1
|
Zamith Cunha R, Grilli E, Piva A, Delprete C, Franciosi C, Caprini M, Chiocchetti R. The Expression of Cannabinoid and Cannabinoid-Related Receptors on the Gustatory Cells of the Piglet Tongue. Molecules 2024; 29:4613. [PMID: 39407543 PMCID: PMC11478043 DOI: 10.3390/molecules29194613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The gustatory system is responsible for detecting and evaluating the palatability of the various chemicals present in food and beverages. Taste bud cells, located primarily on the tongue, communicate with the gustatory sensory neurons by means of neurochemical signals, transmitting taste information to the brain. It has also been found that the endocannabinoid system (ECS) may modulate food intake and palatability, and that taste bud cells express cannabinoid receptors. The purpose of this study was to investigate the expression of cannabinoid and cannabinoid-related receptors in the gustatory cells of the papillae vallatae and foliatae of ten piglets. Specific antibodies against the cannabinoid receptors (CB1R and CB2R), G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) were applied on cryosections of lingual tissue; the lingual tissue was also processed using Western blot analysis. Cannabinoid and cannabinoid-related receptors were found to be expressed in the taste bud cells and the surrounding epithelial cells. The extra-papillary epithelium also showed strong immunolabeling for these receptors. The results showed that these receptors were present in both the taste bud cells and the extra-gustatory epithelial cells, indicating their potential role in taste perception and chemesthesis. These findings contributed to understanding the complex interactions between cannabinoids and the gustatory system, highlighting the role of the ECS within taste perception and its potential use in animal production in order to enhance food intake.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (E.G.); (A.P.)
| | - Ester Grilli
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (E.G.); (A.P.)
- R&D Division, Vetagro S.p.A., Via Porro 2, 42124 Reggio Emilia, Italy
- R&D Division, Vetagro, Inc., 17 East Monroe Street, Suite #179, Chicago, IL 60603, USA
| | - Andrea Piva
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (E.G.); (A.P.)
- R&D Division, Vetagro S.p.A., Via Porro 2, 42124 Reggio Emilia, Italy
- R&D Division, Vetagro, Inc., 17 East Monroe Street, Suite #179, Chicago, IL 60603, USA
| | - Cecilia Delprete
- Laboratory of Cellular Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (C.D.); (C.F.); (M.C.)
| | - Cecilia Franciosi
- Laboratory of Cellular Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (C.D.); (C.F.); (M.C.)
| | - Marco Caprini
- Laboratory of Cellular Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (C.D.); (C.F.); (M.C.)
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (R.Z.C.); (E.G.); (A.P.)
| |
Collapse
|
2
|
Wei F, Luo L, Tian S, Qin Y, Luo W, Zeng L. Synergistic Effect Mechanism of Binary Sweet Taste Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20028-20036. [PMID: 39208273 DOI: 10.1021/acs.jafc.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In our previous study, phloridzin, sucrose, l-alanine, and dulcitol presented synergistic effects in Camellia nanchuanica black tea (NCBT). This study aims to verify the synergistic effects of the aforementioned sweet taste compounds and the mechanism involved. By conducting σ-τ plot analysis, phloridzin at the recognition threshold concentration (phl) exhibited synergistic effects with different concentrations of sucrose (Lsuc-6suc). Various concentrations of sucrose, phloridzin, and their combinations were selected to investigate the impact on sweet taste receptor cells. The results revealed that sucrose/phloridzin significantly increased the calcium signal compared to phloridzin and sucrose alone, attributed to the greater stability of the sucrose/phloridzin combination when binding to Taste 1 Receptor Member 3 (TAS1R3; one subunit of sweet taste receptor proteins). Ultimately, the sweet taste signal of sucrose/phloridzin was transmitted to the brain, triggering the activation of more brain regions associated with sweet taste perception (right insular, postcentral, and amygdala).
Collapse
Affiliation(s)
- Fang Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Liyong Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Shiyi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yumei Qin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Wei Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Liang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
3
|
Sclafani A, Ackroff K. Glucose appetition in C57BL/6J mice: Influence of nonnutritive sweetener experience, food deprivation state and sex differences. Physiol Behav 2024; 283:114596. [PMID: 38815713 PMCID: PMC11246822 DOI: 10.1016/j.physbeh.2024.114596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
In addition to its sweet taste, glucose has potent and rapid postoral actions (appetition) that enhance its reward value. This has been demonstrated by the experience-induced preference for glucose over initially preferred nonnutritive sweetener solutions in 24-h choice tests. However, some sweetener solutions (e.g., 0.8% sucralose) have inhibitory postoral actions that may exaggerate glucose appetition whereas others (e.g., 0.1% sucralose + 0.1% saccharin, S+S) do not. Experiment 1 revealed that food-restricted (FR) male C57BL/6J mice displayed similar rapid glucose appetition effects (stimulation of glucose licking within minutes) and conditioned flavor preferences following 1-h experience with flavored 0.8% sucralose or 0.1% S+S and 8% glucose solutions. Thus, the inhibitory effects of 0.8% sucralose observed in 24-h tests were not apparent in 1-h tests. Experiment 2 evaluated the effects of food deprivation state and sweetener concentration on glucose appetition in female mice. Unlike FR mice tested with 0.1% S+S and 8% glucose, ad libitum (AL) fed mice displayed no stimulation of 8% glucose licking in the 1-h tests. A second ad libitum group (AL) tested with 0.2% S+S and 16% glucose solutions displayed stimulation of 16% glucose licking by the third 1-h test. Both AL groups, like the FR group, developed a preference for the glucose-paired flavor over the S+S paired flavor. Thus, food restriction promotes increased glucose licking but is not required for a conditioned preference. The FR male mice (Exp. 1) and FR female mice (Exp. 2) showed similar appetition responses (licking stimulation and flavor preference) to 8% glucose.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| |
Collapse
|
4
|
Bradshaw CM. Comparison of sucrose and maltose as reinforcers in an operant choice paradigm. Behav Processes 2024; 220:105075. [PMID: 38944130 DOI: 10.1016/j.beproc.2024.105075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Two experiments compared the reinforcing effects of sucrose and maltose across a range of concentrations. The results were interpreted using the Multiplicative Hyperbolic Model of reinforcer value (MHM). In Experiment 1, rats were exposed to a discrete-trials schedule in which they chose between the test compound (sucrose or maltose) and a standard sucrose solution (0.4 M, delivered after a 4-s delay). Percentage choice of each test compound increased as a function of concentration. The maximum percentage choice of maltose was significantly less than that of sucrose; the concentration corresponding to the half-maximal selection of the test compound was lower for maltose than for sucrose. In Experiment 2 the preference function for sucrose alone was compared with the preference function for a sucrose solution to which a fixed concentration of maltose had been added. The presence of maltose elevated the function and shifted it leftwards (i.e. towards lower concentrations). The results were interpreted in terms of MHM using two alterntive models 'borrowed' from classical pharmacological receptor theory. It was concluded that maltose and sucrose are not fully substitutable reinforcers and that the reinforcing effect of maltose may be mediated by an action at more than one species of sweet taste receptor.
Collapse
Affiliation(s)
- C M Bradshaw
- Division of Psychiatry and Applied Psychology, University of Nottingham, UK.
| |
Collapse
|
5
|
Glendinning JI, Archambeau A, Brouwer LR, Dennis A, Georgiou K, Ivanov J, Vayntrub R, Sclafani A. Mice Condition Cephalic-Phase Insulin Release to Flavors Associated with Postoral Actions of Concentrated Glucose. Nutrients 2024; 16:2250. [PMID: 39064693 PMCID: PMC11279997 DOI: 10.3390/nu16142250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Rats can condition cephalic-phase insulin responses (CPIRs) to specific sounds or times of the day that predict food availability. The present study asked whether mice can condition a CPIR to the flavor of sapid solutions that produce postoral glucose stimulation. To this end, we subjected C57BL/6 mice to one of six experimental protocols. We varied both the duration of the five training sessions (i.e., 23 h or 1 h) and the nature of the training solution. In Experiment 1, consumption of a 0.61% saccharin solution was paired with IG co-infusion of a 16% glucose solution. In Experiments 2-6, the mice consumed a training solution containing a mixture of 0.61% saccharin + 16% glucose, 32% sucrose, 32% maltodextrin, flavored 32% maltodextrin, or 16% maltodextrin. We subsequently asked whether consumption of any of these fluids conditioned a CPIR to a test solution that produced a similar flavor, but which did not elicit a CPIR in naïve mice. The mice did condition a CPIR, but only to the solutions containing 32% maltodextrin. We attribute this conditioning to postoral actions of the concentrated maltodextrin solutions.
Collapse
Affiliation(s)
- John I. Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA; (A.A.); (R.V.)
| | - Alix Archambeau
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA; (A.A.); (R.V.)
| | - Lillian R. Brouwer
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
| | - Alyson Dennis
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
| | - Kiriaki Georgiou
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
| | - Jessica Ivanov
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
| | - Rochelle Vayntrub
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA; (A.A.); (R.V.)
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA;
| |
Collapse
|
6
|
Wang Y, Chang S, Lu S, Tong M, Kong F, Liu B. The sweet taste receptors in Lemuriformes respond to aspartame, a non-nutritive sweetener and critical residues mediating their taste. Biochimie 2024:S0300-9084(24)00164-0. [PMID: 38996999 DOI: 10.1016/j.biochi.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Aspartame is a high potency artificial sweetener which is popularly used in foods and beverages. The species-dependent sweet taste toward aspartame has not been completely understood. In a recent publication, we reported that the prosimians Lemuriformes species, which are proposed as aspartame nontasters, could taste aspartame based on the sequence and structure analysis. In this study, by mutagenesis, cell-based functional analysis and molecular simulations, we reveal that Lemuriformes species can respond to aspartame at the cell-based receptor activity level. Furthermore, it is proved that the conserved critical residues D142 and S40 mediate the species-dependent sweet taste toward aspartame. This research provides a deeper insight on the species taste, structure-activity relationship and evolution for eliciting the sweetness of this important synthetic sweetener.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Shiyu Chang
- Tobacco Research Institute, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Shangyang Lu
- Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Mingqiong Tong
- School of Medicine and Nursing, Dezhou University, Dezhou, Shandong, 253023, China
| | - Fanyu Kong
- Tobacco Research Institute, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Bo Liu
- Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| |
Collapse
|
7
|
Schmidt P, Perniss A, Bodenbenner-Tuerich M, Wiegand S, Briand L, Deckmann K. Tas1R3 Dependent and Independent Recognition of Sugars in the Urethra and the Role of Tuft Cells in this Process. Adv Biol (Weinh) 2024; 8:e2400117. [PMID: 38548667 DOI: 10.1002/adbi.202400117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 06/16/2024]
Abstract
Increased sugar concentrations on mucosal surfaces display risk factors for infections. This study aims to clarify sugar monitoring in the urethra. Urethral tuft cells (UTC) are known sentinels monitoring the urethral lumen for potentially harmful substances and initiating protective mechanisms. Next-generation sequencing (NGS), RT-PCR, and immunohistochemistry show expression of the taste receptor Tas1R3 in murine UTC, a crucial component of the classical sweet detection pathway. Isolated UTC respond to various sugars with an increase of intracellular [Ca2+]. The Tas1R3 inhibitor gurmarin and Tas1R3 deletion reduces these responses. Utilizing mice lacking UTC, glibenclamide, a K+-ATP channel antagonist, and phlorizin, a SGLT1 inhibitor, reveal an additional Tas1R3 independent sweet detection pathway. Inhibition of both pathways abrogates the sugar responses. Rat cystometry shows that intraurethral application of sucrose and glucose increases detrusor muscle activity Tas1R3 dependently. Sugar monitoring in the urethra occurs via two distinct pathways. A Tas1R3 dependent pathway, exclusive to UTC, and a Tas1R3 independent sweet detection pathway, which can be found both in UTC and in other urethral epithelial cells.
Collapse
Affiliation(s)
- Patricia Schmidt
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385, Giessen, Germany
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany
| | - Alexander Perniss
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385, Giessen, Germany
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Silke Wiegand
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385, Giessen, Germany
| | - Loic Briand
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, F-21000, France
| | - Klaus Deckmann
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385, Giessen, Germany
| |
Collapse
|
8
|
Sclafani A, Ackroff K. Glucose appetition in C57BL/6J mice: Influence of nonnutritive sweetener experience, food deprivation state and sex differences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582331. [PMID: 38464099 PMCID: PMC10925266 DOI: 10.1101/2024.02.27.582331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In addition to its sweet taste, glucose has potent and rapid postoral actions (appetition) that enhance its reward value. This has been demonstrated by the experience-induced preference for glucose over initially preferred nonnutritive sweetener solutions in 24-h choice tests. However, some sweetener solutions (e.g., 0.8% sucralose) have inhibitory postoral actions that may exaggerate glucose appetition whereas others (e.g., 0.1% sucralose + 0.1% saccharin, S+S) do not. Experiment 1 revealed that food-restricted (FR) male C57BL/6J mice displayed similar rapid glucose appetition effects (stimulation of glucose licking within minutes) and conditioned flavor preferences following 1-h experience with flavored 0.8% sucralose or 0.1% S+S and 8% glucose solutions. Thus, the inhibitory effects of 0.8% sucralose observed in 24-h tests were not apparent in 1-h tests. Experiment 2 evaluated the effects of food deprivation state on 1-h glucose appetition. Unlike FR female mice, ad libitum (AL) fed mice displayed no or delayed stimulation of glucose licking depending upon the training solutions used (0.1% S+S vs. 8% glucose, or 0.2% S+S vs. 16% glucose). Both AL groups, like the FR group, developed a preference for the glucose-paired flavor over the S+S paired flavor. Thus, food restriction promotes glucose appetition but is not required for a conditioned preference. Overall, male and female mice showed similar glucose appetition responses although females displayed a more rapid initial glucose response.
Collapse
|
9
|
Glendinning JI, Archambeau A, Conlin C, Drimmer Z, Griffith G, Isber R, Koffler K, Ortiz G, Prakash A, Sollitto C, Srinivasan H. Mice learn to identify and discriminate sugar solutions based on odor cues. Chem Senses 2024; 49:bjae024. [PMID: 38824409 DOI: 10.1093/chemse/bjae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Indexed: 06/03/2024] Open
Abstract
This study examined how olfaction impacts ingestive responses of mice to sugar solutions. Experiment 1 asked whether naïve C57BL/6 (B6) mice could identify 1 M glucose, fructose, or sucrose solutions based on odor cues, during a 30-min 2-bottle acceptability test. We tested mice both before and after they were rendered anosmic with ZnSO4 treatment. We used 2 indirect measures of odor-mediated response: number of trials initiated and latency to initiate licking. Before ZnSO4 treatment, the mice learned how to identify 1 M glucose and fructose (but not sucrose) solutions based on odor cues. ZnSO4 treatment eliminated their ability to identify the glucose and fructose solutions. Experiment 2 asked whether 2 d of exposure to a 1 M glucose, fructose, or sucrose solution improved the identification of the same sugar solution. Following exposure, the B6 mice identified all 3 sugar solutions based on odor cues. Experiment 3 asked whether T1R3 knockout mice (i.e. mice lacking the T1R3 subunit of the T1R2 + R3 sweet taste receptor) could learn to discriminate 0.44 M glucose and fructose solutions based on odor cues. All mice were subjected to a 1-h preference test, both before and after exposure to the 0.44 M glucose and fructose solutions. During exposure, the experimental mice received ZnSO4 treatment, whereas the control mice received saline treatment. Before exposure, neither type of mouse preferred the glucose solution. After exposure, the control mice preferred the glucose solution, whereas the experimental mice did not. Our results reveal that mice can learn to use odor cues to identify and discriminate between sugar solutions.
Collapse
Affiliation(s)
- John I Glendinning
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
- Department of Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Alix Archambeau
- Department of Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Catherine Conlin
- Department of Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Zoee Drimmer
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Gabriel Griffith
- Department of Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Rayna Isber
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Kayla Koffler
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Gabriella Ortiz
- Department of Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Anisha Prakash
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Catherine Sollitto
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Harini Srinivasan
- Department of Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| |
Collapse
|
10
|
Sung H, Vesela I, Driks H, Ferrario CR, Mistretta CM, Bradley RM, Dus M. High-sucrose diet exposure is associated with selective and reversible alterations in the rat peripheral taste system. Curr Biol 2022; 32:4103-4113.e4. [PMID: 35977546 PMCID: PMC9561051 DOI: 10.1016/j.cub.2022.07.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022]
Abstract
Elevated sugar consumption is associated with an increased risk for metabolic diseases. Whereas evidence from humans, rodents, and insects suggests that dietary sucrose modifies sweet taste sensation, understanding of peripheral nerve or taste bud alterations is sparse. To address this, male rats were given access to 30% liquid sucrose for 4 weeks (sucrose rats). Neurophysiological responses of the chorda tympani (CT) nerve to lingual stimulation with sugars, other taste qualities, touch, and cold were then compared with controls (access to water only). Morphological and immunohistochemical analyses of fungiform papillae and taste buds were also conducted. Sucrose rats had substantially decreased CT responses to 0.15-2.0 M sucrose compared with controls. In contrast, effects were not observed for glucose, fructose, maltose, Na saccharin, NaCl, organic acid, or umami, touch, or cold stimuli. Whereas taste bud number, size, and innervation volume were unaffected, the number of PLCβ2+ taste bud cells in the fungiform papilla was reduced in sucrose rats. Notably, the replacement of sucrose with water resulted in a complete recovery of all phenotypes over 4 weeks. The work reveals the selective and modality-specific effects of sucrose consumption on peripheral taste nerve responses and taste bud cells, with implications for nutrition and metabolic disease risk. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Hayeon Sung
- Department of Molecular, Cellular, and Developmental Biology, The College of Literature, Arts, and Science, The University of Michigan, Ann Arbor, MI, USA
| | - Iva Vesela
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| | - Hannah Driks
- Department of Molecular, Cellular, and Developmental Biology, The College of Literature, Arts, and Science, The University of Michigan, Ann Arbor, MI, USA
| | - Carrie R Ferrario
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI, USA; Department of Psychology (Biopsychology), College of Literature, Arts, and Science, The University of Michigan, Ann Arbor, MI, USA
| | - Charlotte M Mistretta
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| | - Robert M Bradley
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, The College of Literature, Arts, and Science, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Caretta A, Mucignat-Caretta C. Not Only COVID-19: Involvement of Multiple Chemosensory Systems in Human Diseases. Front Neural Circuits 2022; 16:862005. [PMID: 35547642 PMCID: PMC9081982 DOI: 10.3389/fncir.2022.862005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chemosensory systems are deemed marginal in human pathology. In appraising their role, we aim at suggesting a paradigm shift based on the available clinical and experimental data that will be discussed. Taste and olfaction are polymodal sensory systems, providing inputs to many brain structures that regulate crucial visceral functions, including metabolism but also endocrine, cardiovascular, respiratory, and immune systems. Moreover, other visceral chemosensory systems monitor different essential chemical parameters of “milieu intérieur,” transmitting their data to the brain areas receiving taste and olfactory inputs; hence, they participate in regulating the same vital functions. These chemosensory cells share many molecular features with olfactory or taste receptor cells, thus they may be affected by the same pathological events. In most COVID-19 patients, taste and olfaction are disturbed. This may represent only a small portion of a broadly diffuse chemosensory incapacitation. Indeed, many COVID-19 peculiar symptoms may be explained by the impairment of visceral chemosensory systems, for example, silent hypoxia, diarrhea, and the “cytokine storm”. Dysregulation of chemosensory systems may underlie the much higher mortality rate of COVID-19 Acute Respiratory Distress Syndrome (ARDS) compared to ARDSs of different origins. In chronic non-infectious diseases like hypertension, diabetes, or cancer, the impairment of taste and/or olfaction has been consistently reported. This may signal diffuse chemosensory failure, possibly worsening the prognosis of these patients. Incapacitation of one or few chemosensory systems has negligible effects on survival under ordinary life conditions but, under stress, like metabolic imbalance or COVID-19 pneumonia, the impairment of multiple chemosensory systems may lead to dire consequences during the course of the disease.
Collapse
Affiliation(s)
- Antonio Caretta
- National Institute for Biostructures and Biosystems (NIBB), Rome, Italy
- Department of Food and Drug Science, University of Parma, Parma, Italy
| | - Carla Mucignat-Caretta
- National Institute for Biostructures and Biosystems (NIBB), Rome, Italy
- Department of Molecular Medicine, University of Padova, Padua, Italy
- *Correspondence: Carla Mucignat-Caretta,
| |
Collapse
|
12
|
Human Taste-Perception: Brain Computer Interface (BCI) and Its Application as an Engineering Tool for Taste-Driven Sensory Studies. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09308-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
von Molitor E, Riedel K, Krohn M, Hafner M, Rudolf R, Cesetti T. Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Front Hum Neurosci 2021; 15:667709. [PMID: 34239428 PMCID: PMC8258107 DOI: 10.3389/fnhum.2021.667709] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Sweetness is the preferred taste of humans and many animals, likely because sugars are a primary source of energy. In many mammals, sweet compounds are sensed in the tongue by the gustatory organ, the taste buds. Here, a group of taste bud cells expresses a canonical sweet taste receptor, whose activation induces Ca2+ rise, cell depolarization and ATP release to communicate with afferent gustatory nerves. The discovery of the sweet taste receptor, 20 years ago, was a milestone in the understanding of sweet signal transduction and is described here from a historical perspective. Our review briefly summarizes the major findings of the canonical sweet taste pathway, and then focuses on molecular details, about the related downstream signaling, that are still elusive or have been neglected. In this context, we discuss evidence supporting the existence of an alternative pathway, independent of the sweet taste receptor, to sense sugars and its proposed role in glucose homeostasis. Further, given that sweet taste receptor expression has been reported in many other organs, the physiological role of these extraoral receptors is addressed. Finally, and along these lines, we expand on the multiple direct and indirect effects of sugars on the brain. In summary, the review tries to stimulate a comprehensive understanding of how sweet compounds signal to the brain upon taste bud cells activation, and how this gustatory process is integrated with gastro-intestinal sugar sensing to create a hedonic and metabolic representation of sugars, which finally drives our behavior. Understanding of this is indeed a crucial step in developing new strategies to prevent obesity and associated diseases.
Collapse
Affiliation(s)
- Elena von Molitor
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | | | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| |
Collapse
|