1
|
Kadmiel M, Diaz-Jimenez D, Oakley RH, Petrillo MG, He B, Xu X, Cidlowski JA. Glucocorticoid Receptor Signaling Is Critical for Mouse Corneal Development, Inhibition of Inflammatory Response, and Neovascularization of the Cornea. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1938-1950. [PMID: 39322334 PMCID: PMC11423760 DOI: 10.1016/j.ajpath.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 09/27/2024]
Abstract
The cornea protects the interior of the eye from external agents such as bacteria, viruses, and debris. Synthetic glucocorticoids are widely prescribed in the treatment of ocular infections and disorders. The actions of glucocorticoids are mediated by the glucocorticoid receptor (GR); however, the molecular and physiological functions of GR signaling in the cornea are poorly understood. This study found that treatment of mice with glucocorticoid eye drops led to a profound regulation of the corneal transcriptome. These glucocorticoid-regulated genes were associated with multiple biological functions, including the immune response. To understand the direct role of GR signaling in the cornea, mice with conditional knockout of GRs in the corneal epithelium were generated. Mice lacking corneal GRs exhibited microphthalmia, loss of pupils, a deformed and opaque lens, and mislocalization of key structural proteins within the corneal epithelial layers. Global transcriptomic approaches revealed that loss of GR signaling in the cornea also resulted in the dysregulation of a large cohort of genes strongly associated with an enhanced inflammatory response. Finally, corneal GR signaling was required for preventing neovascularization of blood and lymphatic vessels and thereby immune cell infiltration of the cornea. These results reveal that corneal GR signaling plays a critical role in ocular development and in maintaining the homeostasis of the eye.
Collapse
Affiliation(s)
- Mahita Kadmiel
- Molecular Endocrinology Group and the Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; Department of Biology, Allegheny College, Meadville, Pennsylvania
| | - David Diaz-Jimenez
- Molecular Endocrinology Group and the Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Robert H Oakley
- Molecular Endocrinology Group and the Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Maria G Petrillo
- Molecular Endocrinology Group and the Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Bo He
- Molecular Endocrinology Group and the Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - John A Cidlowski
- Molecular Endocrinology Group and the Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina.
| |
Collapse
|
2
|
Xiao R, Huang X, Gao S, Duan J, Zhang Y, Zhang M. Microglia in retinal diseases: From pathogenesis towards therapeutic strategies. Biochem Pharmacol 2024; 230:116550. [PMID: 39307318 DOI: 10.1016/j.bcp.2024.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Microglia, a widely dispersed cohort of immune cells in the retina, are intricately involved in a diverse range of pivotal biological processes, including inflammation, vascular development, complement activation, antigen presentation, and phagocytosis. Within the retinal milieu, microglia are crucial for the clearance of dead cells and cellular debris, release of anti-inflammatory agents, and orchestration of vascular network remodeling to maintain homeostasis. In addition, microglia are key mediators of neuroinflammation. Triggered by oxidative stress, elevated intraocular pressure, genetic anomalies, and immune dysregulation, microglia release numerous inflammatory cytokines, contributing to the pathogenesis of various retinal disorders. Recent studies on the ontogeny and broad functions of microglia in the retina have elucidated their characteristics during retinal development, homeostasis, and disease. Furthermore, therapeutic strategies that target microglia and their effector cytokines have been developed and shown positive results for some retinal diseases. Therefore, we systematically review the microglial ontogeny in the retina, elucidate their dual roles in retinal homeostasis and disease pathogenesis, and demonstrate microglia-based targeted therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Ruihan Xiao
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi Huang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sheng Gao
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianan Duan
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Zhang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meixia Zhang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Wu M, Fletcher EL, Chinnery HR, Downie LE, Mueller SN. Redefining our vision: an updated guide to the ocular immune system. Nat Rev Immunol 2024:10.1038/s41577-024-01064-y. [PMID: 39215057 DOI: 10.1038/s41577-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Balanced immune responses in the eyes are crucial to preserve vision. The ocular immune system has long been considered distinct, owing to the so-called 'immune privilege' of its component tissues. More recently, intravital imaging and transcriptomic techniques have reshaped scientific understanding of the ocular immune landscape, such as revealing the specialization of immune cell populations in the various tissues of the eye. As knowledge of the phenotypes of corneal and retinal immune cells has evolved, links to both the systemic immune system, and the central and peripheral nervous systems, have been identified. Using intravital imaging, T cells have recently been found to reside in, and actively patrol, the healthy human cornea. Disease-associated retinal microglia with links to retinal degeneration have also been identified. This Review provides an updated guide to the ocular immune system, highlighting current knowledge of the immune cells that are present in steady-state and specific diseased ocular tissues, as well as evidence for their relationship to systemic disease. In addition, we discuss emerging intravital imaging techniques that can be used to visualize immune cell morphology and dynamics in living human eyes and how these could be applied to advance understanding of the human immune system.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Carlton, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
- Lions Eye Institute, Nedlands, Western Australia, Australia.
- Optometry, The University of Western Australia, Crawley, Western Australia, Australia.
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Chen P, Ding N, Pan D, Chen X, Li S, Luo Y, Chen Z, Xu Y, Zhu X, Wang K, Zou W. PET imaging for the early evaluation of ocular inflammation in diabetic rats by using [ 18F]-DPA-714. Exp Eye Res 2024; 245:109986. [PMID: 38945519 DOI: 10.1016/j.exer.2024.109986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Ocular complications of diabetes mellitus (DM) are the leading cause of vision loss. Ocular inflammation often occurs in the early stage of DM; however, there are no proven quantitative methods to evaluate the inflammatory status of eyes in DM. The 18 kDa translocator protein (TSPO) is an evolutionarily conserved cholesterol binding protein localized in the outer mitochondrial membrane. It is a biomarker of activated microglia/macrophages; however, its role in ocular inflammation is unclear. In this study, fluorine-18-DPA-714 ([18F]-DPA-714) was evaluated as a specific TSPO probe by cell uptake, cell binding assays and micro positron emission tomography (microPET) imaging in both in vitro and in vivo models. Primary microglia/macrophages (PMs) extracted from the cornea, retina, choroid or sclera of neonatal rats with or without high glucose (50 mM) treatment were used as the in vitro model. Sprague-Dawley (SD) rats that received an intraperitoneal administration of streptozotocin (STZ, 60 mg/kg once) were used as the in vivo model. Increased cell uptake and high binding affinity of [18F]-DPA-714 were observed in primary PMs under hyperglycemic stress. These findings were consistent with cellular morphological changes, cell activation, and TSPO up-regulation. [18F]-DPA-714 PET imaging and biodistribution in the eyes of DM rats revealed that inflammation initiates in microglia/macrophages in the early stages (3 weeks and 6 weeks), corresponding with up-regulated TSPO levels. Thus, [18F]-DPA-714 microPET imaging may be an effective approach for the early evaluation of ocular inflammation in DM.
Collapse
Affiliation(s)
- Peng Chen
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Jintan Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu, China
| | - Nannan Ding
- Department of Ophthalmology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China; Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China
| | - Donghui Pan
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuelian Chen
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, PuNan Branch of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - ShiYi Li
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, Jiangsu, China
| | - Yidan Luo
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China
| | - Ziqing Chen
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yuping Xu
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue Zhu
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wenjun Zou
- Department of Ophthalmology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China; Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
5
|
Wu Y, Li X, Fu X, Huang X, Zhang S, Zhao N, Ma X, Saiding Q, Yang M, Tao W, Zhou X, Huang J. Innovative Nanotechnology in Drug Delivery Systems for Advanced Treatment of Posterior Segment Ocular Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403399. [PMID: 39031809 PMCID: PMC11348104 DOI: 10.1002/advs.202403399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Indexed: 07/22/2024]
Abstract
Funduscopic diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), significantly impact global visual health, leading to impaired vision and irreversible blindness. Delivering drugs to the posterior segment of the eye remains a challenge due to the presence of multiple physiological and anatomical barriers. Conventional drug delivery methods often prove ineffective and may cause side effects. Nanomaterials, characterized by their small size, large surface area, tunable properties, and biocompatibility, enhance the permeability, stability, and targeting of drugs. Ocular nanomaterials encompass a wide range, including lipid nanomaterials, polymer nanomaterials, metal nanomaterials, carbon nanomaterials, quantum dot nanomaterials, and so on. These innovative materials, often combined with hydrogels and exosomes, are engineered to address multiple mechanisms, including macrophage polarization, reactive oxygen species (ROS) scavenging, and anti-vascular endothelial growth factor (VEGF). Compared to conventional modalities, nanomedicines achieve regulated and sustained delivery, reduced administration frequency, prolonged drug action, and minimized side effects. This study delves into the obstacles encountered in drug delivery to the posterior segment and highlights the progress facilitated by nanomedicine. Prospectively, these findings pave the way for next-generation ocular drug delivery systems and deeper clinical research, aiming to refine treatments, alleviate the burden on patients, and ultimately improve visual health globally.
Collapse
Affiliation(s)
- Yue Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xin Li
- Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xueyu Fu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | | | - Nan Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaowei Ma
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Mei Yang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| |
Collapse
|
6
|
Zhang W, Kaser-Eichberger A, Fan W, Platzl C, Schrödl F, Heindl LM. The structure and function of the human choroid. Ann Anat 2024; 254:152239. [PMID: 38432349 DOI: 10.1016/j.aanat.2024.152239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
In this manuscript, the structure of the human choroid is reviewed with emphasis of the macro- and microscopic anatomy including Bruch's membrane, choriocapillaris, Sattler's and Haller's layer, and the suprachoroid. We here discuss the development of the choroid, as well as the question of choroidal lymphatics, and further the neuronal control of this tissue, as well as the pathologic angiogenesis. Wherever possible, functional aspects of the various structures are included and reviewed.
Collapse
Affiliation(s)
- Weina Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wanlin Fan
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Falk Schrödl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Zhang Y, Zhou A. Macrophage activation contributes to diabetic retinopathy. J Mol Med (Berl) 2024; 102:585-597. [PMID: 38429382 DOI: 10.1007/s00109-024-02437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Diabetic retinopathy (DR) is recognized as a neurovascular complication of diabetes, and emerging evidence underscores the pivotal role of inflammation in its pathophysiology. Macrophage activation is increasingly acknowledged as a key contributor to the onset and progression of DR. Different populations of macrophages originating from distinct sources contribute to DR-associated inflammation. Retinal macrophages can be broadly categorized into two main groups based on their origin: intrinsic macrophages situated within the retina and vitreoretinal interface and macrophages derived from infiltrating monocytes. The former comprises microglia (MG), perivascular macrophages, and macrophage-like hyalocytes. Retinal MG, as the principal population of tissue-resident population of mononuclear phagocytes, exhibits high heterogeneity and plasticity while serving as a crucial connector between retinal capillaries and synapses. This makes MG actively involved in the pathological processes across various stages of DR. Activated hyalocytes also contribute to the pathological progression of advanced DR. Additionally, recruited monocytes, displaying rapid turnover in circulation, augment the population of retinal macrophages during DR pathogenesis, exerting pathogenic or protective effect based on different subtypes. In this review, we examine novel perspectives on macrophage biology based on recent studies elucidating the diversity of macrophage identity and function, as well as the mechanisms influencing macrophage behavior. These insights may pave the way for innovative therapeutic strategies in the management of DR.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Aiyi Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
8
|
Lee SJ, Lee SH, Koh A, Kim KW. EGF-conditioned M1 macrophages Convey reduced inflammation into corneal endothelial cells through exosomes. Heliyon 2024; 10:e26800. [PMID: 38434401 PMCID: PMC10906407 DOI: 10.1016/j.heliyon.2024.e26800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Epidermal Growth Factor (EGF), a protein pivotal in cell proliferation and survival, has recently shown promise in alleviating inflammation. This study investigates EGF's impact on M1 macrophages, exploring its potential for anti-inflammatory and anti-vasculogenic interactions with corneal endothelial cells (CECs). Polarized M1 macrophages treated with EGF exhibited a suppression of gene expressions related to inflammatory and vasculogenic signals. The anti-inflammatory effects of EGF were observed in co-culture systems with human CECs (HCECs), showcasing its ability to alter macrophage phenotypes. Exosomes derived from EGF-treated M1 macrophages demonstrated enriched proteomic profiles related to immune system regulation and inflammation inhibition. When applied as eye drops in murine corneas, EGF-conditioned M1 macrophage-derived exosomes effectively reduced inflammation and increased M2-related ARG1 expression. This study highlights EGF's potential in mitigating inflammation in M1 macrophages and its delivery through exosomes to cultured HCECs and murine corneas, suggesting a novel therapeutic avenue for ocular surface anti-inflammatory treatments.
Collapse
Affiliation(s)
- Soo Jin Lee
- Chung-Ang Ocular Surface Restoration via Immune-inflammation Alleviation (CORIA) Laboratory, Seoul, Republic of Korea
| | - Seung Hyeun Lee
- Department of Ophthalmology, Chung-Ang University College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Ahra Koh
- Chung-Ang Ocular Surface Restoration via Immune-inflammation Alleviation (CORIA) Laboratory, Seoul, Republic of Korea
- Chung-Ang University Graduate School, Republic of Korea
| | - Kyoung Woo Kim
- Chung-Ang Ocular Surface Restoration via Immune-inflammation Alleviation (CORIA) Laboratory, Seoul, Republic of Korea
- Department of Ophthalmology, Chung-Ang University College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
9
|
Shen W, Wang C, Jiang J, He Y, Liang Q, Hu K. Targeted delivery of herpes simplex virus glycoprotein D to CD169 + macrophages using ganglioside liposomes alleviates herpes simplex keratitis in mice. J Control Release 2024; 365:208-218. [PMID: 37981051 DOI: 10.1016/j.jconrel.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Herpes simplex keratitis (HSK) is a common blinding corneal disease caused by herpes simplex virus type 1 (HSV-1) infection. Antiviral drugs and corticosteroids haven't shown adequate therapeutic efficacy. During the early stage of HSV-1 infection, macrophages serve as the first line of defense. In particular, CD169+ macrophages play an important role in phagocytosis and antigen presentation. Therefore, we constructed GM-gD-lip, a ganglioside GM1 liposome vaccine encapsulating HSV-1 glycoprotein D and targeting CD169+ macrophages. After subconjunctival injection of the vaccine, we evaluated the survival rate and ocular surface lesions of the HSK mice, as well as the virus levels in the tear fluid, corneas, and trigeminal ganglia. We discovered that GM-gD-lip reduced HSV-1 viral load and alleviated the clinical severity of HSK. The GM-gD-lip also increased the number of corneal infiltrating macrophages, especially CD169+ macrophages, and polarized them toward M1. Furthermore, the number of dendritic cells (DCs) and CD8+ T cells in the ocular draining lymph nodes was significantly increased. These findings demonstrated that GM-gD-lip polarized CD169+ macrophages toward M1 to eliminate the virus while cross-presenting antigens to CD8+ T cells via DCs to activate adaptive immunity, ultimately attenuating the severity of HSK. The use of GM-gD-lip as an immunotherapeutic method for the treatment of HSK has significant implications.
Collapse
Affiliation(s)
- Wenhao Shen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd,Nanjing, Jiangsu, China.
| | - Chenchen Wang
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, 618 Fengqi East Rd, Hangzhou, Zhejiang, China.
| | - Jiaxuan Jiang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd,Nanjing, Jiangsu, China.
| | - Yun He
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd,Nanjing, Jiangsu, China.
| | - Qi Liang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of medicine, 3 Qingchun East Road, Hangzhou, Zhejiang, China.
| | - Kai Hu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Rd,Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Lu X, Chen Z, Lu J, Watsky MA. Effects of 1,25-Vitamin D3 and 24,25-Vitamin D3 on Corneal Nerve Regeneration in Diabetic Mice. Biomolecules 2023; 13:1754. [PMID: 38136625 PMCID: PMC10742127 DOI: 10.3390/biom13121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Corneal nerve homeostasis is essential for the functional integrity of the ocular surface. Vitamin D deficiency (VDD) and vitamin D receptor knockout (VDR KO) have been found to reduce corneal nerve density in diabetic mice. This is the first study to comprehensively examine the influence of vitamin D on nerve regeneration following corneal epithelial injury in diabetic mice. Corneal nerve regeneration was significantly retarded by diabetes, VDR KO, and VDD, and it was accelerated following topical 1,25 Vit D and 24,25 Vit D administration. Furthermore, topical 1,25 Vit D and 24,25 Vit D increased nerve growth factor, glial cell line-derived neurotropic factor, and neurotropin-3 protein expression, and it increased secretion of GDNF protein from human corneal epithelial cells. CD45+ cells and macrophage numbers were significantly decreased, and vitamin D increased CD45+ cell and macrophage recruitment in these wounded diabetic mouse corneas. The accelerated nerve regeneration observed in these corneas following topical 1,25 Vit D and 24,25 Vit D administration may be related to the vitamin D-stimulated expression, secretion of neurotrophic factors, and recruitment of immune cells.
Collapse
Affiliation(s)
- Xiaowen Lu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, CB-2901, Augusta, GA 30912, USA
| | | | | | - Mitchell A. Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, CB-2901, Augusta, GA 30912, USA
| |
Collapse
|
11
|
Luan J, Zhu Y, Lin J, Zhang Y, Xu Q, Zhan L, Tian X, Zhao G, Peng X. Quercetin protects against Aspergillus fumigatus keratitis by reducing fungal load and inhibiting TLR-4 induced inflammatory response. Cytokine 2023; 171:156356. [PMID: 37677994 DOI: 10.1016/j.cyto.2023.156356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE To investigate the antifungal and anti-inflammatory effects of quercetin in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS Draize eye test was performed in mice to evaluate the toxicity of quercetin, and the antifungal effects on A. fumigatus were assessed via scanning electron microscopy (SEM), propidium iodide uptake, and adherence assay. In fungal keratitis (FK) mouse models, immunostaining was performed for investigating toll-like receptor 4 (TLR-4) expression and macrophage infiltration. Real-time PCR, ELISA, and Western blot were used to evaluate the expression of pro-inflammatory factors IL-1β, TNF-α, and IL-6 in infected RAW264.7 cells. Cells were also treated with TLR-4 siRNA or agonist CRX-527 to investigate mechanisms underlying the anti-inflammatory activity of quercetin. RESULTS Quercetin at 32 μM was non-toxic to corneal epithelial and significantly inhibited A. fumigatus growth and adhesion, and also altered the structure and reduced the number of mycelia. Quercetin significantly reduced macrophage infiltration in the mouse cornea, and attenuated the expression of TLR-4 in the corneal epithelium and stroma of mice with keratitis caused by A. fumigatus. In RAW264.7 cells infected by A. fumigatus, quercetin downregulated TLR-4 along with pro-inflammatory factors IL-1β, TNF-α, and IL-6. RAW cells with TLR-4 knockdown had reduced expression of factors after A. fumigatus infection, which was decreased even further with quercetin treatment. In contrast, cells with CRX-527 had elevated inflammatory factors compared to control, which was significantly attenuated in the presence of quercetin. CONCLUSION Quercetin plays a protective role in mouse A. fumigatus keratitis by inhibiting fungal load, disrupting hyphae structure, macrophage infiltration, and suppressing inflammation response in macrophages via TLR-4 mediated signaling pathway.
Collapse
Affiliation(s)
- Junjie Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yunan Zhu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China; Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China; Department of Ophthalmology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
12
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
A lncRNA-encoded mitochondrial micropeptide exacerbates microglia-mediated neuroinflammation in retinal ischemia/reperfusion injury. Cell Death Dis 2023; 14:126. [PMID: 36792584 PMCID: PMC9932084 DOI: 10.1038/s41419-023-05617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/17/2023]
Abstract
As a common pathology of many ocular disorders such as diabetic retinopathy and glaucoma, retinal ischemia/reperfusion (IR) triggers inflammation and microglia activation that lead to irreversible retinal damage. The detailed molecular mechanism underlying retinal IR injury, however, remains poorly understood at present. Here we report the bioinformatic identification of a lncRNA 1810058I24Rik (181-Rik) that was shown to encode a mitochondrion-located micropeptide Stmp1. Its deficiency in mice protected retinal ganglion cells from retinal IR injury by attenuating the activation of microglia and the Nlrp3 inflammasome pathway. Moreover, its genetic knockout in mice or knockdown in primary microglia promoted mitochondrial fusion, impaired mitochondrial membrane potential, and reactive oxygen species (ROS) production, diminished aerobic glycolysis, and ameliorated inflammation. It appears that 181-Rik may trigger the Nlrp3 inflammasome activation by controlling mitochondrial functions through inhibiting expression of the metabolic sensor uncoupling protein 2 (Ucp2) and activating expression of the Ca2+ sensors S100a8/a9. Together, our findings shed new light on the molecular pathogenesis of retinal IR injury and may provide a fresh therapeutic target for IR-associated neurodegenerative diseases.
Collapse
|
14
|
Ahn SH, Suh JS, Lim GH, Kim TJ. The Potential Effects of Light Irradiance in Glaucoma and Photobiomodulation Therapy. Bioengineering (Basel) 2023; 10:bioengineering10020223. [PMID: 36829717 PMCID: PMC9952036 DOI: 10.3390/bioengineering10020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Human vision is mediated by the retina, one of the most critical tissues in the central nervous system. Glaucoma is a complex retinal disease attributed to environmental, genetic, and stochastic factors, all of which contribute to its pathogenesis. Historically, glaucoma had been thought of primarily as a disease of the elderly; however, it is now becoming more problematic as the incidence rate increases among young individuals. In recent years, excessive light exposure has been suggested as contributing to the rise in glaucoma among the younger generation. Blue light induces mitochondrial apoptosis in retinal ganglion cells, causing optic damage; red light increases cytochrome c oxidase activity in the electron transport system, reducing inflammation and increasing antioxidant reactions to promote cell regeneration. In conclusion, the minimization of blue light exposure and the general application of red light treatment strategies are anticipated to show synergistic effects with existing treatments for retinal disease and glaucoma and should be considered a necessary prospect for the future. This review introduces the recent studies that support the relationship between light exposure and the onset of glaucoma and discusses new treatments, such as photobiomodulation therapy.
Collapse
Affiliation(s)
- Sang-Hyun Ahn
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
| | - Gah-Hyun Lim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Pusan 46241, Republic of Korea
- Correspondence: (G.-H.L.); (T.-J.K.); Tel.: +82-51-510-2261 (T.-J.K.)
| | - Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Pusan 46241, Republic of Korea
- Correspondence: (G.-H.L.); (T.-J.K.); Tel.: +82-51-510-2261 (T.-J.K.)
| |
Collapse
|
15
|
Gadziński P, Froelich A, Wojtyłko M, Białek A, Krysztofiak J, Osmałek T. Microneedle-based ocular drug delivery systems - recent advances and challenges. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1167-1184. [PMID: 36348935 PMCID: PMC9623140 DOI: 10.3762/bjnano.13.98] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/28/2022] [Indexed: 05/09/2023]
Abstract
Eye diseases and injuries constitute a significant clinical problem worldwide. Safe and effective delivery of drugs to the eye is challenging mostly due to the presence of ocular barriers and clearance mechanisms. In everyday practice, the traditional eye drops, gels and ointments are most often used. Unfortunately, they are usually not well tolerated by patients due to the need for frequent use as well as the discomfort during application. Therefore, novel drug delivery systems with improved biopharmaceutical properties are a subject of ongoing scientific investigations. Due to the developments in microtechnology, in recent years, there has been a remarkable advance in the development of microneedle-based systems as an alternative, non-invasive form for administering drugs to the eye. This review summarizes the latest achievements in the field of obtaining microneedle ocular patches. In the manuscript, the most important manufacturing technologies, microneedle classification, and the research studies related to ophthalmic application of microneedles are presented. Finally, the most important advantages and drawbacks, as well as potential challenges related to the unique anatomy and physiology of the eye are summarized and discussed.
Collapse
Affiliation(s)
- Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Antoni Białek
- Student Research Group of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Julia Krysztofiak
- Student Research Group of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| |
Collapse
|
16
|
Neuroimmune crosstalk in the cornea: The role of immune cells in corneal nerve maintenance during homeostasis and inflammation. Prog Retin Eye Res 2022; 91:101105. [PMID: 35868985 DOI: 10.1016/j.preteyeres.2022.101105] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
In the cornea, resident immune cells are in close proximity to sensory nerves, consistent with their important roles in the maintenance of nerves in both homeostasis and inflammation. Using in vivo confocal microscopy in humans, and ex vivo immunostaining and fluorescent reporter mice to visualize corneal sensory nerves and immune cells, remarkable progress has been made to advance our understanding of the physical and functional interactions between corneal nerves and immune cells. In this review, we summarize and discuss recent studies relating to corneal immune cells and sensory nerves, and their interactions in health and disease. In particular, we consider how disrupted corneal nerve axons can induce immune cell activity, including in dendritic cells, macrophages and other infiltrating cells, directly and/or indirectly by releasing neuropeptides such as substance P and calcitonin gene-related peptide. We summarize growing evidence that the role of corneal intraepithelial immune cells is likely different in corneal wound healing versus other inflammatory-dominated conditions. The role of different types of macrophages is also discussed, including how stromal macrophages with anti-inflammatory phenotypes communicate with corneal nerves to provide neuroprotection, while macrophages with pro-inflammatory phenotypes, along with other infiltrating cells including neutrophils and CD4+ T cells, can be inhibitory to corneal re-innervation. Finally, this review considers the bidirectional interactions between corneal immune cells and corneal nerves, and how leveraging this interaction could represent a potential therapeutic approach for corneal neuropathy.
Collapse
|
17
|
Xu K, Liao X, Liang L, Li Y, Huang Z, Li X, Zhou W, Zuo Q. Clinical application of oral Chinese Patent Medicines in ophthalmology: a scoping review protocol. BMJ Open 2022; 12:e059571. [PMID: 35725246 PMCID: PMC9214408 DOI: 10.1136/bmjopen-2021-059571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION The prevalence of eye diseases has been increasing worldwide. In China, in addition to conventional medicine, Traditional Chinese Medicine (TCM) plays an important role in maintaining people's vision health. Although less flexible and targeted than TCM decoction, Chinese Patent Medicines (CPMs) are stable and well used. In recent years, CPMs have been increasingly used in ophthalmology clinics by TCM practitioners and by Western doctors in general hospitals. However, comprehensive evidence for using CPMs in ophthalmology is lacking. AIM We will apply the methodology of scoping review to systematically search and sort out the available evidence on oral CPMs for the treatment of eye diseases, identify the distribution of evidence in this field and provide a basis for clinical practice and medical decisions. METHODS The scoping review will be implemented in the following seven steps: (1) defining the research question; (2) searching National Essential Medicines List (2018 edition), National Basic Medical Insurance, Work Injury Insurance and Maternity Insurance Drug Catalog (2020 edition) and Chinese Pharmacopoeia (2020 edition) for oral CPMs for the treatment of eye diseases; (3) searching Embase, Web of Science, PubMed, Cochrane Library, Chongqing VIP Chinese Scientific Journals Database, Chinese National Knowledge Infrastructure, Chinese Biomedical Literature Database and Wanfang Database for relevant literature published from inception to December 2021; (4) developing eligibility criteria; (5) screening the studies based on inclusion criteria; (6) extracting relevant data and lastly, (7) collating, summarising and reporting the results. ETHICS AND DISSEMINATION Since the scoping review aims at collecting data from publicly available publications, this study does not require ethical approval. The results will be published in a peer-reviewed journal and presented at scientific conferences.
Collapse
Affiliation(s)
- Kai Xu
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Liao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Liang
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yamin Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyang Huang
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhou
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qianqian Zuo
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Fu YS, Chen PR, Yeh CC, Pan JY, Kuo WC, Tseng KW. Human Umbilical Mesenchymal Stem Cell Xenografts Repair UV-Induced Photokeratitis in a Rat Model. Biomedicines 2022; 10:biomedicines10051125. [PMID: 35625862 PMCID: PMC9138504 DOI: 10.3390/biomedicines10051125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/04/2023] Open
Abstract
Most patients with a corneal injury are administered anti-inflammatory medications and antibiotics, but no other treatments are currently available. Thus, the corneal injury healing is unsatisfactory, affects the vision, and has a risk of blindness in severe cases. Human umbilical mesenchymal stem cells exhibit pluripotent and anti-inflammatory properties and do not cause immunological rejection in the host. Rats were irradiated with type B ultraviolet (UVB) light to generate a stable animal model of photokeratitis. After irradiation-induced photokeratitis, human umbilical mesenchymal stem cells were implanted into the subconjunctival space of the lateral sclera, and the changes in the corneal pathology were evaluated. Three weeks after implantation, many mesenchymal stem cells were visible in the subconjunctival space. These mesenchymal stem cells effectively reduced the extent of injury to the adjacent corneal tissue. They accelerated the epithelial layer repair, reduced the inflammatory response and neovascularization, and improved the disorganization of collagen and fibronectin in the corneal stroma caused by the injury. In conclusion, xenografted human umbilical mesenchymal stem cells can survive in rat eye tissues for a long time, effectively support the structural integrity of injured corneal tissues, restore corneal permeability, and reduce abnormal neovascularization. This study provides a new approach to the treatment of photokeratitis.
Collapse
Affiliation(s)
- Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Po-Ru Chen
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chang-Ching Yeh
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Department of Obstetrics and Gynecology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Nurse-Midwifery and Women Health, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | - Jian-Yu Pan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Wen-Chuan Kuo
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Correspondence: (W.-C.K.); (K.-W.T.); Tel.: +886-2-2826-7000 (ext. 7950) (W.-C.K.); +886-2-2636-0303 (ext. 1227) (K.-W.T.)
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- Correspondence: (W.-C.K.); (K.-W.T.); Tel.: +886-2-2826-7000 (ext. 7950) (W.-C.K.); +886-2-2636-0303 (ext. 1227) (K.-W.T.)
| |
Collapse
|
19
|
Klotzsche-von Ameln A, Sprott D. Harnessing retinal phagocytes to combat pathological neovascularization in ischemic retinopathies? Pflugers Arch 2022; 474:575-590. [PMID: 35524802 PMCID: PMC9117346 DOI: 10.1007/s00424-022-02695-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Ischemic retinopathies (IR) are vision-threatening diseases that affect a substantial amount of people across all age groups worldwide. The current treatment options of photocoagulation and anti-VEGF therapy have side effects and are occasionally unable to prevent disease progression. It is therefore worthwhile to consider other molecular targets for the development of novel treatment strategies that could be safer and more efficient. During the manifestation of IR, the retina, normally an immune privileged tissue, encounters enhanced levels of cellular stress and inflammation that attract mononuclear phagocytes (MPs) from the blood stream and activate resident MPs (microglia). Activated MPs have a multitude of effects within the retinal tissue and have the potential to both counter and exacerbate the harmful tissue microenvironment. The present review discusses the current knowledge about the role of inflammation and activated retinal MPs in the major IRs: retinopathy of prematurity and diabetic retinopathy. We focus particularly on MPs and their secreted factors and cell–cell-based interactions between MPs and endothelial cells. We conclude that activated MPs play a major role in the manifestation and progression of IRs and could therefore become a promising new target for novel pharmacological intervention strategies in these diseases.
Collapse
Affiliation(s)
| | - David Sprott
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
20
|
Adamus G. Importance of Autoimmune Responses in Progression of Retinal Degeneration Initiated by Gene Mutations. Front Med (Lausanne) 2021; 8:672444. [PMID: 34926479 PMCID: PMC8674421 DOI: 10.3389/fmed.2021.672444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous rare disorders associated with retinal dysfunction and death of retinal photoreceptor cells, leading to blindness. Among the most frequent and severe forms of those retinopathies is retinitis pigmentosa (RP) that affects 1:4,000 individuals worldwide. The genes that have been implicated in RP are associated with the proteins present in photoreceptor cells or retinal pigment epithelium (RPE). Asymmetric presentation or sudden progression in retinal disease suggests that a gene mutation alone might not be responsible for retinal degeneration. Immune responses could directly target the retina or be site effect of immunity as a bystander deterioration. Autoantibodies against retinal autoantigens have been found in RP, which led to a hypothesis that autoimmunity could be responsible for the progression of photoreceptor cell death initiated by a genetic mutation. The other contributory factor to retinal degeneration is inflammation that activates the innate immune mechanisms, such as complement. If autoimmune responses contribute to the progression of retinopathy, this could have an implication on treatment, such as gene replacement therapy. In this review, we provide a perspective on the current role of autoimmunity/immunity in RP pathophysiology.
Collapse
Affiliation(s)
- Grazyna Adamus
- Ocular Immunology Laboratory, Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
21
|
Dando SJ, Kazanis R, McMenamin PG. Myeloid Cells in the Mouse Retina and Uveal Tract Respond Differently to Systemic Inflammatory Stimuli. Invest Ophthalmol Vis Sci 2021; 62:10. [PMID: 34379096 PMCID: PMC8363776 DOI: 10.1167/iovs.62.10.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/03/2021] [Indexed: 01/14/2023] Open
Abstract
Purpose In spite of clear differences in tissue function and significance to ocular disease, little is known about how immune responses differ between the retina and uveal tract. To this end we compared the effects of acute systemic inflammation on myeloid cells within the mouse retina, iris-ciliary body, and choroid. Methods Systemic inflammation was induced in Cx3cr1gfp/gfp and CD11c-eYFP Crb1wt/wtmice by intraperitoneal lipopolysaccharide (LPS). In vivo fundus imaging was performed at two, 24, and 48 hours after LPS, and ocular tissue wholemounts were immunostained and studied by confocal microscopy. Flow cytometry was used to investigate the expression of activation markers (MHC class II, CD80, CD86) on myeloid cell populations at 24 hours. For functional studies, retinal microglia were isolated from LPS-exposed mice and cocultured with naïve OT-II CD4+ T-cells and ovalbumin peptide. T-cell proliferation was measured by flow cytometry and cytokine assays. Results Systemic LPS altered the density and morphology of retinal microglia; however, retinal microglia did not upregulate antigen presentation markers and failed to stimulate naïve CD4+ T-cell proliferation in vitro. In contrast, uveal tract myeloid cells displayed a phenotype consistent with late-activated antigen-presenting cells at 24 hours. Systemic LPS induced remodeling of myeloid populations within the uveal tract, particularly in the choroid, where dendritic cells were partially displaced by macrophages at 24 hours. Conclusions The disparate myeloid cell responses in the retina and uveal tract after systemic LPS highlight differential regulation of innate immunity within these tissue environments, observations that underpin and advance our understanding of ocular immune privilege.
Collapse
Affiliation(s)
- Samantha J. Dando
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Brisbane, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Renee Kazanis
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Paul G. McMenamin
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| |
Collapse
|
22
|
A Role for Folate in Microbiome-Linked Control of Autoimmunity. J Immunol Res 2021; 2021:9998200. [PMID: 34104654 PMCID: PMC8159645 DOI: 10.1155/2021/9998200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
The microbiome exerts considerable control over immune homeostasis and influences susceptibility to autoimmune and autoinflammatory disease (AD/AID) such as inflammatory bowel disease (IBD), multiple sclerosis (MS), type 1 diabetes (T1D), psoriasis, and uveitis. In part, this is due to direct effects of the microbiome on gastrointestinal (GI) physiology and nutrient transport, but also to indirect effects on immunoregulatory controls, including induction and stabilization of T regulatory cells (T reg). Secreted bacterial metabolites such as short-chain fatty acids (SCFA) are under intense investigation as mediators of these effects. In contrast, folate (vitamin B9), an essential micronutrient, has attracted less attention, possibly because it exerts global physiological effects which are difficult to differentiate from specific effects on the immune system. Here, we review the role of folate in AD/AID with some emphasis on sight-threatening autoimmune uveitis. Since folate is required for the generation and maintenance of T reg , we propose that one mechanism for microbiome-based control of AD/AID is via folate-dependent induction of GI tract T reg , particularly colonic T reg, via anergic T cells (T an). Hence, folate supplementation has potential prophylactic and/or therapeutic benefit in AID/AD.
Collapse
|
23
|
Dhanushkodi NR, Srivastava R, Coulon PGA, Prakash S, Roy S, Bagnol D, David ED, BenMohamed L. Healing of Ocular Herpetic Disease Following Treatment With an Engineered FGF-1 Is Associated With Increased Corneal Anti-Inflammatory M2 Macrophages. Front Immunol 2021; 12:673763. [PMID: 34054858 PMCID: PMC8158292 DOI: 10.3389/fimmu.2021.673763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects the cornea and caused blinding ocular disease. In the present study, we evaluated whether and how a novel engineered version of fibroblast growth factor-1 (FGF-1), designated as TTHX1114, would reduce the severity of HSV-1-induced and recurrent ocular herpes in the mouse model. The efficacy of TTHX1114 against corneal keratopathy was assessed in B6 mice following corneal infection with HSV-1, strain McKrae. Starting day one post infection (PI), mice received TTHX1114 for 14 days. The severity of primary stromal keratitis and blepharitis were monitored up to 28 days PI. Inflammatory cell infiltrating infected corneas were characterized up to day 21 PI. The severity of recurrent herpetic disease was quantified in latently infected B6 mice up to 30 days post-UVB corneal exposure. The effect of TTHX1114 on M1 and M2 macrophage polarization was determined in vivo in mice and in vitro on primary human monocytes-derived macrophages. Compared to HSV-1 infected non-treated mice, the infected and TTHX1114 treated mice exhibited significant reduction of primary and recurrent stromal keratitis and blepharitis, without affecting virus corneal replication. The therapeutic effect of TTHX1114 was associated with a significant decrease in the frequency of M1 macrophages infiltrating the cornea, which expressed significantly lower levels of pro-inflammatory cytokines and chemokines. This polarization toward M2 phenotype was confirmed in vitro on human primary macrophages. This pre-clinical finding suggests use of this engineered FGF-1 as a novel immunotherapeutic regimen to reduce primary and recurrent HSV-1-induced corneal disease in the clinic.
Collapse
Affiliation(s)
- Nisha R Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - Pierre-Gregoire A Coulon
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States
| | - Didier Bagnol
- Trefoil Therapeutics, Inc., San Diego, CA, United States
| | | | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States.,Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, United States.,School of Medicine, Institute for Immunology, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
24
|
Wang Y, Gao Y, Huang Y, Pan Y, Yu Y, Zhou Y, Wan SS, Yang YN. The potential protective effects of miR-497 on corneal neovascularization are mediated via macrophage through the IL-6/STAT3/VEGF signaling pathway. Int Immunopharmacol 2021; 96:107745. [PMID: 33984719 DOI: 10.1016/j.intimp.2021.107745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 01/14/2023]
Abstract
Corneal neovascularization (CoNV) can cause abnormal blood vessels to grow in the transparent cornea, leading to various sight-threatening eye diseases. MicroRNAs are known to play essential roles in the regulation of numerous biological functions. We try to clarify the role of a specific microRNA, miR‑497, which has been shown to regulate the growth of tumor cells and angiogenesis on the basis of available data. However, the association between miR-497 and vascularized cornea remains unclear. Therefore, it is urgently needed to understand the molecular mechanism of miR497 in the progress of corneal neovascularization. Animal model of CoNV was established in wildtype (WT) C57BL/6 mice, CRISPR/Cas9 mediated miR-497 knockout (KO) and overexpressed (TG) C57BL/6 mice. MiR-497, expressed in corneas, was actively involved in alkali burn-induced corneal neovascularization via targeting STAT3 and negatively regulating its expression, attenuating macrophage infiltration and M2 polarization. Knockdown of miR-497 enhanced the formation of corneal angiogenesis through targeting STAT3 and facilitating its expression, promoting recruitment of macrophages, while overexpression of miR-497 restrained blood vessel sprouting via regulating downstream STAT3 and VEGFA expression, reducing macrophage activation and inhibiting M2 polarization. Moreover, miR-497 knockout-mediated damage effect can be rescued through the inhibition of STAT3 signaling. Mechanically, miR-497 might serve as a potential strategy for pathological corneal neovascularization via macrophage through the IL-6/STAT3/VEGFA signaling pathway.
Collapse
Affiliation(s)
- Yang Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430061, Hubei Province, PR China
| | - Yuelan Gao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430061, Hubei Province, PR China
| | - Yuqing Huang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430061, Hubei Province, PR China
| | - Yumiao Pan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430061, Hubei Province, PR China
| | - Yi Yu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430061, Hubei Province, PR China
| | - Yiwen Zhou
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430061, Hubei Province, PR China
| | - Shan-Shan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430061, Hubei Province, PR China.
| | - Yan-Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430061, Hubei Province, PR China.
| |
Collapse
|
25
|
Niu Y, Ren C, Peng X, Li C, Xu Q, Hu L, Zhang Z, Zhao G, Lin J. IL-36α Exerts Proinflammatory Effects in Aspergillus fumigatus Keratitis of Mice Through the Pathway of IL-36α/IL-36R/NF-κB. Invest Ophthalmol Vis Sci 2021; 62:16. [PMID: 33851975 PMCID: PMC8054633 DOI: 10.1167/iovs.62.4.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/17/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose To explore the role of IL-36α in corneas infected by Aspergillus fumigatus. Methods The experimental group was comprised of 15 corneas with fungal keratitis, and 15 healthy donor corneas were included in the control group. IL-36α was detected in normal and infected corneas of humans and C57BL/6 mice. Mice corneas were infected with A. fumigatus with or without pretreatment of recombinant mouse (rm) IL-36α and IL-36α neutralizing antibody (Ab). Primary macrophages were stimulated with 75% ethanol-killed A. fumigatus with or without pretreatment of rmIL-36α. The severity of the disease was documented by clinical score and photographs with a slit lamp. PCR, western blot, and immunostaining were used to determine the expression of IL-36α, IL-1β, IL-6, and TNF-α. Polymorphonuclear neutrophilic leukocyte infiltration was assessed by myeloperoxidase (MPO) assay and flow cytometry. Macrophage infiltration was tested by immunofluorescent staining and flow cytometry. Results IL-36α mRNA and protein were significantly elevated in human and mice corneas after infection. The rmIL-36α treatment of C57BL/6 mice increased clinical score, MPO levels, macrophage infiltration, and expression of the proinflammatory cytokines IL-1β, IL-6, and TNF-α compared with the infected controls, which showed a decrease due to IL-36α Ab treatment. In primary macrophages, IL-36α expression was also significantly increased by A. fumigatus. The rmIL-36α treatment upregulated IL-1β, IL-6, and phosphorylated nuclear factor (NF)-κB expression, which was significantly inhibited by rmIL-36Ra. Conclusions IL-36α act as a proinflammatory cytokine in A. fumigatus keratitis by promoting the infiltration of neutrophils and macrophages and increasing the secretion of IL-1β, IL-6, and TNF-α, in addition to regulating expression of phosphorylated NF-κB.
Collapse
Affiliation(s)
- Yawen Niu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Changjie Ren
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ziyue Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
26
|
Candadai AA, Liu F, Fouda AY, Alfarhan M, Palani CD, Xu Z, Caldwell RB, Narayanan SP. Deletion of arginase 2 attenuates neuroinflammation in an experimental model of optic neuritis. PLoS One 2021; 16:e0247901. [PMID: 33735314 PMCID: PMC7971528 DOI: 10.1371/journal.pone.0247901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Vision impairment due to optic neuritis (ON) is one of the major clinical presentations in Multiple Sclerosis (MS) and is characterized by inflammation and degeneration of the optic nerve and retina. Currently available treatments are only partially effective and have a limited impact on the neuroinflammatory pathology of the disease. A recent study from our laboratory highlighted the beneficial effect of arginase 2 (A2) deletion in suppressing retinal neurodegeneration and inflammation in an experimental model of MS. Utilizing the same model, the present study investigated the impact of A2 deficiency on MS-induced optic neuritis. Experimental autoimmune encephalomyelitis (EAE) was induced in wild-type (WT) and A2 knockout (A2-/-) mice. EAE-induced cellular infiltration, as well as activation of microglia and macrophages, were reduced in A2-/- optic nerves. Axonal degeneration and demyelination seen in EAE optic nerves were observed to be reduced with A2 deletion. Further, the lack of A2 significantly ameliorated astrogliosis induced by EAE. In conclusion, our findings demonstrate a critical involvement of arginase 2 in mediating neuroinflammation in optic neuritis and suggest the potential of A2 blockade as a targeted therapy for MS-induced optic neuritis.
Collapse
Affiliation(s)
- Amritha A. Candadai
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
| | - Fang Liu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Abdelrahman Y. Fouda
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Moaddey Alfarhan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
| | - Chithra D. Palani
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Zhimin Xu
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Ruth B. Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| |
Collapse
|
27
|
Hysa E, Cutolo CA, Gotelli E, Paolino S, Cimmino MA, Pacini G, Pizzorni C, Sulli A, Smith V, Cutolo M. Ocular microvascular damage in autoimmune rheumatic diseases: The pathophysiological role of the immune system. Autoimmun Rev 2021; 20:102796. [PMID: 33722750 DOI: 10.1016/j.autrev.2021.102796] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Pathological eye involvement represents a quite common finding in a broad spectrum of autoimmune rheumatic diseases (ARDs). Ocular signs, often occur as early manifestations in ARDs, ranging from symptoms related to the mild dry eye disease to sight-threatening pathologies, linked to the immune response against retinal and choroidal vessels. Retinovascular damage driven by markedly inflammatory reactivity need a prompt diagnosis and treatment. Immune-complexes formation, complement activation and antibody-mediated endothelial damage seem to play a key role, particularly, in microvascular damage and ocular symptoms, occurring in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and Sjögren's syndrome (SS). Conversely, early alterations of retinal and choroidal vessels in the asymptomatic patient, often detectable coincidentally, might be indicators of widespread vascular injury in other connective tissue diseases. Particularly, endothelin-induced hypoperfusion and pathological peri-choroidal extracellular matrix deposition, might be responsible for the micro-architectural alterations and loss of capillaries detected in systemic sclerosis (SSc). Instead, interferon alpha-mediated microvascular rarefaction, combined with endothelial lesions caused by specific autoantibodies and immune-complexes, appear to play a significant role in retinal vasculopathy associated to inflammatory idiopathic myopathies (IIM). The immuno-pathophysiological mechanisms of ocular microcirculatory damage associated with the major ARDs will be discussed under the light of the most recent achievements.
Collapse
Affiliation(s)
- Elvis Hysa
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Carlo Alberto Cutolo
- Ophtalmology Clinic DiNOGMI, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy.
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Marco Amedeo Cimmino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Greta Pacini
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Vanessa Smith
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Department of Rheumatology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center (IRC), Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| |
Collapse
|
28
|
Pastorino P, Colussi S, Pizzul E, Varello K, Menconi V, Mugetti D, Tomasoni M, Esposito G, Bertoli M, Bozzetta E, Dondo A, Acutis PL, Prearo M. The unusual isolation of carnobacteria in eyes of healthy salmonids in high-mountain lakes. Sci Rep 2021; 11:2314. [PMID: 33504925 PMCID: PMC7840770 DOI: 10.1038/s41598-021-82133-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Carnobacteria are common bacteria in cold and temperate environments; they are also reported during fish mortality events. In a previous study, carnobacteria were isolated from the eyes of healthy wild salmonids from a high-mountain lake. To better understand these findings, salmonids were captured from three high-mountain lakes (Lower and Upper Balma Lake, Rouen Lake; northwest Italy) during August 2019 and subjected to bacteriological and histological examination. Although all were healthy, 8.7% (Lower Balma Lake), 24% (Upper Balma Lake), and 32.6% (Rouen Lake) were positive for carnobacteria colonization of the eyes. A Trojan-horse effect was hypothesized to explain carnobacteria isolation in the eye. This immune-escaping macrophage-mediated mechanism has been identified in other Gram-positive bacteria. Biochemical, molecular, and phylogenetic analysis were carried out on isolated bacteria (Carnobacterium maltaromaticum and C. divergens). Based on previous references for carnobacteria isolated from fish, C. maltaromaticum strains were tested for the pisA precursor gene of the bacteriocin piscicolin 126. Carnobacterium maltaromaticum strains were found to display genotypic heterogeneity and a low percentage of pisA positive amplification. Features of geomorphology, geographic isolation, and microbiota common to the three lakes are thought to be possibly related to our findings. Moreover, terrestrial insects collected from the lake shoreline and the stomach contents were screened for the presence of carnobacteria. The salmonids in these high-mountain environments feed mainly on terrestrial insects, which are considered possible vectors for carnobacteria that might catabolize the exoskeleton chitin. All insects tested negative for carnobacteria, but as a small number of samples were analyzed, their role as possible vectors of infection cannot be excluded. Further studies are needed to corroborate our research hypothesis.
Collapse
Affiliation(s)
- Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Turin, Italy.
| | - Silvia Colussi
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Turin, Italy
| | - Elisabetta Pizzul
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Katia Varello
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Turin, Italy
| | - Vasco Menconi
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Turin, Italy
| | - Davide Mugetti
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Turin, Italy
| | - Mattia Tomasoni
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Turin, Italy
| | - Giuseppe Esposito
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy
| | - Marco Bertoli
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Elena Bozzetta
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Turin, Italy
| | - Alessandro Dondo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Turin, Italy
| | - Pier Luigi Acutis
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Turin, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Turin, Italy
| |
Collapse
|
29
|
Abstract
Clear vision is dependent on features that protect the anatomical integrity of the eye (cornea and sclera) and those that contribute to internal ocular homeostasis by conferring hemangiogenic (avascular tissues and antiangiogenic factors), lymphangiogenic (lack of draining lymphatics), and immunologic (tight junctions that form blood-ocular barriers, immunosuppressive cells, and modulators) privileges. The later examples are necessary components that enable the eye to maintain an immunosuppressive environment that responds to foreign invaders in a deviated manner, minimizing destructive inflammation that would impair vision. These conditions allowed for the observations made by Medawar, in 1948, of delayed rejection of allogenic tissue grafts in the anterior chamber of mouse eye and permit the sequestration of foreign invaders (eg, Toxoplasma gondii) within the retina of healthy individuals. Yet successful development of intraocular drugs (biologics and delivery devices) has been stymied by adverse ocular pathology, much of which is driven by immune pathways. The eye can be intolerant of foreign protein irrespective of delivery route, and endogenous ocular cells have remarkable plasticity when recruited to preserve visual function. This article provides a review of current understanding of ocular immunology and the potential role of immune mechanisms in pathology observed with intraocular drug delivery.
Collapse
Affiliation(s)
| | | | - Sharmila Masli
- 12259Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
30
|
Degroote RL, Deeg CA. Immunological Insights in Equine Recurrent Uveitis. Front Immunol 2021; 11:609855. [PMID: 33488614 PMCID: PMC7821741 DOI: 10.3389/fimmu.2020.609855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/05/2022] Open
Abstract
Horses worldwide suffer from equine recurrent uveitis (ERU), an organ-specific, immune-mediated disease with painful, remitting-relapsing inflammatory attacks alternating with periods of quiescence, which ultimately leads to blindness. In course of disease, both eyes can eventually be affected and since blind horses pose a threat to themselves and their surroundings, these animals have to be killed. Therefore, this disease is highly relevant for veterinary medicine. Additionally, ERU shows strong clinical and pathological resemblance to autoimmune uveitis in man. The exact cause for the onset of ERU is unclear to date. T cells are believed to be the main effector cells in this disease, as they overcome the blood retinal barrier to invade the eye, an organ physiologically devoid of peripheral immune cells. These cells cause severe intraocular inflammation, especially in their primary target, the retina. With every inflammatory episode, retinal degeneration increases until eyesight is completely lost. In ERU, T cells show an activated phenotype, with enhanced deformability and migration ability, which is reflected in the composition of their proteome and downstream interaction pathways even in quiescent stage of disease. Besides the dysregulation of adaptive immune cells, emerging evidence suggests that cells of the innate immune system may also directly contribute to ERU pathogenesis. As investigations in both the target organ and the periphery have rapidly evolved in recent years, giving new insights on pathogenesis-associated processes on cellular and molecular level, this review summarizes latest developments in ERU research.
Collapse
Affiliation(s)
- Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
31
|
Reekie IR, Sharma S, Foers A, Sherlock J, Coles MC, Dick AD, Denniston AK, Buckley CD. The Cellular Composition of the Uveal Immune Environment. Front Med (Lausanne) 2021; 8:721953. [PMID: 34778287 PMCID: PMC8586083 DOI: 10.3389/fmed.2021.721953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
The uveal tract consists of the iris, the ciliary body and the choroid; these three distinct tissues form a continuous layer within the eye. Uveitis refers to inflammation of any region of the uveal tract. Despite being grouped together anatomically, the iris, ciliary body and choroid are distinct functionally, and inflammatory diseases may affect only one part and not the others. Cellular structure of tissues direct their function, and understanding the cellular basis of the immune environment of a tissue in health, the "steady state" on which the perturbations of disease are superimposed, is vital to understanding the pathogenesis of those diseases. A contemporary understanding of the immune system accepts that haematopoietic and yolk sac derived leukocytes, though vital, are not the only players of importance. An array of stromal cells, connective tissue cells such as fibroblasts and endothelial cells, may also have a role in the inflammatory reaction seen in several immune-mediated diseases. In this review we summarise what is known about the cellular composition of the uveal tract and the roles these disparate cell types have to play in immune homeostasis. We also discuss some unanswered questions surrounding the constituents of the resident leukocyte population of the different uveal tissues, and we look ahead to the new understanding that modern investigative techniques such as single cell transcriptomics, multi-omic data integration and highly-multiplexed imaging techniques may bring to the study of the uvea and uveitis, as they already have to other immune mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ian R. Reekie
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Srilakshmi Sharma
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford Eye Hospital, Oxford, United Kingdom
| | - Andrew Foers
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Jonathan Sherlock
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Mark C. Coles
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Andrew D. Dick
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Institute of Ophthalmology, Moorfields Eye Hospital, University College London, London, United Kingdom
| | - Alastair K. Denniston
- Institute for Inflammation and Ageing, College of Medical and Dental Sciences, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
| | - Christopher D. Buckley
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
- Institute for Inflammation and Ageing, College of Medical and Dental Sciences, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Christopher D. Buckley
| |
Collapse
|
32
|
Abstract
Normal retina and its cell layers are essential for processing visual stimuli, and loss of its integrity has been documented in many disease processes. The numbers and the axonal processes of retinal ganglion cells are reduced substantially in glaucoma, leading to vision loss and blindness. Similarly, selective loss of photoreceptors in age-related macular degeneration and hereditary retinal dystrophies also results in the compromise of visual acuity. Development of genetically modified mice has led to increased understanding of the pathogenesis of many retinal diseases. Similarly, in this digital era, usage of modalities to quantify the retinal cell loss has grown exponentially leading to a better understanding of the suitability of animal models to study human retinal diseases. These quantification modalities provide valuable quantifiable data in studying pathogenesis and disease progression. This review will discuss the immunohistochemical markers for various retinal cells, available automated tools to quantify retinal cells, and present an example of retinal ganglion cell quantification using HALO image analysis platform. Additionally, we briefly review retinal cell types and subtypes, salient features of retina in various laboratory animal species, and a few of the main disease processes that affect retinal cell numbers in humans.
Collapse
Affiliation(s)
| | - Henry Chen
- 7845Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Ying Hu
- 7845Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Oliver C Turner
- Novartis, 98557Novartis Institutes for BioMedical Research, Preclinical Safety, East Hanover, NJ, USA
| | - Olulanu H Aina
- 426218Janssen Pharmaceutical Company of Johnson & Johnson, Spring House, PA, USA
| |
Collapse
|
33
|
Bohn S, Stahnke T, Sperlich K, Linke SJ, Farrokhi S, Klemm M, Allgeier S, Köhler B, Reichert KM, Witt M, Stachs O, Guthoff RF. In vivo Histology of the Cornea - from the "Rostock Cornea Module" to the "Rostock Electronic Slit Lamp" - a Clinical "Proof of Concept" Study. Klin Monbl Augenheilkd 2020; 237:1442-1454. [PMID: 33231276 DOI: 10.1055/a-1297-4717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Confocal in vivo microscopy is an established method in ophthalmology research. As it requires contact coupling and calibration of the instruments is suboptimal, this method has been only rarely used in clinical routine work. As a result of close collaboration between physicists, information scientists and ophthalmologists, confocal laser scanning microscopy (CLSM) of the eye has been developed in recent years and a prototype can now be used in patients. The present study evaluates possible clinical uses of this method. MATERIAL AND METHODS The essential innovations in CLSM are (1) a newly designed coupling element with superficial adaptation to corneal curvature and (2) the use of a dual computerised piezo drive for rapid and precise focusing. In post-processing and after elastic imaging registration of the individual images parallel to the surface, it is also possible to produce sagittal sections resembling a split lamp and with resolution in the micrometer range. The concept was tested on enucleated pig bulbi and tested on normal volunteers and selected patients with diseases of the cornea. RESULTS Simultaneous imaging in planes parallel to the surface and in sagittal planes provided additional information that can help us to understand the processes of wound healing in all substructures of the cornea and the role of immune competent cells. Possible clinical uses were demonstrated in a volunteer with healthy eyes and several groups of patients (keratoconus after CXL, recurrent keratitis, status after PRK). These show that this new approach can be used in morphological studies at cellular level in any desired and appropriate test plane. CONCLUSIONS It could be shown that this new concept of CLSM can be used clinically. It can provide valuable and novel information to both preclinical researchers and to ophthalmologists interested in corneal disease, e.g. density of Langerhans cells and epithelial stratification in ocular surface diseases.
Collapse
Affiliation(s)
- Sebastian Bohn
- Universitätsaugenklinik, Universitätsmedizin Rostock, Deutschland.,Department Leben, Licht & Materie, Universität Rostock, Deutschland
| | - Thomas Stahnke
- Universitätsaugenklinik, Universitätsmedizin Rostock, Deutschland.,Department Leben, Licht & Materie, Universität Rostock, Deutschland
| | - Karsten Sperlich
- Universitätsaugenklinik, Universitätsmedizin Rostock, Deutschland.,Department Leben, Licht & Materie, Universität Rostock, Deutschland
| | - Stephan J Linke
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Hamburg-Eppendorf (UKE), Deutschland.,Augenarztpraxis am UKE, Zentrumsehstärke, Hamburg, Deutschland
| | - Sanaz Farrokhi
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Hamburg-Eppendorf (UKE), Deutschland
| | - Maren Klemm
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Hamburg-Eppendorf (UKE), Deutschland
| | - Stephan Allgeier
- Institut für Automation und angewandte Informatik, Karlsruher Institut für Technologie (KIT), Eggenstein-Leopoldshafen, Deutschland
| | - Bernd Köhler
- Institut für Automation und angewandte Informatik, Karlsruher Institut für Technologie (KIT), Eggenstein-Leopoldshafen, Deutschland
| | - Klaus-Martin Reichert
- Institut für Automation und angewandte Informatik, Karlsruher Institut für Technologie (KIT), Eggenstein-Leopoldshafen, Deutschland
| | - Martin Witt
- Institut für Anatomie, Universitätsmedizin Rostock, Deutschland
| | - Oliver Stachs
- Universitätsaugenklinik, Universitätsmedizin Rostock, Deutschland.,Department Leben, Licht & Materie, Universität Rostock, Deutschland
| | - Rudolf F Guthoff
- Universitätsaugenklinik, Universitätsmedizin Rostock, Deutschland.,Department Leben, Licht & Materie, Universität Rostock, Deutschland
| |
Collapse
|
34
|
Yu M, Xie F, Liu X, Sun H, Guo Z, Liu X, Li W, Sun W, Wang Y, He C. Proteomic Study of Aqueous Humor and Its Application in the Treatment of Neovascular Glaucoma. Front Mol Biosci 2020; 7:587677. [PMID: 33195434 PMCID: PMC7580691 DOI: 10.3389/fmolb.2020.587677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Aqueous humor (AH) proteins are involved in many physiological and pathological processes of the eye. The proteome analysis of AH is important to understand its physiological and pathophysiological functions. In the present study, AH samples obtained from 21 cataract volunteers were pooled together. After high-pH RPLC offline separation, the pooled sample was analyzed by LC-MS/MS to provide a comprehensive profile of AH proteome. The function analysis was provided by the GO and IPA annotation. In order to determine whether the AH proteome can reflect the pathophysiological changes of the disease, DIA technology was used to analyze the AH samples obtained from three neovascular glaucoma (NVG) patients (six samples) before and after drug treatment. The differential proteins were validated by PRM technology in an independent group (14 samples). In the AH proteome database, 802 proteins were identified, and 318 proteins were identified for the first time. Furthermore, 480 proteins were quantified based on the peak intensity-based semiquantification (iBAQ), which ranged by approximately 7 orders of magnitude. These proteins are primarily involved in immunity- and inflammation-related pathways. The differential AH proteomic analysis in NVG treatment revealed that the AH proteome can reflect the pathophysiological changes of drug treatment. Angiogenesis and thrombus coagulation progression are deeply involved in NVG treatment. The present experiment provided a comprehensive AH proteome analysis and expanded the profile of human AH proteome. The differential AH proteomic analysis of NVG treatment indicated that AH proteome can reflect the pathophysiological changes in drug intervention.
Collapse
Affiliation(s)
- Mengxi Yu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Xie
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiang Liu
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd., Shanghai, China
| | - Haidan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Peking, China
| | - Zhengguang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Peking, China
| | - Xiaoyan Liu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Peking, China
| | - Wei Li
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Peking, China
| | - Ying Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Droho S, Thomson BR, Makinde HM, Cuda CM, Perlman H, Lavine JA. Ocular macrophage origin and heterogeneity during steady state and experimental choroidal neovascularization. J Neuroinflammation 2020; 17:341. [PMID: 33187533 PMCID: PMC7666512 DOI: 10.1186/s12974-020-02010-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Neovascular age-related macular degeneration (nAMD) commonly causes vision loss from aberrant angiogenesis, termed choroidal neovascularization (CNV). Macrophages are heterogeneous cells that are necessary for experimental CNV, present in human CNV samples, and can display diverse functions, which are dependent upon both their origin and tissue microenvironment. Despite these associations, choroidal macrophage heterogeneity remains unexplored. METHODS We performed multi-parameter flow cytometry on wildtype (WT) and Ccr2-/- mice after laser injury to identify macrophage subtypes, and determine which subsets originate from classical monocytes. To fate map tissue resident macrophages at steady state and after laser injury, we used the Cx3cr1CreER/+ ; Rosa26zsGFP/+ mouse model. We reanalyzed previously published single-cell RNA-seq of human choroid samples from healthy and nAMD patients to investigate human macrophage heterogeneity, disease association, and function. RESULTS We identified 4 macrophage subsets in mice: microglia, MHCII+CD11c-, MHCII+CD11c+, and MHCII-. Microglia are tissue resident macrophages at steady state and unaffected by laser injury. At steady state, MHCII- macrophages are long lived, tissue resident macrophages, while MHCII+CD11c- and MHCII+CD11c+ macrophages are partially replenished from blood monocytes. After laser injury, MHCII+CD11c- macrophages are entirely derived from classical monocytes, MHCII- macrophages originate from classical monocytes (90%) and an expansion of tissue resident macrophages (10%), and MHCII+CD11c+ macrophages are derived from classical monocytes (70%), non-classical monocytes (10%), and an expansion of tissue resident macrophages (20%). Single-cell RNA-seq analysis of human choroid found 5 macrophage subsets: two MHCII+CD11C- and three MHCII+CD11C+ populations. One MHCII+CD11C+ subset was 78% derived from a patient with nAMD. Differential expression analysis identified up-regulation of pro-angiogenic gene expression in one MHCII+CD11C- and two MHCII+CD11C+ subsets, including the disease-associated cluster. The upregulated MHCII+CD11C- pro-angiogenic genes were unique compared to the increased MHCII+CD11C+ angiogenesis genes. CONCLUSIONS Macrophage origin impacts heterogeneity at steady state and after laser injury in mice. Both mice and human patients demonstrate similar macrophage subtypes. Two discrete pro-angiogenic macrophage populations exist in the human choroid. Targeting specific, pro-angiogenic macrophage subsets is a potential novel therapeutic for nAMD.
Collapse
Affiliation(s)
- Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 240 E Huron St, McGaw M343, Chicago, IL, 60611, USA
| | - Benjamin R Thomson
- Department of Medicine, Division of Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hadijat M Makinde
- Department of Medicine, Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Carla M Cuda
- Department of Medicine, Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Harris Perlman
- Department of Medicine, Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 240 E Huron St, McGaw M343, Chicago, IL, 60611, USA.
| |
Collapse
|
36
|
Jiao H, Lim AS, Fazio Coles TE, McQuade RM, Furness JB, Chinnery HR. The effect of high-fat diet-induced metabolic disturbance on corneal neuroimmune features. Exp Eye Res 2020; 201:108298. [PMID: 33069696 DOI: 10.1016/j.exer.2020.108298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE The highly innervated cornea is susceptible to nerve loss secondary to systemic diseases such as diabetes and metabolic disturbances caused by high-fat diet. In this study, we characterize the effect of high-fat diet on the mouse corneal neuroimmune phenotype, including changes to corneal nerve density and resident immune cells, alongside the clinical assessment of corneal thickness and endothelial cell density. METHODS Male C57Bl6/J mice, aged 10 weeks, were fed a high-fat diet (60 kcal% fat, 5.2 kcal/g) or control diet (10 kcal%, 3.8 kcal/g) for 16 weeks. At the study endpoint, metabolic parameters (HbA1c, weight, fasting glucose, body fat) were measured to confirm metabolic disturbance. Clinical imaging of the anterior segment was performed using optical coherence tomography to measure the corneal epithelial and stromal thickness. Corneal sensory nerves were visualized using flatmount immunostaining and confocal microscopy. The topographical distribution and density of sensory nerves (BIII-tubulin+), intraepithelial CD45+ and MHC- II+ cells, stromal macrophages (IBA1+CD206+) and endothelial cells (ZO-1+) were analysed using FIJI. RESULTS High-fat diet mice had significantly higher blood HbA1c, higher body weight, a higher percentage of body fat and elevated fasting glucose compared to the control diet mice. Corneal epithelial and stromal thickness was similar in both groups. The sum length of the basal nerve plexus was lower in the central and peripheral cornea of mice fed a high-fat diet. In contrast, the sum length of superficial nerve terminals was similar between groups. Epithelial immune cell density was two-fold higher in the central corneas of high-fat diet mice compared to control diet mice. IBA1+CD206+ macrophage density was similar in the anterior stroma of both groups but was significantly higher in the posterior stroma of the peripheral cornea in the high-fat diet mice compared to controls. The percentage of nerve-associated MHC-II+ cells in the epithelium and stroma was higher in HFD mice compared to controls. Endothelial cell density was similar in the corneas of high-fat diet mice compared to controls. CONCLUSION Together with corneal neuropathy, corneal immune cells in mice fed a high-fat diet were differentially affected depending on their topographical distribution and location within cornea, and appeared in closer proximity to epithelial and stromal nerves, suggesting a local neuroimmune disruption induced by systemic metabolic disturbance.
Collapse
Affiliation(s)
- Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Sl Lim
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Therese E Fazio Coles
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Rachel M McQuade
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Medicine, Western Health, Melbourne University, Sunshine, Victoria, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
37
|
Wang B, Kasper M, Laffer B, Meyer zu Hörste G, Wasmuth S, Busch M, Jalilvand TV, Thanos S, Heiligenhaus A, Bauer D, Heinz C. Increased Hydrostatic Pressure Promotes Primary M1 Reaction and Secondary M2 Polarization in Macrophages. Front Immunol 2020; 11:573955. [PMID: 33154752 PMCID: PMC7591771 DOI: 10.3389/fimmu.2020.573955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
Patients with chronic anterior uveitis are at particularly high risk of developing secondary glaucoma when corticosteroids [e.g., dexamethasone (Dex)] are used or when inflammatory activity has regressed. Macrophage migration into the eye increases when secondary glaucoma develops and may play an important role in the development of secondary glaucoma. Our aim was to evaluate in vitro if increased hydrostatic pressure and corticosteroids could induce changes in macrophages phenotype. By using a pressure chamber cell culture system, we assessed the effect of increased hydrostatic pressure (HP), inflammation, and immunosuppression (Dex) on the M1/M2 phenotype of macrophages. Bone marrow-derived macrophages (BMDMs) were stimulated with medium, lipopolysaccharide (LPS, 100 ng/ml), Dex (200 ng/ml), or LPS + Dex and incubated with different HP (0, 20, or 60 mmHg) for 2 or 7 days. The numbers of CD86+/CD206- (M1 phenotype), CD86-/CD206+ (M2 phenotype), CD86+/CD206+ (intermediate phenotype), F4/80+/TNF-α+, and F4/80+/IL-10+ macrophages were determined by flow cytometry. TNF-α and IL-10 levels in cell culture supernatants were quantified by ELISA. TNF-α, IL-10, fibronectin, and collagen IV expression in BMDMs were detected by immunofluorescence microscopy. Higher HP polarizes macrophages primarily to an M1 phenotype (LPS, 60 vs. 0 mmHg, d2: p = 0.0034) with less extra cellular matrix (ECM) production and secondary to an M2 phenotype (medium, 60 vs. 0 mmHg, d7: p = 0.0089) (medium, 60 vs. 20 mmHg, d7: p = 0.0433) with enhanced ECM production. Dex induces an M2 phenotype (Dex, medium vs. Dex, d2: p < 0.0001; d7: p < 0.0001) with more ECM production. Higher HP further increased M2 polarization of Dex-treated macrophages (Dex, 60 vs. 0 mmHg, d2: p = 0.0417; d7: p = 0.0454). These changes in the M1/M2 phenotype by high HP or Dex treatment may play a role in the pathogenesis of secondary uveitic glaucoma- or glucocorticoid (GC)-induced glaucoma.
Collapse
Affiliation(s)
- Bo Wang
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Maren Kasper
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Björn Laffer
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Gerd Meyer zu Hörste
- Institution of Neurology and Institution for Translational Neurology, Universitätsklinikum Münster, Münster, Germany
| | - Susanne Wasmuth
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Martin Busch
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | | | - Solon Thanos
- Institution of Experimental Ophthalmology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Arnd Heiligenhaus
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
- Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | - Dirk Bauer
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Carsten Heinz
- Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
- Ophthalmology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
38
|
Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol 2020; 18:579-587. [PMID: 32934339 PMCID: PMC7491045 DOI: 10.1038/s41423-020-00541-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
There have been many chapters written about macrophage polarization. These chapters generally focus on the role of macrophages in orchestrating immune responses by highlighting the T-cell-derived cytokines that shape these polarizing responses. This bias toward immunity is understandable, given the importance of macrophages to host defense. However, macrophages are ubiquitous and are involved in many different cellular processes, and describing them as immune cells is undoubtedly an oversimplification. It disregards their important roles in development, tissue remodeling, wound healing, angiogenesis, and metabolism, to name just a few processes. In this chapter, we propose that macrophages function as transducers in the body. According to Wikipedia, “A transducer is a device that converts energy from one form to another.” The word transducer is a term used to describe both the “sensor,” which can interpret a wide range of energy forms, and the “actuator,” which can switch voltages or currents to affect the environment. Macrophages are able to sense a seemingly endless variety of inputs from their environment and transduce these inputs into a variety of different response outcomes. Thus, rather than functioning as immune cells, they should be considered more broadly as cellular transducers that interpret microenvironmental changes and actuate vital tissue responses. In this chapter, we will describe some of the sensory stimuli that macrophages perceive and the responses they make to these stimuli to achieve their prime directive, which is the maintenance of homeostasis.
Collapse
Affiliation(s)
- David M Mosser
- The Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, 20742, USA.
| | - Kajal Hamidzadeh
- The Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, 20742, USA
| | - Ricardo Goncalves
- The Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
39
|
McMenamin PG, Shields GT, Seyed-Razavi Y, Kalirai H, Insall RH, Machesky LM, Coupland SE. Melanoblasts Populate the Mouse Choroid Earlier in Development Than Previously Described. Invest Ophthalmol Vis Sci 2020; 61:33. [PMID: 32797202 PMCID: PMC7441366 DOI: 10.1167/iovs.61.10.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Human choroidal melanocytes become evident in the last trimester of development, but very little is known about them. To better understand normal and diseased choroidal melanocyte biology we examined their precursors, melanoblasts (MB), in mouse eyes during development, particularly their relation to the developing vasculature and immune cells. Methods Naïve B6(Cg)-Tyrc-2J/J albino mice were used between embryonic (E) day 15.5 and postnatal (P) day 8, with adult controls. Whole eyes, posterior segments, or dissected choroidal wholemounts were stained with antibodies against tyrosinase-related protein 2, ionized calcium binding adaptor molecule-1 or isolectin B4, and examined by confocal microscopy. Immunoreactive cell numbers in the choroid were quantified with Imaris. One-way ANOVA with Tukey's post hoc test assessed statistical significance. Results Small numbers of MB were present in the presumptive choroid at E15.5 and E18.5. The density significantly increased between E18.5 (381.4 ± 45.8 cells/mm2) and P0 (695.2 ± 87.1 cells/mm2; P = 0.032). In postnatal eyes MB increased in density and formed multiple layers beneath the choriocapillaris. MB in the periocular mesenchyme preceded the appearance of vascular structures at E15.5. Myeloid cells (Ionized calcium binding adaptor molecule-1-positive) were also present at high densities from this time, and attained adult-equivalent densities by P8 (556.4 ± 73.6 cells/mm2). Conclusions We demonstrate that choroidal MB and myeloid cells are both present at very early stages of mouse eye development (E15.5). Although MB and vascularization seemed to be unlinked early in choroidal development, they were closely associated at later stages. MB did not migrate into the choroid in waves, nor did they have a consistent relationship with nerves.
Collapse
Affiliation(s)
- Paul G. McMenamin
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Graham T. Shields
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Yashar Seyed-Razavi
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Robert H. Insall
- CRUK Beatson Institute, Bearsden, University of Glasgow, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura M. Machesky
- CRUK Beatson Institute, Bearsden, University of Glasgow, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
40
|
Zhou J, Yang J, Dai M, Lin D, Zhang R, Liu H, Yu A, Vakal S, Wang Y, Li X. A combination of inhibiting microglia activity and remodeling gut microenvironment suppresses the development and progression of experimental autoimmune uveitis. Biochem Pharmacol 2020; 180:114108. [PMID: 32569628 DOI: 10.1016/j.bcp.2020.114108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Noninfectious (autoimmune and immune-mediated) uveitis is an ocular inflammatory disease which can lead to blindness in severe cases. Due to the potential side effects of first-line drugs for clinical uveitis, novel drugs and targets against uveitis are still urgently needed. In the present study, using rat experimental autoimmune uveitis (EAU) model, we first found that minocycline treatment can substantially inhibit the development of EAU and improve the retinal function by suppressing the retinal microglial activation, and block the infiltration of inflammatory cells, including Th17, into the retina by decreasing the major histocompatibility complex class II (MHC II) expression in resident and infiltrating cells. Moreover, we demonstrated that minocycline treatment can remodel the gut microenvironment of EAU rats by restoring the relative abundance of Ruminococcus bromii, Streptococcus hyointestinalis, and Desulfovibrio sp. ABHU2SB and promoting a functional shift in the gut via reversing the levels of L-proline, allicin, aceturic acid, xanthine, and leukotriene B4, and especially increasing the production of propionic acid, histamine, and pantothenic acid. At last, we revealed that minocycline treatment can significantly attenuate the progression of EAU after inflammation onset, which may be explained by the role of minocycline in the remodeling of the gut microenvironment since selective elimination of retinal microglia on the later stages of EAU was shown to have little effect. These data clearly demonstrated that inhibition of microglial activation and remodeling of the gut microenvironment can suppress the development and progression of experimental autoimmune uveitis. Considering the excellent safety profile of minocycline in multiple clinical experiments, we suggest that minocycline may have therapeutic implications for clinical uveitis.
Collapse
Affiliation(s)
- Jianhong Zhou
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Jingjing Yang
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Mali Dai
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Dan Lin
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Renshu Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Hui Liu
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Ailing Yu
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, Turku 20541, Finland
| | - Yuqin Wang
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China.
| | - Xingyi Li
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
41
|
Bo Q, Shen M, Xiao M, Liang J, Zhai Y, Zhu H, Jiang M, Wang F, Luo X, Sun X. 3-Methyladenine Alleviates Experimental Subretinal Fibrosis by Inhibiting Macrophages and M2 Polarization Through the PI3K/Akt Pathway. J Ocul Pharmacol Ther 2020; 36:618-628. [PMID: 32552228 DOI: 10.1089/jop.2019.0112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose: To explore the effects of 3-methyladenine (3-MA), a selective inhibitor of phosphatidylinositol-3-kinase (PI3K), on experimental subretinal fibrosis (SRF) in mice. Methods: The SRF mouse model was established by 532 nm laser photocoagulation at each fundus of mice on day 0. 3-MA was administered every 2 days from day 0 to 35. Immunofluorescence of choroidal flat mounts was performed to evaluate the size of SRF area, local macrophages, and polarization, respectively. Besides, Western blot analysis was carried out to assess the expression levels of macrophage polarization-related genes, Arg-1, Ym-1, and transforming growth factor-β2 (TGF-β2). Co-culture and migration experiments were used to demonstrate the inhibitory effect of 3-MA on fibroblasts. The gene knockout and Western blot analysis were used to explore the signal pathways related to macrophage polarization. Results: Compared with the control group, the 3-MA-treated group showed significantly less size of SRF area. 3-MA treatment reduced both circulating and local macrophages, and counteracted M2 polarization. Moreover, 3-MA inhibited fibroblast recruitment. Mechanistically, we proved that 3-MA inhibits macrophage M2 polarization by suppressing PI3K/Akt signal pathway rather than the PI3K-autophagy-related signal pathway. Conclusions: 3-MA exerts antifibrotic effects on experimental SRF by targeting circulating and local macrophages and M2 polarization, through PI3K/Akt signal pathway. These results support the potential use of 3-MA as a new therapeutic modality for SRF associated with neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Qiyu Bo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxi Shen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meichun Xiao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Yuanqi Zhai
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Mei Jiang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
42
|
Droho S, Cuda CM, Lavine JA. Digestion of Whole Mouse Eyes for Multi-Parameter Flow Cytometric Analysis of Mononuclear Phagocytes. J Vis Exp 2020. [PMID: 32628177 DOI: 10.3791/61348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The innate immune system plays important roles in ocular pathophysiology including uveitis, diabetic retinopathy, and age-related macular degeneration. Innate immune cells, specifically mononuclear phagocytes, express overlapping cell surface markers, which makes identifying these populations a challenge. Multi-parameter flow cytometry allows for the simultaneous, quantitative analysis of multiple cell surface markers in order to differentiate monocytes, macrophages, microglia, and dendritic cells in mouse eyes. This protocol describes the enucleation of whole mouse eyes, ocular dissection, digestion into a single cell suspension, and staining of the single cell suspension for myeloid cell markers. Additionally, we explain the proper methods for determining voltages using single color controls and for delineating positive gates using fluorescence minus one controls. The major limitation of multi-parameter flow cytometry is the absence of tissue architecture. This limitation can be overcome by multi-parameter flow cytometry of individual ocular compartments or complimentary immunofluorescence staining. However, immunofluorescence is limited by its lack of quantitative analysis and reduced number of fluorophores on most microscopes. We describe the use of multi-parametric flow cytometry to provide highly quantitative analysis of mononuclear phagocytes in laser-induced choroidal neovascularization. Additionally, multi-parameter flow cytometry can be used for the identification of macrophage subsets, fate mapping, and cell sorting for transcriptomic or proteomic studies.
Collapse
Affiliation(s)
- Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University
| | - Carla M Cuda
- Department of Medicine, Division of Rheumatology, Feinberg School of Medicine, Northwestern University
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University;
| |
Collapse
|
43
|
Fouda AY, Xu Z, Narayanan SP, Caldwell RW, Caldwell RB. Utility of LysM-cre and Cdh5-cre Driver Mice in Retinal and Brain Research: An Imaging Study Using tdTomato Reporter Mouse. Invest Ophthalmol Vis Sci 2020; 61:51. [PMID: 32232350 PMCID: PMC7405957 DOI: 10.1167/iovs.61.3.51] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/22/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose The lysozyme 2 (Lyz2 or LysM) cre mouse is extensively used to achieve genetic manipulation in myeloid cells and it has been widely employed in retinal research. However, LysM has been recently described to be expressed in brain neurons and there is a debate on whether it is also expressed by resident microglia in addition to infiltrating macrophages. Methods We examined LysM-cre recombination in retinal tissue using a LysM-cre/tdTomato reporter mouse together with immunolabeling for several retinal cell markers. We further compared LysM-cre tdTomato recombination with that of Cdh5-cre driver, which is expressed in both endothelial and hematopoietic cells. Results LysM-cre was strongly expressed in most microglia/resident macrophages in neonatal retinas (P8) and to a lesser extent in microglia of adult retinas. In addition, there was some neuronal recombination (8 %) of LysM-cre specifically in adult retinal ganglion cells and amacrine cells. After retinal ischemia-reperfusion injury, LysM-cre was strongly expressed in microglia/infiltrating macrophages. Cdh5-cre was expressed in endothelial and myeloid cells of P8 pups retinas. Unexpectedly, Cdh5 showed additional expression in adult mouse retinal ganglion cells and brain neurons. Conclusions LysM-cre is expressed in macrophages and a subset of microglia together with a small but significant recombination of LysM-cre in the retinal neurons of adult mice. Cdh5 also showed some neuronal expression in both retina and brain of adult mice. These findings should be taken into consideration when interpreting results from central nervous system research using LysM-cre and Cdh5-cre mice.
Collapse
Affiliation(s)
- Abdelrahman Y. Fouda
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Zhimin Xu
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - S. Priya Narayanan
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, Georgia, United States
| | - R. William Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
- Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, United States
| | - Ruth B. Caldwell
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| |
Collapse
|
44
|
Nakanishi H, Prakash P, Ito T, Kim HJ, Brewer CC, Harrow D, Roux I, Hosokawa S, Griffith AJ. Genetic Hearing Loss Associated With Autoinflammation. Front Neurol 2020; 11:141. [PMID: 32194497 PMCID: PMC7066252 DOI: 10.3389/fneur.2020.00141] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss can result from dysfunction of the inner ear, auditory nerve, or auditory pathways in the central nervous system. Sensorineural hearing loss can be associated with age, exposure to ototoxic drugs or noise, or mutations in nuclear or mitochondrial genes. However, it is idiopathic in some patients. Although these disorders are mainly caused by dysfunction of the inner ear, little of the pathophysiology in sensorineural hearing loss is known due to inaccessibility of the living human inner ear for biopsy and pathological analysis. The inner ear has previously been thought of as an immune-privileged organ. We recently showed that a missense mutation of the NLRP3 gene is associated with autosomal-dominant sensorineural hearing loss with cochlear autoinflammation in two unrelated families. NLRP3 encodes the NLRP3 protein, a key component of the NLRP3 inflammasome that is expressed in immune cells, including monocytes and macrophages. Gain-of-function mutations of NLRP3 cause abnormal activation of the NLRP3 inflammasome leading to IL-1β secretion in a spectrum of autosomal dominant systemic autoinflammatory phenotypes termed cryopyrin-associated periodic syndromes. The affected subjects of our two families demonstrated atypical phenotypes compared with those reported for subjects with cryopyrin-associated periodic syndromes. These observations led us to test the hypothesis that macrophage/monocyte-like cells in the cochlea can mediate local autoinflammation via activation of the NLRP3 inflammasome. The inflammasome can indeed be activated in macrophage/monocyte-like cells of the mouse cochlea, with secretion of IL-1β. The macrophage/monocyte-like cells in the cochlea were also found to be associated with hearing loss in a Slc26a4-insufficient mouse model of human deafness. This review addresses our understanding of genetic hearing loss mediated by autoinflammation and macrophage/monocyte-like cells in the cochlea.
Collapse
Affiliation(s)
- Hiroshi Nakanishi
- Department of Otorhinolaryngology/Head & Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Pragya Prakash
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Taku Ito
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States.,Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - H Jeffrey Kim
- Office of the Clinical Director, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Carmen C Brewer
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Danielle Harrow
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Isabelle Roux
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Seiji Hosokawa
- Department of Otorhinolaryngology/Head & Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
45
|
Kezic JM, McMenamin PG. Systemic exposure to CpG-ODN elicits low-grade inflammation in the retina. Exp Eye Res 2019; 186:107708. [PMID: 31242444 DOI: 10.1016/j.exer.2019.107708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/04/2023]
Abstract
Previous studies have reported that topical exposure to the toll-like receptor (TLR) 9 ligand CpG-ODN causes widespread ocular inflammation, including retinal microglial activation and posterior segment inflammation. Here we sought to determine the effects of systemic exposure to CpG-ODN in the retina and whether this inflammatory response was altered with Cx3cr1 deficiency or hyperglycemia. Male non-diabetic Cx3cr1+/gfp and Cx3cr1gfp/gfp littermates (normoglycemic controls) and Cx3cr1+/gfpIns2Akitaand Cx3cr1gfp/gfpIns2Akita diabetic mice were injected intraperitoneally with 40 μg CpG-ODN. Immunofluorescence staining was performed 1 week later to assess the expression of MHC Class II and glial fibrillary acidic protein (GFAP), as well as to identify morphological changes to microglia and changes in retinal macrophage cell density. Systemic exposure to CpG-ODN induced the upregulated expression of both GFAP on retinal Müller cells and MHC Class II on the retinal vasculature. Additionally, there was an increased accumulation of macrophages in the subretinal space 1 week after exposure to systemic CpG-ODN as well as characteristic morphological changes to microglia indicative of an activated phenotype. These preliminary studies demonstrate that low-grade inflammatory changes were not enhanced in Cx3cr1-deficient or diabetic mice, indicating that the inflammatory response to systemic CpG-ODN in the retina is unaltered in the context of Cx3cr1 deficiency or prolonged hyperglycemia.
Collapse
Affiliation(s)
- Jelena M Kezic
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
| | - Paul G McMenamin
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
46
|
Abstract
Autoimmune uveitis is a sight-threatening ocular inflammatory condition in which the retina and uveal tissues become a target of autoreactive immune cells. While microglia have been studied extensively in autoimmune uveitis, their exact function remains uncertain. The objective of the current study was to determine whether resident microglia are necessary and sufficient to initiate and amplify retinal inflammation in autoimmune uveitis. In this study, we clearly demonstrate that microglia are essential for initiating infiltration of immune cells utilizing a murine model of experimental autoimmune uveoretinitis (EAU) and the recently identified microglia-specific marker P2ry12. Initiating disease is the primary function of microglia in EAU, since eliminating microglia during the later stages of EAU had little effect, indicating that the function of circulating leukocytes is to amplify and sustain destructive inflammation once microglia have triggered disease. In the absence of microglia, uveitis does not develop, since leukocytes cannot gain entry through the blood-retinal barrier, illustrating that microglia play a critical role in regulating infiltration of inflammatory cells into the retina.
Collapse
|
47
|
Folic acid deficiency and vision: a review. Graefes Arch Clin Exp Ophthalmol 2019; 257:1573-1580. [PMID: 30919078 DOI: 10.1007/s00417-019-04304-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/10/2019] [Accepted: 03/20/2019] [Indexed: 02/03/2023] Open
Abstract
Folic acid (FA), also termed folate, is an essential vitamin for health at all ages since it participates in the biosynthesis of nucleotides, amino acids, neurotransmitters, and certain vitamins. It is therefore crucial for rapidly growing tissues such as those of the fetus. It is becoming clear that FA deficiency and impaired folate pathways are implicated in many diseases of both early life and old age. FA can be transported into the cell by the folate receptor, the reduced folate transporter, and proton-coupled folate transporter. Folate transport proteins are present in certain eye tissues, which explains why FA plays an important role in eye development. The purpose of this literature review is to investigate the evidence relating FA deficiency to eye diseases.
Collapse
|
48
|
Gucciardo E, Loukovaara S, Salven P, Lehti K. Lymphatic Vascular Structures: A New Aspect in Proliferative Diabetic Retinopathy. Int J Mol Sci 2018; 19:ijms19124034. [PMID: 30551619 PMCID: PMC6321212 DOI: 10.3390/ijms19124034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/28/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common diabetic microvascular complication and major cause of blindness in working-age adults. According to the level of microvascular degeneration and ischemic damage, DR is classified into non-proliferative DR (NPDR), and end-stage, proliferative DR (PDR). Despite advances in the disease etiology and pathogenesis, molecular understanding of end-stage PDR, characterized by ischemia- and inflammation-associated neovascularization and fibrosis, remains incomplete due to the limited availability of ideal clinical samples and experimental research models. Since a great portion of patients do not benefit from current treatments, improved therapies are essential. DR is known to be a complex and multifactorial disease featuring the interplay of microvascular, neurodegenerative, metabolic, genetic/epigenetic, immunological, and inflammation-related factors. Particularly, deeper knowledge on the mechanisms and pathophysiology of most advanced PDR is critical. Lymphatic-like vessel formation coupled with abnormal endothelial differentiation and progenitor cell involvement in the neovascularization associated with PDR are novel recent findings which hold potential for improved DR treatment. Understanding the underlying mechanisms of PDR pathogenesis is therefore crucial. To this goal, multidisciplinary approaches and new ex vivo models have been developed for a more comprehensive molecular, cellular and tissue-level understanding of the disease. This is the first step to gain the needed information on how PDR can be better evaluated, stratified, and treated.
Collapse
Affiliation(s)
- Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Ophthalmology, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland.
| | - Petri Salven
- Department of Pathology, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland.
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, SE-17165 Stockholm, Sweden.
| |
Collapse
|
49
|
McMenamin PG, Saban DR, Dando SJ. Immune cells in the retina and choroid: Two different tissue environments that require different defenses and surveillance. Prog Retin Eye Res 2018; 70:85-98. [PMID: 30552975 DOI: 10.1016/j.preteyeres.2018.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023]
Abstract
In the eye immune defenses must take place in a plethora of differing microenvironments ranging from the corneal and conjunctival epithelia facing the external environment to the pigmented connective tissue of the uveal tract containing smooth muscle, blood vessels and peripheral nerves to the innermost and highly protected neural retina. The extravascular environment of the neural retina, like the brain parenchyma, is stringently controlled to maintain conditions required for neural transmission. The unique physiological nature of the neural retina can be attributed to the blood retinal barriers (BRB) of the retinal vasculature and the retinal pigment epithelium, which both tightly regulate the transport of small molecules and restrict passage of cells and macromolecules from the circulation into the retina in a similar fashion to the blood brain barrier (BBB). The extracellular environment of the neural retina differs markedly from that of the highly vascular, loose connective tissue of the choroid, which lies outside the BRB. The choroid hosts a variety of immune cell types, including macrophages, dendritic cells (DCs) and mast cells. This is in marked contrast to the neural parenchyma of the retina, which is populated almost solely by microglia. This review will describe the current understanding of the distribution, phenotype and physiological role of ocular immune cells behind or inside the blood-retinal barriers and those in closely juxtaposed tissues outside the barrier. The nature and function of these immune cells can profoundly influence retinal homeostasis and lead to disordered immune function that can lead to vision loss.
Collapse
Affiliation(s)
- Paul G McMenamin
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Daniel R Saban
- Department of Ophthalmology, Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Samantha J Dando
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
50
|
Li L, Xu L, Chen W, Li X, Xia Q, Zheng L, Duan Q, Zhang H, Zhao Y. Reduced Annexin A1 Secretion by ABCA1 Causes Retinal Inflammation and Ganglion Cell Apoptosis in a Murine Glaucoma Model. Front Cell Neurosci 2018; 12:347. [PMID: 30364320 PMCID: PMC6193130 DOI: 10.3389/fncel.2018.00347] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022] Open
Abstract
Variants near the ATP-binding cassette transporter A1 (ABCA1) gene are associated with elevated intraocular pressure and newly discovered risk factors for glaucoma. Previous studies have shown an association between ABCA1 deficiency and retinal inflammation. Using a mouse model of ischemia-reperfusion (IR) induced by acute intraocular pressure elevation, we found that the retinal expression of ABCA1 protein was decreased. An induction of ABCA1 expression by liver X receptor agonist TO901317 reduced retinal ganglion cell (RGC) apoptosis after IR and promoted membrane translocation and secretion of the anti-inflammatory factor annexin A1 (ANXA1). Moreover, ABCA1 and ANXA1 co-localized in cell membranes, and the interaction domain is amino acid 196 to 274 of ANXA1 fragment. TO901317 also reduced microglia migration and activation and decreased the expression of pro-inflammatory cytokines interleukin (IL)-17A and IL-1β, which could be reversed by the ANXA1 receptor blocker Boc2. Overexpression of TANK-binding kinase 1 (TBK1) increased ABCA1 degradation, which was reversed by the proteasome inhibitor carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132). Silencing Tbk1 with siRNA increased ABCA1 expression and promoted ANXA1 membrane translocation. These results indicate a novel IR mechanism, that leads via TBK1 activation to ABCA1 ubiquitination. This degradation decreases ANXA1 secretion, thus facilitating retinal inflammation and RGC apoptosis. Our findings suggest a potential treatment strategy to prevent RGC apoptosis in retinal ischemia and glaucoma.
Collapse
Affiliation(s)
- Lu Li
- Department of Ophthalmology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Department of Ophthalmology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Lingjuan Xu
- Department of Ophthalmology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- Department of Ophthalmology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Key Laboratory of Neurological Diseases, Department of Neurobiology, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Key Laboratory of Neurological Diseases, Department of Neurobiology, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Zheng
- Key Laboratory of Neurological Diseases, Department of Neurobiology, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA, United States
| | - Hong Zhang
- Department of Ophthalmology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|