1
|
Köster PA, Leipold E, Tigerholm J, Maxion A, Namer B, Stiehl T, Lampert A. Nociceptor sodium channels shape subthreshold phase, upstroke, and shoulder of action potentials. J Gen Physiol 2025; 157:e202313526. [PMID: 39836077 PMCID: PMC11748974 DOI: 10.1085/jgp.202313526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/30/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Voltage-gated sodium channels (VGSCs) in the peripheral nervous system shape action potentials (APs) and thereby support the detection of sensory stimuli. Most of the nine mammalian VGSC subtypes are expressed in nociceptors, but predominantly, three are linked to several human pain syndromes: while Nav1.7 is suggested to be a (sub-)threshold channel, Nav1.8 is thought to support the fast AP upstroke. Nav1.9, as it produces large persistent currents, is attributed a role in determining the resting membrane potential. We characterized the gating of Nav1.1-Nav1.3 and Nav1.5-Nav1.9 in manual patch clamp with a focus on the AP subthreshold depolarization phase. Nav1.9 exhibited the most hyperpolarized activation, while its fast inactivation resembled the depolarized inactivation of Nav1.8. For some VGSCs (e.g., Nav1.1 and Nav1.2), a positive correlation between ramp current and window current was detected. Using a modified Hodgkin-Huxley model that accounts for the time needed for inactivation to occur, we used the acquired data to simulate two nociceptive nerve fiber types (an Aδ- and a mechano-insensitive C-nociceptor) containing VGSC conductances according to published human RNAseq data. Our simulations suggest that Nav1.9 is supporting both the AP upstroke and its shoulder. A reduced threshold for AP generation was induced by enhancing Nav1.7 conductivity or shifting its activation to more hyperpolarized potentials, as observed in Nav1.7-related pain disorders. Here, we provide a comprehensive, comparative functional characterization of VGSCs relevant in nociception and describe their gating with Hodgkin-Huxley-like models, which can serve as a tool to study their specific contributions to AP shape and sodium channel-related diseases.
Collapse
Affiliation(s)
- Phil Alexander Köster
- Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care and CBBM-Center of Brain, Behavior and Metabolism, University of Luebeck, Lübeck, Germany
| | - Jenny Tigerholm
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Joint Research Center for Computational Biomedicine (JRCC), Uniklinik RWTH Aachen University, Aachen, Germany
| | - Anna Maxion
- Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, Research Group Neurosciences, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Barbara Namer
- Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, Research Group Neurosciences, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Thomas Stiehl
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Joint Research Center for Computational Biomedicine (JRCC), Uniklinik RWTH Aachen University, Aachen, Germany
- Institute for Computational Biomedicine and Disease Modelling With Focus on Phase Transitions Between Phenotypes, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Angelika Lampert
- Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Mishra S, Mishra Y, Kumar A. Marine-derived bioactive compounds for neuropathic pain: pharmacology and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03667-7. [PMID: 39797987 DOI: 10.1007/s00210-024-03667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management. Marine organisms, including fungi, algae, cone snails, sponges, soft corals, tunicates, and fish, produce a diverse range of secondary metabolites with significant pharmacological properties. These include peptides (e.g., conopeptides, piscidin 1), non-peptides (e.g., guanidinium toxins, astaxanthin, docosahexaenoic acid, fucoidan, apigenin, fumagillin, aaptamine, flexibilide, excavatolide B, capnellenes, austrasulfones, lemnalol), and crude extracts (e.g., Spirulina platensis, Dunaliella salina, Cliothosa aurivilli). These compounds exhibit diverse mechanisms of action, such as modulating ion channels (e.g., transient receptor potential channels, voltage-gated sodium, calcium, and potassium channels, and G protein-coupled inwardly rectifying potassium channels), interacting with cell-surface receptors (e.g., nicotinic acetylcholine, NMDA, kainate, GABAB, and neurotensin receptors), inhibiting norepinephrine transporters, reducing oxidative stress, and attenuating neuroinflammation. These effects collectively contribute to alleviating nerve degeneration and symptoms of neuropathic pain, including hyperalgesia, allodynia, and associated psychomotor disturbances. Marine-derived bioactive compounds represent promising alternatives to conventional neuropathic pain treatments, to advance their development and assess their integration into neuropathic pain management strategies.
Collapse
Affiliation(s)
- Swapnil Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
| |
Collapse
|
3
|
Caldito EG, Kaul S, Caldito NG, Piette W, Mehta S. Erythromelalgia. Part I: Pathogenesis, clinical features, evaluation, and complications. J Am Acad Dermatol 2024; 90:453-462. [PMID: 37364617 DOI: 10.1016/j.jaad.2023.02.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/27/2023] [Accepted: 02/12/2023] [Indexed: 06/28/2023]
Abstract
Erythromelalgia is a rare pain disorder that is underrecognized and difficult-to-treat. It is characterized by episodes of extremity erythema and pain that can be disabling; it may be genetic, related to an underlying systemic disease, or idiopathic. Considering the prominent cutaneous features characteristic of the condition, dermatologists can play an important role in early recognition and limitation of morbidity. The first article in this 2-part continuing medical education series reviews the epidemiology, pathogenesis, clinical manifestations, evaluation, and complications.
Collapse
Affiliation(s)
| | - Subuhi Kaul
- Division of Dermatology, John H Stroger Hospital of Cook County, Chicago, Illinois
| | | | - Warren Piette
- Division of Dermatology, John H Stroger Hospital of Cook County, Chicago, Illinois; Department of Dermatology, Rush University Medical Center, Chicago, Illinois
| | - Shilpa Mehta
- Division of Dermatology, John H Stroger Hospital of Cook County, Chicago, Illinois.
| |
Collapse
|
4
|
Satapathy T, Singh G, Pandey RK, Shukla SS, Bhardwaj SK, Gidwani B. Novel Targets and Drug Delivery System in the Treatment of Postoperative Pain: Recent Studies and Clinical Advancement. Curr Drug Targets 2024; 25:25-45. [PMID: 38037995 DOI: 10.2174/0113894501271207231127063431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Pain is generated by a small number of peripheral targets. These can be made more sensitive by inflammatory mediators. The number of opioids prescribed to the patients can be reduced dramatically with better pain management. Any therapy that safely and reliably provides extended analgesia and is flexible enough to facilitate a diverse array of release profiles would be useful for improving patient comfort, quality of care, and compliance after surgical procedures. Comparisons are made between new and traditional methods, and the current state of development has been discussed; taking into account the availability of molecular and cellular level data, preclinical and clinical data, and early post-market data. There are a number of benefits associated with the use of nanotechnology in the delivery of analgesics to specific areas of the body. Nanoparticles are able to transport drugs to inaccessible bodily areas because of their small molecular size. This review focuses on targets that act specifically or primarily on sensory neurons, as well as inflammatory mediators that have been shown to have an analgesic effect as a side effect of their anti- inflammatory properties. New, regulated post-operative pain management devices that use existing polymeric systems were presented in this article, along with the areas for potential development. Analgesic treatments, both pharmacological and non-pharmacological, have also been discussed.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Gulab Singh
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Ravindra Kumar Pandey
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Shankar Shukla
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Shiv Kumar Bhardwaj
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| | - Beena Gidwani
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh-493111, India
| |
Collapse
|
5
|
Llanos MA, Enrique N, Esteban-López V, Scioli-Montoto S, Sánchez-Benito D, Ruiz ME, Milesi V, López DE, Talevi A, Martín P, Gavernet L. A Combined Ligand- and Structure-Based Virtual Screening To Identify Novel NaV1.2 Blockers: In Vitro Patch Clamp Validation and In Vivo Anticonvulsant Activity. J Chem Inf Model 2023; 63:7083-7096. [PMID: 37917937 DOI: 10.1021/acs.jcim.3c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures that arise from abnormal electrical activity in the brain. Voltage-gated sodium channels (NaVs), responsible for the initiation and propagation of action potentials in neurons, play a critical role in the pathogenesis of epilepsy. This study sought to discover potential anticonvulsant compounds that interact with NaVs, specifically, the brain subtype hNaV1.2. A ligand-based QSAR model and a docking model were constructed, validated, and applied in a parallel virtual screening over the DrugBank database. Montelukast, Novobiocin, and Cinnarizine were selected for in vitro testing, using the patch-clamp technique, and all of them proved to inhibit hNaV1.2 channels heterologously expressed in HEK293 cells. Two hits were evaluated in the GASH/Sal model of audiogenic seizures and demonstrated promising activity, reducing the severity of sound-induced seizures at the doses tested. The combination of ligand- and structure-based models presents a valuable approach for identifying potential NaV inhibitors. These findings may provide a basis for further research into the development of new antiseizure drugs for the treatment of epilepsy.
Collapse
Affiliation(s)
- Manuel A Llanos
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - Nicolás Enrique
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Vega Esteban-López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca 37008, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Sebastian Scioli-Montoto
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - David Sánchez-Benito
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca 37008, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - María E Ruiz
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - Veronica Milesi
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Dolores E López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca 37008, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Alan Talevi
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| | - Pedro Martín
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Luciana Gavernet
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata B1900ADU, Argentina
| |
Collapse
|
6
|
Hussein RA, Ahmed M, Heinemann SH. Selenomethionine mis-incorporation and redox-dependent voltage-gated sodium channel gain of function. J Neurochem 2023; 167:262-276. [PMID: 37679952 DOI: 10.1111/jnc.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Selenomethionine (SeMet) readily replaces methionine (Met) residues in proteins during translation. Long-term dietary SeMet intake results in the accumulation of the amino acid in tissue proteins. Despite the high rates of SeMet incorporation in proteins and its stronger susceptibility to oxidation compared to Met, little is known about the effect of SeMet mis-incorporation on electrical excitability and ion channels. Fast inactivation of voltage-gated sodium (NaV ) channels is essential for exact action potential shaping with even minute impairment of inactivation resulting in a plethora of adverse phenotypes. Met oxidation of the NaV channel inactivation motif (Ile-Phe-Met) and further Met residues causes a marked loss of inactivation. Here, we examined the impact of SeMet mis-incorporation on the function of NaV channels. While extensive SeMet incorporation into recombinant rat NaV 1.4 channels preserved their normal function, it greatly sensitized the channels to mild oxidative stress, resulting in loss of inactivation and diminished maximal current, both reversible by dithiothreitol-induced reduction. SeMet incorporation similarly affected human NaV 1.4, NaV 1.2, NaV 1.5, and NaV 1.7. In mouse dorsal root ganglia (DRG) neurons, 1 day of SeMet exposure exacerbated the oxidation-mediated broadening of action potentials. SeMet-treated DRGs also exhibited a stronger increase in the persistent NaV current in response to oxidation. SeMet incorporation in NaV proteins coinciding with oxidative insults may therefore result in hyperexcitability pathologies, such as cardiac arrhythmias and neuropathies, like congenital NaV channel gain-of-function mutations.
Collapse
Affiliation(s)
- Rama A Hussein
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Marwa Ahmed
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| |
Collapse
|
7
|
Sierra-Marquez J, Willuweit A, Schöneck M, Bungert-Plümke S, Gehlen J, Balduin C, Müller F, Lampert A, Fahlke C, Guzman RE. ClC-3 regulates the excitability of nociceptive neurons and is involved in inflammatory processes within the spinal sensory pathway. Front Cell Neurosci 2022; 16:920075. [PMID: 37124866 PMCID: PMC10134905 DOI: 10.3389/fncel.2022.920075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
ClC-3 Cl–/H+ exchangers are expressed in multiple endosomal compartments and likely modify intra-endosomal pH and [Cl–] via the stoichiometrically coupled exchange of two Cl– ions and one H+. We studied pain perception in Clcn3–/– mice and found that ClC-3 not only modifies the electrical activity of peripheral nociceptors but is also involved in inflammatory processes in the spinal cord. We demonstrate that ClC-3 regulates the number of Nav and Kv ion channels in the plasma membrane of dorsal root ganglion (DRG) neurons and that these changes impair the age-dependent decline in excitability of sensory neurons. To distinguish the role of ClC-3 in Cl–/H+ exchange from its other functions in pain perception, we used mice homozygous for the E281Q ClC-3 point mutation (Clcn3E281Q/E281Q), which completely eliminates transport activity. Since ClC-3 forms heterodimers with ClC-4, we crossed these animals with Clcn4–/– to obtain mice completely lacking in ClC-3-associated endosomal chloride–proton transport. The electrical properties of Clcn3E281Q/E281Q/Clcn4–/– DRG neurons were similar to those of wild-type cells, indicating that the age-dependent adjustment of neuronal excitability is independent of ClC-3 transport activity. Both Clcn3–/– and Clcn3E281Q/E281Q/Clcn4–/– animals exhibited microglial activation in the spinal cord, demonstrating that competent ClC-3 transport is needed to maintain glial cell homeostasis. Our findings illustrate how reduced Cl–/H+ exchange contributes to inflammatory responses and demonstrate a role for ClC-3 in the homeostatic regulation of neuronal excitability beyond its function in endosomal ion balance.
Collapse
Affiliation(s)
- Juan Sierra-Marquez
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Antje Willuweit
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Michael Schöneck
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Stefanie Bungert-Plümke
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Jana Gehlen
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Carina Balduin
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Frank Müller
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | | | - Christoph Fahlke
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Raul E. Guzman
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
- *Correspondence: Raul E. Guzman,
| |
Collapse
|
8
|
MacKenzie TMG, Abderemane-Ali F, Garrison CE, Minor DL, Bois JD. Differential effects of modified batrachotoxins on voltage-gated sodium channel fast and slow inactivation. Cell Chem Biol 2022; 29:615-624.e5. [PMID: 34963066 PMCID: PMC9035044 DOI: 10.1016/j.chembiol.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
Voltage-gated sodium channels (NaVs) are targets for a number of acute poisons. Many of these agents act as allosteric modulators of channel activity and serve as powerful chemical tools for understanding channel function. Herein, we detail studies with batrachotoxin (BTX), a potent steroidal amine, and three ester derivatives prepared through de novo synthesis against recombinant NaV subtypes (rNaV1.4 and hNaV1.5). Two of these compounds, BTX-B and BTX-cHx, are functionally equivalent to BTX, hyperpolarizing channel activation and blocking both fast and slow inactivation. BTX-yne-a C20-n-heptynoate ester-is a conspicuous outlier, eliminating fast but not slow inactivation. This property differentiates BTX-yne among other NaV modulators as a unique reagent that separates inactivation processes. These findings are supported by functional studies with bacterial NaVs (BacNaVs) that lack a fast inactivation gate. The availability of BTX-yne should advance future efforts aimed at understanding NaV gating mechanisms and designing allosteric regulators of NaV activity.
Collapse
Affiliation(s)
- Tim M G MacKenzie
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, CA 94305, USA
| | - Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California, San Francisco, Box 3122, 555 Mission Bay Boulevard South, Rm. 452Z, San Francisco, CA 94158-9001, USA
| | - Catherine E Garrison
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, CA 94305, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, Box 3122, 555 Mission Bay Boulevard South, Rm. 452Z, San Francisco, CA 94158-9001, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-9001, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158-9001, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94158-9001, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - J Du Bois
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
The Evidence for Effective Inhibition of INa Produced by Mirogabalin ((1R,5S,6S)-6-(aminomethyl)-3-ethyl-bicyclo [3.2.0] hept-3-ene-6-acetic acid), a Known Blocker of Ca V Channels. Int J Mol Sci 2022; 23:ijms23073845. [PMID: 35409204 PMCID: PMC8998350 DOI: 10.3390/ijms23073845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mirogabalin (MGB, Tarlige®), an inhibitor of the α2δ-1 subunit of voltage-gated Ca2+ (CaV) channels, is used as a way to alleviate peripheral neuropathic pain and diabetic neuropathy. However, to what extent MGB modifies the magnitude, gating, and/or hysteresis of various types of plasmalemmal ionic currents remains largely unexplored. In pituitary tumor (GH3) cells, we found that MGB was effective at suppressing the peak (transient, INa(T)) and sustained (late, INa(L)) components of the voltage-gated Na+ current (INa) in a concentration-dependent manner, with an effective IC50 of 19.5 and 7.3 μM, respectively, while the KD value calculated on the basis of minimum reaction scheme was 8.2 μM. The recovery of INa(T) inactivation slowed in the presence of MGB, although the overall current-voltage relation of INa(T) was unaltered; however, there was a leftward shift in the inactivation curve of the current. The magnitude of the window (INa(W)) or resurgent INa (INa(R)) evoked by the respective ascending or descending ramp pulse (Vramp) was reduced during cell exposure to MGB. MGB-induced attenuation in INa(W) or INa(R) was reversed by the further addition of tefluthrin, a pyrethroid insecticide known to stimulate INa. MGB also effectively lessened the strength of voltage-dependent hysteresis of persistent INa in response to the isosceles triangular Vramp. The cumulative inhibition of INa(T), evoked by pulse train stimulation, was enhanced in its presence. Taken together, in addition to the inhibition of CaV channels, the NaV channel attenuation produced by MGB might have an impact in its analgesic effects occurring in vivo.
Collapse
|
10
|
Yang QY, Hu YH, Guo HL, Xia Y, Zhang Y, Fang WR, Li YM, Xu J, Chen F, Wang YR, Wang TF. Vincristine-Induced Peripheral Neuropathy in Childhood Acute Lymphoblastic Leukemia: Genetic Variation as a Potential Risk Factor. Front Pharmacol 2021; 12:771487. [PMID: 34955843 PMCID: PMC8696478 DOI: 10.3389/fphar.2021.771487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Vincristine (VCR) is the first-line chemotherapeutic medication often co-administered with other drugs to treat childhood acute lymphoblastic leukemia. Dose-dependent neurotoxicity is the main factor restricting VCR’s clinical application. VCR-induced peripheral neuropathy (VIPN) sometimes results in dose reduction or omission, leading to clinical complications or affecting the patient’s quality of life. With regard to the genetic basis of drug responses, preemptive pharmacogenomic testing and simultaneous blood level monitoring could be helpful for the transformation of various findings into individualized therapies. In this review, we discussed the potential associations between genetic variants in genes contributing to the pharmacokinetics/pharmacodynamics of VCR and VIPN incidence and severity in patients with acute lymphoblastic leukemia. Of note, genetic variants in the CEP72 gene have great potential to be translated into clinical practice. Such a genetic biomarker may help clinicians diagnose VIPN earlier. Besides, genetic variants in other genes, such as CYP3A5, ABCB1, ABCC1, ABCC2, TTPA, ACTG1, CAPG, SYNE2, SLC5A7, COCH, and MRPL47, have been reported to be associated with the VIPN, but more evidence is needed to validate the findings in the future. In fact, a variety of complex factors jointly determine the VIPN. In implementing precision medicine, the combination of genetic, environmental, and personal variables, along with therapeutic drug monitoring, will allow for a better understanding of the mechanisms of VIPN, improving the effectiveness of VCR treatment, reducing adverse reactions, and improving patients’ quality of life.
Collapse
Affiliation(s)
- Qing-Yan Yang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.,School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xia
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Rong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-Man Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Xu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Ren Wang
- Department of Hematology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Teng-Fei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
11
|
Le Cann K, Meents JE, Sudha Bhagavath Eswaran V, Dohrn MF, Bott R, Maier A, Bialer M, Hautvast P, Erickson A, Rolke R, Rothermel M, Körner J, Kurth I, Lampert A. Assessing the impact of pain-linked Nav1.7 variants: An example of two variants with no biophysical effect. Channels (Austin) 2021; 15:208-228. [PMID: 33487118 PMCID: PMC7833769 DOI: 10.1080/19336950.2020.1870087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022] Open
Abstract
Mutations in the voltage-gated sodium channel Nav1.7 are linked to human pain. The Nav1.7/N1245S variant was described before in several patients suffering from primary erythromelalgia and/or olfactory hypersensitivity. We have identified this variant in a pain patient and a patient suffering from severe and life-threatening orthostatic hypotension. In addition, we report a female patient suffering from muscle pain and carrying the Nav1.7/E1139K variant. We tested both Nav1.7 variants by whole-cell voltage-clamp recordings in HEK293 cells, revealing a slightly enhanced current density for the N1245S variant when co-expressed with the β1 subunit. This effect was counteracted by an enhanced slow inactivation. Both variants showed similar voltage dependence of activation and steady-state fast inactivation, as well as kinetics of fast inactivation, deactivation, and use-dependency compared to WT Nav1.7. Finally, homology modeling revealed that the N1245S substitution results in different intramolecular interaction partners. Taken together, these experiments do not point to a clear pathogenic effect of either the N1245S or E1139K variant and suggest they may not be solely responsible for the patients' pain symptoms. As discussed previously for other variants, investigations in heterologous expression systems may not sufficiently mimic the pathophysiological situation in pain patients, and single nucleotide variants in other genes or modulatory proteins are necessary for these specific variants to show their effect. Our findings stress that biophysical investigations of ion channel mutations need to be evaluated with care and should preferably be supplemented with studies investigating the mutations in their context, ideally in human sensory neurons.
Collapse
Affiliation(s)
- Kim Le Cann
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jannis E. Meents
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Maike F. Dohrn
- Department of Neurology, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Raya Bott
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Andrea Maier
- Department of Neurology, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Martin Bialer
- Division of Clinical Metabolism of Medical Genetics and Human Genomics at Northwell Health System, New-York, United States
| | - Petra Hautvast
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Andelain Erickson
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Roman Rolke
- Department for Palliative Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany
| | - Jannis Körner
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
12
|
Singh AK, Dvorak NM, Tapia CM, Mosebarger A, Ali SR, Bullock Z, Chen H, Zhou J, Laezza F. Differential Modulation of the Voltage-Gated Na + Channel 1.6 by Peptides Derived From Fibroblast Growth Factor 14. Front Mol Biosci 2021; 8:742903. [PMID: 34557523 PMCID: PMC8452925 DOI: 10.3389/fmolb.2021.742903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
The voltage-gated Na+ (Nav) channel is a primary molecular determinant of the initiation and propagation of the action potential. Despite the central role of the pore-forming α subunit in conferring this functionality, protein:protein interactions (PPI) between the α subunit and auxiliary proteins are necessary for the full physiological activity of Nav channels. In the central nervous system (CNS), one such PPI occurs between the C-terminal domain of the Nav1.6 channel and fibroblast growth factor 14 (FGF14). Given the primacy of this PPI in regulating the excitability of neurons in clinically relevant brain regions, peptides targeting the FGF14:Nav1.6 PPI interface could be of pre-clinical value. In this work, we pharmacologically evaluated peptides derived from FGF14 that correspond to residues that are at FGF14's PPI interface with the CTD of Nav1.6. These peptides, Pro-Leu-Glu-Val (PLEV) and Glu-Tyr-Tyr-Val (EYYV), which correspond to residues of the β12 sheet and β8-β9 loop of FGF14, respectively, were shown to inhibit FGF14:Nav1.6 complex assembly. In functional studies using whole-cell patch-clamp electrophysiology, PLEV and EYYV were shown to confer differential modulation of Nav1.6-mediated currents through mechanisms dependent upon the presence of FGF14. Crucially, these FGF14-dependent effects of PLEV and EYYV on Nav1.6-mediated currents were further shown to be dependent on the N-terminal domain of FGF14. Overall, these data suggest that the PLEV and EYYV peptides represent scaffolds to interrogate the Nav1.6 channel macromolecular complex in an effort to develop targeted pharmacological modulators.
Collapse
Affiliation(s)
- Aditya K Singh
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Nolan M Dvorak
- Department of Pharmacology and Toxicology, Galveston, TX, United States.,Pharmacology and Toxicology Graduate Program, Galveston, TX, United States.,Presidential Scholarship Program, University of Texas Medical Branch, Galveston, TX, United States
| | - Cynthia M Tapia
- Department of Pharmacology and Toxicology, Galveston, TX, United States.,Presidential Scholarship Program, University of Texas Medical Branch, Galveston, TX, United States
| | - Angela Mosebarger
- Department of Pharmacology and Toxicology, Galveston, TX, United States.,Pharmacology and Toxicology Graduate Program, Galveston, TX, United States.,Presidential Scholarship Program, University of Texas Medical Branch, Galveston, TX, United States
| | - Syed R Ali
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Zaniqua Bullock
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Haiying Chen
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, Galveston, TX, United States
| |
Collapse
|
13
|
Heinrichs B, Liu B, Zhang J, Meents JE, Le K, Erickson A, Hautvast P, Zhu X, Li N, Liu Y, Spehr M, Habel U, Rothermel M, Namer B, Zhang X, Lampert A, Duan G. The Potential Effect of Na v 1.8 in Autism Spectrum Disorder: Evidence From a Congenital Case With Compound Heterozygous SCN10A Mutations. Front Mol Neurosci 2021; 14:709228. [PMID: 34385907 PMCID: PMC8354588 DOI: 10.3389/fnmol.2021.709228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
Apart from the most prominent symptoms in Autism spectrum disorder (ASD), namely deficits in social interaction, communication and repetitive behavior, patients often show abnormal sensory reactivity to environmental stimuli. Especially potentially painful stimuli are reported to be experienced in a different way compared to healthy persons. In our present study, we identified an ASD patient carrying compound heterozygous mutations in the voltage-gated sodium channel (VGSC) Na v 1.8, which is preferentially expressed in sensory neurons. We expressed both mutations, p.I1511M and p.R512∗, in a heterologous expression system and investigated their biophysical properties using patch-clamp recordings. The results of these experiments reveal that the p.R512∗ mutation renders the channel non-functional, while the p.I1511M mutation showed only minor effects on the channel's function. Behavioral experiments in a Na v 1.8 loss-of-function mouse model additionally revealed that Na v 1.8 may play a role in autism-like symptomatology. Our results present Na v 1.8 as a protein potentially involved in ASD pathophysiology and may therefore offer new insights into the genetic basis of this disease.
Collapse
Affiliation(s)
- Björn Heinrichs
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Baowen Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jannis E. Meents
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Kim Le
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Andelain Erickson
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Hautvast
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Xiwen Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Brain Structure-Function Relationships: Decoding the Human Brain at Systemic Levels, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Markus Rothermel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Foundation, Hanover, Germany
| | - Barbara Namer
- Research Group Neurosciences of the Interdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Angelika Lampert
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Le Cann K, Foerster A, Rösseler C, Erickson A, Hautvast P, Giesselmann S, Pensold D, Kurth I, Rothermel M, Mattis VB, Zimmer-Bensch G, von Hörsten S, Denecke B, Clarner T, Meents J, Lampert A. The difficulty to model Huntington's disease in vitro using striatal medium spiny neurons differentiated from human induced pluripotent stem cells. Sci Rep 2021; 11:6934. [PMID: 33767215 PMCID: PMC7994641 DOI: 10.1038/s41598-021-85656-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin gene. The neuropathology of HD is characterized by the decline of a specific neuronal population within the brain, the striatal medium spiny neurons (MSNs). The origins of this extreme vulnerability remain unknown. Human induced pluripotent stem cell (hiPS cell)-derived MSNs represent a powerful tool to study this genetic disease. However, the differentiation protocols published so far show a high heterogeneity of neuronal populations in vitro. Here, we compared two previously published protocols to obtain hiPS cell-derived striatal neurons from both healthy donors and HD patients. Patch-clamp experiments, immunostaining and RT-qPCR were performed to characterize the neurons in culture. While the neurons were mature enough to fire action potentials, a majority failed to express markers typical for MSNs. Voltage-clamp experiments on voltage-gated sodium (Nav) channels revealed a large variability between the two differentiation protocols. Action potential analysis did not reveal changes induced by the HD mutation. This study attempts to demonstrate the current challenges in reproducing data of previously published differentiation protocols and in generating hiPS cell-derived striatal MSNs to model a genetic neurodegenerative disorder in vitro.
Collapse
Affiliation(s)
- Kim Le Cann
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Alec Foerster
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Corinna Rösseler
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Andelain Erickson
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Petra Hautvast
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | | | - Daniel Pensold
- Institute of Biology II, Division of Functional Epigenetics in the Animal Model, RWTH Aachen University, 52074, Aachen, Germany
| | - Ingo Kurth
- Intitute of Human Genetic, RWTH Aachen University, 52074, Aachen, Germany
| | - Markus Rothermel
- Institute Für Biology II, Department Chemosensation, AG Neuromodulation, 52074, Aachen, Germany
| | - Virginia B Mattis
- Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Fujifilm Cellular Dynamics, Madison, WI, 53711, USA
| | - Geraldine Zimmer-Bensch
- Institute of Biology II, Division of Functional Epigenetics in the Animal Model, RWTH Aachen University, 52074, Aachen, Germany
| | - Stephan von Hörsten
- Intitute of Virology, Clinical and Molecular Virology, Animal Center of Preclinical Experiments (PETZ), 91054, Erlangen, Germany
| | | | - Tim Clarner
- Intitute for Neuroanatomy, MIT 1, 52074, Aachen, Germany
| | - Jannis Meents
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Multi Channel Systems MCS GmbH, Aspenhaustrasse 21, 72770, Reutlingen, Germany.
| | - Angelika Lampert
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
15
|
Li GZ, Hu YH, Li DY, Zhang Y, Guo HL, Li YM, Chen F, Xu J. Vincristine-induced peripheral neuropathy: A mini-review. Neurotoxicology 2020; 81:161-171. [DOI: 10.1016/j.neuro.2020.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
|
16
|
Rühlmann AH, Körner J, Hausmann R, Bebrivenski N, Neuhof C, Detro-Dassen S, Hautvast P, Benasolo CA, Meents J, Machtens JP, Schmalzing G, Lampert A. Uncoupling sodium channel dimers restores the phenotype of a pain-linked Na v 1.7 channel mutation. Br J Pharmacol 2020; 177:4481-4496. [PMID: 32663327 PMCID: PMC7484505 DOI: 10.1111/bph.15196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose The voltage‐gated sodium channel Nav1.7 is essential for adequate perception of painful stimuli. Mutations in the encoding gene, SCN9A, cause various pain syndromes in humans. The hNav1.7/A1632E channel mutant causes symptoms of erythromelalgia and paroxysmal extreme pain disorder (PEPD), and its main gating change is a strongly enhanced persistent current. On the basis of recently published 3D structures of voltage‐gated sodium channels, we investigated how the inactivation particle binds to the channel, how this mechanism is altered by the hNav1.7/A1632E mutation, and how dimerization modifies function of the pain‐linked mutation. Experimental Approach We applied atomistic molecular simulations to demonstrate the effect of the mutation on channel fast inactivation. Native PAGE was used to demonstrate channel dimerization, and electrophysiological measurements in HEK cells and Xenopus laevis oocytes were used to analyze the links between functional channel dimerization and impairment of fast inactivation by the hNav1.7/A1632E mutation. Key Results Enhanced persistent current through hNav1.7/A1632E channels was caused by impaired binding of the inactivation particle, which inhibits proper functioning of the recently proposed allosteric fast inactivation mechanism. hNav1.7 channels form dimers and the disease‐associated persistent current through hNav1.7/A1632E channels depends on their functional dimerization status: Expression of the synthetic peptide difopein, a 14‐3‐3 inhibitor known to functionally uncouple dimers, decreased hNav1.7/A1632E channel‐induced persistent currents. Conclusion and Implications Functional uncoupling of mutant hNav1.7/A1632E channel dimers restored their defective allosteric fast inactivation mechanism. Our findings support the concept of sodium channel dimerization and reveal its potential relevance for human pain syndromes.
Collapse
Affiliation(s)
- Annika H Rühlmann
- Institute of Physiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Jannis Körner
- Institute of Physiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany.,Department of Anaesthesiology, Medical Faculty, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Ralf Hausmann
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Nikolay Bebrivenski
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Christian Neuhof
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Silvia Detro-Dassen
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Petra Hautvast
- Institute of Physiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Carène A Benasolo
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany.,Forschungszentrum Jülich, Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Jülich, Germany
| | - Jannis Meents
- Institute of Physiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Jan-Philipp Machtens
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany.,Forschungszentrum Jülich, Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Jülich, Germany
| | - Günther Schmalzing
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Angelika Lampert
- Institute of Physiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| |
Collapse
|
17
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
18
|
Ciotu CI, Tsantoulas C, Meents J, Lampert A, McMahon SB, Ludwig A, Fischer MJM. Noncanonical Ion Channel Behaviour in Pain. Int J Mol Sci 2019; 20:E4572. [PMID: 31540178 PMCID: PMC6770626 DOI: 10.3390/ijms20184572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Ion channels contribute fundamental properties to cell membranes. Although highly diverse in conductivity, structure, location, and function, many of them can be regulated by common mechanisms, such as voltage or (de-)phosphorylation. Primarily considering ion channels involved in the nociceptive system, this review covers more novel and less known features. Accordingly, we outline noncanonical operation of voltage-gated sodium, potassium, transient receptor potential (TRP), and hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Noncanonical features discussed include properties as a memory for prior voltage and chemical exposure, alternative ion conduction pathways, cluster formation, and silent subunits. Complementary to this main focus, the intention is also to transfer knowledge between fields, which become inevitably more separate due to their size.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Jannis Meents
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UR, UK
| | - Andreas Ludwig
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Holland KD, Bouley TM, Horn PS. Location: A surrogate for personalized treatment of sodium channelopathies. Ann Neurol 2019; 84:1-9. [PMID: 30048009 DOI: 10.1002/ana.25268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 11/11/2022]
Abstract
Voltage-gated sodium channels have been implicated in numerous inherited paroxysmal disorders of the nervous system, muscle, and heart. Our goal is to provide a framework that helps neurologists understand the clinical and treatment implications of sodium channel variants they encounter in clinical practice. This will be accomplished through our objectives of (1) recognizing the relationship between location of a missense sodium channel gene variant and its effect on channel function, and (2) categorizing clinical phenotype based on functional effect of a variant. The relationship between location, function, and treatment response is also discussed. These interactions can be illustrated by the sodium channelopathies seen in people with epilepsy but generalize beyond that disorder. Ann Neurol 2018;83:1-9.
Collapse
Affiliation(s)
- Katherine D Holland
- Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Thomas M Bouley
- McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH
| | - Paul S Horn
- Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
20
|
Schirmer B, Giehl K, Kubatzky KF. Report of the Signal Transduction Society Meeting 2018-Signaling: From Past to Future. Int J Mol Sci 2019; 20:ijms20010227. [PMID: 30626122 PMCID: PMC6337256 DOI: 10.3390/ijms20010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
The annual meeting “Signal Transduction—Receptors, Mediators, and Genes” of the Signal Transduction Society (STS) is an interdisciplinary conference open to all scientists sharing the common interest in elucidating signaling pathways in physiological or pathological processes in humans, animals, plants, fungi, prokaryotes, and protists. On the occasion of the 20th anniversary of the STS, the 22nd joint meeting took place in Weimar from 5–7 November 2018. With the focus topic “Signaling: From Past to Future” the evolution of the multifaceted research concerning signal transduction since foundation of the society was highlighted. Invited keynote speakers introduced the respective workshop topics and were followed by numerous speakers selected from the submitted abstracts. All presentations were lively discussed during the workshops. Here, we provide a concise summary of the various workshops and further aspects of the scientific program.
Collapse
Affiliation(s)
- Bastian Schirmer
- Institut für Pharmakologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Klaudia Giehl
- Signaltransduktion zellulärer Motilität, Innere Medizin V, Justus-Liebig-Universität Giessen, Aulweg 128, 35392 Giessen, Germany.
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Yang Z, Tan Q, Cheng D, Zhang L, Zhang J, Gu EW, Fang W, Lu X, Liu X. The Changes of Intrinsic Excitability of Pyramidal Neurons in Anterior Cingulate Cortex in Neuropathic Pain. Front Cell Neurosci 2018; 12:436. [PMID: 30519160 PMCID: PMC6258991 DOI: 10.3389/fncel.2018.00436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
To find satisfactory treatment strategies for neuropathic pain syndromes, the cellular mechanisms should be illuminated. Central sensitization is a generator of pain hypersensitivity, and is mainly reflected in neuronal hyperexcitability in pain pathway. Neuronal excitability depends on two components, the synaptic inputs and the intrinsic excitability. Previous studies have focused on the synaptic plasticity in different forms of pain. But little is known about the changes of neuronal intrinsic excitability in neuropathic pain. To address this question, whole-cell patch clamp recordings were performed to study the synaptic transmission and neuronal intrinsic excitability 1 week after spared nerve injury (SNI) or sham operation in male C57BL/6J mice. We found increased spontaneous excitatory postsynaptic currents (sEPSC) frequency in layer II/III pyramidal neurons of anterior cingulate cortex (ACC) from mice with neuropathic pain. Elevated intrinsic excitability of these neurons after nerve injury was also picked up, which was reflected in gain of input-output curve, inter-spike interval (ISI), spike threshold and Refractory period (RP). Besides firing rate related to neuronal intrinsic excitability, spike timing also plays an important role in neural information processing. The precision of spike timing measured by standard deviation of spike timing (SDST) was decreased in neuropathic pain state. The electrophysiological studies revealed the elevated intrinsic excitation in layer II/III pyramidal neurons of ACC in mice with neuropathic pain, which might contribute to central excitation.
Collapse
Affiliation(s)
- Zhilai Yang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Qilian Tan
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Dan Cheng
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lei Zhang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jiqian Zhang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Er-Wei Gu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Weiping Fang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xianfu Lu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Körner J, Meents J, Machtens J, Lampert A. β1 subunit stabilises sodium channel Nav1.7 against mechanical stress. J Physiol 2018; 596:2433-2445. [PMID: 29659026 PMCID: PMC6002208 DOI: 10.1113/jp275905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS The voltage-gated sodium channel Nav1.7 is a key player in neuronal excitability and pain signalling. In addition to voltage sensing, the channel is also modulated by mechanical stress. Using whole-cell patch-clamp experiments, we discovered that the sodium channel subunit β1 is able to prevent the impact of mechanical stress on Nav1.7. An intramolecular disulfide bond of β1 was identified to be essential for stabilisation of inactivation, but not activation, against mechanical stress using molecular dynamics simulations, homology modelling and site-directed mutagenesis. Our results highlight the role of segment 6 of domain IV in fast inactivation. We present a candidate mechanism for sodium channel stabilisation against mechanical stress, ensuring reliable channel functionality in living systems. ABSTRACT Voltage-gated sodium channels are key players in neuronal excitability and pain signalling. Precise gating of these channels is crucial as even small functional alterations can lead to pathological phenotypes such as pain or heart failure. Mechanical stress has been shown to affect sodium channel activation and inactivation. This suggests that stabilising components are necessary to ensure precise channel gating in living organisms. Here, we show that mechanical shear stress affects voltage dependence of activation and fast inactivation of the Nav1.7 channel. Co-expression of the β1 subunit, however, protects both gating modes of Nav1.7 against mechanical shear stress. Using molecular dynamics simulation, homology modelling and site-directed mutagenesis, we identify an intramolecular disulfide bond of β1 (Cys21-Cys43) which is partially involved in this process: the β1-C43A mutant prevents mechanical modulation of voltage dependence of activation, but not of fast inactivation. Our data emphasise the unique role of segment 6 of domain IV for sodium channel fast inactivation and confirm previous reports that the intracellular process of fast inactivation can be modified by interfering with the extracellular end of segment 6 of domain IV. Thus, our data suggest that physiological gating of Nav1.7 may be protected against mechanical stress in a living organism by assembly with the β1 subunit.
Collapse
Affiliation(s)
- Jannis Körner
- Institute of PhysiologyRWTH Aachen UniversityPauwelsstrasse 30Aachen52074Germany
- Institute of Complex Systems, Zelluläre Biophysik (ICS‐4) and JARA‐HPCForschungszentrum JülichJülichGermany
| | - Jannis Meents
- Institute of PhysiologyRWTH Aachen UniversityPauwelsstrasse 30Aachen52074Germany
| | - Jan‐Philipp Machtens
- Institute of Complex Systems, Zelluläre Biophysik (ICS‐4) and JARA‐HPCForschungszentrum JülichJülichGermany
| | - Angelika Lampert
- Institute of PhysiologyRWTH Aachen UniversityPauwelsstrasse 30Aachen52074Germany
| |
Collapse
|
23
|
Wang H, Xie M, Charpin-El Hamri G, Ye H, Fussenegger M. Treatment of chronic pain by designer cells controlled by spearmint aromatherapy. Nat Biomed Eng 2018; 2:114-123. [PMID: 31015627 DOI: 10.1038/s41551-018-0192-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Current treatment options for chronic pain are often associated with dose-limiting toxicities, or lead to drug tolerance or addiction. Here, we describe a pain management strategy, based on cell-engineering principles and inspired by synthetic biology, consisting of microencapsulated human designer cells that produce huwentoxin-IV (a safe and potent analgesic peptide that selectively inhibits the pain-triggering voltage-gated sodium channel NaV1.7) in response to volatile spearmint aroma and in a dose-dependent manner. Spearmint sensitivity was achieved by ectopic expression of the R-carvone-responsive olfactory receptor OR1A1 rewired via an artificial G-protein deflector to induce the expression of a secretion-engineered and stabilized huwentoxin-IV variant. In a model of chronic inflammatory and neuropathic pain, mice bearing the designer cells showed reduced pain-associated behaviour on oral intake or inhalation-based intake of spearmint essential oil, and absence of cardiovascular, immunogenic and behavioural side effects. Our proof-of-principle findings indicate that therapies based on engineered cells can achieve robust, tunable and on-demand analgesia for the long-term management of chronic pain.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Translational Model Systems for Complex Sodium Channel Pathophysiology in Pain. Handb Exp Pharmacol 2018; 246:355-369. [PMID: 29374838 DOI: 10.1007/164_2017_91] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Chronic pain patients are often left with insufficient treatment as the pathophysiology especially of neuropathic pain remains enigmatic. Recently, genetic variations in the genes of the voltage-gated sodium channels (Navs) were linked to inherited neuropathic pain syndromes, opening a research pathway to foster our understanding of the pathophysiology of neuropathic pain. More than 10 years ago, the rare, inherited pain syndrome erythromelalgia was linked to mutations in the subtype Nav1.7, and since then a plethora of mutations and genetic variations in this and other Nav genes were identified. Often the biophysical changes induced by the genetic alteration offer a straightforward explanation for the clinical symptoms, but mutations in some channels, especially Nav1.9, paint a more complex picture. Although efforts were undertaken to significantly advance our knowledge, translation from heterologous or animal model systems to humans remains a challenge. Here we present recent advances in translation using stem cell-derived human sensory neurons and their potential application for identification of better, effective, and more precise treatment for the individual pain patient.
Collapse
|
25
|
Abstract
Voltage-gated sodium (Na+) channels are expressed in virtually all electrically excitable tissues and are essential for muscle contraction and the conduction of impulses within the peripheral and central nervous systems. Genetic disorders that disrupt the function of these channels produce an array of Na+ channelopathies resulting in neuronal impairment, chronic pain, neuromuscular pathologies, and cardiac arrhythmias. Because of their importance to the conduction of electrical signals, Na+ channels are the target of a wide variety of local anesthetic, antiarrhythmic, anticonvulsant, and antidepressant drugs. The voltage-gated family of Na+ channels is composed of α-subunits that encode for the voltage sensor domains and the Na+-selective permeation pore. In vivo, Na+ channel α-subunits are associated with one or more accessory β-subunits (β1-β4) that regulate gating properties, trafficking, and cell-surface expression of the channels. The permeation pore of Na+ channels is divided in two parts: the outer mouth of the pore is the site of the ion selectivity filter, while the inner cytoplasmic pore serves as the channel activation gate. The cytoplasmic lining of the permeation pore is formed by the S6 segments that include highly conserved aromatic amino acids important for drug binding. These residues are believed to undergo voltage-dependent conformational changes that alter drug binding as the channels cycle through the closed, open, and inactivated states. The purpose of this chapter is to broadly review the mechanisms of Na+ channel gating and the models used to describe drug binding and Na+ channel inhibition.
Collapse
Affiliation(s)
- M E O'Leary
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - M Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, QC, Canada.
- Department of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
26
|
Abstract
The sensation of pain plays a vital protecting role, alerting organisms about potentially damaging stimuli. Tissue injury is detected by nerve endings of specialized peripheral sensory neurons called nociceptors that are equipped with different ion channels activated by thermal, mechanic, and chemical stimuli. Several transient receptor potential channels have been identified as molecular transducers of thermal stimuli in pain-sensing neurons. Skin injury or inflammation leads to increased sensitivity to thermal and mechanic stimuli, clinically defined as allodynia or hyperalgesia. This hypersensitivity is also characteristic of systemic inflammatory disorders and neuropathic pain conditions. Mechanisms of thermal hyperalgesia include peripheral sensitization of nociceptor afferents and maladaptive changes in pain-encoding neurons within the central nervous system. An important aspect of pain management involves attempts to minimize the development of nociceptor hypersensitivity. However, knowledge about the cellular and molecular mechanisms causing thermal hyperalgesia and allodynia in human subjects is still limited, and such knowledge would be an essential step for the development of more effective therapies.
Collapse
Affiliation(s)
- Félix Viana
- Alicante Institute of Neurosciences, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Spain.
| |
Collapse
|
27
|
Wang J, Ou SW, Wang YJ. Distribution and function of voltage-gated sodium channels in the nervous system. Channels (Austin) 2017; 11:534-554. [PMID: 28922053 DOI: 10.1080/19336950.2017.1380758] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.
Collapse
Affiliation(s)
- Jun Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Shao-Wu Ou
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Yun-Jie Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| |
Collapse
|
28
|
Tosti E, Boni R, Gallo A. µ-Conotoxins Modulating Sodium Currents in Pain Perception and Transmission: A Therapeutic Potential. Mar Drugs 2017; 15:E295. [PMID: 28937587 PMCID: PMC5666403 DOI: 10.3390/md15100295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022] Open
Abstract
The Conus genus includes around 500 species of marine mollusks with a peculiar production of venomous peptides known as conotoxins (CTX). Each species is able to produce up to 200 different biological active peptides. Common structure of CTX is the low number of amino acids stabilized by disulfide bridges and post-translational modifications that give rise to different isoforms. µ and µO-CTX are two isoforms that specifically target voltage-gated sodium channels. These, by inducing the entrance of sodium ions in the cell, modulate the neuronal excitability by depolarizing plasma membrane and propagating the action potential. Hyperexcitability and mutations of sodium channels are responsible for perception and transmission of inflammatory and neuropathic pain states. In this review, we describe the current knowledge of µ-CTX interacting with the different sodium channels subtypes, the mechanism of action and their potential therapeutic use as analgesic compounds in the clinical management of pain conditions.
Collapse
Affiliation(s)
- Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 75100 Potenza, Italy.
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
29
|
Mutagenesis of the NaChBac sodium channel discloses a functional role for a conserved S6 asparagine. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:665-674. [PMID: 28825121 PMCID: PMC5599482 DOI: 10.1007/s00249-017-1246-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/21/2017] [Accepted: 07/29/2017] [Indexed: 12/11/2022]
Abstract
Asparagine is conserved in the S6 transmembrane segments of all voltage-gated sodium, calcium, and TRP channels identified to date. A broad spectrum of channelopathies including cardiac arrhythmias, epilepsy, muscle diseases, and pain disorders is associated with its mutation. To investigate its effects on sodium channel functional properties, we mutated the simple prokaryotic sodium channel NaChBac. Electrophysiological characterization of the N225D mutant reveals that this conservative substitution shifts the voltage-dependence of inactivation by 25 mV to more hyperpolarized potentials. The mutant also displays greater thermostability, as determined by synchrotron radiation circular dichroism spectroscopy studies of purified channels. Based on our analyses of high-resolution structures of NaChBac homologues, we suggest that the side-chain amine group of asparagine 225 forms one or more hydrogen bonds with different channel elements and that these interactions are important for normal channel function. The N225D mutation eliminates these hydrogen bonds and the structural consequences involve an enhanced channel inactivation.
Collapse
|
30
|
Musgaard M, Paramo T, Domicevica L, Andersen OJ, Biggin PC. Insights into channel dysfunction from modelling and molecular dynamics simulations. Neuropharmacology 2017; 132:20-30. [PMID: 28669899 DOI: 10.1016/j.neuropharm.2017.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/06/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022]
Abstract
Developments in structural biology mean that the number of different ion channel structures has increased significantly in recent years. Structures of ion channels enable us to rationalize how mutations may lead to channelopathies. However, determining the structures of ion channels is still not trivial, especially as they necessarily exist in many distinct functional states. Therefore, the use of computational modelling can provide complementary information that can refine working hypotheses of both wild type and mutant ion channels. The simplest but still powerful tool is homology modelling. Many structures are available now that can provide suitable templates for many different types of ion channels, allowing a full three-dimensional interpretation of mutational effects. These structural models, and indeed the structures themselves obtained by X-ray crystallography, and more recently cryo-electron microscopy, can be subjected to molecular dynamics simulations, either as a tool to help explore the conformational dynamics in detail or simply as a means to refine the models further. Here we review how these approaches have been used to improve our understanding of how diseases might be linked to specific mutations in ion channel proteins. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Maria Musgaard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Teresa Paramo
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Laura Domicevica
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Ole Juul Andersen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
31
|
Aberrant plasticity of peripheral sensory axons in a painful neuropathy. Sci Rep 2017; 7:3407. [PMID: 28611388 PMCID: PMC5469767 DOI: 10.1038/s41598-017-03390-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
Neuronal cells express considerable plasticity responding to environmental cues, in part, through subcellular mRNA regulation. Here we report on the extensive changes in distribution of mRNAs in the cell body and axon compartments of peripheral sensory neurons and the 3' untranslated region (3'UTR) landscapes after unilateral sciatic nerve entrapment (SNE) injury in rats. Neuronal cells dissociated from SNE-injured and contralateral L4 and L5 dorsal root ganglia were cultured in a compartmentalized system. Axonal and cell body RNA samples were separately subjected to high throughput RNA sequencing (RNA-Seq). The injured axons exhibited enrichment of mRNAs related to protein synthesis and nerve regeneration. Lengthening of 3'UTRs was more prevalent in the injured axons, including the newly discovered alternative cleavage and polyadenylation of NaV1.8 mRNA. Alternative polyadenylation was largely independent from the relative abundance of axonal mRNAs; but they were highly clustered in functional pathways related to RNA granule formation in the injured axons. These RNA-Seq data analyses indicate that peripheral nerve injury may result in highly selective mRNA enrichment in the affected axons with 3'UTR alterations potentially contributing to the mechanism of neuropathic pain.
Collapse
|
32
|
Helås T, Sagafos D, Kleggetveit I, Quiding H, Jönsson B, Segerdahl M, Zhang Z, Salter H, Schmelz M, Jørum E. Pain thresholds,supra-threshold pain and lidocaine sensitivity in patients with erythromelalgia, including the I848Tmutation in NaV1.7. Eur J Pain 2017; 21:1316-1325. [DOI: 10.1002/ejp.1030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2017] [Indexed: 11/09/2022]
Affiliation(s)
- T. Helås
- Section of Clinical Neurophysiology, Department of Neurology; Oslo University Hospital - Rikshospitalet; Norway
| | - D. Sagafos
- Section of Clinical Neurophysiology, Department of Neurology; Oslo University Hospital - Rikshospitalet; Norway
| | - I.P. Kleggetveit
- Section of Clinical Neurophysiology, Department of Neurology; Oslo University Hospital - Rikshospitalet; Norway
| | | | | | | | - Z. Zhang
- Astra-Zeneca R&D; Södertälje Sweden
| | - H. Salter
- Astra-Zeneca R&D; Södertälje Sweden
- Department of Clinical Neuroscience; Karolinska Institutet; Solna Sweden
| | - M. Schmelz
- Department of Anesthesiology Mannheim; Heidelberg University; Germany
| | - E. Jørum
- Section of Clinical Neurophysiology, Department of Neurology; Oslo University Hospital - Rikshospitalet; Norway
- Faculty of Medicine, Institute of Clinical Medicine; University of Oslo; Norway
| |
Collapse
|
33
|
Sparling BA, Yi S, Able J, Bregman H, DiMauro EF, Foti RS, Gao H, Guzman-Perez A, Huang H, Jarosh M, Kornecook T, Ligutti J, Milgram BC, Moyer BD, Youngblood B, Yu VL, Weiss MM. Discovery and hit-to-lead evaluation of piperazine amides as selective, state-dependent Na V1.7 inhibitors. MEDCHEMCOMM 2017; 8:744-754. [PMID: 30108793 PMCID: PMC6072352 DOI: 10.1039/c6md00578k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/30/2016] [Indexed: 11/21/2022]
Abstract
NaV1.7 is a particularly compelling target for the treatment of pain. Herein, we report the discovery and evaluation of a series of piperazine amides that exhibit state-dependent inhibition of NaV1.7. After demonstrating significant pharmacodynamic activity with early lead compound 14 in a NaV1.7-dependent behavioural mouse model, we systematically established SAR trends throughout each sector of the scaffold. The information gleaned from this modular analysis was then applied additively to quickly access analogues that encompass an optimal balance of properties, including NaV1.7 potency, selectivity over NaV1.5, aqueous solubility, and microsomal stability.
Collapse
Affiliation(s)
- Brian A Sparling
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - S Yi
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - J Able
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - H Bregman
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - Erin F DiMauro
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - R S Foti
- Department of Pharmacokinetics and Drug Metabolism , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - H Gao
- Department of Molecular Engineering, Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - A Guzman-Perez
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - H Huang
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - M Jarosh
- Department of Neuroscience , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - T Kornecook
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - J Ligutti
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - B C Milgram
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| | - B D Moyer
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - B Youngblood
- Department of Neuroscience , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , CA 91320 , USA
| | - V L Yu
- Department of Neuroscience , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA
| | - M M Weiss
- Department of Medicinal Chemistry , Amgen Inc. , 360 Binney Street , Cambridge , MA 02142 , USA .
| |
Collapse
|
34
|
Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell 2017; 8:401-438. [PMID: 28150151 PMCID: PMC5445024 DOI: 10.1007/s13238-017-0372-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/09/2017] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than 400 mutations. Nav channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Nav channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Cav) channel Cav1.1 provides a template for homology-based structural modeling of the evolutionarily related Nav channels. In this Resource article, we summarized all the reported disease-related mutations in human Nav channels, generated a homologous model of human Nav1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Nav channels, the analysis presented here serves as the base framework for mechanistic investigation of Nav channelopathies and for potential structure-based drug discovery.
Collapse
|
35
|
Kambouris M, Thevenon J, Soldatos A, Cox A, Stephen J, Ben-Omran T, Al-Sarraj Y, Boulos H, Bone W, Mullikin JC, Masurel-Paulet A, St-Onge J, Dufford Y, Chantegret C, Thauvin-Robinet C, Al-Alami J, Faivre L, Riviere JB, Gahl WA, Bassuk AG, Malicdan MCV, El-Shanti H. Biallelic SCN10A mutations in neuromuscular disease and epileptic encephalopathy. Ann Clin Transl Neurol 2016; 4:26-35. [PMID: 28078312 PMCID: PMC5221474 DOI: 10.1002/acn3.372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/02/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
Objectives Two consanguineous families, one of Sudanese ethnicity presenting progressive neuromuscular disease, severe cognitive impairment, muscle weakness, upper motor neuron lesion, anhydrosis, facial dysmorphism, and recurrent seizures and the other of Egyptian ethnicity presenting with neonatal hypotonia, bradycardia, and recurrent seizures, were evaluated for the causative gene mutation. Methods and Results Homozygosity mapping and whole exome sequencing (WES) identified damaging homozygous variants in SCN10A, namely c.4514C>T; p.Thr1505Met in the first family and c.4735C>T; p.Arg1579* in the second family. A third family, of Western European descent, included a child with febrile infection‐related epilepsy syndrome (FIRES) who also had compound heterozygous missense mutations in SCN10A, namely, c.3482T>C; p.Met1161Thr and c.4709C>A; p.Thr1570Lys. A search for SCN10A variants in three consortia datasets (EuroEPINOMICS, Epi4K/EPGP, Autism/dbGaP) identified an additional five individuals with compound heterozygous variants. A Hispanic male with infantile spasms [c.2842G>C; p.Val948Leu and c.1453C>T; p.Arg485Cys], and a Caucasian female with Lennox–Gastaut syndrome [c.1529C>T; p.Pro510Leu and c.4984G>A; p.Gly1662Ser] in the epilepsy databases and three in the autism databases with [c.4009T>A; p.Ser1337Thr and c.1141A>G; p.Ile381Val], [c.2972C>T; p.Pro991Leu and c.2470C>T; p.His824Tyr], and [c.4009T>A; p.Ser1337Thr and c.2052G>A; p.Met684Ile]. Interpretation SCN10A is a member of the voltage‐gated sodium channel (VGSC) gene family. Sodium channels are responsible for the instigation and proliferation of action potentials in central and peripheral nervous systems. Heterozygous mutations in VGSC genes cause a wide range of epileptic and peripheral nervous system disorders. This report presents autosomal recessive mutations in SCN10A that may be linked to epilepsy‐related phenotypes, Lennox–Gastaut syndrome, infantile spasms, and Autism Spectrum Disorder.
Collapse
Affiliation(s)
- Marios Kambouris
- Pathology-Genetics Sidra Medical and Research Center Doha Qatar; Qatar Biomedical Research Institute Medical Genetics Center Hamad Bin Khalifa University Doha Qatar; Genetics Yale University School of Medicine New Haven Chicago
| | | | - Ariane Soldatos
- Medical Genetics Branch National Human Genome Research Institute National Institutes of Health Bethesda Maryland; Undiagnosed Diseases Program National Human Genome Research Institute National Institutes of Health Bethesda Maryland
| | - Allison Cox
- Pediatrics University of Iowa Iowa City Iowa
| | - Joshi Stephen
- Medical Genetics Branch National Human Genome Research Institute National Institutes of Health Bethesda Maryland
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics Pediatrics Hamad Medical Corporation Doha Qatar; Weill Cornell Medical College Doha Qatar
| | - Yasser Al-Sarraj
- Qatar Biomedical Research Institute Medical Genetics Center Hamad Bin Khalifa University Doha Qatar
| | - Hala Boulos
- Human Genetics University of Chicago Chicago Illinois
| | - William Bone
- Undiagnosed Diseases Program National Human Genome Research Institute National Institutes of Health Bethesda Maryland
| | - James C Mullikin
- Intramural Sequencing Center and Comparative Genomics Unit Genome Technology Branch National Genome Research Institute National Institutes of Health Bethesda Maryland
| | | | | | | | | | | | | | | | | | | | - William A Gahl
- Medical Genetics Branch National Human Genome Research Institute National Institutes of Health Bethesda Maryland; Undiagnosed Diseases Program National Human Genome Research Institute National Institutes of Health Bethesda Maryland
| | | | - May Christine V Malicdan
- Undiagnosed Diseases Program National Human Genome Research Institute National Institutes of Health Bethesda Maryland
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute Medical Genetics Center Hamad Bin Khalifa University Doha Qatar; Pediatrics University of Iowa Iowa City Iowa; Pediatrics University of Jordan Amman Jordan
| |
Collapse
|
36
|
Kist AM, Sagafos D, Rush AM, Neacsu C, Eberhardt E, Schmidt R, Lunden LK, Ørstavik K, Kaluza L, Meents J, Zhang Z, Carr TH, Salter H, Malinowsky D, Wollberg P, Krupp J, Kleggetveit IP, Schmelz M, Jørum E, Lampert A, Namer B. SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing. PLoS One 2016; 11:e0161789. [PMID: 27598514 PMCID: PMC5012686 DOI: 10.1371/journal.pone.0161789] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022] Open
Abstract
Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient’s peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p.M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs) and neuroblastoma cells. The p.M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences.
Collapse
Affiliation(s)
- Andreas M. Kist
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dagrun Sagafos
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital -Rikshospitalet, Oslo, Norway
| | | | - Cristian Neacsu
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Esther Eberhardt
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Roland Schmidt
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Lars Kristian Lunden
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital -Rikshospitalet, Oslo, Norway
| | - Kristin Ørstavik
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital -Rikshospitalet, Oslo, Norway
| | - Luisa Kaluza
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jannis Meents
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | | | | | | | | | | | | | - Inge Petter Kleggetveit
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital -Rikshospitalet, Oslo, Norway
| | - Martin Schmelz
- Department of Anesthesiology Mannheim, Heidelberg University, Mannheim, Germany
| | - Ellen Jørum
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital -Rikshospitalet, Oslo, Norway
- * E-mail: (EJ); (AL); (BN)
| | - Angelika Lampert
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
- * E-mail: (EJ); (AL); (BN)
| | - Barbara Namer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Anesthesiology Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail: (EJ); (AL); (BN)
| |
Collapse
|
37
|
Ben-Johny M, Dick IE, Sang L, Limpitikul WB, Kang PW, Niu J, Banerjee R, Yang W, Babich JS, Issa JB, Lee SR, Namkung H, Li J, Zhang M, Yang PS, Bazzazi H, Adams PJ, Joshi-Mukherjee R, Yue DN, Yue DT. Towards a Unified Theory of Calmodulin Regulation (Calmodulation) of Voltage-Gated Calcium and Sodium Channels. Curr Mol Pharmacol 2016; 8:188-205. [PMID: 25966688 DOI: 10.2174/1874467208666150507110359] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 01/29/2015] [Accepted: 04/20/2015] [Indexed: 12/13/2022]
Abstract
Voltage-gated Na and Ca(2+) channels represent two major ion channel families that enable myriad biological functions including the generation of action potentials and the coupling of electrical and chemical signaling in cells. Calmodulin regulation (calmodulation) of these ion channels comprises a vital feedback mechanism with distinct physiological implications. Though long-sought, a shared understanding of the channel families remained elusive for two decades as the functional manifestations and the structural underpinnings of this modulation often appeared to diverge. Here, we review recent advancements in the understanding of calmodulation of Ca(2+) and Na channels that suggest a remarkable similarity in their regulatory scheme. This interrelation between the two channel families now paves the way towards a unified mechanistic framework to understand vital calmodulin-dependent feedback and offers shared principles to approach related channelopathic diseases. An exciting era of synergistic study now looms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David T Yue
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
Sodium channel slow inactivation interferes with open channel block. Sci Rep 2016; 6:25974. [PMID: 27174182 PMCID: PMC4865801 DOI: 10.1038/srep25974] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/20/2016] [Indexed: 11/17/2022] Open
Abstract
Mutations in the voltage-gated sodium channel Nav1.7 are linked to inherited pain syndromes such as erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). PEPD mutations impair Nav1.7 fast inactivation and increase persistent currents. PEPD mutations also increase resurgent currents, which involve the voltage-dependent release of an open channel blocker. In contrast, IEM mutations, whenever tested, leave resurgent currents unchanged. Accordingly, the IEM deletion mutation L955 (ΔL955) fails to produce resurgent currents despite enhanced persistent currents, which have hitherto been considered a prerequisite for resurgent currents. Additionally, ΔL955 exhibits a prominent enhancement of slow inactivation (SI). We introduced mutations into Nav1.7 and Nav1.6 that either enhance or impair SI in order to investigate their effects on resurgent currents. Our results show that enhanced SI is accompanied by impaired resurgent currents, which suggests that SI may interfere with open-channel block.
Collapse
|
39
|
Stoetzer C, Papenberg B, Doll T, Völker M, Heineke J, Stoetzer M, Wegner F, Leffler A. Differential inhibition of cardiac and neuronal Na(+) channels by the selective serotonin-norepinephrine reuptake inhibitors duloxetine and venlafaxine. Eur J Pharmacol 2016; 783:1-10. [PMID: 27130441 DOI: 10.1016/j.ejphar.2016.04.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/17/2016] [Accepted: 04/26/2016] [Indexed: 11/18/2022]
Abstract
Duloxetine and venlafaxine are selective serotonin-norepinephrine-reuptake-inhibitors used as antidepressants and co-analgesics. While venlafaxine rather than duloxetine induce cardiovascular side-effects, neither of the substances are regarded cardiotoxic. Inhibition of cardiac Na(+)-channels can be associated with cardiotoxicity, and duloxetine was demonstrated to block neuronal Na(+)-channels. The aim of this study was to investigate if the non-life threatening cardiotoxicities of duloxetine and venlafaxine correlate with a weak inhibition of cardiac Na(+)-channels. Effects of duloxetine, venlafaxine and amitriptyline were examined on endogenous Na(+)-channels in neuroblastoma ND7/23 cells and on the α-subunits Nav1.5, Nav1.7 and Nav1.8 with whole-cell patch clamp recordings. Tonic block of the cardiac Na(+)-channel Nav1.5 and rat-cardiomyocytes (CM) revealed a higher potency for duloxetine (Nav 1.5 IC50 14±1µM, CM IC50 27±3µM) as compared to venlafaxine (Nav 1.5 IC50 671±26µM, CM IC50 452±34µM). Duloxetine was as potent as the cardiotoxic antidepressant amitriptyline (IC50 13±1µM). While venlafaxine almost failed to induce use-dependent block on Nav1.5 and cardiomyocytes, low concentrations of duloxetine (1, 10µM) induced prominent use-dependent block similar to amitriptyline. Duloxetine, but not venlafaxine stabilized fast and slow inactivation and delayed recovery from inactivation. Duloxetine induced an unselective inhibition of neuronal Na(+)-channels (IC50 ND7/23 23±1µM, Nav1.7 19±2µM, Nav1.8 29±2). Duloxetine, but not venlafaxine inhibits cardiac Na(+)-channels with a potency similar to amitriptyline. These data indicate that an inhibition of Na(+)-channels does not predict a clinically relevant cardiotoxicity.
Collapse
Affiliation(s)
- Carsten Stoetzer
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany.
| | - Bastian Papenberg
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | - Thorben Doll
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany; Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany; Department of Craniomaxillofacial Surgery, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany; Department of Neurology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | - Marc Völker
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | - Joerg Heineke
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | - Marcus Stoetzer
- Department of Craniomaxillofacial Surgery, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
40
|
Inflammatory and neuropathic cold allodynia are selectively mediated by the neurotrophic factor receptor GFRα3. Proc Natl Acad Sci U S A 2016; 113:4506-11. [PMID: 27051069 DOI: 10.1073/pnas.1603294113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue injury prompts the release of a number of proalgesic molecules that induce acute and chronic pain by sensitizing pain-sensing neurons (nociceptors) to heat and mechanical stimuli. In contrast, many proalgesics have no effect on cold sensitivity or can inhibit cold-sensitive neurons and diminish cooling-mediated pain relief (analgesia). Nonetheless, cold pain (allodynia) is prevalent in many inflammatory and neuropathic pain settings, with little known of the mechanisms promoting pain vs. those dampening analgesia. Here, we show that cold allodynia induced by inflammation, nerve injury, and chemotherapeutics is abolished in mice lacking the neurotrophic factor receptor glial cell line-derived neurotrophic factor family of receptors-α3 (GFRα3). Furthermore, established cold allodynia is blocked in animals treated with neutralizing antibodies against the GFRα3 ligand, artemin. In contrast, heat and mechanical pain are unchanged, and results show that, in striking contrast to the redundant mechanisms sensitizing other modalities after an insult, cold allodynia is mediated exclusively by a single molecular pathway, suggesting that artemin-GFRα3 signaling can be targeted to selectively treat cold pain.
Collapse
|
41
|
Qiu F, Li Y, Fu Q, Fan YY, Zhu C, Liu YH, Mi WD. Stromal Cell-Derived Factor 1 Increases Tetrodotoxin-Resistant Sodium Currents Nav1.8 and Nav1.9 in Rat Dorsal Root Ganglion Neurons via Different Mechanisms. Neurochem Res 2016; 41:1587-603. [DOI: 10.1007/s11064-016-1873-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/13/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
|
42
|
Colegrave M, Rippon M, Richardson C. The effect of Ringer's solution within a dressing to elicit pain relief. J Wound Care 2016; 25:184, 186-8, 190. [DOI: 10.12968/jowc.2016.25.4.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - M.G. Rippon
- School of Human and Health Sciences, Institute of Skin Integrity and Infection Prevention. University of Huddersfield
| | - C. Richardson
- The School of Nursing, Midwifery and Social Work, University of Manchester
| |
Collapse
|
43
|
Huang Q, Chen Y, Gong N, Wang YX. Methylglyoxal mediates streptozotocin-induced diabetic neuropathic pain via activation of the peripheral TRPA1 and Nav1.8 channels. Metabolism 2016; 65:463-74. [PMID: 26975538 DOI: 10.1016/j.metabol.2015.12.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/02/2015] [Accepted: 12/12/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Methylglyoxal is known to be associated with the development of nephropathy, retinopathy, and other complications in diabetes. The present study tested the hypothesis that endogenously increased levels of methylglyoxal in diabetes are causally associated with the induction of neuropathic pain. MATERIALS AND METHODS Streptozotocin- and methylglyoxal-induced pain models were established in rats, and the anti-nociceptive effects of the methylglyoxal scavenging agents, selective transient receptor potential channel ankyrin 1 (TRPA1) antagonist, and Nav1.8 antagonist were tested. RESULTS Systemic injection of streptozotocin in rats induced a prolonged increase in plasma methylglyoxal by approximately 60%, which was correlated with the progressive development of mechanical allodynia and thermal hyperalgesia. Local subcutaneous injection of methylglyoxal into the hindpaw produced dose-dependent and biphasic flinching nociceptive responses, which resembled formaldehyde (formalin)-induced nociception. The local methylglyoxal nociception was significantly blocked by co-injection into the hindpaw of the selective transient receptor potential channel ankyrin 1 (TRPA1) antagonist, A967079, and the Nav1.8 antagonist, A803467. Co-incubation with the methylglyoxal scavengers, aminoguanidine, d-arginine, and metformin, reduced the level of free methylglyoxal by more than 90%, and injection of their incubation solutions into the hindpaw produced negligible (3-17%) nociception. Like the clinically effective anti-diabetic neuropathic pain drug gabapentin, systemic injection of aminoguanidine, d-arginine, and metformin at doses that effectively inhibit paw-injected methylglyoxal-induced nociception significantly blocked streptozotocin-induced mechanical allodynia. CONCLUSION Endogenously increased methylglyoxal may mediate diabetic neuropathic pain via activation of both TRPA1 and Nav1.8 expressed on primary afferent sensory neurons, and injection of methylglyoxal into the hindpaw may serve as a simple and robust model for testing the anti-diabetic pain drugs.
Collapse
Affiliation(s)
- Qian Huang
- King's Laboratory, School of Pharmacy, Shanghai Jiao Tong University, China.
| | - Yuan Chen
- King's Laboratory, School of Pharmacy, Shanghai Jiao Tong University, China.
| | - Nian Gong
- King's Laboratory, School of Pharmacy, Shanghai Jiao Tong University, China.
| | - Yong-Xiang Wang
- King's Laboratory, School of Pharmacy, Shanghai Jiao Tong University, China.
| |
Collapse
|
44
|
Therapeutic potential of RQ-00311651, a novel T-type Ca2+ channel blocker, in distinct rodent models for neuropathic and visceral pain. Pain 2016; 157:1655-1665. [DOI: 10.1097/j.pain.0000000000000565] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Ali SR, Singh AK, Laezza F. Identification of Amino Acid Residues in Fibroblast Growth Factor 14 (FGF14) Required for Structure-Function Interactions with Voltage-gated Sodium Channel Nav1.6. J Biol Chem 2016; 291:11268-84. [PMID: 26994141 DOI: 10.1074/jbc.m115.703868] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated Na(+) (Nav) channel provides the basis for electrical excitability in the brain. This channel is regulated by a number of accessory proteins including fibroblast growth factor 14 (FGF14), a member of the intracellular FGF family. In addition to forming homodimers, FGF14 binds directly to the Nav1.6 channel C-tail, regulating channel gating and expression, properties that are required for intrinsic excitability in neurons. Seeking amino acid residues with unique roles at the protein-protein interaction interface (PPI) of FGF14·Nav1.6, we engineered model-guided mutations of FGF14 and validated their impact on the FGF14·Nav1.6 complex and the FGF14:FGF14 dimer formation using a luciferase assay. Divergence was found in the β-9 sheet of FGF14 where an alanine (Ala) mutation of Val-160 impaired binding to Nav1.6 but had no effect on FGF14:FGF14 dimer formation. Additional analysis revealed also a key role of residues Lys-74/Ile-76 at the N-terminal of FGF14 in the FGF14·Nav1.6 complex and FGF14:FGF14 dimer formation. Using whole-cell patch clamp electrophysiology, we demonstrated that either the FGF14(V160A) or the FGF14(K74A/I76A) mutation was sufficient to abolish the FGF14-dependent regulation of peak transient Na(+) currents and the voltage-dependent activation and steady-state inactivation of Nav1.6; but only V160A with a concomitant alanine mutation at Tyr-158 could impede FGF14-dependent modulation of the channel fast inactivation. Intrinsic fluorescence spectroscopy of purified proteins confirmed a stronger binding reduction of FGF14(V160A) to the Nav1.6 C-tail compared with FGF14(K74A/I76A) Altogether these studies indicate that the β-9 sheet and the N terminus of FGF14 are well positioned targets for drug development of PPI-based allosteric modulators of Nav channels.
Collapse
Affiliation(s)
- Syed R Ali
- From the Department of Pharmacology and Toxicology, the Pharmacology and Toxicology Graduate Program
| | | | - Fernanda Laezza
- From the Department of Pharmacology and Toxicology, the Mitchell Center for Neurodegenerative Diseases, the Center for Addiction Research, the Center for Environmental Toxicology, and the Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
46
|
Ye P, Hua L, Jiao Y, Li Z, Qin S, Fu J, Jiang F, Liu T, Ji Y. Functional up-regulation of Nav1.8 sodium channel on dorsal root ganglia neurons contributes to the induction of scorpion sting pain. Acta Biochim Biophys Sin (Shanghai) 2016; 48:132-44. [PMID: 26764239 DOI: 10.1093/abbs/gmv123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/02/2015] [Indexed: 12/19/2022] Open
Abstract
BmK I, purified from the venom of scorpion Buthus martensi Karsch (BmK), is a receptor site-3-specific modulator of voltage-gated sodium channels (VGSCs) and can induce pain-related behaviors in rats. The tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 contributes to most of the sodium current underlying the action potential upstroke in dorsal root ganglia (DRG) neurons and may serve as a critical ion channel targeted by BmK I. Herein, using electrophysiological, molecular, and behavioral approaches, we investigated whether the aberrant expression of Nav1.8 in DRG contributes to generation of pain induced by BmK I. The expression of Nav1.8 was found to be significantly increased at both mRNA and protein levels following intraplantar injection of BmK I in rats. In addition, the current density of TTX-R Nav1.8 sodium channel is significantly increased and the gating kinetics of Nav1.8 is also altered in DRG neurons from BmK I-treated rats. Furthermore, spontaneous pain and mechanical allodynia, but not thermal hyperalgesia induced by BmK I, are significantly alleviated through either blockade of the Nav1.8 sodium channel by its selective blocker A-803467 or knockdown of the Nav1.8 expression in DRG by antisense oligodeoxynucleotide (AS-ODN) targeting Nav1.8 in rats. Finally, BmK I was shown to induce enhanced pain behaviors in complete freund's adjuvant (CFA)-inflamed rats, which was partly due to the over-expression of Nav1.8 in DRG. Our results suggest that functional up-regulation of Nav1.8 channel on DRG neurons contributes to the development of BmK I-induced pain in rats.
Collapse
Affiliation(s)
- Pin Ye
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Liming Hua
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Yunlu Jiao
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Zhenwei Li
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Shichao Qin
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Jin Fu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Feng Jiang
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| | - Tong Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou 215021, China
| | - Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200436, China
| |
Collapse
|
47
|
|
48
|
Boadas-Vaello P, Castany S, Homs J, Álvarez-Pérez B, Deulofeu M, Verdú E. Neuroplasticity of ascending and descending pathways after somatosensory system injury: reviewing knowledge to identify neuropathic pain therapeutic targets. Spinal Cord 2016; 54:330-40. [DOI: 10.1038/sc.2015.225] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022]
|
49
|
Ebadi H, Siddiqui H, Ebadi S, Ngo M, Breiner A, Bril V. Peripheral Nerve Ultrasound in Small Fiber Polyneuropathy. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2820-2826. [PMID: 26318562 DOI: 10.1016/j.ultrasmedbio.2015.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/11/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
Routine nerve conduction studies are normal in patients with small fiber neuropathy (SFN), and a definitive diagnosis is based on skin biopsy revealing reduced intra-epidermal nerve fiber density (IENFD). In large fiber polyneuropathy, ultrasound (US) parameters indicate enlargement in cross-sectional area (CSA). This study was aimed at determining if similar changes in large fibers on US are apparent in patients with SFN. Twenty-five patients with SFN diagnosed by reduced IENFD and 25 age- and body mass index (BMI)-matched healthy controls underwent US studies of sural and superficial peroneal sensory nerves. The mean CSA of the sural nerve in SFN patients was 3.2 ± 0.8 mm(2), and in controls, 2.7 ± 0.6 mm(2) (p < 0.0070), and this was independent of sex. There was no difference in the thickness-to-width ratio or echogenicity of the nerves. US of the sural nerve in patients diagnosed with small fiber neuropathy reveals an enlarged cross-sectional area similar to that in large fiber polyneuropathy.
Collapse
Affiliation(s)
- Hamid Ebadi
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Hafsah Siddiqui
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sepehr Ebadi
- Division of Engineering Science, Faculty of Applied Sciences and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - MyLan Ngo
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ari Breiner
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vera Bril
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
50
|
Abstract
• Individual variability in pain perception and differences in the efficacy of analgesic drugs are complex phenomena and are partly genetically predetermined. • Analgesics act in various ways on the peripheral and central pain pathways and are regarded as one of the most valuable but equally dangerous groups of medications. • While pharmacokinetic properties of drugs, metabolism in particular, have been scrutinised by genotype–phenotype correlation studies, the clinical significance of inherited variants in genes governing pharmacodynamics of analgesics remains largely unexplored (apart from the µ-opioid receptor). • Lack of replication of the findings from one study to another makes meaningful personalised analgesic regime still a distant future. • This narrative review will focus on findings related to pharmacogenetics of commonly used analgesic medications and highlight authors’ views on future clinical implications of pharmacogenetics in the context of pharmacological treatment of chronic pain.
Collapse
Affiliation(s)
- Roman Cregg
- UCL Centre for Anaesthesia, Critical Care & Pain Medicine, London, UK ; Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | | |
Collapse
|