more than 0.1% were selected for further analysis. The network pharmacology research predicted that beta-caryophyllene, palmitic acid, and (+)-β-selinene might act as the effective ingredients of MVO for the treatment of hypertension. Several hot targets, mainly involving TNF, CHRM1, ACE, IL10, PTGS2, REN, and F2, and pivotal pathways, such as the neuroactive ligand–receptor interaction, the calcium signaling pathway, and the PI3K-Akt signaling, were responsible for the vasorelaxant effect of MVO. As expected, MVO exerted a vasorelaxant effect on the aortic rings pre-contracted by KCl and phenylephrine in an endothelium-dependent and non-endothelium-dependent manner. Importantly, a pre-incubation with indomethacin (Indo), N-nitro-L-arginine methyl ester, methylene blue, wortmannin, and atropine sulfate as well as 4-aminopyridione diminished MVO-induced vasorelaxation, suggesting that the activation of the PI3K-Akt-NO pathway and KV channel were involved in the vasorelaxant effect of MVO, which was consistent with the results of the Kyoto Encyclopedia of Genes and the Genomes. Additionally, MVO could significantly inhibit Ca2+ influx resulting in the contraction of aortic rings, revealing that the inhibition of the calcium signaling pathway exactly participated in the vasorelaxant activity of MVO as predicted by network pharmacology. Conclusion: MVO might be a potent treatment of diseases with vascular dysfunction like hypertension. The underlying mechanisms were related to the PI3K-Akt-NO pathway, KV pathway, as well as Ca2+ channel, which were predicted by the network pharmacology and verified by the experiments in vitro. This study based on network pharmacology provided experimental support for the clinical application of MVO in the treatment of hypertension and afforded a novel research method to explore the activity and mechanism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jin-Feng Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xia
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Hui Ao,
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Hui Ao,
| |
Collapse
|
3
|
Sun H, Paudel O, Sham JSK. Increased intracellular Cl - concentration in pulmonary arterial myocytes is associated with chronic hypoxic pulmonary hypertension. Am J Physiol Cell Physiol 2021; 321:C297-C307. [PMID: 34161154 DOI: 10.1152/ajpcell.00172.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloride channels play an important role in regulating smooth muscle contraction and proliferation, and contribute to the enhanced constriction of pulmonary arteries (PAs) in pulmonary hypertension (PH). The intracellular Cl- concentration ([Cl-]i), tightly regulated by various Cl- transporters, determines the driving force for Cl- conductance, thereby the functional outcome of Cl- channel activation. This study characterizes for the first time the expression profile of Cl- transporters/exchangers in PA smooth muscle and provides the first evidence that the intracellular Cl- homeostasis is altered in PA smooth muscle cells (PASMCs) associated with chronic hypoxic PH (CHPH). Quantitative RT-PCR revealed that the endothelium-denuded intralobar PA of rats expressed Slc12a gene family-encoded Na-K-2Cl cotransporter 1 (NKCC1), K-Cl cotransporters (KCC) 1, 3, and 4, and Slc4a gene family-encoded Na+-independent and Na+-dependent Cl-/HCO3- exchangers. Exposure of rats to chronic hypoxia (10% O2, 3 wk) caused CHPH and selectively increased the expression of Cl--accumulating NKCC1 and reduced the Cl--extruding KCC4. The intracellular Cl- concentration ([Cl-]i) averaged at 45 mM and 47 mM in normoxic PASMCs as determined by fluorescent indicator MEQ and by gramicidin-perforated patch-clamp technique, respectively. The ([Cl-]i was increased by ∼10 mM in PASMCs of rats with CHPH. Future studies are warranted to further establish the hypothesis that the altered intracellular Cl- homeostasis contributes to the pathogenesis of CHPH.
Collapse
Affiliation(s)
- Hui Sun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Omkar Paudel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Meor Azlan NF, Zhang J. Role of the Cation-Chloride-Cotransporters in Cardiovascular Disease. Cells 2020; 9:E2293. [PMID: 33066544 PMCID: PMC7602155 DOI: 10.3390/cells9102293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023] Open
Abstract
The SLC12 family of cation-chloride-cotransporters (CCCs) is comprised of potassium chloride cotransporters (KCCs), which mediate Cl- extrusion and sodium-potassium chloride cotransporters (N[K]CCs), which mediate Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. The functions of CCCs influence a variety of physiological processes, many of which overlap with the pathophysiology of cardiovascular disease. Although not all of the cotransporters have been linked to Mendelian genetic disorders, recent studies have provided new insights into their functional role in vascular and renal cells in addition to their contribution to cardiovascular diseases. Particularly, an imbalance in potassium levels promotes the pathogenesis of atherosclerosis and disturbances in sodium homeostasis are one of the causes of hypertension. Recent findings suggest hypothalamic signaling as a key signaling pathway in the pathophysiology of hypertension. In this review, we summarize and discuss the role of CCCs in cardiovascular disease with particular emphasis on knowledge gained in recent years on NKCCs and KCCs.
Collapse
Affiliation(s)
- Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK;
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK;
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361004, Fujian, China
| |
Collapse
|
5
|
Kostyunina DS, Gaynullina DK, Matchkov VV, Tarasova OS. Pro-contractile role of chloride in arterial smooth muscle: Postnatal decline potentially governed by sympathetic nerves. Exp Physiol 2019; 104:1018-1022. [PMID: 30689263 DOI: 10.1113/ep087426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? This symposium report discusses the previously unrecognized pro-contractile role of chloride ions in rat arteries at early stages of postnatal development. What advances does it highlight? It highlights the postnatal decline in the contribution of chloride ions to regulation of arterial contractile responses and potential trophic role of sympathetic nerves in these developmental alterations. ABSTRACT Chloride ions are important for smooth muscle contraction in adult vasculature. Arterial smooth muscle undergoes structural and functional remodelling during early postnatal development, including changes in K+ currents, Ca2+ handling and sensitivity. However, developmental change in the contribution of Cl- to regulation of arterial contraction has not yet been explored. Here, we provide the first evidence that the role of Cl- in α1 -adrenergic arterial contraction prominently decreases during early postnatal ontogenesis. The trophic influence of sympathetic nerves is a potential mechanism for postnatal decline of the contribution of Cl- to the vascular contraction.
Collapse
Affiliation(s)
- Daria S Kostyunina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,State Research Center of the Russian Federation - Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Dina K Gaynullina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Physiology, Russian National Research Medical University, Moscow, Russia
| | | | - Olga S Tarasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,State Research Center of the Russian Federation - Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Orlov SN, Gusakova SV, Smaglii LV, Koltsova SV, Sidorenko SV. Vasoconstriction triggered by hydrogen sulfide: Evidence for Na +,K +,2Cl -cotransport and L-type Ca 2+ channel-mediated pathway. Biochem Biophys Rep 2017; 12:220-227. [PMID: 29159314 PMCID: PMC5683885 DOI: 10.1016/j.bbrep.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/30/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022] Open
Abstract
Objectives This study examined the dose-dependent actions of hydrogen sulfide donor sodium hydrosulphide (NaHS) on isometric contractions and ion transport in rat aorta smooth muscle cells (SMC). Methods Isometric contraction was measured in ring aortas segments from male Wistar rats. Activity of Na+/K+-pump and Na+,K+,2Cl-cotransport was measured in cultured endothelial and smooth muscle cells from the rat aorta as ouabain-sensitive and ouabain-resistant, bumetanide-sensitive components of the 86Rb influx, respectively. Results NaHS exhibited the bimodal action on contractions triggered by modest depolarization ([K+]o=30 mM). At 10-4 M, NaHS augmented contractions of intact and endothelium-denuded strips by ~ 15% and 25%, respectively, whereas at concentration of 10-3 M it decreased contractile responses by more than two-fold. Contractions evoked by 10-4 M NaHS were completely abolished by bumetanide, a potent inhibitor of Na+,K+,2Cl-cotransport, whereas the inhibition seen at 10-3 M NaHS was suppressed in the presence of K+ channel blocker TEA. In cultured SMC, 5×10-5 M NaHS increased Na+,K+,2Cl- - cotransport without any effect on the activity of this carrier in endothelial cells. In depolarized SMC, 45Ca influx was enhanced in the presence of 10-4 M NaHS and suppressed under elevation of [NaHS] up to 10-3 M. 45Ca influx triggered by 10-4 M NaHS was abolished by bumetanide and L-type Ca2+ channel blocker nicardipine. Conclusions Our results strongly suggest that contractions of rat aortic rings triggered by low doses of NaHS are mediated by activation of Na+,K+,2Cl-cotransport and Ca2+ influx via L-type channels.
Collapse
Key Words
- CO, carbon monoxide
- COX, cyclooxygenase
- CSE, cystathionine-γ-lyase
- Ca2+ influx
- Contraction
- EC, endothelial cells
- EDHF, endothelium-derived hyperpolarizing factor
- H2S, hydrogen sulfide
- Hydrogen sulfide
- KATP, ATP-sensitive potassium channels
- KCa, Ca2+-activated potassium channels
- NKCC, Na+,K+,2Cl- cotransport
- NO, nitric oxide
- Na+,K+,2Cl-cotransport
- NaHS, sodium hydrosulphide
- PE, phenylephrine
- PSS, physiologically-balanced salt solution
- RAEC, endothelial cells from rat aorta
- RASMC, smooth muscle cells from rat aorta
- Rat aorta
- SMC, smooth muscle cells
- Smooth muscle cells
- TEA, tetraethylammonium chloride
- VSMC, vascular smooth muscle cells
- VSMR, vascular smooth muscles from rat
- cGMP, cyclic guanosine monophosphate
- sGC, soluble guanylyl cyclase
Collapse
Affiliation(s)
- Sergei N. Orlov
- Central Research Laboratory, Siberian State Medical University, Moskovskiy trakt 2, Tomsk 634050, Russia
- Faculty of Biology MV Lomonosov Moscow State University, Leninskiye gory 1/12, Moscow 119991, Russia
- Corresponding author at: Faculty of Biology MV Lomonosov Moscow State University, Leninskiye gory 1/12, Moscow 119991, Russia.Faculty of Biology MV Lomonosov Moscow State UniversityLeninskiye gory 1/12Moscow119991Russia
| | - Svetlana V. Gusakova
- Department of Biophysics and Functional Diagnostics, Medical and Biological Faculty, Siberian State Medical University, Moskovskiy trakt 2, Tomsk 634050, Russia
- Corresponding author.
| | - Liudmila V. Smaglii
- Department of Biophysics and Functional Diagnostics, Medical and Biological Faculty, Siberian State Medical University, Moskovskiy trakt 2, Tomsk 634050, Russia
| | - Svetlana V. Koltsova
- Faculty of Biology MV Lomonosov Moscow State University, Leninskiye gory 1/12, Moscow 119991, Russia
| | - Svetalana V. Sidorenko
- Faculty of Biology MV Lomonosov Moscow State University, Leninskiye gory 1/12, Moscow 119991, Russia
| |
Collapse
|
7
|
Gusakova SV, Kovalev IV, Birulina YG, Smagliy LV, Petrova IV, Nosarev AV, Aleinyk AN, Orlov SN. The effects of carbon monoxide and hydrogen sulfide on transmembrane ion transport. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917020099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Garneau AP, Marcoux AA, Noël M, Frenette-Cotton R, Drolet MC, Couet J, Larivière R, Isenring P. Ablation of Potassium-Chloride Cotransporter Type 3 (Kcc3) in Mouse Causes Multiple Cardiovascular Defects and Isosmotic Polyuria. PLoS One 2016; 11:e0154398. [PMID: 27166674 PMCID: PMC4864296 DOI: 10.1371/journal.pone.0154398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Inactivation of Kcc3 in a mixed 129/Sv×C57BL/6 mouse background has been previously found to increase systemic blood pressure (BP) through presumed neurogenic mechanisms. Yet, while this background is generally not considered ideal to investigate the cardiovascular system, KCC3 is also expressed in the arterial wall and proximal nephron. In the current study, the effects of Kcc3 ablation was investigated in a pure rather than mixed C57BL/6J background under regular- and high-salt diets to determine whether they could be mediated through vasculogenic and nephrogenic mechanisms. Aortas were also assessed for reactivity to pharmacological agents while isolated from the influence of sympathetic ganglia. This approach led to the identification of unforeseen abnormalities such as lower pulse pressure, heart rate, aortic reactivity and aortic wall thickness, but higher diastolic BP, left ventricular mass and urinary output in the absence of increased catecholamine levels. Salt loading also led systolic BP to be higher, but to no further changes in hemodynamic parameters. Importantly, aortic vascular smooth muscle cells and cardiomyocytes were both found to express KCC3 abundantly in heterozygous mice. Hence, Kcc3 inactivation in our model caused systemic vascular resistance and ventricular mass to increase while preventing extracellular fluid volume to accumulate. Given that it also affected the physiological properties of aortas in vitro, vasculogenic mechanisms could therefore account for a number of the hemodynamic abnormalities observed.
Collapse
Affiliation(s)
- Alexandre P. Garneau
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Andrée-Anne Marcoux
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Micheline Noël
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Rachelle Frenette-Cotton
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Marie-Claude Drolet
- Valvulopathy Research Group, Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Jacques Couet
- Valvulopathy Research Group, Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Richard Larivière
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Paul Isenring
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
- * E-mail:
| |
Collapse
|
9
|
Orlov SN, Koltsova SV, Kapilevich LV, Gusakova SV, Dulin NO. NKCC1 and NKCC2: The pathogenetic role of cation-chloride cotransporters in hypertension. Genes Dis 2015; 2:186-196. [PMID: 26114157 PMCID: PMC4477834 DOI: 10.1016/j.gendis.2015.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/16/2015] [Indexed: 11/17/2022] Open
Abstract
This review summarizes the data on the functional significance of ubiquitous (NKCC1) and renal-specific (NKCC2) isoforms of electroneutral sodium, potassium and chloride cotransporters. These carriers contribute to the pathogenesis of hypertension via regulation of intracellular chloride concentration in vascular smooth muscle and neuronal cells and via sensing chloride concentration in the renal tubular fluid, respectively. Both NKCC1 and NKCC2 are inhibited by furosemide and other high-ceiling diuretics widely used for attenuation of extracellular fluid volume. However, the chronic usage of these compounds for the treatment of hypertension and other volume-expanded disorders may have diverse side-effects due to suppression of myogenic response in microcirculatory beds.
Collapse
Affiliation(s)
- Sergei N. Orlov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Тomsk State University, Russia
| | | | | | | | | |
Collapse
|
10
|
Hypertensive epigenetics: from DNA methylation to microRNAs. J Hum Hypertens 2015; 29:575-82. [PMID: 25631220 DOI: 10.1038/jhh.2014.132] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/18/2014] [Accepted: 12/09/2014] [Indexed: 01/13/2023]
Abstract
The major epigenetic features of mammalian cells include DNA methylation, posttranslational histone modifications and RNA-based mechanisms including those controlled by small non-coding RNAs (microRNAs (miRNAs)). An important aspect of epigenetic mechanisms is that they are potentially reversible and may be influenced by nutritional-environmental factors and through gene-environment interactions. Studies on epigenetic modulations could help us understand the mechanisms involved in essential hypertension and further prevent it's progress. This review is focused on new knowledge on the role of epigenetics, from DNA methylation to miRNAs, in essential hypertension.
Collapse
|
11
|
Wang X, Cheang WS, Yang H, Xiao L, Lai B, Zhang M, Ni J, Luo Z, Zhang Z, Huang Y, Wang N. Nuciferine relaxes rat mesenteric arteries through endothelium-dependent and -independent mechanisms. Br J Pharmacol 2015; 172:5609-18. [PMID: 25409881 DOI: 10.1111/bph.13021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/15/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Nuciferine, a constituent of lotus leaf, is an aromatic ring-containing alkaloid, with antioxidative properties. We hypothesize nuciferine might affect vascular reactivity. This study aimed at determining the effects of nuciferine on vasomotor tone and the underlying mechanism EXPERIMENTAL APPROACH Nuciferine-induced relaxations in rings of rat main mesenteric arteries were measured by wire myographs. Endothelial NOS (eNOS) was determined by immunoblotting. Intracellular NO production in HUVECs and Ca(2+) level in both HUVECs and vascular smooth muscle cells (VSMCs) from rat mesenteric arteries were assessed by fluorescence imaging. KEY RESULTS Nuciferine induced relaxations in arterial segments pre-contracted by KCl or phenylephrine. Nuciferine-elicited arterial relaxations were reduced by removal of endothelium or by pretreatment with the eNOS inhibitor L-NAME or the NO-sensitive guanylyl cyclase inhibitor ODQ. In HUVECs, the phosphorylation of eNOS at Ser(1177) and increase in cytosolic NO level induced by nuciferine were mediated by extracellular Ca(2+) influx. Under endothelium-free conditions, nuciferine attenuated CaCl2-induced contraction in Ca(2+)-free depolarizing medium. In the absence of extracellular calcium, nuciferine relieved the vasoconstriction induced by phenylephrine and the addition of CaCl2. Nuciferine also suppressed Ca(2+) influx in Ca(2+)-free K(+)-containing solution in VSMCs. CONCLUSIONS AND IMPLICATIONS Nuciferine has a vasorelaxant effect via both endothelium-dependent and -independent mechanisms. These results suggest that nuciferine may have a therapeutic effect on vascular diseases associated with aberrant vasoconstriction.
Collapse
Affiliation(s)
- Xinfeng Wang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China.,Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wai San Cheang
- Institute of Vascular Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Haixia Yang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China.,School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Lei Xiao
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Baochang Lai
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Meiqian Zhang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Jiahua Ni
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Zhenyu Luo
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Zihui Zhang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Yu Huang
- Institute of Vascular Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Nanping Wang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China.,Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
12
|
Hübner CA, Schroeder BC, Ehmke H. Regulation of vascular tone and arterial blood pressure: role of chloride transport in vascular smooth muscle. Pflugers Arch 2015; 467:605-14. [DOI: 10.1007/s00424-014-1684-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023]
|
13
|
Orlov SN, Koltsova SV, Kapilevich LV, Dulin NO, Gusakova SV. Cation-chloride cotransporters: Regulation, physiological significance, and role in pathogenesis of arterial hypertension. BIOCHEMISTRY (MOSCOW) 2015; 79:1546-61. [DOI: 10.1134/s0006297914130070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Palacios J, Nwokocha CR, Cifuentes F. Arsenic exposure decreases rhythmic contractions of vascular tone through sodium transporters and K + channels. World J Pharmacol 2014; 3:18-23. [DOI: 10.5497/wjp.v3.i2.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
Arsenic-contaminated drinking water is a public health problem in countries such as Taiwan, Bangladesh, United States, Mexico, Argentina, and Chile. The chronic ingestion of arsenic-contaminated drinking water increases the risk for ischemic heart disease, cerebrovascular disease, and prevalence of hypertension. Although toxic arsenic effects are controversial, there is evidence that a high concentration of arsenic may induce hypertension through increase in vascular tone and resistance. Vascular tone is regulated by the rhythmic contractions of the blood vessels, generated by calcium oscillations in the cytosol of vascular smooth muscle cells. To regulate the cytosolic calcium oscillations, the membrane oscillator model involves the participation of Ca2+ channels, calcium-activated K+ channels, Na+/Ca2+ exchange, plasma membrane Ca2+-ATPase, and the Na+/K+-ATPase. However, little is known about the role of K+ uptake by sodium transporters [Na+/K+-ATPase or Na+-K+-2Cl- (NKCC1)] on the rhythmic contractions. Vascular rhythmic contractions, or vasomotion are a local mechanism to regulate vascular resistance and blood flow. Since vascular rhythmic contractions of blood vessels are involved in modulating the vascular resistance, the blood flow, and the systemic pressure, we suggest a model explaining the participation of the sodium pump and NKCC1 co-transporter in low dose arsenic exposure effects on vasomotion and vascular dysfunction.
Collapse
|
15
|
Na+/H+ exchanger inhibitor augments hyperosmolarity-induced vasoconstriction by enhancing actin polymerization. Vascul Pharmacol 2013; 59:120-6. [DOI: 10.1016/j.vph.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 11/23/2022]
|
16
|
Zeniya M, Sohara E, Kita S, Iwamoto T, Susa K, Mori T, Oi K, Chiga M, Takahashi D, Yang SS, Lin SH, Rai T, Sasaki S, Uchida S. Dietary Salt Intake Regulates WNK3–SPAK–NKCC1 Phosphorylation Cascade in Mouse Aorta Through Angiotensin II. Hypertension 2013; 62:872-8. [DOI: 10.1161/hypertensionaha.113.01543] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Na–K–Cl cotransporter isoform 1 (NKCC1) is involved in the regulation of vascular smooth muscle cell contraction. Recently, the with-no-lysine kinase (WNK)–STE20/SPS1-related proline/alanine-rich kinase (SPAK)–NKCC1 phosphorylation cascade in vascular smooth muscle cells was found to be important in the regulation of vascular tone. In this study, we investigated whether the WNK–SPAK–NKCC1 cascade in mouse aortic tissue is regulated by dietary salt intake and the mechanisms responsible. Phosphorylation of SPAK and NKCC1 was significantly reduced in the aorta in high-salt–fed mice and was increased in the aorta in low-salt–fed mice, indicating that the WNK–SPAK–NKCC1 phosphorylation cascade in the aorta was indeed regulated by dietary salt intake. Acute and chronic angiotensin II infusion increased phosphorylation of SPAK and NKCC1 in the mouse aorta. In addition, valsartan, an antagonist of angiotensin II type 1 receptor, inhibited low-salt diet–induced phosphorylation of SPAK and NKCC1, demonstrating that angiotensin II activates the WNK–SPAK–NKCC1 phosphorylation cascade through the angiotensin II type 1 receptor. However, a low-salt diet and angiotensin II together did not increase phosphorylation of SPAK and NKCC1 in the aorta in WNK3 knockout mice, indicating that activation of the WNK–SPAK–NKCC1 phosphorylation cascade induced by a low-salt diet and angiotensin II is dependent on WNK3. Indeed, angiotensin II–induced increases in blood pressure were diminished in WNK3 knockout mice. In addition, decreased response to angiotensin II in the mesenteric arteries was observed in WNK3 knockout mice. Our data also clarified a novel mechanism for regulation of vascular tonus by angiotensin II. Inhibition of this cascade could, therefore, be a novel therapeutic target in hypertension.
Collapse
Affiliation(s)
- Moko Zeniya
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Eisei Sohara
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Satomi Kita
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Takahiro Iwamoto
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Koichiro Susa
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Takayasu Mori
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Katsuyuki Oi
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Motoko Chiga
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Daiei Takahashi
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Sung-Sen Yang
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Shih-Hua Lin
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Tatemitsu Rai
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Sei Sasaki
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| | - Shinichi Uchida
- From the Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan (M.Z., E.S., K.S., T.M., K.O., M.C., D.T., T.R., S.S., S.U.); Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan (S.K., T.I.); and Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (S.-S.Y., S.-H.L.)
| |
Collapse
|
17
|
Recruitment of Specificity Protein 1 by CpG hypomethylation upregulates Na+-K+-2Cl− cotransporter 1 in hypertensive rats. J Hypertens 2013; 31:1406-13; discussion 1413. [DOI: 10.1097/hjh.0b013e3283610fed] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Cheang WS, Lam MY, Wong WT, Tian XY, Lau CW, Zhu Z, Yao X, Huang Y. Menthol relaxes rat aortae, mesenteric and coronary arteries by inhibiting calcium influx. Eur J Pharmacol 2013; 702:79-84. [PMID: 23380688 DOI: 10.1016/j.ejphar.2013.01.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/08/2013] [Accepted: 01/16/2013] [Indexed: 11/16/2022]
Abstract
Menthol, a naturally occurring compound in mint, is known to give cold sensation. However, previous findings about its pharmacological activity in blood vessels are full of paradox. The present study investigated the action of menthol on vascular reactivity in different arteries isolated from male Sprague-Dawley rats, e.g. aortae, main mesenteric arteries and coronary arteries. The arterial segments were suspended in organ bath or in wire myograph for measurement of isometric force. Menthol concentration-dependently relaxed all three arteries with similar relaxing sensitivity in arteries contracted by different contractors, KCl, U46619 (9,11-dideoxy-9α,11α-methanoepoxy Prostaglandin F2α) and phenylephrine. Menthol-induced relaxations were unaffected by nitric oxide synthase inhibitor L-NAME, soluble guanylyl cyclase inhibitor ODQ, or mechanical removal of endothelium. Menthol also concentration-dependently suppressed 60mM KCl-induced constriction and CaCl2-induced contraction in Ca(2+)-free K(+)-containing solution. Calcium fluorescent imaging using fluo-4 showed that 10 min-incubation with 1mM menthol inhibited 60mM KCl-induced Ca(2+) influx in rat aortic smooth muscle cell line A7r5 and vascular smooth muscle of coronary arteries. To conclude, menthol induces relaxation and inhibits contraction in rat aortae, mesenteric and coronary arteries primarily through inhibiting Ca(2+) influx via nifedipine-sensitive Ca(2+) channels in vascular smooth muscle.
Collapse
Affiliation(s)
- Wai San Cheang
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Orlov SN, Koltsova SV, Tremblay J, Baskakov MB, Hamet P. NKCC1 and hypertension: role in the regulation of vascular smooth muscle contractions and myogenic tone. Ann Med 2012; 44 Suppl 1:S111-8. [PMID: 22713139 DOI: 10.3109/07853890.2011.653395] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-ceiling diuretics (HCD), known potent inhibitors of housekeeping Na(+),K(+),2Cl cotransporter (NKCC1) and renal-specific NKCC2, decrease [Cl(-)](i), hyperpolarize vascular smooth muscle cells (VSMC), and suppress contractions evoked by modest depolarization, phenylephrine, angiotensin II, and UTP. These actions are absent in nkcc1 (/) knock-out mice, indicating that HCD interact with NKCC1 rather than with other potential targets. These findings also suggest that VSMC-specific inhibitors of NKCC1 may be considered potential pharmacological therapeutic tools in treatment of hypertension. It should be underlined that side by side with attenuation of peripheral resistance and systemic blood pressure, HCD blocked myogenic tone (MT) in renal afferent arterioles. Keeping this in mind, attenuation of MT might be a mechanism underlying the prevalence of end-stage renal disease documented in hypertensive African-Americans with decreased NKCC1 activity and in hypertensive patients subjected to chronic HCD treatment. The role of NKCC1-mediated MT in protection of the brain, heart, and other encapsulated organs deserves further investigation.
Collapse
Affiliation(s)
- Sergei N Orlov
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM)-Technôpole Angus, and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
20
|
Cho HM, Lee DY, Kim HY, Lee HA, Seok YM, Kim IK. Upregulation of the Na+-K+-2Cl− cotransporter 1 via histone modification in the aortas of angiotensin II-induced hypertensive rats. Hypertens Res 2012; 35:819-24. [DOI: 10.1038/hr.2012.37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Koltsova SV, Akimova OA, Kotelevtsev SV, Grygorczyk R, Orlov SN. Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport. Can J Physiol Pharmacol 2012; 90:209-17. [DOI: 10.1139/y11-119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present work, we compared the outcome of hyperosmotic and isosmotic shrinkage on ion transport and protein phosphorylation in C11-MDCK cells resembling intercalated cells from collecting ducts and in vascular smooth muscle cells (VSMC) from the rat aorta. Hyperosmotic shrinkage was triggered by cell exposure to hypertonic medium, whereas isosmotic shrinkage was evoked by cell transfer from an hypoosmotic to an isosmotic environment. Despite a similar cell volume decrease of 40%–50%, the consequences of hyperosmotic and isosmotic shrinkage on cellular functions were sharply different. In C11-MDCK and VSMC, hyperosmotic shrinkage completely inhibited Na+,K+-ATPase and Na+,Pi cotransport. In contrast, in both types of cells isosmotic shrinkage slightly increased rather than suppressed Na+,K+-ATPase and did not change Na+,Pi cotransport. In C11-MDCK cells, phosphorylation of JNK1/2 and Erk1/2 mitogen-activated protein kinases was augmented in hyperosmotically shrunken cells by ∼7- and 2-fold, respectively, but was not affected in cells subjected to isosmotic shrinkage. These results demonstrate that the data obtained in cells subjected to hyperosmotic shrinkage cannot be considered as sufficient proof implicating cell volume perturbations in the regulation of cellular functions under isosmotic conditions.
Collapse
Affiliation(s)
- Svetlana V. Koltsova
- Research Centre, Centre hospitalier de l’Université de Montréal (CHUM) – Technopôle Angus, Montreal, QC H1W 4A4, Canada
| | - Olga A. Akimova
- Research Centre, Centre hospitalier de l’Université de Montréal (CHUM) – Technopôle Angus, Montreal, QC H1W 4A4, Canada
| | | | - Ryszard Grygorczyk
- Research Centre, Centre hospitalier de l’Université de Montréal (CHUM) – Technopôle Angus, Montreal, QC H1W 4A4, Canada
| | - Sergei N. Orlov
- Research Centre, Centre hospitalier de l’Université de Montréal (CHUM) – Technopôle Angus, Montreal, QC H1W 4A4, Canada
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Institute of General Pathology and Pathophysiology of the Russian Academy of Medical Sciences, Moscow, Russia
| |
Collapse
|
22
|
Ün İ, Kurt AH, Büyükafşar K. Hyperosmolar glucose induces vasoconstriction through Rho/Rho-kinase pathway in the rat aorta. Fundam Clin Pharmacol 2011; 27:244-51. [DOI: 10.1111/j.1472-8206.2011.01014.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Cho HM, Lee HA, Kim HY, Han HS, Kim IK. Expression of Na+-K+ -2Cl- cotransporter 1 is epigenetically regulated during postnatal development of hypertension. Am J Hypertens 2011; 24:1286-93. [PMID: 21814290 DOI: 10.1038/ajh.2011.136] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The expression of Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) is upregulated in spontaneously hypertensive rat (SHR). We investigated whether expression of NKCC1 is epigenetically regulated during postnatal development of hypertension. METHODS The mesenteric arteries from 5-, 10-, and 18-week-old Wistar-Kyoto rats (WKY) and SHRs were subjected to vascular contraction. We determined expression levels of Nkcc1 mRNA and protein, methylation status, and histone modification of Nkcc1 promoter, and DNA methyltransferase (DNMT) activity. RESULTS The inhibition of dose-response curves by bumetanide, an inhibitor of NKCC1, as well as the expression of Nkcc1 mRNA and protein was comparable between 5-week-old SHR and age-matched WKY, but greater in 18-week-old SHR than in age-matched WKY. Nkcc1 promoter in WKY was getting methylated with age whereas that in SHR mostly remained hypomethylated after development of hypertension. DNMT3B was highly associated with the promoter of WKY, whereas the CXXC finger protein 1 (Cfp1) was highly bound to the promoter of SHR. At the age of 18 weeks, the DNMT activity in aorta of WKY was about threefold higher than that of SHR. The transcription-activating histone code acetyl H3 was higher in SHR than in WKY, whereas suppressive histone code dimethyl H3K9 was greater in WKY than in SHR. CONCLUSION It is concluded that expression of NKCC1 is epigenetically upregulated during postnatal development of hypertension. Our data indicate that maintenance of hypomethylation in Nkcc1 promoter of SHR resulting from low DNMT activity plays an important role in the upregulation of NKCC1 during development of spontaneous hypertension.
Collapse
|
24
|
siRNA-Mediated Inhibition of Na+ –K+–2Cl− Cotransporter (NKCC1) and Regulatory Volume Increase in the Chondrocyte Cell Line C-20/A4. J Membr Biol 2011; 243:25-34. [DOI: 10.1007/s00232-011-9389-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/17/2011] [Indexed: 10/17/2022]
|
25
|
Oloyo AK, Sofola OA, Nair RR, Harikrishnan VS, Fernandez AC. Testosterone relaxes abdominal aorta in male Sprague-Dawley rats by opening potassium (K(+)) channel and blockade of calcium (Ca(2+)) channel. ACTA ACUST UNITED AC 2011; 18:247-53. [PMID: 21439799 DOI: 10.1016/j.pathophys.2011.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
Abstract
AIM To investigate the direct effect of testosterone and its precursor/derivative dehydroepiandrosterone (DHEA) on isolated rat abdominal aortic rings. MATERIALS AND METHODS 3mm abdominal aortic rings that were obtained from 3 months old male Sprague-Dawley rats were suspended in organ baths containing Hepes buffered PSS bubbled with 100% oxygen. Relaxation response to testosterone and DHEA was studied in noradrenalin pre-contracted rings. The role of aromatase and androgen receptor was assessed by inhibition using aminogluthetemide and blockade using flutamide respectively. Relaxation responses of the rings to testosterone in the presence of l-NAME, indomethacin, barium chloride, apamin, charybdotoxin, iberiotoxin, and nifedipine were also determined. RESULTS Both aromatase inhibition and androgen receptor blockade did not block the relaxing effect of testosterone on rings from rat abdominal aorta. Also there was no significant difference between testosterone relaxation response in the presence or absence of l-NAME and indomethacin. However 3μM, BaCl(2) almost completely abolished the aortic ring relaxation response to testosterone while 1μM, nifedipine potentiated the vasorelaxing effect of testosterone. CONCLUSION Testosterone relaxes abdominal aorta directly via a non-genomic pathway which is independent of endothelial derived vasoactive substances, but involves activation of inward rectifying potassium channel (K(IR)) and blockade of l-type calcium channel.
Collapse
Affiliation(s)
- Ahmed Kolade Oloyo
- Department of Physiology, College of Medicine, University of Lagos, Idi - Araba Lagos, Nigeria
| | | | | | | | | |
Collapse
|
26
|
Buharaliog CK, Ugur M, Akar F. The Characteristics of Contractions to Hyperosmolar Stress in Rat Aorta. INT J PHARMACOL 2011. [DOI: 10.3923/ijp.2011.340.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Yang SS, Lo YF, Wu CC, Lin SW, Yeh CJ, Chu P, Sytwu HK, Uchida S, Sasaki S, Lin SH. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol 2010; 21:1868-77. [PMID: 20813865 DOI: 10.1681/asn.2009121295] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polymorphisms in the gene encoding sterile 20/SPS1-related proline/alanine-rich kinase (SPAK) associate with hypertension susceptibility in humans. SPAK interacts with WNK kinases to regulate the Na(+)-K(+)-2Cl(-) and Na(+)-Cl(-) co-transporters [collectively, N(K)CC]. Mutations in WNK1/4 and N(K)CC can cause changes in BP and dyskalemia in humans, but the physiologic role of SPAK in vivo is unknown. We generated and analyzed SPAK-null mice by targeting disruption of exons 9 and 10 of SPAK. Compared with SPAK(+/+) littermates, SPAK(+/-) mice exhibited hypotension without significant electrolyte abnormalities, and SPAK(-/-) mice not only exhibited hypotension but also recapitulated Gitelman syndrome with hypokalemia, hypomagnesemia, and hypocalciuria. In the kidney tissues of SPAK(-/-) mice, the expression of total and phosphorylated (p-)NCC was markedly decreased, but that of p-OSR1, total NKCC2, and p-NKCC2 was significantly increased. We observed a blunted response to thiazide but normal response to furosemide in SPAK(-/-) mice. In aortic tissues, total NKCC1 expression was increased but p-NKCC1 was decreased in SPAK-deficient mice. Both SPAK(+/-) and SPAK(-/-) mice had impaired responses to the selective α(1)-adrenergic agonist phenylephrine and the NKCC1 inhibitor bumetanide, suggesting that impaired aortic contractility may contribute to the hypotension of SPAK-null mice. In summary, SPAK-null mice have defects of NCC in the kidneys and NKCC1 in the blood vessels, leading to hypotension through renal salt wasting and vasodilation. SPAK may be a promising target for antihypertensive therapy.
Collapse
Affiliation(s)
- Sung-Sen Yang
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
NKCC1 and hypertension: a novel therapeutic target involved in the regulation of vascular tone and renal function. Curr Opin Nephrol Hypertens 2010; 19:163-8. [PMID: 20061948 DOI: 10.1097/mnh.0b013e3283360a46] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The present review summarizes recent advances in our understanding of the mechanisms involving the housekeeping Na+, K+, 2Cl(-) cotransporter (NKCC1) in blood pressure (BP) regulation. RECENT FINDINGS High-ceiling diuretics (HCDs), known potent inhibitors of NKCC1, renal-specific NKCC2 and four isoforms of K+, Cl(-) cotransporters decrease [Cl(-)]i, hyperpolarize vascular smooth muscle cells and suppress myogenic tone and contractions evoked by modest depolarization, phenylephrine, angiotensin II and uridine triphosphate. These actions are absent in NKCC1(-/-) mice, indicating that HCDs interact with NKCC1 rather than with other potential targets. NKCC1-null mice have decreased baseline BP but exhibit augmented BP increment evoked by high-salt diets. NKCC1 deficiency causes approximately three-fold elevation in plasma renin concentrations and attenuates HCD-induced renin production. In addition to HCDs, NKCC1 is also inhibited by extracellular HCO3(-) in the range corresponding to its concentration in ischemic extracellular fluids. SUMMARY NKCC1 modulates BP through vascular and renal effects. In addition to BP regulation, the decreased baseline activity of this carrier or its suppression by chronic treatment with HCDs may lead to inhibition of myogenic tone and progression of end-stage renal disease. NKCC1 activation in ischemia-induced acidosis may contribute to stroke via glutamate release caused by astrocyte swelling.
Collapse
|
29
|
Koltsova SV, Maximov GV, Kotelevtsev SV, Lavoie JL, Tremblay J, Grygorczyk R, Hamet P, Orlov SN. Myogenic tone in mouse mesenteric arteries: evidence for P2Y receptor-mediated, Na(+), K (+), 2Cl (-) cotransport-dependent signaling. Purinergic Signal 2009; 5:343-9. [PMID: 19387869 PMCID: PMC2717317 DOI: 10.1007/s11302-009-9160-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/31/2009] [Indexed: 01/16/2023] Open
Abstract
This study examines the action of agonists and antagonists of P2 receptors on mouse mesenteric artery contractions and the possible involvement of these signaling pathways in myogenic tone (MT) evoked by elevated intraluminal pressure. Both ATP and its non-hydrolyzed analog alpha,beta-ATP triggered transient contractions that were sharply decreased in the presence of NF023, a potent antagonist of P2X(1) receptors. In contrast, UTP and UDP elicited sustained contractions which were suppressed by MRS2567, a selective antagonist of P2Y(6) receptors. Inhibition of Na(+), K(+), 2Cl(-) cotransport (NKCC) with bumetanide led to attenuation of contractions in UTP- but not ATP-treated arteries. Both UTP-induced contractions and MT were suppressed by MRS2567 and bumetanide but were insensitive to NF023. These data implicate a P2Y(6)-mediated, NKCC-dependent mechanism in MT of mesenteric arteries. The action of heightened intraluminal pressure on UTP release from mesenteric arteries and its role in the triggering of P2Y(6)-mediated signaling should be examined further.
Collapse
Affiliation(s)
- Svetlana V. Koltsova
- Research Centre, University of Montreal Hospital Centre (CRCHUM), Technopôle Angus, Moscow, Russia
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia
| | - Georgy V. Maximov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Julie L. Lavoie
- Research Centre, University of Montreal Hospital Centre (CRCHUM), Technopôle Angus, Moscow, Russia
| | - Johanne Tremblay
- Research Centre, University of Montreal Hospital Centre (CRCHUM), Technopôle Angus, Moscow, Russia
| | - Ryszard Grygorczyk
- Research Centre, University of Montreal Hospital Centre (CRCHUM), Technopôle Angus, Moscow, Russia
| | - Pavel Hamet
- Research Centre, University of Montreal Hospital Centre (CRCHUM), Technopôle Angus, Moscow, Russia
| | - Sergei N. Orlov
- Research Centre, University of Montreal Hospital Centre (CRCHUM), Technopôle Angus, Moscow, Russia
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Centre de recherche, CRCHUM—Technopôle Angus, 2901 rue Rachel Est, Montreal, Quebec H1W 4A4 Canada
| |
Collapse
|
30
|
Koltsova SV, Kotelevtsev SV, Tremblay J, Hamet P, Orlov SN. Excitation-contraction coupling in resistance mesenteric arteries: evidence for NKCC1-mediated pathway. Biochem Biophys Res Commun 2009; 379:1080-3. [PMID: 19150334 DOI: 10.1016/j.bbrc.2009.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 01/03/2009] [Indexed: 01/16/2023]
Abstract
Bumetanide and other high-ceiling diuretics (HCD) attenuate myogenic tone and contractions of vascular smooth muscle cells (VSMC) triggered by diverse stimuli. HCD outcome may be mediated by their interaction with NKCC1, the only isoform of Na(+), K(+), 2Cl(-) cotransporter expressed in VSMC as well as with targets distinct from this carrier. To examine these hypotheses, we compared the effect of bumetanide on contractions of mesenteric arteries from wild-type and NKCC1 knockout mice. In mesenteric arteries from wild-type controls, 100 microM bumetanide evoked a decrease of up to 4-fold in myogenic tone and contractions triggered by modest [K(+)](o)-induced depolarization, phenylephrine and UTP. These actions of bumetanide were preserved after inhibition of nitric oxide synthase with NG-nitro-l-arginine methyl ester, but were absent in mesenteric arteries from NKCC1(-/-) mice. The data show that bumetanide inhibits VSMC contractile responses via its interaction with NKCC1 and independently of nitric oxide production by endothelial cells.
Collapse
Affiliation(s)
- Svetlana V Koltsova
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM - Technopôle Angus), Montreal, PQ, Canada H1W 4A4
| | | | | | | | | |
Collapse
|
31
|
Ziomber A, Machnik A, Dahlmann A, Dietsch P, Beck FX, Wagner H, Hilgers KF, Luft FC, Eckardt KU, Titze J. Sodium-, potassium-, chloride-, and bicarbonate-related effects on blood pressure and electrolyte homeostasis in deoxycorticosterone acetate-treated rats. Am J Physiol Renal Physiol 2008; 295:F1752-63. [PMID: 18842823 DOI: 10.1152/ajprenal.00531.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Na(+) loading without Cl(-) fails to increase blood pressure in the DOCA model. We compared the changes in the total body (TB) effective Na(+), K(+), Cl(-), and water (TBW) content as well as in intracellular (ICV) or extracellular (ECV) volume in rats receiving DOCA-NaCl, DOCA-NaHCO(3), or DOCA-KHCO(3). We divided 42 male rats into 5 groups. Group 1 was untreated, group 2 received 1% NaCl, and groups 3, 4, and 5 were treated with DOCA and received 1% NaCl, 1.44% NaHCO(3), or 1.7% KHCO(3) to drink. We measured mean arterial blood pressure (MAP) directly after 3 wk. Tissue electrolyte and water content was measured by chemical analysis. Compared with control rats, DOCA-NaCl increased MAP while DOCA-NaHCO(3) and DOCA-KHCO(3) did not. DOCA-NaCl increased TBNa(+) 26% but only moderately increased TBW. DOCA-NaHCO(3) led to similar TBNa(+) excess, while TBW and ICV, but not ECV, were increased more than in DOCA-NaCl rats. DOCA-KHCO(3) did not affect TBNa(+) or volume. At a given TB(Na(+)+K(+)) and TBW, MAP in DOCA-NaCl rats was higher than in control, DOCA-NaHCO(3), and DOCA-KHCO(3) rats, indicating that hypertension in DOCA-NaCl rats was not dependent on TB(Na(+)+K(+)) and water mass balance. Skin volume retention was hypertonic compared with serum and paralleled hypertension in DOCA-NaCl rats. These rats had higher TB(Na(+)+K(+))-to-TBW ratio in accumulated fluid than DOCA-NaHCO(3) rats. DOCA-NaCl rats also had increased intracellular Cl(-) concentrations in skeletal muscle. We conclude that excessive cellular electrolyte redistribution and/or intracellular Na(+) or Cl(-) accumulation may play an important role in the pathogenesis of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Agata Ziomber
- Department of Nephrology and Hypertension, Nikolaus-Fiebiger Center for Molecular Medicine, Glückstr. 6, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Koltsova SV, Gusakova SV, Anfinogenova YJ, Baskakov MB, Orlov SN. Vascular Smooth Muscle Contraction Evoked by Cell Volume Modulation: Role of the Cytoskeleton Network. Cell Physiol Biochem 2008; 21:29-36. [DOI: 10.1159/000113744] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2007] [Indexed: 01/23/2023] Open
|
33
|
Wijetunge S, Hughes AD. Src family tyrosine kinases mediate contraction of rat isolated tail arteries in response to a hyposmotic stimulus. J Hypertens 2007; 25:1871-8. [PMID: 17762651 PMCID: PMC2763211 DOI: 10.1097/hjh.0b013e328255e8f0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Hypotonic solutions cause vasoconstriction in rat tail arteries, due largely to activation of L-type calcium channels (CaV1.2). We studied possible roles of tyrosine kinases, particularly src family kinases (SFK) and extracellular signal-related kinases (ERK1/2), in this response. METHODS Rat tail arteries were mounted on a myograph for measurement of isometric force. Arteries were bathed in isosmotic physiological saline solution (300 mOsm/l) containing 50 mmol/l mannitol and were stimulated by a hyposmotic solution containing 0 mmol/l mannitol (PSS-M). Activation of tyrosine kinases and ERK1/2 by hyposmotic solution was examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting on rat tail artery lysates with specific phospho-antibodies. RESULTS Western blotting showed SFK src and yes present in rat tail artery. PSS-M increased tyrosine phosphorylation of several proteins, including SFK and ERK1/2. Genistein blocked phosphorylation of SFK and ERK1/2 by PSS-M. In isolated arteries PSS-M caused a contraction inhibited by the tyrosine kinase inhibitor, genistein, and three structurally different selective SFK inhibitors, herbimycin-A, PP1 and SU6656. Mitogen-activated protein kinase kinase inhibitor PD98059 or selective inhibitors of platelet-derived growth factor receptor (AG1296) and epidermal growth factor receptor (AG1478) had no effect on contraction induced by a hypotonic solution. CONCLUSIONS Hyposmotic conditions activate SFK, src and yes, and contract rat tail artery by a SFK-dependent mechanism. ERK1/2 are activated by the hypotonic solution, but do not play a role in the contractile response. SFK modulation of CaV1.2 may be an important mechanism mediating vasoconstriction to mechanical stimuli in vascular smooth muscle.
Collapse
Affiliation(s)
- Sumangali Wijetunge
- Clinical Pharmacology, NHLI Division, Faculty of Medicine, Imperial College London, London, UK.
| | | |
Collapse
|
34
|
Abstract
High salt consumption contributes to the development of hypertension and is considered an independent risk factor for vascular remodeling, cardiac hypertrophy, and stroke incidence. In this review, we discuss the molecular origins of primary sensors involved in the phenomenon of salt sensitivity. Based on the analysis of literature data, we conclude that the kidneys and central nervous system (CNS) are two major sites for salt sensing via several distinct mechanisms: 1) [Cl(-)] sensing in renal tubular fluids, primarily by Na(+)-K(+)-Cl(-) cotransporter (NKCC) isoforms NKCC2B and NKCC2A, whose expression is mainly limited to macula densa cells; 2) [Na(+)] sensing in cerebrospinal fluid (CSF) by a novel isoform of Na(+) channels, Na(x), expressed in subfornical organs; 3) sensing of CSF osmolality by mechanosensitive, nonselective cation channels (transient receptor potential vanilloid type 1 channels), expressed in neuronal cells of supraoptic and paraventricular nuclei; and 4) osmolarity sensing by volume-regulated anion channels in glial cells of supraoptic and paraventricular nuclei. Such multiplicity of salt-sensing mechanisms likely explains the differential effects of Na(+) and Cl(-) loading on the long-term maintenance of elevated blood pressure that is documented in experimental models of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sergei N Orlov
- Department of Medicine and Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
35
|
Orlov SN. NKCC1 as a regulator of vascular tone and a novel target for antihypertensive therapeutics. Am J Physiol Heart Circ Physiol 2007; 292:H2035-6. [PMID: 17308011 DOI: 10.1152/ajpheart.00157.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Luneva OG, Brazhe NA, Maksimova NV, Rodnenkov OV, Parshina EY, Bryzgalova NY, Maksimov GV, Rubin AB, Orlov SN, Chazov EI. Ion transport, membrane fluidity and haemoglobin conformation in erythrocyte from patients with cardiovascular diseases: Role of augmented plasma cholesterol. ACTA ACUST UNITED AC 2007; 14:41-6. [PMID: 17403600 DOI: 10.1016/j.pathophys.2006.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/29/2006] [Accepted: 12/30/2006] [Indexed: 10/23/2022]
Abstract
Tissue hypoxia, which plays a key role in the development of renal and vascular complications of cardiovascular diseases (CVD), might be considered a consequence of vascular remodeling and/or attenuated oxygen (O(2)) delivery by erythrocytes. Using Raman spectroscopy (RS), we observed that erythrocytes from patients with CVD exhibit changes in the conformation of haemoglobin (Hb) haemoporphyrin (HP), reflecting its lower O(2) transport capacity. Hypertriglyceridemia and hypercholesterolemia are well-known hallmarks of CVD. This study examined the role of plasma lipids in the regulation of erythrocyte membrane viscosity, oxy-Hb content as well as Na(+)/H(+) exchange and Ca(2+)-ATPase, whose activities are altered in patients with CVD. HP conformation was assessed by RS of blood samples. Membrane fluidity was estimated at depths of 0.6-0.8 and 2.2nm by electron-paramagnetic resonance spectroscopy of erythrocytes loaded with spin-labeled 5-doxylstearic acid and 16-doxylstearic acid, respectively. Ion-selective electrodes were employed for the study of H(+) and Ca(2+) fluxes. Both oxy-Hb content and erythrocyte membrane fluidity were decreased in essential hypertension and coronary artery disease patients and negatively correlated with plasma cholesterol but not triglyceride content. This observation allows us to assume that decreased oxy-Hb content in patients with CVD is caused by high plasma cholesterol via attenuation of erythrocyte membrane fluidity and its permeability to O(2). Plasma cholesterol level correlated positively and negatively with erythrocyte Na(+)/H(+) exchange and Ca(2+)-ATPase, respectively. However, in contrast to membrane fluidity, the impact of these ion transporters in oxy-Hb regulation under baseline conditions seems to be negligible. We propose that decreased oxy-Hb content contributes to the reduced O(2) tissue supply seen in patients with CVD.
Collapse
Affiliation(s)
- O G Luneva
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang X, Breaks J, Loutzenhiser K, Loutzenhiser R. Effects of inhibition of the Na+/K+/2Cl− cotransporter on myogenic and angiotensin II responses of the rat afferent arteriole. Am J Physiol Renal Physiol 2007; 292:F999-F1006. [PMID: 17090779 DOI: 10.1152/ajprenal.00343.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Na+/K+/2Cl− cotransporter (NKCC) plays diverse roles in the kidney, contributing sodium reabsorption and tubuloglomerular feedback (TGF). However, NKCC is also expressed in smooth muscle and inhibitors of this transporter affect contractility in both vascular and nonvascular smooth muscle. In the present study, we investigated the effects of NKCC inhibitors on vasoconstrictor responses of the renal afferent arteriole using the in vitro perfused hydronephrotic rat kidney. This preparation has no tubules and no TGF, eliminating this potential complication. Furosemide and bumetanide inhibited myogenic responses in a concentration-dependent manner. Bumetanide was ∼20-fold more potent (IC50 1.0 vs. 20 μmol/l). At 100 and 10 μmol/l, furosemide and bumetanide inhibited myogenic responses by 72 ± 4 and 68 ± 5%, respectively. The maximal level of inhibition by bumetanide was not affected by nitric oxide synthase inhibition (100 μmol/l NG-nitro-l-arginine methyl ester). However, the time course for the dilation was slowed (from t1/2 = 4.0 ± 0.5 to 8.3 ± 1.7 min, P = 0.04), suggesting either a partial involvement of NO or a permissive effect of NO on relaxation kinetics. Bumetanide also inhibited ANG II-induced afferent arteriolar vasconstriction at similar concentrations. Finally, NKCC1, but not NKCC2, expression was demonstrated in the afferent arteriole by RT-PCR and the presence of NKCC1 in afferent arteriolar myocytes was confirmed by immunohistochemistry. In concert, these results indicate that NKCC modulation is capable of altering myogenic responses by a mechanism that does not involve TGF and suggest a potential role of NKCC1 in the regulation of vasomotor function in the renal microvasculature.
Collapse
Affiliation(s)
- Xuemei Wang
- Smooth Muscle Research Group, Department of Pharmacology and Therapeutics, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
38
|
Flatman PW. Cotransporters, WNKs and hypertension: important leads from the study of monogenetic disorders of blood pressure regulation. Clin Sci (Lond) 2007; 112:203-16. [PMID: 17223794 DOI: 10.1042/cs20060225] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Major advances are being made in identifying the structure and behaviour of regulatory cascades that control the activity of cation-Cl(-) cotransporters and certain Na(+), K(+) and Cl(-) channels. These transporters play key roles in regulating arterial blood pressure as they are not only responsible for NaCl reabsorption in the thick ascending limb and distal tubule of the kidney, but are also involved in regulating smooth muscle Ca(2+) levels. It is now apparent that defects in these transporters, and particularly in the regulatory cascades, cause some monogenetic forms of hypertension and may contribute to essential hypertension and problems with K(+) homoeostasis. Two families of kinases are prominent in these processes: the Ste-20-related kinases [OSR1 (oxidative stress-responsive kinase 1) and SPAK (Ste20/SPS1-related proline/alanine-rich kinase)] and the WNKs [with no lysine kinases]. These kinases affect the behaviour of their targets through both phosphorylation and by acting as scaffolding proteins, bringing together regulatory complexes. This review analyses how these kinases affect transport by activating or inhibiting individual transporters at the cell surface, or by changing the surface density of transporters by altering the rate of insertion or removal of transporters from the cell surface, and perhaps through controlling the rate of transporter degradation. This new knowledge should not only help us target antihypertensive therapy more appropriately, but could also provide the basis for developing new therapeutic approaches to essential hypertension.
Collapse
Affiliation(s)
- Peter W Flatman
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9XD, Scotland, U.K.
| |
Collapse
|
39
|
Garg P, Martin CF, Elms SC, Gordon FJ, Wall SM, Garland CJ, Sutliff RL, O'Neill WC. Effect of the Na-K-2Cl cotransporter NKCC1 on systemic blood pressure and smooth muscle tone. Am J Physiol Heart Circ Physiol 2007; 292:H2100-5. [PMID: 17259435 PMCID: PMC1871614 DOI: 10.1152/ajpheart.01402.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies in rat aorta have shown that the Na-K-2Cl cotransporter NKCC1 is activated by vasoconstrictors and inhibited by nitrovasodilators, contributes to smooth muscle tone in vitro, and is upregulated in hypertension. To determine the role of NKCC1 in systemic vascular resistance and hypertension, blood pressure was measured in rats before and after inhibition of NKCC1 with bumetanide. Intravenous infusion of bumetanide sufficient to yield a free plasma concentration above the IC(50) for NKCC1 produced an immediate drop in blood pressure of 5.2% (P < 0.001). The reduction was not prevented when the renal arteries were clamped, indicating that it was not due to a renal effect of bumetanide. Bumetanide did not alter blood pressure in NKCC1-null mice, demonstrating that it was acting specifically through NKCC1. In third-order mesenteric arteries, bumetanide-inhibitable efflux of (86)Rb was acutely stimulated 133% by phenylephrine, and bumetanide reduced the contractile response to phenylephrine, indicating that NKCC1 influences tone in resistance vessels. The hypotensive effect of bumetanide was proportionately greater in rats made hypertensive by a 7-day infusion of norepinephrine (12.7%, P < 0.001 vs. normotensive rats) but much less so when hypertension was produced by a fixed aortic coarctation (8.0%), again consistent with an effect of bumetanide on resistance vessels rather than other determinants of blood pressure. We conclude that NKCC1 influences blood pressure through effects on smooth muscle tone in resistance vessels and that this effect is augmented in hypertension.
Collapse
Affiliation(s)
- Puneet Garg
- Renal Division, Emory University Hospital, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kaneda T, Sakaguchi R, Shimizu K, Urakawa N, Nakajyo S. Effects of high-K+, Na+-deficient solution on contractility of the smooth muscles of the bovine trachea. J Vet Med Sci 2006; 68:1039-45. [PMID: 17085881 DOI: 10.1292/jvms.68.1039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A high-K+, Na+-deficient (I-154 K+) solution induced contraction followed by gradual relaxation of the smooth muscles of the bovine trachea, while hyperosmotic addition of 65 mM KCl induced a large sustained contraction. Exposure of the muscle to the I-154 K+ solution induced an increase in the ratio of cellular water content and a sustained increase in oxidized flavoprotein fluorescence or reduced pyridine nucleotide fluorescence. The I-154 K+ solution also induced a sustained increase in [Ca2+]i level. Decreases in developed tension and increases in cellular water content were both prevented by the addition of sucrose or NaCl but not pyruvate. Substitution of KI for KCl in the I-154 K+ solution produced a greater inhibition of contraction, while substitution with K-propionate produced no inhibition of contraction. Moreover, decreases in developed tension and increases in cellular water content were both prevented by addition of 100 microM 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS), but not 10 microM bumetanide or 1 mM acetazolamide. In conclusion, I-154 K+ solution induced-relaxation in the bovine trachea may be due to swelling of smooth muscle cells and the mechanism of swelling is probably involved in DIDS-sensitive anion movement.
Collapse
Affiliation(s)
- Takeharu Kaneda
- Division of Veterinary Pharmacology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
41
|
Transient Activation and Delayed Inhibition of Na+,K+,Cl– Cotransport in ATP-treated C11-MDCK Cells Involve Distinct P2Y Receptor Subtypes and Signaling Mechanisms. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Akimova OA, Grygorczyk A, Bundey RA, Bourcier N, Gekle M, Insel PA, Orlov SN. Transient activation and delayed inhibition of Na+,K+,Cl- cotransport in ATP-treated C11-MDCK cells involve distinct P2Y receptor subtypes and signaling mechanisms. J Biol Chem 2006; 281:31317-25. [PMID: 16916802 DOI: 10.1074/jbc.m602117200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In C11-MDCK cells, which resemble intercalated cells from collecting ducts of the canine kidney, P2Y agonists promote transient activation of the Na+,K+,Cl- cotransporter (NKCC), followed by its sustained inhibition. We designed this study to identify P2Y receptor subtypes involved in dual regulation of this carrier. Real time polymerase chain reaction analysis demonstrated that C11-MDCK cells express abundant P2Y1 and P2Y2 mRNA compared with that of other P2Y receptor subtypes. The rank order of potency of agents (ATP approximately UTP >> 2-(methylthio)-ATP (2MeSATP); adenosine 5'-[beta-thio]diphosphate (ADPbetaS) inactive) indicated that P2Y2 rather than P2Y1 receptors mediate a 3-4-fold activation of NKCC within the first 5-10 min of nucleotide addition. NKCC activation in ATP-treated cells was abolished by the intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, calmodulin (CaM) antagonists trifluoroperazine and W-7, and KN-62, an inhibitor of Ca2+/CaM-dependent protein kinase II. By contrast with the transient activation, 30-min incubation with nucleotides produced up to 4-5-fold inhibition of NKCC, and this inhibition exhibited a rank order of potency (2MeSATP > ADPbetaS > ATP >> UTP) typical of P2Y1 receptors. Unlike the early response, delayed inhibition of NKCC occurred in 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-loaded cells and was completely abolished by the P2Y1 antagonists MRS2179 and MRS2500. Transient activation and delayed inhibition of NKCC in C11 cell monolayers were observed after the addition of ATP to mucosal and serosal solutions, respectively. NKCC inhibition triggered by basolateral application of ADPbetaS was abolished by MRS2500. Our results thus show that transient activation and delayed inhibition of NKCC in ATP-treated C11-MDCK cells is mediated by Ca2+/CaM-dependent protein kinase II- and Ca2+-independent signaling triggered by apical P2Y2 and basolateral P2Y1 receptors, respectively.
Collapse
Affiliation(s)
- Olga A Akimova
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal-Technopôle Angus, Montreal, Quebec H1W 4A4, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Orlov SN, Hamet P. Intracellular monovalent ions as second messengers. J Membr Biol 2006; 210:161-72. [PMID: 16909338 DOI: 10.1007/s00232-006-0857-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 02/08/2006] [Indexed: 01/03/2023]
Abstract
It is generally accepted that electrochemical gradients of monovalent ions across the plasma membrane, created by the coupled function of pumps, carriers and channels, are involved in the maintenance of resting and action membrane potential, cell volume adjustment, intracellular Ca(2+ )handling and accumulation of glucose, amino acids, nucleotides and other precursors of macromolecular synthesis. In the present review, we summarize data showing that side-by-side with these classic functions, modulation of the intracellular concentration of monovalent ions in a physiologically reasonable range is sufficient to trigger numerous cellular responses, including changes in enzyme activity, gene expression, protein synthesis, cell proliferation and death. Importantly, the engagement of monovalent ions in regulation of the above-listed cellular responses occurs at steps upstream of Ca(2+) (i) and other key intermediates of intracellular signaling, which allows them to be considered as second messengers. With the exception of HCO (3) (-) -sensitive soluble adenylyl cyclase, the molecular origin of sensors involved in the function of monovalent ions as second messengers remains unknown.
Collapse
Affiliation(s)
- S N Orlov
- Centre de recherche, Centre hospitalier de l'Université de Montréal, (CHUM)-Hôtel-Dieu, Montreal, Quebec, Canada.
| | | |
Collapse
|
44
|
Wijetunge S, Hughes AD. Mechanism of Contraction of Rat Isolated Tail Arteries by Hyposmotic Solutions. J Vasc Res 2005; 42:93-100. [PMID: 15650317 DOI: 10.1159/000083368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 10/20/2004] [Indexed: 11/19/2022] Open
Abstract
Contraction induced by hyposmotic swelling was examined in rat tail arteries mounted on a myograph containing a modified Krebs physiological saline solution (PSS) containing 50 mM mannitol (300 mosm/l). Hyposmotic swelling was induced by removing mannitol. In arteries having basal tone or arteries precontracted with K(+) or the thromboxane mimetic U-46619, removal of mannitol caused a concentration dependent contraction of rat tail arteries. Concurrent measurement of tension and intracellular calcium [Ca(2+)](i )in arteries loaded with fura-2 showed that both tension and [Ca(2+)](i) increased on exposure to a hyposmotic solution. Removal of endothelium or inhibition of nitric oxide and cyclooxygenase together did not affect contractile responses. Removal of extracellular Ca(2+) abolished the contractile response to hyposmotic solution and NiCl(2), a nonspecific inhibitor of Ca(2+) influx pathways, blocked the rise in [Ca(2+)](i) and tension in response to a hyposmotic solution. Verapamil and nisoldipine, inhibitors of Ca(v)1.2 (L-type) calcium channels significantly reduced the contractile response to a hyposmotic solution. Addition of NiCl(2) to nisoldipine caused an additional inhibition of the response to a hyposmotic solution. Inhibition of calcium release from the sarcoplasmic reticulum by ryanodine or cyclopiazonic acid (CPA) did not cause any change in the tension response to a hyposmotic solution. CPA did not significantly inhibit the response to a hyposmotic solution in the presence of N(G)-methyl-L-arginine, oxyhaemoglobin and indomethacin. We conclude that contraction induced by a hyposmotic solution is largely due to Ca(v)1.2 calcium channels although other Ca(2+) influx pathways also contribute.
Collapse
Affiliation(s)
- S Wijetunge
- Clinical Pharmacology, NHLI Division, Faculty of Medicine, Imperial College London, South Wharf Road, London W2 1NY, UK
| | | |
Collapse
|