1
|
Maffei ME, Balestrini R, Costantino P, Lanfranco L, Morgante M, Battistelli A, Del Bianco M. The physiology of plants in the context of space exploration. Commun Biol 2024; 7:1311. [PMID: 39394270 PMCID: PMC11470014 DOI: 10.1038/s42003-024-06989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
The stress that the space environment can induce on plant physiology is of both abiotic and biotic nature. The abiotic space environment is characterized by ionizing radiation and altered gravity, geomagnetic field (GMF), pressure, and light conditions. Biotic interactions include both pathogenic and beneficial interactions. Here, we provide an overall picture of the effects of abiotic and biotic space-related factors on plant physiology. The knowledge required for the success of future space missions will lead to a better understanding of fundamental aspects of plant physiological responses, thus providing useful tools for plant breeding and agricultural practices on Earth.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/a, 10135, Turin, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, Via Amendola 165/A, 70126, Bari, Italy
| | - Paolo Costantino
- Department of Biology and Biotechnology "C. Darwin", University of Rome "Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Michele Morgante
- Institute of Applied Genomics, University of Udine, Via Jacopo Linussio 51, 33100, Udine, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, Viale Guglielmo Marconi 2, 05010, Porano, Italy
| | - Marta Del Bianco
- Italian Space Agency, Viale del Politecnico s.n.c., 00133, Rome, Italy.
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161, Roma, Italy.
| |
Collapse
|
2
|
Bai Q, Xuan S, Li W, Ali K, Zheng B, Ren H. Molecular mechanism of brassinosteroids involved in root gravity response based on transcriptome analysis. BMC PLANT BIOLOGY 2024; 24:485. [PMID: 38822229 PMCID: PMC11143716 DOI: 10.1186/s12870-024-05174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Brassinosteroids (BRs) are a class of phytohormones that regulate a wide range of developmental processes in plants. BR-associated mutants display impaired growth and response to developmental and environmental stimuli. RESULTS Here, we found that a BR-deficient mutant det2-1 displayed abnormal root gravitropic growth in Arabidopsis, which was not present in other BR mutants. To further elucidate the role of DET2 in gravity, we performed transcriptome sequencing and analysis of det2-1 and bri1-116, bri1 null mutant allele. Expression levels of auxin, gibberellin, cytokinin, and other related genes in the two mutants of det2-1 and bri1-116 were basically the same. However, we only found that a large number of JAZ (JASMONATE ZIM-domain) genes and jasmonate synthesis-related genes were upregulated in det2-1 mutant, suggesting increased levels of endogenous JA. CONCLUSIONS Our results also suggested that DET2 not only plays a role in BR synthesis but may also be involved in JA regulation. Our study provides a new insight into the molecular mechanism of BRs on the root gravitropism.
Collapse
Affiliation(s)
- Qunwei Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi Province, 716000, PR China
| | - Shurong Xuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
| | - Wenjuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
| | - Bowen Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
| | - Hongyan Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China.
| |
Collapse
|
3
|
Fiorillo A, Parmagnani AS, Visconti S, Mannino G, Camoni L, Maffei ME. 14-3-3 Proteins and the Plasma Membrane H +-ATPase Are Involved in Maize ( Zea mays) Magnetic Induction. PLANTS (BASEL, SWITZERLAND) 2023; 12:2887. [PMID: 37571041 PMCID: PMC10421175 DOI: 10.3390/plants12152887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
The geomagnetic field (GMF) is a natural component of the biosphere, and, during evolution, all organisms experienced its presence while some evolved the ability to perceive magnetic fields (MF). We studied the response of 14-3-3 proteins and the plasma membrane (PM) proton pump H+-ATPase to reduced GMF values by lowering the GMF intensity to a near-null magnetic field (NNMF). Seedling morphology, H+-ATPase activity and content, 14-3-3 protein content, binding to PM and phosphorylation, gene expression, and ROS quantification were assessed in maize (Zea mays) dark-grown seedlings. Phytohormone and melatonin quantification were also assessed by LG-MS/MS. Our results suggest that the GMF regulates the PM H+-ATPase, and that NNMF conditions alter the proton pump activity by reducing the binding of 14-3-3 proteins. This effect was associated with both a reduction in H2O2 and downregulation of genes coding for enzymes involved in ROS production and scavenging, as well as calcium homeostasis. These early events were followed by the downregulation of IAA synthesis and gene expression and the increase in both cytokinin and ABA, which were associated with a reduction in root growth. The expression of the homolog of the MagR gene, ZmISCA2, paralleled that of CRY1, suggesting a possible role of ISCA in maize magnetic induction. Interestingly, melatonin, a widespread molecule present in many kingdoms, was increased by the GMF reduction, suggesting a still unknown role of this molecule in magnetoreception.
Collapse
Affiliation(s)
- Anna Fiorillo
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.F.); (S.V.)
| | - Ambra S. Parmagnani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy; (A.S.P.); (G.M.)
| | - Sabina Visconti
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.F.); (S.V.)
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy; (A.S.P.); (G.M.)
| | - Lorenzo Camoni
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.F.); (S.V.)
| | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy; (A.S.P.); (G.M.)
| |
Collapse
|
4
|
Yoshikay-Benitez DA, Yokoyama Y, Ohira K, Fujita K, Tomiie A, Kijidani Y, Shigeto J, Tsutsumi Y. Populus alba cationic cell-wall-bound peroxidase (CWPO-C) regulates the plant growth and affects auxin concentration in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1671-1680. [PMID: 36387972 PMCID: PMC9636347 DOI: 10.1007/s12298-022-01241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED The poplar cationic cell-wall-bound peroxidase (CWPO-C) mediates the oxidative polymerization of lignin precursors, especially sinapyl alcohols, and high molecular weight compounds that cannot be oxidized by other plant peroxidases, including horseradish peroxidase C. Therefore, CWPO-C is believed to be a lignification-specific peroxidase, but direct evidence of its function is lacking. Thus, the CWPO-C expression pattern in Arabidopsis thaliana (Arabidopsis) was determined using the β-glucuronidase gene as a reporter. Our data indicated that CWPO-C was expressed in young organs, including the meristem, leaf, root, flower, and young xylem in the upper part of the stem. Compared with the wild-type control, transgenic Arabidopsis plants overexpressing CWPO-C had shorter stems. Approximately 60% of the plants in the transgenic line with the highest CWPO-C content had curled stems. These results indicate that CWPO-C plays a role in cell elongation. When plants were placed horizontally, induced CWPO-C expression was detected in the curved part of the stem during the gravitropic response. The stem curvature associated with gravitropism is controlled by auxin localization. The time needed for Arabidopsis plants overexpressing CWPO-C placed horizontally to bend by 90° was almost double the time required for the similarly treated wild-type controls. Moreover, the auxin content was significantly lower in the CWPO-C-overexpressing plants than in the wild-type plants. These results strongly suggest that CWPO-C has pleiotropic effects on plant growth and indole-3-acetic acid (IAA) accumulation. These effects may be mediated by altered IAA concentration due to oxidation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01241-0.
Collapse
Affiliation(s)
- Diego Alonso Yoshikay-Benitez
- Department of Agro-environmental Sciences, Graduate School of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Yusuke Yokoyama
- Department of Agro-environmental Sciences, Graduate School of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Kaori Ohira
- Department of Agro-environmental Sciences, Graduate School of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Koki Fujita
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Azusa Tomiie
- Division of Forest and Environmental Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki, 889-2192 Japan
| | - Yoshio Kijidani
- Division of Forest and Environmental Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki, 889-2192 Japan
| | - Jun Shigeto
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
- Office of Research and Academia Government Community Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8511 Japan
| | - Yuji Tsutsumi
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| |
Collapse
|
5
|
Sharma M, Sharma M, Jamsheer K M, Laxmi A. Jasmonic acid coordinates with light, glucose and auxin signalling in regulating branching angle of Arabidopsis lateral roots. PLANT, CELL & ENVIRONMENT 2022; 45:1554-1572. [PMID: 35147228 DOI: 10.1111/pce.14290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023]
Abstract
The role of jasmonates (JAs) in primary root growth and development and in plant response to external stimuli is already known. However, its role in lateral root (LR) development remains to be explored. Our work identified methyl jasmonate (MeJA) as a key phytohormone in determining the branching angle of Arabidopsis LRs. MeJA inclines the LRs to a more vertical orientation, which was dependent on the canonical JAR1-COI1-MYC2,3,4 signalling. Our work also highlights the dual roles of light in governing LR angle. Light signalling enhances JA biosynthesis, leading to erect root architecture; whereas, glucose (Glc) induces wider branching angles. Combining physiological and molecular assays, we revealed that Glc antagonises the MeJA response via TARGET OF RAPAMYCIN (TOR) signalling. Moreover, physiological assays using auxin mutants, MYC2-mediated transcriptional activation of LAZY2, LAZY4 and auxin biosynthetic gene CYP79B2, and asymmetric distribution of DR5::GFP and PIN2::GFP pinpointed the role of an intact auxin machinery required by MeJA for vertical growth of LRs. We also demonstrated that light perception and signalling are indispensable for inducing vertical angles by MeJA. Thus, our investigation highlights antagonism between light and Glc signalling and how they interact with JA-auxin signals to optimise the branching angle of LRs.
Collapse
Affiliation(s)
- Manvi Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
6
|
Jasmonic Acid-Dependent MYC Transcription Factors Bind to a Tandem G-Box Motif in the YUCCA8 and YUCCA9 Promoters to Regulate Biotic Stress Responses. Int J Mol Sci 2021; 22:ijms22189768. [PMID: 34575927 PMCID: PMC8468920 DOI: 10.3390/ijms22189768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
The indole-3-pyruvic acid pathway is the main route for auxin biosynthesis in higher plants. Tryptophan aminotransferases (TAA1/TAR) and members of the YUCCA family of flavin-containing monooxygenases catalyze the conversion of l-tryptophan via indole-3-pyruvic acid to indole-3-acetic acid (IAA). It has been described that jasmonic acid (JA) locally produced in response to mechanical wounding triggers the de novo formation of IAA through the induction of two YUCCA genes, YUC8 and YUC9. Here, we report the direct involvement of a small number of basic helix-loop-helix transcription factors of the MYC family in this process. We show that the JA-mediated regulation of the expression of the YUC8 and YUC9 genes depends on the abundance of MYC2, MYC3, and MYC4. In support of this observation, seedlings of myc knockout mutants displayed a strongly reduced response to JA-mediated IAA formation. Furthermore, transactivation assays provided experimental evidence for the binding of MYC transcription factors to a particular tandem G-box motif abundant in the promoter regions of YUC8 and YUC9, but not in the promoters of the other YUCCA isogenes. Moreover, we demonstrate that plants that constitutively overexpress YUC8 and YUC9 show less damage after spider mite infestation, thereby underlining the role of auxin in plant responses to biotic stress signals.
Collapse
|
7
|
Sharma M, Singh D, Saksena HB, Sharma M, Tiwari A, Awasthi P, Botta HK, Shukla BN, Laxmi A. Understanding the Intricate Web of Phytohormone Signalling in Modulating Root System Architecture. Int J Mol Sci 2021; 22:ijms22115508. [PMID: 34073675 PMCID: PMC8197090 DOI: 10.3390/ijms22115508] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Root system architecture (RSA) is an important developmental and agronomic trait that is regulated by various physical factors such as nutrients, water, microbes, gravity, and soil compaction as well as hormone-mediated pathways. Phytohormones act as internal mediators between soil and RSA to influence various events of root development, starting from organogenesis to the formation of higher order lateral roots (LRs) through diverse mechanisms. Apart from interaction with the external cues, root development also relies on the complex web of interaction among phytohormones to exhibit synergistic or antagonistic effects to improve crop performance. However, there are considerable gaps in understanding the interaction of these hormonal networks during various aspects of root development. In this review, we elucidate the role of different hormones to modulate a common phenotypic output, such as RSA in Arabidopsis and crop plants, and discuss future perspectives to channel vast information on root development to modulate RSA components.
Collapse
|
8
|
Regulation of Sixth Seminal Root Formation by Jasmonate in Triticum aestivum L. PLANTS 2021; 10:plants10020219. [PMID: 33498738 PMCID: PMC7911905 DOI: 10.3390/plants10020219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/08/2023]
Abstract
A well-developed root system is an important characteristic of crop plants, which largely determines their productivity, especially under conditions of water and nutrients deficiency. Being Poaceous, wheat has more than one seminal root. The number of grown seminal roots varies in different wheat accessions and is regulated by environmental factors. Currently, the molecular mechanisms determining the number of germinated seminal roots remain poorly understood. The analysis of the root system development in germinating seeds of genetically modified hexaploid wheat plants with altered activity of jasmonate biosynthesis pathway and seeds exogenously treated with methyl jasmonate revealed the role of jasmonates in the regulation of sixth seminal root development. This regulatory effect strongly depends on the jasmonate concentration and the duration of the exposure to this hormone. The maximum stimulatory effect of exogenously applied methyl jasmonate on the formation of the sixth seminal root was achieved at 200 μM concentration after 48 h of treatment. Further increase in concentration and exposure time does not increase the stimulating effect. While 95% of non-transgenic plants under non-stress conditions possess five or fewer seminal roots, the number of plants with developed sixth seminal root reaches up to 100% when selected transgenic lines are treated with methyl jasmonate.
Collapse
|
9
|
Yang Z, Guo G, Yang N, Pun SS, Ho TKL, Ji L, Hu I, Zhang J, Burlingame AL, Li N. The change of gravity vector induces short-term phosphoproteomic alterations in Arabidopsis. J Proteomics 2020; 218:103720. [PMID: 32120044 DOI: 10.1016/j.jprot.2020.103720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/15/2023]
Abstract
Plants can sense the gravitational force. When plants perceive a change in this natural force, they tend to reorient their organs with respect to the direction of the gravity vector, i.e., the shoot stem curves up. In the present study, we performed a 4C quantitative phosphoproteomics to identify those altered protein phosphosites resulting from 150 s of reorientation of Arabidopsis plants on earth. A total of 5556 phosphopeptides were identified from the gravistimulated Arabidopsis. Quantification based on the 15N-stable isotope labeling in Arabidopsis (SILIA) and computational analysis of the extracted ion chromatogram (XIC) of phosphopeptides showed eight and five unique PTM peptide arrays (UPAs) being up- and down-regulated, respectively, by gravistimulation. Among the 13 plant reorientation-responsive protein groups, many are related to the cytoskeleton dynamic and plastid movement. Interestingly, the most gravistimulation-responsive phosphosites are three serine residues, S350, S376, and S410, of a blue light receptor Phototropin 1 (PHOT1). The immunoblots experiment confirmed that the change of gravity vector indeed affected the phosphorylation level of S410 in PHOT1. The functional role of PHOT1 in gravitropic response was further validated with gravicurvature measurement in the darkness of both the loss-of-function double mutant phot1phot2 and its complementary transgenic plant PHOT1/phot1phot2. SIGNIFICANCE: The organs of sessile organisms, plants, are able to move in response to environmental stimuli, such as gravity vector, touch, light, water, or nutrients, which is termed tropism. For instance, the bending of plant shoots to the light source is called phototropism. Since all plants growing on earth are continuously exposed to the gravitational field, plants receive the mechanical signal elicited by the gravity vector change and convert it into plant morphogenesis, growth, and development. Past studies have resulted in various hypotheses for gravisensing, but our knowledge about how the signal of gravity force is transduced in plant cells is still minimal. In the present study, we performed a SILIA-based 4C quantitative phosphoproteomics on 150-s gravistimulated Arabidopsis seedlings to explore the phosphoproteins involved in the gravitropic response. Our data demonstrated that such a short-term reorientation of Arabidopsis caused changes in phosphorylation of cytoskeleton structural proteins like Chloroplast Unusual Positioning1 (CHUP1), Patellin3 (PATL3), and Plastid Movement Impaired2 (PMI2), as well as the blue light receptor Phototropin1 (PHOT1). These results suggested that protein phosphorylation plays a crucial role in gravisignaling, and two primary tropic responses of plants, gravitropism and phototropism, may share some common components and signaling pathways. We expect that the phosphoproteins detected from this study will facilitate the subsequent molecular and cellular studies on the mechanism underlying the signal transduction in plant gravitropic response.
Collapse
Affiliation(s)
- Zhu Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region; HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Guangyu Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Nan Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Sunny Sing Pun
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Timothy Ka Leung Ho
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Ling Ji
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Inch Hu
- Department of ISOM and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region.; School of Life Sciences, State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region; HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
10
|
Hauslage J, Görög M, Krause L, Schüler O, Schäfer M, Witten A, Kesseler L, Böhmer M, Hemmersbach R. ARABIDOMICS-A new experimental platform for molecular analyses of plants in drop towers, on parabolic flights, and sounding rockets. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:034504. [PMID: 32259966 DOI: 10.1063/1.5120573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/07/2020] [Indexed: 06/11/2023]
Abstract
Plants represent an essential part of future life support systems that will enable human space travel to distant planets and their colonization. Therefore, insights into changes and adaptations of plants in microgravity are of great importance. Despite considerable efforts, we still know very little about how plants respond to microgravity environments on the molecular level, partly due to a lack of sufficient hardware and flight opportunities. The plant Arabidopsis thaliana, the subject of this study, represents a well-studied model organism in gravitational biology, particularly for the analysis of transcriptional and metabolic changes. To overcome the limitations of previous plant hardware that often led to secondary effects and to allow for the extraction not only of RNA but also of phytohormones and proteins, we developed a new experimental platform, called ARABIDOMICS, for exposure and fixation under altered gravity conditions. Arabidopsis seedlings were exposed to hypergravity during launch and microgravity during the free-fall period of the MAPHEUS 5 sounding rocket. Seedlings were chemically fixed inflight at defined time points, and RNA and phytohormones were subsequently analyzed in the laboratory. RNA and phytohormones extracted from the fixed biological samples were of excellent quality. Changes in the phytohormone content of jasmonate, auxin, and several cytokinins were observed in response to hypergravity and microgravity.
Collapse
Affiliation(s)
- Jens Hauslage
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Mark Görög
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Lars Krause
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Oliver Schüler
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Anika Witten
- Core Facility Genomics of the Medical Faculty, Westfälische Wilhelms-University, Münster, Germany
| | - Leona Kesseler
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Maik Böhmer
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Ruth Hemmersbach
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| |
Collapse
|
11
|
Vandenbrink JP, Kiss JZ. Plant responses to gravity. Semin Cell Dev Biol 2019; 92:122-125. [DOI: 10.1016/j.semcdb.2019.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 03/29/2019] [Indexed: 02/05/2023]
|
12
|
Meents AK, Furch ACU, Almeida-Trapp M, Özyürek S, Scholz SS, Kirbis A, Lenser T, Theißen G, Grabe V, Hansson B, Mithöfer A, Oelmüller R. Beneficial and Pathogenic Arabidopsis Root-Interacting Fungi Differently Affect Auxin Levels and Responsive Genes During Early Infection. Front Microbiol 2019; 10:380. [PMID: 30915043 PMCID: PMC6422953 DOI: 10.3389/fmicb.2019.00380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/13/2019] [Indexed: 01/08/2023] Open
Abstract
Auxin (indole-3-acetic acid, IAA) is an important phytohormone involved in root growth and development. Root-interacting beneficial and pathogenic fungi utilize auxin and its target genes to manipulate the performance of their hosts for their own needs. In order to follow and visualize auxin effects in fungi-colonized Arabidopsis roots, we used the dual auxin reporter construct DR5::EGFP-DR5v2::tdTomato and fluorescence microscopy as well as LC-MS-based phytohormone analyses. We demonstrate that the beneficial endophytic fungi Piriformospora indica and Mortierella hyalina produce and accumulate IAA in their mycelia, in contrast to the phytopathogenic biotrophic fungus Verticillium dahliae and the necrotrophic fungus Alternaria brassicicola. Within 3 h after exposure of Arabidopsis roots to the pathogens, the signals of the auxin-responsive reporter genes disappeared. When exposed to P. indica, significantly higher auxin levels and stimulated expression of auxin-responsive reporter genes were detected both in lateral root primordia and the root elongation zone within 1 day. Elevated auxin levels were also present in the M. hyalina/Arabidopsis root interaction, but no downstream effects on auxin-responsive reporter genes were observed. However, the jasmonate level was strongly increased in the colonized roots. We propose that the lack of stimulated root growth upon infection with M. hyalina is not caused by the absence of auxin, but an inhibitory effect mediated by high jasmonate content.
Collapse
Affiliation(s)
- Anja K Meents
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.,Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany.,Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Alexandra C U Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Marília Almeida-Trapp
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sedef Özyürek
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sandra S Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexander Kirbis
- Department of Genetics, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Teresa Lenser
- Department of Genetics, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Günter Theißen
- Department of Genetics, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.,Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
13
|
Salazar R, Pollmann S, Morales-Quintana L, Herrera R, Caparrós-Ruiz D, Ramos P. In seedlings of Pinus radiata, jasmonic acid and auxin are differentially distributed on opposite sides of tilted stems affecting lignin monomer biosynthesis and composition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:215-223. [PMID: 30576980 DOI: 10.1016/j.plaphy.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 05/25/2023]
Abstract
Plants respond to the loss of vertical growth re-orientating their affected organs. In trees, this phenomenon has received the scientific attention due to its importance for the forestry industry. Nowadays it is accepted that auxin distribution is involved in the modulation of the tilting response, but how this distribution is controlled is not fully clear. Auxin transporters that determine the spatio-temporal auxin distribution in radiate pine seedlings exposed to 45° of tilting were identified. Additionally, based on indications for an intimate plant hormone crosstalk in this process, IAA and JA contents were evaluated. The experiments revealed that expression of the auxin transporters was down-regulated in the upper half of the tilted stem, while being induced in the lower half. Moreover, transporter-coding genes were first induced at the apical zone of the stem. IAA was consistently redistributed toward the lower half, which is in accordance with the expression profile of the auxin transporters. In contrast, JA was mainly accumulated in the upper half of tilted stems. Finally, lignin content and monomeric composition were analyzed in both sides of stem and along the time course of tilting. As expected, lignin accumulation was higher at the lower half of stem at longer times of tilting. However, the most marked difference was the accumulation of the H-lignin monomer in the lower half, while the G-lignin unit was more dominant in the upper half. Here, we provide detailed insight in the distribution of IAA and JA, affecting the lignin composition during the tilting response in Pinus radiata seedlings.
Collapse
Affiliation(s)
- Romina Salazar
- Instituto de Ciencias Biológicas, Campus Talca, Universidad de Talca, Avda. Lircay s/, Talca, Chile
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Chile
| | - Raul Herrera
- Instituto de Ciencias Biológicas, Campus Talca, Universidad de Talca, Avda. Lircay s/, Talca, Chile
| | - David Caparrós-Ruiz
- Centre for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB Edifici CRAG Campus de Bellaterra de la UAB, 08193, Cerdanyola del Valles, Barcelona, Spain
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Campus Talca, Universidad de Talca, Avda. Lircay s/, Talca, Chile.
| |
Collapse
|
14
|
Abstract
Regulation of plant root angle is critical for obtaining nutrients and water and is an important trait for plant breeding. A plant’s final, long-term root angle is the net result of a complex series of decisions made by a root tip in response to changes in nutrient availability, impediments, the gravity vector and other stimuli. When a root tip is displaced from the gravity vector, the short-term process of gravitropism results in rapid reorientation of the root toward the vertical. Here, we explore both short- and long-term regulation of root growth angle, using natural variation in tomato to identify shared and separate genetic features of the two responses. Mapping of expression quantitative trait loci mapping and leveraging natural variation between and within species including Arabidopsis suggest a role for PURPLE ACID PHOSPHATASE 27 and CELL DIVISION CYCLE 73 in determining root angle.
Collapse
|
15
|
Peethambaran PK, Glenz R, Höninger S, Shahinul Islam SM, Hummel S, Harter K, Kolukisaoglu Ü, Meynard D, Guiderdoni E, Nick P, Riemann M. Salt-inducible expression of OsJAZ8 improves resilience against salt-stress. BMC PLANT BIOLOGY 2018; 18:311. [PMID: 30497415 DOI: 10.1186/s12870-018-1521-1520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/13/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Productivity of important crop rice is greatly affected by salinity. The plant hormone jasmonate plays a vital role in salt stress adaptation, but also evokes detrimental side effects if not timely shut down again. As novel strategy to avoid such side effects, OsJAZ8, a negative regulator of jasmonate signalling, is expressed under control of the salt-inducible promoter of the transcription factor ZOS3-11, to obtain a transient jasmonate signature in response to salt stress. To modulate the time course of jasmonate signalling, either a full-length or a dominant negative C-terminally truncated version of OsJAZ8 driven by the ZOS3-11 promoter were expressed in a stable manner either in tobacco BY-2 cells, or in japonica rice. RESULTS The transgenic tobacco cells showed reduced mortality and efficient cycling under salt stress adaptation. This was accompanied by reduced sensitivity to Methyl jasmonate and increased responsiveness to auxin. In the case of transgenic rice, the steady-state levels of OsJAZ8 transcripts were more efficiently induced under salt stress compared to the wild type, this induction was more pronounced in the dominant-negative OsJAZ8 variant. CONCLUSIONS The result concluded that, more efficient activation of OsJAZ8 was accompanied by improved salt tolerance of the transgenic seedlings and demonstrates the impact of temporal signatures of jasmonate signalling for stress tolerance.
Collapse
Affiliation(s)
| | - René Glenz
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Sabrina Höninger
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - S M Shahinul Islam
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Sabine Hummel
- University Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Plant Physiology, Tübingen, Germany
| | - Klaus Harter
- University Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Plant Physiology, Tübingen, Germany
| | - Üner Kolukisaoglu
- University Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Plant Physiology, Tübingen, Germany
| | - Donaldo Meynard
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), unité mixte de recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP), 34398, Montpellier, France
- Univ Montpellier, Cirad, Inra, Montpellier SupAgro, Montpellier, France
| | - Emmanuel Guiderdoni
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), unité mixte de recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP), 34398, Montpellier, France
- Univ Montpellier, Cirad, Inra, Montpellier SupAgro, Montpellier, France
| | - Peter Nick
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Michael Riemann
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany.
| |
Collapse
|
16
|
Peethambaran PK, Glenz R, Höninger S, Shahinul Islam SM, Hummel S, Harter K, Kolukisaoglu Ü, Meynard D, Guiderdoni E, Nick P, Riemann M. Salt-inducible expression of OsJAZ8 improves resilience against salt-stress. BMC PLANT BIOLOGY 2018; 18:311. [PMID: 30497415 PMCID: PMC6267056 DOI: 10.1186/s12870-018-1521-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/13/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Productivity of important crop rice is greatly affected by salinity. The plant hormone jasmonate plays a vital role in salt stress adaptation, but also evokes detrimental side effects if not timely shut down again. As novel strategy to avoid such side effects, OsJAZ8, a negative regulator of jasmonate signalling, is expressed under control of the salt-inducible promoter of the transcription factor ZOS3-11, to obtain a transient jasmonate signature in response to salt stress. To modulate the time course of jasmonate signalling, either a full-length or a dominant negative C-terminally truncated version of OsJAZ8 driven by the ZOS3-11 promoter were expressed in a stable manner either in tobacco BY-2 cells, or in japonica rice. RESULTS The transgenic tobacco cells showed reduced mortality and efficient cycling under salt stress adaptation. This was accompanied by reduced sensitivity to Methyl jasmonate and increased responsiveness to auxin. In the case of transgenic rice, the steady-state levels of OsJAZ8 transcripts were more efficiently induced under salt stress compared to the wild type, this induction was more pronounced in the dominant-negative OsJAZ8 variant. CONCLUSIONS The result concluded that, more efficient activation of OsJAZ8 was accompanied by improved salt tolerance of the transgenic seedlings and demonstrates the impact of temporal signatures of jasmonate signalling for stress tolerance.
Collapse
Affiliation(s)
| | - René Glenz
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Sabrina Höninger
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | | | - Sabine Hummel
- University Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Plant Physiology, Tübingen, Germany
| | - Klaus Harter
- University Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Plant Physiology, Tübingen, Germany
| | - Üner Kolukisaoglu
- University Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Plant Physiology, Tübingen, Germany
| | - Donaldo Meynard
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), unité mixte de recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP), 34398 Montpellier, France
- Univ Montpellier, Cirad, Inra, Montpellier SupAgro, Montpellier, France
| | - Emmanuel Guiderdoni
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), unité mixte de recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP), 34398 Montpellier, France
- Univ Montpellier, Cirad, Inra, Montpellier SupAgro, Montpellier, France
| | - Peter Nick
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | - Michael Riemann
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| |
Collapse
|
17
|
When Transcriptomics and Metabolomics Work Hand in Hand: A Case Study Characterizing Plant CDF Transcription Factors. High Throughput 2018; 7:ht7010007. [PMID: 29495643 PMCID: PMC5876533 DOI: 10.3390/ht7010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/09/2023] Open
Abstract
Over the last three decades, novel “omics” platform technologies for the sequencing of DNA and complementary DNA (cDNA) (RNA-Seq), as well as for the analysis of proteins and metabolites by mass spectrometry, have become more and more available and increasingly found their way into general laboratory life. With this, the ability to generate highly multivariate datasets on the biological systems of choice has increased tremendously. However, the processing and, perhaps even more importantly, the integration of “omics” datasets still remains a bottleneck, although considerable computational and algorithmic advances have been made in recent years. In this mini-review, we use a number of recent “multi-omics” approaches realized in our laboratories as a common theme to discuss possible pitfalls of applying “omics” approaches and to highlight some useful tools for data integration and visualization in the form of an exemplified case study. In the selected example, we used a combination of transcriptomics and metabolomics alongside phenotypic analyses to functionally characterize a small number of Cycling Dof Transcription Factors (CDFs). It has to be remarked that, even though this approach is broadly used, the given workflow is only one of plenty possible ways to characterize target proteins.
Collapse
|
18
|
Singh M, Gupta A, Laxmi A. Striking the Right Chord: Signaling Enigma during Root Gravitropism. FRONTIERS IN PLANT SCIENCE 2017; 8:1304. [PMID: 28798760 PMCID: PMC5529344 DOI: 10.3389/fpls.2017.01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/11/2017] [Indexed: 05/29/2023]
Abstract
Plants being sessile can often be judged as passive acceptors of their environment. However, plants are actually even more active in responding to the factors from their surroundings. Plants do not have eyes, ears or vestibular system like animals, still they "know" which way is up and which way is down? This is facilitated by receptor molecules within plant which perceive changes in internal and external conditions such as light, touch, obstacles; and initiate signaling pathways that enable the plant to react. Plant responses that involve a definite and specific movement are called "tropic" responses. Perhaps the best known and studied tropisms are phototropism, i.e., response to light, and geotropism, i.e., response to gravity. A robust root system is vital for plant growth as it can provide physical anchorage to soil as well as absorb water, nutrients and essential minerals from soil efficiently. Gravitropic responses of both primary as well as lateral root thus become critical for plant growth and development. The molecular mechanisms of root gravitropism has been delved intensively, however, the mechanism behind how the potential energy of gravity stimulus converts into a biochemical signal in vascular plants is still unknown, due to which gravity sensing in plants still remains one of the most fascinating questions in molecular biology. Communications within plants occur through phytohormones and other chemical substances produced in plants which have a developmental or physiological effect on growth. Here, we review current knowledge of various intrinsic signaling mechanisms that modulate root gravitropism in order to point out the questions and emerging developments in plant directional growth responses. We are also discussing the roles of sugar signals and their interaction with phytohormone machinery, specifically in context of root directional responses.
Collapse
Affiliation(s)
- Manjul Singh
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Aditi Gupta
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
19
|
Maslova SP, Golovko TK. [Tropisms in underground shoots — stolons and rhizomes]. ZHURNAL OBSHCHEI BIOLOGII 2017; 78:47-60. [PMID: 30024677 DOI: 10.1134/s207908641803009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Indexed: 05/24/2023]
Abstract
In the review, the problem of plant movements (photo- and gravitropism) is discussed. The contemporary data on physiological and molecular mechanisms of tropisms in underground shoots and roots are presented. Special attention is paid to diagravitropism phenomenon in underground shoots (stolons and rhizomes) that grow in perpendicular direction to the Earth's gravitational axis. The role of phytochrome control in maintaining the horizontal growth of stolons and rhizomes is demonstrated, and physiological mechanisms of photo- and diagravitropism are discussed. It is shown that switching of an underground shoot tip from diatropic to ortotropic (vertical) growth is dependent on the carbohydrate and phytohor-mone balance. The perspectives are outlined for further exploratory studies on mechanisms of growth orientation and morphogenesis of underground diagravitropic shoots.
Collapse
|
20
|
Huang H, Liu B, Liu L, Song S. Jasmonate action in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1349-1359. [PMID: 28158849 DOI: 10.1093/jxb/erw495] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytohormones, including jasmonates (JAs), gibberellin, ethylene, abscisic acid, and auxin, integrate endogenous developmental cues with environmental signals to regulate plant growth, development, and defense. JAs are well- recognized lipid-derived stress hormones that regulate plant adaptations to biotic stresses, including herbivore attack and pathogen infection, as well as abiotic stresses, including wounding, ozone, and ultraviolet radiation. An increasing number of studies have shown that JAs also have functions in a remarkable number of plant developmental events, including primary root growth, reproductive development, and leaf senescence. Since the 1980s, details of the JA biosynthesis pathway, signaling pathway, and crosstalk during plant growth and development have been elucidated. Here, we summarize recent advances and give an updated overview of JA action and crosstalk in plant growth and development.
Collapse
Affiliation(s)
- Huang Huang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Liangyu Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
21
|
Harmoko R, Yoo JY, Ko KS, Ramasamy NK, Hwang BY, Lee EJ, Kim HS, Lee KJ, Oh DB, Kim DY, Lee S, Li Y, Lee SY, Lee KO. N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa). THE NEW PHYTOLOGIST 2016; 212:108-22. [PMID: 27241276 DOI: 10.1111/nph.14031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/24/2016] [Indexed: 05/18/2023]
Abstract
In plants, α1,3-fucosyltransferase (FucT) catalyzes the transfer of fucose from GDP-fucose to asparagine-linked GlcNAc of the N-glycan core in the medial Golgi. To explore the physiological significance of this processing, we isolated two Oryza sativa (rice) mutants (fuct-1 and fuct-2) with loss of FucT function. Biochemical analyses of the N-glycan structure confirmed that α1,3-fucose is missing from the N-glycans of allelic fuct-1 and fuct-2. Compared with the wild-type cv Kitaake, fuct-1 displayed a larger tiller angle, shorter internode and panicle lengths, and decreased grain filling as well as an increase in chalky grains with abnormal shape. The mutant allele fuct-2 gave rise to similar developmental abnormalities, although they were milder than those of fuct-1. Restoration of a normal tiller angle in fuct-1 by complementation demonstrated that the phenotype is caused by the loss of FucT function. Both fuct-1 and fuct-2 plants exhibited reduced gravitropic responses. Expression of the genes involved in tiller and leaf angle control was also affected in the mutants. We demonstrate that reduced basipetal auxin transport and low auxin accumulation at the base of the shoot in fuct-1 account for both the reduced gravitropic response and the increased tiller angle.
Collapse
Affiliation(s)
- Rikno Harmoko
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Jae Yong Yoo
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Ki Seong Ko
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Nirmal Kumar Ramasamy
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Bo Young Hwang
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Eun Ji Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Ho Soo Kim
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Kyung Jin Lee
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Doo-Byoung Oh
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Dool-Yi Kim
- Crop Function Division, National Institute of Crop Science, Rural Development Administration, 181 Hyeoksin-ro, Wanju-gun, Jeollabuk-do, 55365, Korea
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| | - Kyun Oh Lee
- Division of Applied Life Science (BK21 + program), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Korea
| |
Collapse
|
22
|
Lourenço TF, Serra TS, Cordeiro AM, Swanson SJ, Gilroy S, Saibo NJM, Oliveira MM. Rice root curling, a response to mechanosensing, is modulated by the rice E3-ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (OsHOS1). PLANT SIGNALING & BEHAVIOR 2016; 11:e1208880. [PMID: 27467198 PMCID: PMC5022415 DOI: 10.1080/15592324.2016.1208880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Plant development depends on the perception of external cues, such as light, gravity, touch, wind or nutrients, among others. Nevertheless, little is known regarding signal transduction pathways integrating these stimuli. Recently, we have reported the involvement of a rice E3-ubiquitin ligase (OsHOS1, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1), previously associated with abiotic stress response, in root responses to mechanical stimuli. We showed that OsHOS1 is involved in the regulation of root curling after mechanosensing and that RNAi::OsHOS1 plants failed to exhibit the root curling phenotype observed in WT. Interestingly, the straight root phenotype of these transgenics correlated with the up-regulation of rice ROOT MEANDER CURLING (OsRMC, a negative regulator of rice root curling) and was reverted by the exogenous application of jasmonic acid. Altogether, our results highlight the role of the proteasome modulating plant responses to mechanical stimuli and suggest that OsHOS1 is a hub integrating environmental and hormonal signaling into plant growth and development.
Collapse
Affiliation(s)
- T. F. Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - T. S. Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - A. M. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - S. J. Swanson
- Department of Botany, University of Wisconsin, Madison, WI, USA
| | - S. Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, USA
| | - N. J. M. Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - M. M. Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
23
|
Liu Z, Zhang S, Sun N, Liu H, Zhao Y, Liang Y, Zhang L, Han Y. Functional diversity of jasmonates in rice. RICE (NEW YORK, N.Y.) 2015; 8:42. [PMID: 26054241 PMCID: PMC4773313 DOI: 10.1186/s12284-015-0042-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/14/2015] [Indexed: 05/18/2023]
Abstract
Phytohormone jasmonates (JA) play essential roles in plants, such as regulating development and growth, responding to environmental changes, and resisting abiotic and biotic stresses. During signaling, JA interacts, either synergistically or antagonistically, with other hormones, such as salicylic acid (SA), gibberellin (GA), ethylene (ET), auxin, brassinosteroid (BR), and abscisic acid (ABA), to regulate gene expression in regulatory networks, conferring physiological and metabolic adjustments in plants. As an important staple crop, rice is a major nutritional source for human beings and feeds one third of the world's population. Recent years have seen significant progress in the understanding of the JA pathway in rice. In this review, we summarize the diverse functions of JA, and discuss the JA interplay with other hormones, as well as light, in this economically important crop. We believe that a better understanding of the JA pathway will lead to practical biotechnological applications in rice breeding and cultivation.
Collapse
Affiliation(s)
- Zheng Liu
- />College of Life Sciences, Hebei University, Baoding, China
| | - Shumin Zhang
- />College of Life Sciences, Hebei University, Baoding, China
| | - Ning Sun
- />The Affiliated School of Hebei Baoding Normal, Baoding, China
| | - Hongyun Liu
- />College of Life Sciences, Hebei University, Baoding, China
| | - Yanhong Zhao
- />College of Agriculture, Ludong University, Yantai, China
| | - Yuling Liang
- />College of Life Sciences, Hebei University, Baoding, China
| | - Liping Zhang
- />College of Life Sciences, Hebei University, Baoding, China
| | - Yuanhuai Han
- />School of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong, China
- />Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan, China
| |
Collapse
|
24
|
Zhu C, Yang N, Ma X, Li G, Qian M, Ng D, Xia K, Gan L. Plasma membrane H(+)-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings. PLANT CELL REPORTS 2015; 34:1025-36. [PMID: 25686579 DOI: 10.1007/s00299-015-1762-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/22/2014] [Accepted: 02/08/2015] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Our results show that methyl jasmonate induces plasma membrane H (+) -ATPase activity and subsequently influences the apoplastic pH of trichoblasts to maintain a cell wall pH environment appropriate for root hair development. Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. Plant hormones are critical regulators of root hair development. In this study, we investigated the regulatory role of the plasma membrane (PM) H(+)-ATPase in methyl jasmonate (MeJA)-induced root hair formation. We found that MeJA had a pronounced effect on the promotion of root hair formation in lettuce seedlings, but that this effect was blocked by the PM H(+)-ATPase inhibitor vanadate. Furthermore, MeJA treatment increased PM H(+)-ATPase activity in parallel with H(+) efflux from the root tips of lettuce seedlings and rhizosphere acidification. Our results also showed that MeJA-induced root hair formation was accompanied by hydrogen peroxide accumulation. The apoplastic acidification acted in concert with reactive oxygen species to modulate root hair formation. Our results suggest that the effect of MeJA on root hair formation is mediated by modulation of PM H(+)-ATPase activity.
Collapse
Affiliation(s)
- Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Guan X, Buchholz G, Nick P. Tubulin marker line of grapevine suspension cells as a tool to follow early stress responses. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:118-128. [PMID: 25590686 DOI: 10.1016/j.jplph.2014.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
Plant microtubules (MTs), in addition to their role in cell division and cell expansion, respond to various stress signals. To understand the biological function of this early response requires non-destructive strategies for visualization in cellular models that are highly responsive to stress signals. We have therefore generated a transgenic tubulin marker line for a cell line from the grapevine Vitis rupestris that readily responds to stress factors of defense-related and abiotic stresses based on a fusion of the green fluorescent protein with Arabidopsis β-tubulin 6. By a combination of spinning-disk confocal microscopy with quantitative image analysis, we could detect early and specific responses of MTs to defense-related and abiotic stress factors in vivo. We observed that Harpin Z (HrpZ), a bacterial elicitor that can trigger programmed cell death, rapidly eliminated radial MTs, followed by a slower depletion of the cortical array. Jasmonic acid (JA), in contrast, induced bundling of cortical MTs. Auxin reduced the thickness of cortical MTs. This effect followed a characteristic bell-shaped dose-dependency and could revert JA-induced bundling. Impeded cell expansion as a consequence of stress treatment or superoptimal auxin was linked with the appearance of intranuclear tubulin speckles. The early and stimulus-specific responses of MTs are discussed with respect to a function in processing or decoding of stress signals.
Collapse
Affiliation(s)
- Xin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76128 Karlsruhe, Germany.
| | - Günther Buchholz
- RLP AgroScience/AlPlanta - Institute for Plant Research, Breitenweg 71, D-67435 Neustadt an der Weinstraße, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76128 Karlsruhe, Germany
| |
Collapse
|
26
|
Ho J, Maeng S, Park WJ. Effects of Ethylene Precursor, Auxin and Methyl Jasmonate on the Aerenchyma Formation in the Primary Root of Maize (Zea mays). ACTA ACUST UNITED AC 2015. [DOI: 10.5352/jls.2015.25.1.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Vandenbrink JP, Kiss JZ, Herranz R, Medina FJ. Light and gravity signals synergize in modulating plant development. FRONTIERS IN PLANT SCIENCE 2014; 5:563. [PMID: 25389428 PMCID: PMC4211383 DOI: 10.3389/fpls.2014.00563] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/30/2014] [Indexed: 05/20/2023]
Abstract
Tropisms are growth-mediated plant movements that help plants to respond to changes in environmental stimuli. The availability of water and light, as well as the presence of a constant gravity vector, are all environmental stimuli that plants sense and respond to via directed growth movements (tropisms). The plant response to gravity (gravitropism) and the response to unidirectional light (phototropism) have long been shown to be interconnected growth phenomena. Here, we discuss the similarities in these two processes, as well as the known molecular mechanisms behind the tropistic responses. We also highlight research done in a microgravity environment in order to decouple two tropisms through experiments carried out in the absence of a significant unilateral gravity vector. In addition, alteration of gravity, especially the microgravity environment, and light irradiation produce important effects on meristematic cells, the undifferentiated, highly proliferating, totipotent cells which sustain plant development. Microgravity produces the disruption of meristematic competence, i.e., the decoupling of cell proliferation and cell growth, affecting the regulation of the cell cycle and ribosome biogenesis. Light irradiation, especially red light, mediated by phytochromes, has an activating effect on these processes. Phytohormones, particularly auxin, also are key mediators in these alterations. Upcoming experiments on the International Space Station will clarify some of the mechanisms and molecular players of the plant responses to these environmental signals involved in tropisms and the cell cycle.
Collapse
Affiliation(s)
| | - John Z. Kiss
- Department of Biology, University of Mississippi, UniversityMS, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), MadridSpain
| | | |
Collapse
|
28
|
Pérez AC, Goossens A. Jasmonate signalling: a copycat of auxin signalling? PLANT, CELL & ENVIRONMENT 2013; 36:2071-84. [PMID: 23611666 DOI: 10.1111/pce.12121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/15/2013] [Indexed: 05/22/2023]
Abstract
Plant hormones regulate almost all aspects of plant growth and development. The past decade has provided breakthrough discoveries in phytohormone sensing and signal transduction, and highlighted the striking mechanistic similarities between the auxin and jasmonate (JA) signalling pathways. Perception of auxin and JA involves the formation of co-receptor complexes in which hormone-specific E3-ubiquitin ligases of the SKP1-Cullin-F-box protein (SCF) type interact with specific repressor proteins. Across the plant kingdom, the Aux/IAA and the JASMONATE-ZIM DOMAIN (JAZ) proteins correspond to the auxin- and JA-specific repressors, respectively. In the absence of the hormones, these repressors form a complex with transcription factors (TFs) specific for both pathways. They also recruit several proteins, among which the general co-repressor TOPLESS, and thereby prevent the TFs from activating gene expression. The hormone-mediated interaction between the SCF and the repressors targets the latter for 26S proteasome-mediated degradation, which, in turn, releases the TFs to allow modulating hormone-dependent gene expression. In this review, we describe the similarities and differences in the auxin and JA signalling cascades with respect to the protein families and the protein domains involved in the formation of the pathway-specific complexes.
Collapse
Affiliation(s)
- A Cuéllar Pérez
- Department of Plant Systems Biology, VIB, B-9052, Gent, Belgium; Department of Plant Biotechnology & Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | | |
Collapse
|
29
|
Hu L, Mei Z, Zang A, Chen H, Dou X, Jin J, Cai W. Microarray analyses and comparisons of upper or lower flanks of rice shoot base preceding gravitropic bending. PLoS One 2013; 8:e74646. [PMID: 24040303 PMCID: PMC3764065 DOI: 10.1371/journal.pone.0074646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 08/06/2013] [Indexed: 11/26/2022] Open
Abstract
Gravitropism is a complex process involving a series of physiological pathways. Despite ongoing research, gravitropism sensing and response mechanisms are not well understood. To identify the key transcripts and corresponding pathways in gravitropism, a whole-genome microarray approach was used to analyze transcript abundance in the shoot base of rice (Oryza sativa sp. japonica) at 0.5 h and 6 h after gravistimulation by horizontal reorientation. Between upper and lower flanks of the shoot base, 167 transcripts at 0.5 h and 1202 transcripts at 6 h were discovered to be significantly different in abundance by 2-fold. Among these transcripts, 48 were found to be changed both at 0.5 h and 6 h, while 119 transcripts were only changed at 0.5 h and 1154 transcripts were changed at 6 h in association with gravitropism. MapMan and PageMan analyses were used to identify transcripts significantly changed in abundance. The asymmetric regulation of transcripts related to phytohormones, signaling, RNA transcription, metabolism and cell wall-related categories between upper and lower flanks were demonstrated. Potential roles of the identified transcripts in gravitropism are discussed. Our results suggest that the induction of asymmetrical transcription, likely as a consequence of gravitropic reorientation, precedes gravitropic bending in the rice shoot base.
Collapse
Affiliation(s)
- Liwei Hu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiling Mei
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aiping Zang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haiying Chen
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xianying Dou
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Jin
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
30
|
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. ANNALS OF BOTANY 2013; 111:1021-58. [PMID: 23558912 PMCID: PMC3662512 DOI: 10.1093/aob/mct067] [Citation(s) in RCA: 1498] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development. SCOPE The present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception. CONCLUSIONS The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Collapse
Affiliation(s)
- C Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, Halle (Saale), Germany.
| | | |
Collapse
|
31
|
Hentrich M, Böttcher C, Düchting P, Cheng Y, Zhao Y, Berkowitz O, Masle J, Medina J, Pollmann S. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:626-37. [PMID: 23425284 PMCID: PMC3654092 DOI: 10.1111/tpj.12152] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 05/18/2023]
Abstract
Interactions between phytohormones play important roles in the regulation of plant growth and development, but knowledge of the networks controlling hormonal relationships, such as between oxylipins and auxins, is just emerging. Here, we report the transcriptional regulation of two Arabidopsis YUCCA genes, YUC8 and YUC9, by oxylipins. Similar to previously characterized YUCCA family members, we show that both YUC8 and YUC9 are involved in auxin biosynthesis, as demonstrated by the increased auxin contents and auxin-dependent phenotypes displayed by gain-of-function mutants as well as the significantly decreased indole-3-acetic acid (IAA) levels in yuc8 and yuc8/9 knockout lines. Gene expression data obtained by qPCR analysis and microscopic examination of promoter-reporter lines reveal an oxylipin-mediated regulation of YUC9 expression that is dependent on the COI1 signal transduction pathway. In support of these findings, the roots of the analyzed yuc knockout mutants displayed a reduced response to methyl jasmonate (MeJA). The similar response of the yuc8 and yuc9 mutants to MeJA in cotyledons and hypocotyls suggests functional overlap of YUC8 and YUC9 in aerial tissues, while their function in roots shows some specificity, probably in part related to different spatio-temporal expression patterns of the two genes. These results provide evidence for an intimate functional relationship between oxylipin signaling and auxin homeostasis.
Collapse
Affiliation(s)
- Mathias Hentrich
- Department of Plant Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | - Petra Düchting
- Department of Plant Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Youfa Cheng
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, USA
| | - Oliver Berkowitz
- Research School of Biology, Australian National University, Canberra, Australia
| | - Josette Masle
- Research School of Biology, Australian National University, Canberra, Australia
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas (CBGP), Campus de Montegancedo, Pozuelo de Alarcón, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas (CBGP), Campus de Montegancedo, Pozuelo de Alarcón, Spain
- Corresponding author: Stephan Pollmann; Centro de Biotecnología y Genómica de Plantas (CBGP), Autopista M-40, km 38, 28223 Pozuelo de Alarcón, Madrid, Spain; Tel.: +34-91-336-4589; Fax: +34-91-715-7721;
| |
Collapse
|
32
|
Schenck CA, Nadella V, Clay SL, Lindner J, Abrams Z, Wyatt SE. A proteomics approach identifies novel proteins involved in gravitropic signal transduction. AMERICAN JOURNAL OF BOTANY 2013; 100:194-202. [PMID: 23281391 DOI: 10.3732/ajb.1200339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
PREMISE Plant organs use gravity as a guide to direct their growth. And although gravitropism has been studied since the time of Darwin, the mechanisms of signal transduction, those that connect the biophysical stimulus perception and the biochemical events of the response, are still not understood. METHODS A quantitative proteomics approach was used to identify key proteins during the early events of gravitropism. Plants were subjected to a gravity persistent signal (GPS) treatment, and proteins were extracted from the inflorescence stem at early time points after stimulation. Proteins were labeled with isobaric tags for relative and absolute quantification (iTRAQ) reagents. Proteins were identified and quantified as a single step using tandem mass-spectrometry (MS/MS). For two of the proteins identified, mutants with T-DNA inserts in the corresponding genes were evaluated for gravitropic phenotypes. KEY RESULTS A total of 82 proteins showed significant differential quantification between treatment and controls. Proteins were categorized into functional groups based on gene ontology terms and filtered using groups thought to be involved in the signaling events of gravitropism. For two of the proteins selected, GSTF9 and HSP81-2, knockout mutations resulted in defects in root skewing, waving, and curvature as well as in the GPS response of inflorescence stems. CONCLUSION Combining a proteomics approach with the GPS response, 82 novel proteins were identified to be involved in the early events of gravitropic signal transduction. As early as 2 and 4 min after a gravistimulation, significant changes occur in protein abundance. The approach was validated through the analysis of mutants exhibiting altered gravitropic responses.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701, USA
| | | | | | | | | | | |
Collapse
|
33
|
Svyatyna K, Riemann M. Light-dependent regulation of the jasmonate pathway. PROTOPLASMA 2012; 249 Suppl 2:S137-45. [PMID: 22569926 DOI: 10.1007/s00709-012-0409-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/29/2012] [Indexed: 05/03/2023]
Abstract
Jasmonates (JAs) are plant hormones which are crucial for the response of plants to several biotic and abiotic stresses. Beside this important function, they are involved in several developmental processes throughout plant life. In this short review, we would like to summarize the recent findings about the function of JAs in photomorphogenesis with a main focus on the model plant rice. Early plant development is determined to a large extent by light. Depending on whether seedlings are raised in darkness or in light, they show a completely different appearance which led to the terms skoto- and photomorphogenesis, respectively. The different appearance depending on the light conditions has been used to screen for mutants in photoperception and signalling. By this approach, mutants for several photoreceptors and in the downstream signalling pathways could be isolated. In rice, we and others isolated mutants with a very intriguing phenotype. The mutated genes have been cloned by map-based cloning, and all of them encode for JA biosynthesis genes. The most bioactive form of JAs identified so far is the amino acid conjugate jasmonoyl-isoleucin (JA-Ile). In order to conjugate JA to Ile, an enzyme of the GH3 family, JASMONATE RESISTANT 1, is required. We characterized mutants of OsJAR1 on a physiological and biochemical level and found evidence for redundantly active enzymes in rice.
Collapse
Affiliation(s)
- Katharina Svyatyna
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstr 2, 76128 Karlsruhe, Germany
| | | |
Collapse
|
34
|
Hoffmann M, Hentrich M, Pollmann S. Auxin-oxylipin crosstalk: relationship of antagonists. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:429-45. [PMID: 21658177 DOI: 10.1111/j.1744-7909.2011.01053.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Stephan Pollmann (Corresponding author) Phytohormones regulate a wide array of developmental processes throughout the life cycle of plants. Herein, the various plant hormones may interact additively, synergistically, or antagonistically. By their cooperation they create a delicate regulatory network whose net output largely depends on the action of specific phytohormone combinations rather than on the independent activities of separate hormones. While most classical studies of plant hormonal control have focused mainly on the action of single hormones or on the synergistic interaction of hormones in regulating various developmental processes, recent work is beginning to shed light on the crosstalk of nominally antagonistic plant hormones, such as gibberellins and auxins with oxylipins or abscisic acid. In this review, we summarize our current understanding of how two of the first sight antagonistic plant hormones, i.e. auxins and oxylipins, interact in controlling plant responses and development.
Collapse
Affiliation(s)
- Maik Hoffmann
- Centro de Biotecnología y Genómica de Plantas (U.P.M. - I.N.I.A.) Parque Científico y Tecnológico de la U.P.M., Campus de Montegancedo, Crta., Pozuelo de Alarcón, Madrid, Spain
| | | | | |
Collapse
|
35
|
Hála M, Soukupová H, Synek L, Zárský V. Arabidopsis RAB geranylgeranyl transferase beta-subunit mutant is constitutively photomorphogenic, and has shoot growth and gravitropic defects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:615-27. [PMID: 20180921 DOI: 10.1111/j.1365-313x.2010.04172.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RAB GTPases are important directional regulators of intracellular vesicle transport. Membrane localization of RAB GTPases is mediated by C-terminal double geranylgeranylation. This post-translational modification is catalyzed by the alpha-beta-heterodimer catalytic core of RAB geranylgeranyl transferase (RAB-GGT), which cooperates with the RAB escort protein (REP) that presents a nascent RAB. Here, we show that RAB-geranylgeranylation activity is significantly reduced in two homozygous mutants of the major Arabidopsis beta-subunit of RAB-GGT (AtRGTB1), resulting in unprenylated RAB GTPases accumulation in the cytoplasm. Both endocytosis and exocytosis are downregulated in rgtb1 homozygotes defective in shoot growth and morphogenesis. Root gravitropism is normal in rgtb1 roots, but is significantly compromised in shoots. Mutants are defective in etiolation and show constitutive photomorphogenic phenotypes that cannot be rescued by brassinosteroid treatment, similarly to the det3 mutant that is also defective in the secretory pathway. Transcriptomic analysis revealed an upregulation of specific RAB GTPases in etiolated wild-type plants. Taken together, these data suggest that the downregulation of the secretory pathway is interpreted as a photomorphogenic signal in Arabidopsis.
Collapse
Affiliation(s)
- Michal Hála
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 165 02 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
36
|
Böttcher C, Pollmann S. Plant oxylipins: plant responses to 12-oxo-phytodienoic acid are governed by its specific structural and functional properties. FEBS J 2009; 276:4693-704. [PMID: 19663904 DOI: 10.1111/j.1742-4658.2009.07195.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the most challenging questions in modern plant science is how plants regulate their morphological and developmental adaptation in response to changes in their biotic and abiotic environment. A comprehensive elucidation of the underlying mechanisms will help shed light on the extremely efficient strategies of plants in terms of survival and propagation. In recent years, a number of environmental stress conditions have been described as being mediated by signaling molecules of the oxylipin family. In this context, jasmonic acid, its biosynthetic precursor, 12-oxo-phytodienoic acid (OPDA), and also reactive electrophilic species such as phytoprostanes play pivotal roles. Although our understanding of jasmonic acid-dependent processes and jasmonic acid signal-transduction cascades has made considerable progress in recent years, knowledge of the regulation and mode of action of OPDA-dependent plant responses is just emerging. This minireview focuses on recent work concerned with the elucidation of OPDA-specific processes in plants. In this context, aspects such as the differential recruitment of OPDA, either by de novo biosynthesis or by release from cyclo-oxylipin-galactolipids, and the conjugation of free OPDA are discussed.
Collapse
|
37
|
Staswick PE. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. PLANT PHYSIOLOGY 2009; 4:757-9. [PMID: 19458116 PMCID: PMC2705031 DOI: 10.1104/pp.109.138529] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Most conjugates of plant hormones are inactive, and some function to reduce the active hormone pool. This study characterized the activity of the tryptophan (Trp) conjugate of jasmonic acid (JA-Trp) in Arabidopsis (Arabidopsis thaliana). Unexpectedly, JA-Trp caused agravitropic root growth in seedlings, unlike JA or nine other JA-amino acid conjugates. The response was dose dependent from 1 to 100 microm, was independent of the COI1 jasmonate signaling locus, and unlike the jasmonate signal JA-isoleucine, JA-Trp minimally inhibited root growth. The Trp conjugate with indole-3-acetic acid (IAA-Trp) produced a similar response, while Trp alone and conjugates with benzoic and cinnamic acids did not. JA-Trp and IAA-Trp at 25 microm nearly eliminated seedling root inhibition caused by 2 microm IAA. The TIR1 auxin receptor is required for activity because roots of tir1-1 grew only approximately 60% of wild-type length on IAA plus JA-Trp, even though tir1-1 is auxin resistant. However, neither JA-Trp nor IAA-Trp interfered with IAA-dependent interaction between TIR1 and Aux/IAA7 in cell-free assays. Trp conjugates inhibited IAA-stimulated lateral root production and DR5-beta-glucuronidase gene expression. JA-deficient mutants were hypersensitive to IAA and a Trp-overaccumulating mutant was less sensitive, suggesting endogenous conjugates affect auxin sensitivity. Conjugates were present at 5.8 pmol g(-1) fresh weight or less in roots, seedlings, leaves, and flowers, and the values increased approximately 10-fold in roots incubated in 25 microm Trp and IAA or JA at 2 microm. These results show that JA-Trp and IAA-Trp constitute a previously unrecognized mechanism to regulate auxin action.
Collapse
Affiliation(s)
- Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583-0915, USA.
| |
Collapse
|
38
|
Riemann M, Bouyer D, Hisada A, Müller A, Yatou O, Weiler EW, Takano M, Furuya M, Nick P. Phytochrome A requires jasmonate for photodestruction. PLANTA 2009; 229:1035-45. [PMID: 19184094 DOI: 10.1007/s00425-009-0891-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 01/07/2009] [Indexed: 05/23/2023]
Abstract
The plant photoreceptor phytochrome is organised in a small gene family with phytochrome A (phyA) being unique, because it is specifically degraded upon activation by light. This so called photodestruction is thought to be important for dynamic aspects of sensing such as measuring day length or shading by competitors. Signal-triggered proteolytic degradation has emerged as central element of signal crosstalk in plants during recent years, but many of the molecular players are still unknown. We therefore analyzed a jasmonate (JA)-deficient rice mutant, hebiba, that in several aspects resembles a mutant affected in photomorphogenesis. In this mutant, the photodestruction of phyA is delayed as shown by in vivo spectroscopy and Western blot analysis. Application of methyl-JA (MeJA) can rescue the delayed phyA photodestruction in the mutant in a time- and dose-dependent manner. Light regulation of phyA transcripts thought to be under control of stable phytochrome B (phyB) is still functional. The delayed photodestruction is accompanied by an elevated sensitivity of phytochrome-dependent growth responses to red and far-red light.
Collapse
Affiliation(s)
- Michael Riemann
- Institute of Botany 1, Universität Karlsruhe, Kaiserstrasse 2, 76128 Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jiang S, Xu K, Wang YZ, Ren YP, Gu S. Role of GA3, GA4 and uniconazole-P in controlling gravitropism and tension wood formation in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:19-28. [PMID: 18666948 DOI: 10.1111/j.1744-7909.2007.00552.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
GA(3) and GA(4) (gibberellins) play an important role in controlling gravitropism and tension wood formation in woody angiosperms. In order to improve our understanding of the role of GA(3) and GA(4) on xylem cell formation and the G-layer, we studied the effect of GA(3) and GA(4) and uniconazole-P, which is an inhibitor of GA biosynthesis, on tension wood formation by gravity in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings. Forty seedlings were divided into two groups; one group was placed upright and the other tilted. Each group was further divided into four sub-groups subjected to the following treatments: 3.43 x 10(-9) micromol acetone as control, 5.78 x 10(-8) micromol gibberellic acid (GA(3)), 6.21 x 10(-8) micromol GA(4), and 6.86 x 10(-8) micromol uniconazole-P. During the experimental period, GAs-treated seedlings exhibited negative gravitropism, whereas application of uniconazole-P inhibited negative gravitropic stem bending. GA(3) and GA(4) promoted wood fibers that possessed a gelatinous layer on the upper side, whereas uniconazole-P inhibited wood formation but did not inhibit the differentiation of the gelatinous layer in wood fibers on the upper side. These results suggest that: (i) both the formation of gelatinous fibers and the quantity of xylem production are important for the negative gravitropism in horizontally-positioned seedlings; (ii) GA(3) and GA(4) affect wood production more than differentiation of the gelatinous layer in wood fibers; G-layer development may be regulated by other hormones via the indirect-role of GA(3) and GA(4) in horizontally-positioned F. mandshurica seedlings rather than the direct effect of GAs; and (iii) the mechanism for upward wood stem bending is different to the newly developed shoot bending in reaction to gravity in this species.
Collapse
Affiliation(s)
- Sha Jiang
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | | | | | | | |
Collapse
|
40
|
Yoshihara T, Iino M. Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways. PLANT & CELL PHYSIOLOGY 2007; 48:678-88. [PMID: 17412736 DOI: 10.1093/pcp/pcm042] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We identified the gene responsible for three allelic lazy1 mutations of Japonica rice (Oryza sativa L.) by map-based cloning, complementation and RNA interference. Sequence analysis and database searches indicated that the wild-type gene (LAZY1) encodes a novel and unique protein (LAZY1) and that rice has no homologous gene. Two lazy1 mutants were LAZY1 null. Confirming and advancing the previously reported results on lazy1 mutants, we found the following. (i) Gravitropism is impaired, but only partially, in lazy1 coleoptiles. (ii) Circumnutation, observed in dark-grown coleoptiles, is totally absent from lazy1 coleoptiles. (iii) Primary roots of lazy1 mutants show normal gravitropism and circumnutation. (iv) LAZY1 is expressed in a tissue-specific manner in gravity-sensitive shoot tissues (i.e. coleoptiles, leaf sheath pulvini and lamina joints) and is little expressed in roots. (v) The gravitropic response of lazy1 coleoptiles is kinetically separable from that absent from lazy1 coleoptiles. (vi) Gravity-induced lateral translocation of auxin, found in wild-type coleoptiles, does not occur in lazy1 coleoptiles. Based on the genetic and physiological evidence obtained, it is concluded that LAZY1 is specifically involved in shoot gravitropism and that LAZY1-dependent and -independent signaling pathways occur in coleoptiles. It is further concluded that, in coleoptiles, only the LAZY1-dependent gravity signaling involves asymmetric distribution of auxin between the two lateral halves and is required for circumnutation.
Collapse
Affiliation(s)
- Takeshi Yoshihara
- Botanical Gardens, Graduate School of Science, Osaka City University, Kisaichi, Katano-shi, Osaka, 576-0004 Japan
| | | |
Collapse
|
41
|
Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 2007; 17:402-10. [PMID: 17468779 DOI: 10.1038/cr.2007.38] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yield. Although enormous efforts have been made over the past decades to study mutants with extremely spreading or compact tillers, the molecular mechanism underlying the control of tiller angle of cereal crops remains unknown. Here we report the cloning of the LAZY1 (LA1) gene that regulates shoot gravitropism by which the rice tiller angle is controlled. We show that LA1, a novel grass-specific gene, is temporally and spatially expressed, and plays a negative role in polar auxin transport (PAT). Loss-of-function of LA1 enhances PAT greatly and thus alters the endogenous IAA distribution in shoots, leading to the reduced gravitropism, and therefore the tiller-spreading phenotype of rice plants.
Collapse
Affiliation(s)
- Peijin Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Riemann M, Gutjahr C, Korte A, Riemann M, Danger B, Muramatsu T, Bayer U, Waller F, Furuya M, Nick P. GER1, a GDSL motif-encoding gene from rice is a novel early light- and jasmonate-induced gene. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:32-40. [PMID: 17048141 DOI: 10.1055/s-2006-924561] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The reaction of the rice mutant HEBIBA differs from that of wild-type rice in that the mutant responds inversely to red light and is defective in the light-triggered biosynthesis of jasmonic acid (JA). Using the wild type and the HEBIBA mutant of rice in a differential display screen, we attempted to identify genes that act in or near the convergence point of light and JA signalling. We isolated specifically regulated DNA fragments from approximately 10 000 displayed bands, and identified a new early light- and JA-induced gene. This gene encodes an enzyme containing a GDSL motif, showing 38 % identity at the amino acid level to lipase Arab-1 in Arabidopsis thaliana. The GDSL CONTAINING ENZYME RICE 1 gene (GER1) is rapidly induced by both red (R) and far-red (FR) light and by JA. The results are discussed with respect to a possible role for GER1 as a negative regulator of coleoptile elongation in the context of recent findings on the impact of JA on light signalling.
Collapse
Affiliation(s)
- M Riemann
- Botanisches Institut 1, Technische Universität Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gutjahr C, Nick P. Acrylamide inhibits gravitropism and affects microtubules in rice coleoptiles. PROTOPLASMA 2006; 227:211-22. [PMID: 16736259 DOI: 10.1007/s00709-005-0140-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 06/15/2005] [Indexed: 05/09/2023]
Abstract
To find components which participate in gravitropic signal transmission, we screened different cell biological inhibitors for their effect on gravitropic bending of rice coleoptiles. Acrylamide, which is known to affect intermediate filaments in mammalian cells, strongly inhibited gravitropic bending at concentrations that did not inhibit growth of coleoptile segments. This inhibition was reversible. Investigating the acrylamide effect further, we found that it interferes with an event that occurs around 15 min after the onset of stimulation. We also observed that acrylamide inhibits polar indolyl-3-acetic acid transport. Furthermore, acrylamide efficiently eliminated microtubules, whereas actin filaments remained intact. To our knowledge this is the first report of effects of monoacrylamide in plant cells.
Collapse
Affiliation(s)
- C Gutjahr
- Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau.
| | | |
Collapse
|
44
|
Nick P. Noise yields order--auxin, actin, and polar patterning. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:360-70. [PMID: 16807829 DOI: 10.1055/s-2006-923969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant patterns have to integrate environmental cues and to cope with a high level of noise in the sensory outputs of individual cells. In the first part of this review, we demonstrate that local self-amplification linked to lateral inhibition can meet this requirement. In the second part, we describe the search for candidates for such self-amplification loops in the context of auxin-dependent cell growth using Graminean coleoptiles as a model. Auxin-dependent reorganization of actin microfilaments interfered with the auxin sensitivity of growth. Auxin might control the intracellular transport of factors important for auxin sensing via the actomyosin system. By means of a rice mutant with elevated auxin responsiveness, we identified an auxin response factor (OSARF1), whose expression is upregulated by auxin as a second candidate for a self-amplification loop. We studied the cross-talk between auxin signalling and environmental cues in the rice mutant hebiba, where the photoinhibition of growth is impaired. We found that jasmonate plays a central role in this cross-talk correlated to a downregulation of auxin responsiveness. To obtain an insight into auxin-dependent coordination, we analyzed a tobacco cell line with axial cell divisions. By a combination of modelling and physiological manipulation, we could demonstrate that auxin synchronizes the divisions of adjacent cells on the background of strong heterogeneity of individual cells. We conclude that self-amplification of auxin signalling coupled to mutual competition for available auxin provides a versatile tool to fulfill the special requirements posed by patterning in plants.
Collapse
Affiliation(s)
- P Nick
- Institut of Botany 1, University of Karlsruhe, Kaiserstrasse 2, 76128 Karlsruhe, Germany.
| |
Collapse
|