1
|
Xie P, Yang Y, Gong D, Yu L, Wang Y, Li Y, Prusky D, Bi Y. Preharvest spraying of phenylalanine activates the sucrose and respiratory metabolism in muskmelon wounds during healing. Food Chem 2024; 457:140194. [PMID: 38924917 DOI: 10.1016/j.foodchem.2024.140194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Phenylalanine (Phe) accelerates fruit wound healing by activating phenylpropanoid metabolism. However, whether Phe affects sucrose and respiratory metabolism in fruit during wound healing remains unknown. In this research, we found that preharvest Phe spray promoted sucrose degradation and increased glucose and fructose levels by activating acid invertase (AI), neutral invertase (NI), sucrose synthase (SS) and sucrose phosphate synthase (SPS) on harvested muskmelons. The spray also activated hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), malate dehydrogenase (MDH), succinate dehydrogenase (SDH) and glucose-6-phosphate dehydrogenase (G6PDH). In addition, the spray improved energy and reducing power levels in the fruit. Taken together, preharvest Phe spray can provide carbon skeleton, energy and reducing power for wound healing by activating the sucrose metabolism, Embden-Meyerhof-Parnas (EMP) pathway, tricarboxylic acid (TCA) cycle and pentose phosphate (PPP) pathway in muskmelon wounds during healing, which is expected to be developed as a new strategy to accelerate fruit wound healing.
Collapse
Affiliation(s)
- Pengdong Xie
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yangyang Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Lirong Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- Department of Postharvest and Food Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Geleta M, Sundaramoorthy J, Carlsson AS. SeqSNP-Based Targeted GBS Provides Insight into the Genetic Relationships among Global Collections of Brassica rapa ssp. oleifera (Turnip Rape). Genes (Basel) 2024; 15:1187. [PMID: 39336778 PMCID: PMC11431370 DOI: 10.3390/genes15091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Turnip rape is a multi-purpose crop cultivated in temperate regions. Due to its ability to fit into crop rotation systems and its role as a food and feed source, spring-type turnip rape cultivation is on the rise. To improve the crop's productivity and nutritional value, it is essential to understand its genetic diversity. In this study, 188 spring-type accessions were genotyped using SeqSNP, a targeted genotyping-by-sequencing method to determine genetic relationships between various groups and assess the potential effects of mutations within genes regulating major desirable traits. Single nucleotide polymorphism (SNP) alleles at six loci were predicted to have high effects on their corresponding genes' functions, whereas nine loci had country/region-specific alleles. A neighbor-joining cluster analysis revealed three major clusters (I to III). About 72% of cluster-I accessions were of Asian origin, whereas 88.5% of European accessions and all North American accessions were placed in cluster-II or cluster-III. A principal coordinate analysis explained 65.3% of the total genetic variation. An analysis of molecular variance revealed significant differentiation among different groups of accessions. Compared to Asian cultivars, European and North American cultivars share more genetic similarities. Hence, crossbreeding Asian and European cultivars may result in improved cultivars due to desirable allele recombination. Compared to landraces and wild populations, the cultivars had more genetic variation, indicating that breeding had not caused genetic erosion. There were no significant differences between Swedish turnip rape cultivars and the NordGen collection. Hence, crossbreeding with genetically distinct cultivars could enhance the gene pool's genetic diversity and facilitate superior cultivar development.
Collapse
Affiliation(s)
- Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 23422 Lomma, Sweden
| | - Jagadeesh Sundaramoorthy
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 23422 Lomma, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 23422 Lomma, Sweden
| |
Collapse
|
3
|
Dong N, Chen L, Ahmad S, Cai Y, Duan Y, Li X, Liu Y, Jiao G, Xie L, Hu S, Sheng Z, Shao G, Wang L, Tang S, Wei X, Hu P. Genome-Wide Analysis and Functional Characterization of Pyruvate Kinase (PK) Gene Family Modulating Rice Yield and Quality. Int J Mol Sci 2022; 23:ijms232315357. [PMID: 36499684 PMCID: PMC9739881 DOI: 10.3390/ijms232315357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Pyruvate kinase (PK) is one of the three rate-limiting enzymes of glycolysis, and it plays a pivotal role in energy metabolism. In this study, we have identified 10 PK genes from the rice genome. Initially, these genes were divided into two categories: cytoplasmic pyruvate kinase (PKc) and plastid pyruvate kinase (PKp). Then, an expression analysis revealed that OsPK1, OsPK3, OsPK4, OsPK6, and OsPK9 were highly expressed in grains. Moreover, PKs can form heteropolymers. In addition, it was found that ABA significantly regulates the expression of PK genes (OsPK1, OsPK4, OsPK9, and OsPK10) in rice. Intriguingly, all the genes were found to be substantially involved in the regulation of rice grain quality and yield. For example, the disruption of OsPK3, OsPK5, OsPK7, OsPK8, and OsPK10 and OsPK4, OsPK5, OsPK6, and OsPK10 decreased the 1000-grain weight and the seed setting rate, respectively. Further, the disruption of OsPK4, OsPK6, OsPK8, and OsPK10 through the CRISPR/Cas9 system showed an increase in the content of total starch and a decrease in protein content compared to the WT. Similarly, manipulations of the OsPK4, OsPK8, and OsPK10 genes increased the amylose content. Meanwhile, the grains of all CRISPR mutants and RNAi lines, except ospk6, showed a significant increase in the chalkiness rate compared to the wild type. Overall, this study characterizes the functions of all the genes of the PK gene family and shows their untapped potential to improve rice yield and quality traits.
Collapse
|
4
|
Wei Y, Liu X, Ge S, Zhang H, Che X, Liu S, Liu D, Li H, Gu X, He L, Li Z, Xu J. Involvement of Phospholipase C in Photosynthesis and Growth of Maize Seedlings. Genes (Basel) 2022; 13:genes13061011. [PMID: 35741773 PMCID: PMC9222606 DOI: 10.3390/genes13061011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Phospholipase C is an enzyme that catalyzes the hydrolysis of glycerophospholipids and can be classified as phosphoinositide-specific PLC (PI-PLC) and non-specific PLC (NPC), depending on its hydrolytic substrate. In maize, the function of phospholipase C has not been well characterized. In this study, the phospholipase C inhibitor neomycin sulfate (NS, 100 mM) was applied to maize seedlings to investigate the function of maize PLC. Under the treatment of neomycin sulfate, the growth and development of maize seedlings were impaired, and the leaves were gradually etiolated and wilted. The analysis of physiological and biochemical parameters revealed that inhibition of phospholipase C affected photosynthesis, photosynthetic pigment accumulation, carbon metabolism and the stability of the cell membrane. High-throughput RNA-seq was conducted, and differentially expressed genes (DEGS) were found significantly enriched in photosynthesis and carbon metabolism pathways. When phospholipase C activity was inhibited, the expression of genes related to photosynthetic pigment accumulation was decreased, which led to lowered chlorophyll. Most of the genes related to PSI, PSII and TCA cycles were down-regulated and the net photosynthesis was decreased. Meanwhile, genes related to starch and sucrose metabolism, the pentose phosphate pathway and the glycolysis/gluconeogenesis pathway were up-regulated, which explained the reduction of starch and total soluble sugar content in the leaves of maize seedlings. These findings suggest that phospholipase C plays a key role in photosynthesis and the growth and development of maize seedlings.
Collapse
Affiliation(s)
- Yulei Wei
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinyu Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Shengnan Ge
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Haiyang Zhang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinyang Che
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Shiyuan Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Debin Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Huixin Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinru Gu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Lin He
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Zuotong Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
- Correspondence: (Z.L.); (J.X.)
| | - Jingyu Xu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China
- Correspondence: (Z.L.); (J.X.)
| |
Collapse
|
5
|
Pan Y, Zhao S, Wang Z, Wang X, Zhang X, Lee Y, Xi J. Quantitative proteomics suggests changes in the carbohydrate metabolism of maize in response to larvae of the belowground herbivore Holotrichia parallela. PeerJ 2020; 8:e9819. [PMID: 32913681 PMCID: PMC7456535 DOI: 10.7717/peerj.9819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
The larvae of Holotrichia parallela, a destructive belowground herbivore, may cause yield losses of up to 20% in maize in a typical year. To understand the protein-level mechanisms governing the response of maize to this herbivore, tandem mass tag (TMT) quantitative proteomics was used for the comparative analysis of protein abundance in the maize roots after H. parallela larval attack. A total of 351 upregulated proteins and 303 downregulated proteins were identified. Pathway enrichment analysis revealed that the differentially abundant proteins (DAPs) were most strongly associated with carbohydrate and energy metabolism pathways, such as glycolysis, pentose phosphate pathway and fructose and mannose metabolism. Most glycolysis-related proteins were significantly induced. In addition, H. parallela larval attack decreased the glucose concentrations in the roots. This study demonstrates that maize can manipulate carbohydrate metabolism by modifying glycolysis and pentose phosphate pathway response to root-feeding herbivorous attackers. The results of this study may help to establish a foundation for further functional studies of key protein-mediated responses to H. parallela larvae in maize.
Collapse
Affiliation(s)
- Yu Pan
- College of Plant Science, Jilin University, ChangChun, China
| | - Shiwen Zhao
- College of Plant Science, Jilin University, ChangChun, China
| | - Zhun Wang
- Changchun Customs Technology Center, ChangChun, China
| | - Xiao Wang
- College of Plant Science, Jilin University, ChangChun, China
| | - Xinxin Zhang
- College of Plant Science, Jilin University, ChangChun, China
| | - Yunshuo Lee
- College of Plant Science, Jilin University, ChangChun, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, ChangChun, China
| |
Collapse
|
6
|
Yan Z, Shen Z, Gao ZF, Chao Q, Qian CR, Zheng H, Wang BC. A comprehensive analysis of the lysine acetylome reveals diverse functions of acetylated proteins during de-etiolation in Zea mays. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153158. [PMID: 32240968 DOI: 10.1016/j.jplph.2020.153158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 06/11/2023]
Abstract
Lysine acetylation is one of the most important post-translational modifications and is involved in multiple cellular processes in plants. There is evidence that acetylation may play an important role in light-induced de-etiolation, a key developmental switch from skotomorphogenesis to photomorphogenesis. During this transition, establishment of photosynthesis is of great significance. However, studies on acetylome dynamics during de-etiolation are limited. Here, we performed the first global lysine acetylome analysis for Zea mays seedlings undergoing de-etiolation, using nano liquid chromatography coupled to tandem mass spectrometry, and identified 814 lysine-acetylated sites on 462 proteins. Bioinformatics analysis of this acetylome showed that most of the lysine-acetylated proteins are predicted to be located in the cytoplasm, nucleus, chloroplast, and mitochondria. In addition, we detected ten lysine acetylation motifs and found that the accumulation of 482 lysine-acetylated peptides corresponding to 289 proteins changed significantly during de-etiolation. These proteins include transcription factors, histones, and proteins involved in chlorophyll synthesis, photosynthesis light reaction, carbon assimilation, glycolysis, the TCA cycle, amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our study provides an in-depth dataset that extends our knowledge of in vivo acetylome dynamics during de-etiolation in monocots. This dataset promotes our understanding of the functional consequences of lysine acetylation in diverse cellular metabolic regulatory processes, and will be a useful toolkit for further investigations of the lysine acetylome and de-etiolation in plants.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| | - Chun-Rong Qian
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, New Jersey 08855, USA.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
7
|
Wulfert S, Schilasky S, Krueger S. Transcriptional and Biochemical Characterization of Cytosolic Pyruvate Kinases in Arabidopsis thaliana. PLANTS 2020; 9:plants9030353. [PMID: 32168758 PMCID: PMC7154858 DOI: 10.3390/plants9030353] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Glycolysis is a central catabolic pathway in every living organism with an essential role in carbohydrate breakdown and ATP synthesis, thereby providing pyruvate to the tricarboxylic acid cycle (TCA cycle). The cytosolic pyruvate kinase (cPK) represents a key glycolytic enzyme by catalyzing phosphate transfer from phosphoenolpyruvate (PEP) to ADP for the synthesis of ATP. Besides its important functions in cellular energy homeostasis, the activity of cytosolic pyruvate kinase underlies tight regulation, for instance by allosteric effectors, that impact stability of its quaternary structure. We determined five cytosol-localized pyruvate kinases, out of the fourteen putative pyruvate kinase genes encoded by the Arabidopsis thaliana genome, by investigation of phylogeny and localization of yellow fluorescent protein (YFP) fusion proteins. Analysis of promoter β-glucuronidase (GUS) reporter lines revealed an isoform-specific expression pattern for the five enzymes, subject to plant tissue and developmental stage. Investigation of the heterologously expressed and purified cytosolic pyruvate kinases revealed that these enzymes are differentially regulated by metabolites, such as citrate, fructose-1,6-bisphosphate (FBP) and ATP. In addition, measured in vitro enzyme activities suggest that pyruvate kinase subunit complexes consisting of cPK2/3 and cPK4/5 isoforms, respectively, bear regulatory properties. In summary, our study indicates that the five identified cytosolic pyruvate kinase isoforms adjust the carbohydrate flux through the glycolytic pathway in Arabidopsis thaliana, by distinct regulatory qualities, such as individual expression pattern as well as dissimilar responsiveness to allosteric effectors and enzyme subgroup association.
Collapse
|
8
|
Ferrero DML, Piattoni CV, Asencion Diez MD, Rojas BE, Hartman MD, Ballicora MA, Iglesias AA. Phosphorylation of ADP-Glucose Pyrophosphorylase During Wheat Seeds Development. FRONTIERS IN PLANT SCIENCE 2020; 11:1058. [PMID: 32754189 PMCID: PMC7366821 DOI: 10.3389/fpls.2020.01058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/26/2020] [Indexed: 05/23/2023]
Abstract
Starch is the dominant reserve polysaccharide accumulated in the seed of grasses (like wheat). It is the most common carbohydrate in the human diet and a material applied to the bioplastics and biofuels industry. Hence, the complete understanding of starch metabolism is critical to design rational strategies to improve its allocation in plant reserve tissues. ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the key (regulated) step in the synthetic starch pathway. The enzyme comprises a small (S) and a large (L) subunit forming an S2L2 heterotetramer, which is allosterically regulated by orthophosphate, fructose-6P, and 3P-glycerate. ADP-Glc PPase was found in a phosphorylated state in extracts from wheat seeds. The amount of the phosphorylated protein increased along with the development of the seed and correlated with relative increases of the enzyme activity and starch content. Conversely, this post-translational modification was absent in seeds from Ricinus communis. In vitro, the recombinant ADP-Glc PPase from wheat endosperm was phosphorylated by wheat seed extracts as well as by recombinant Ca2+-dependent plant protein kinases. Further analysis showed that the preferential phosphorylation takes place on the L subunit. Results suggest that the ADP-Glc PPase is a phosphorylation target in seeds from grasses but not from oleaginous plants. Accompanying seed maturation and starch accumulation, a combined regulation of ADP-Glc PPase by metabolites and phosphorylation may provide an enzyme with stable levels of activity. Such concerted modulation would drive carbon skeletons to the synthesis of starch for its long-term storage, which later support seed germination.
Collapse
Affiliation(s)
- Danisa M. L. Ferrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Claudia V. Piattoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Matías D. Asencion Diez
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Bruno E. Rojas
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Matías D. Hartman
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Miguel A. Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Alberto A. Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| |
Collapse
|
9
|
Comparative proteomic analysis provides new insights into the specialization of shoots and stolons in bermudagrass (Cynodon dactylon L.). BMC Genomics 2019; 20:708. [PMID: 31510936 PMCID: PMC6740039 DOI: 10.1186/s12864-019-6077-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background Bermudagrass (Cynodon dactylon L.) is an important turfgrass species with two types of stems, shoots and stolons. Despite their importance in determining the morphological variance and plasticity of bermudagrass, the intrinsic differences between stolons and shoots are poorly understood. Results In this study, we compared the proteomes of internode sections of shoots and stolons in the bermudagrass cultivar Yangjiang. The results indicated that 376 protein species were differentially accumulated in the two types of stems. Pathway enrichment analysis revealed that five and nine biochemical pathways were significantly enriched in stolons and shoots, respectively. Specifically, enzymes participating in starch synthesis all preferentially accumulated in stolons, whereas proteins involved in glycolysis and diverse transport processes showed relatively higher abundance in shoots. ADP-glucose pyrophosphorylase (AGPase) and pyruvate kinase (PK), which catalyze rate-limiting steps of starch synthesis and glycolysis, showed high expression levels and enzyme activity in stolons and shoots, respectively, in accordance with the different starch and soluble sugar contents of the two types of stems. Conclusions Our study revealed the differences between the shoots and stolons of bermudagrass at the proteome level. The results not only expand our understanding of the specialization of stolons and shoots but also provide clues for the breeding of bermudagrass and other turfgrasses with different plant architectures. Supplementary material Supplementary information accompanies this paper at 10.1186/s12864-019-6077-3.
Collapse
|
10
|
Cai Y, Li S, Jiao G, Sheng Z, Wu Y, Shao G, Xie L, Peng C, Xu J, Tang S, Wei X, Hu P. OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1878-1891. [PMID: 29577566 PMCID: PMC6181219 DOI: 10.1111/pbi.12923] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/01/2018] [Accepted: 03/18/2018] [Indexed: 05/18/2023]
Abstract
Starch is the main form of energy storage in higher plants. Although several enzymes and regulators of starch biosynthesis have been defined, the complete molecular machinery remains largely unknown. Screening for irregularities in endosperm formation in rice represents valuable prospect for studying starch synthesis pathway. Here, we identified a novel rice white-core endosperm and defective grain filling mutant, ospk2, which displays significantly lower grain weight, decreased starch content and alteration of starch physicochemical properties when compared to wild-type grains. The normal starch compound granules were drastically reduced and more single granules filled the endosperm cells of ospk2. Meanwhile, the germination rate of ospk2 seeds after 1-year storage was observably reduced compared with wild-type. Map-based cloning of OsPK2 indicated that it encodes a pyruvate kinase (PK, ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40), which catalyses an irreversible step of glycolysis. OsPK2 has a constitutive expression in rice and its protein localizes in chloroplasts. Enzyme assay showed that the protein product from expressed OsPK2 and the crude protein extracted from tissues of wild-type exhibits strong PK activity; however, the mutant presented reduced protein activity. OsPK2 (PKpα1) and three other putative rice plastidic isozymes, PKpα2, PKpβ1 and PKpβ2, can interact to form heteromer. Moreover, the mutation leads to multiple metabolic disorders. Altogether, these results denote new insights into the role of OsPK2 in plant seed development, especially in starch synthesis, compound granules formation and grain filling, which would be useful for genetic improvement of high yield and rice grain quality.
Collapse
Affiliation(s)
- Yicong Cai
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Sanfeng Li
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Guiai Jiao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhonghua Sheng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yawen Wu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Gaoneng Shao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Lihong Xie
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Cheng Peng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Junfeng Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Shaoqing Tang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xiangjin Wei
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Peisong Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| |
Collapse
|
11
|
Janiak A, Kwasniewski M, Sowa M, Gajek K, Żmuda K, Kościelniak J, Szarejko I. No Time to Waste: Transcriptome Study Reveals that Drought Tolerance in Barley May Be Attributed to Stressed-Like Expression Patterns that Exist before the Occurrence of Stress. FRONTIERS IN PLANT SCIENCE 2018; 8:2212. [PMID: 29375595 PMCID: PMC5767312 DOI: 10.3389/fpls.2017.02212] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/18/2017] [Indexed: 05/24/2023]
Abstract
Plant survival in adverse environmental conditions requires a substantial change in the metabolism, which is reflected by the extensive transcriptome rebuilding upon the occurrence of the stress. Therefore, transcriptomic studies offer an insight into the mechanisms of plant stress responses. Here, we present the results of global gene expression profiling of roots and leaves of two barley genotypes with contrasting ability to cope with drought stress. Our analysis suggests that drought tolerance results from a certain level of transcription of stress-influenced genes that is present even before the onset of drought. Genes that predispose the plant to better drought survival play a role in the regulatory network of gene expression, including several transcription factors, translation regulators and structural components of ribosomes. An important group of genes is involved in signaling mechanisms, with significant contribution of hormone signaling pathways and an interplay between ABA, auxin, ethylene and brassinosteroid homeostasis. Signal transduction in a drought tolerant genotype may be more efficient through the expression of genes required for environmental sensing that are active already during normal water availability and are related to actin filaments and LIM domain proteins, which may function as osmotic biosensors. Better survival of drought may also be attributed to more effective processes of energy generation and more efficient chloroplasts biogenesis. Interestingly, our data suggest that several genes involved in a photosynthesis process are required for the establishment of effective drought response not only in leaves, but also in roots of barley. Thus, we propose a hypothesis that root plastids may turn into the anti-oxidative centers protecting root macromolecules from oxidative damage during drought stress. Specific genes and their potential role in building up a drought-tolerant barley phenotype is extensively discussed with special emphasis on processes that take place in barley roots. When possible, the interconnections between particular factors are emphasized to draw a broader picture of the molecular mechanisms of drought tolerance in barley.
Collapse
Affiliation(s)
- Agnieszka Janiak
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Miroslaw Kwasniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Marta Sowa
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Gajek
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Żmuda
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture of Krakow, Kraków, Poland
| | - Janusz Kościelniak
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture of Krakow, Kraków, Poland
| | - Iwona Szarejko
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
12
|
Zhang B, Liu JY. Serine phosphorylation of the cotton cytosolic pyruvate kinase GhPK6 decreases its stability and activity. FEBS Open Bio 2017; 7:358-366. [PMID: 28286731 PMCID: PMC5337898 DOI: 10.1002/2211-5463.12179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/06/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022] Open
Abstract
Pyruvate kinase (PK, EC 2.7.1.40) is an important glycolytic enzyme involved in multiple physiological and developmental processes. In this study, we demonstrated that cotton cytosolic pyruvate kinase 6 (GhPK6) was phosphorylated at serines 215 and 402. Phosphorylation of GhPK6 at serine 215 inhibited its enzyme activity, whereas phosphorylation at both serine sites could promote its degradation. The phosphorylation-mediated ubiquitination of GhPK6 was gradually attenuated during the cotton fiber elongation process, which sufficiently explained the increase in the protein/mRNA ratios. These results collectively provided experimental evidence that cotton fiber elongation might be regulated at the post-translational level.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology Center for Plant Biology School of Life Sciences Tsinghua University Beijing China; Tsinghua-Peking Center for Life Science Tsinghua University Beijing China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology Center for Plant Biology School of Life Sciences Tsinghua University Beijing China
| |
Collapse
|
13
|
Piattoni CV, Ferrero DML, Dellaferrera I, Vegetti A, Iglesias AÁ. Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Is Phosphorylated during Seed Development. FRONTIERS IN PLANT SCIENCE 2017; 8:522. [PMID: 28443115 PMCID: PMC5387080 DOI: 10.3389/fpls.2017.00522] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/23/2017] [Indexed: 05/06/2023]
Abstract
Cytosolic glyceraldehyde-3-phosphate dehydrogenase (NAD-GAPDH) is involved in a critical energetic step of glycolysis and also has many important functions besides its enzymatic activity. The recombinant wheat NAD-GAPDH was phosphorylated in vitro at Ser205 by a SNF1-Related protein kinase 1 (SnRK1) from wheat heterotrophic (but not from photosynthetic) tissues. The S205D mutant enzyme (mimicking the phosphorylated form) exhibited a significant decrease in activity but similar affinity toward substrates. Immunodetection and activity assays showed that NAD-GAPDH is phosphorylated in vivo, the enzyme depicting different activity, abundance and phosphorylation profiles during development of seeds that mainly accumulate starch (wheat) or lipids (castor oil seed). NAD-GAPDH activity gradually increases along wheat seed development, but protein levels and phosphorylation status exhibited slight changes. Conversely, in castor oil seed, the activity slightly increased and total protein levels do not significantly change in the first half of seed development but both abruptly decreased in the second part of development, when triacylglycerol synthesis and storage begin. Interestingly, phospho-NAD-GAPDH levels reached a maximum when the seed switch their metabolism to mainly support synthesis and accumulation of carbon reserves. After this point the castor oil seed NAD-GAPDH protein levels and activity highly decreased, and the protein stability assays showed that the protein would be degraded by the proteasome. The results presented herein suggest that phosphorylation of NAD-GAPDH during seed development would have impact on the partitioning of triose-phosphate between different metabolic pathways and cell compartments to support the specific carbon, energy and reducing equivalent demands during synthesis of storage products.
Collapse
Affiliation(s)
- Claudia V. Piattoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Litoral) and Facultad de Bioquímica y Ciencias Biológicas (Universidad Nacional del Litoral), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas Santa FeSanta Fe, Argentina
- *Correspondence: Alberto Á. Iglesias, Claudia V. Piattoni,
| | - Danisa M. L. Ferrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Litoral) and Facultad de Bioquímica y Ciencias Biológicas (Universidad Nacional del Litoral), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas Santa FeSanta Fe, Argentina
| | - Ignacio Dellaferrera
- Cultivos Extensivos, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, EsperanzaArgentina
| | - Abelardo Vegetti
- Morfología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, EsperanzaArgentina
| | - Alberto Á. Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Litoral) and Facultad de Bioquímica y Ciencias Biológicas (Universidad Nacional del Litoral), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas Santa FeSanta Fe, Argentina
- *Correspondence: Alberto Á. Iglesias, Claudia V. Piattoni,
| |
Collapse
|
14
|
Pan L, Zhang J, Chi X, Chen N, Chen M, Wang M, Wang T, Yang Z, Zhang Z, Wan Y, Yu S, Liu F. The antisense expression of AhPEPC1 increases seed oil production in peanuts ( Arachis hypogaea L.). GRASAS Y ACEITES 2016. [DOI: 10.3989/gya.0322161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although phosphoenolpyruvate carboxylases (PEPCs) are reported to be involved in fatty acid accumulation, nitrogen assimilation, and salt and drought stresses, knowledge regarding PEPC gene functions is still limited, particularly in peanuts (Arachis hypogaea L.). In this study, the antisense expression of the peanut PEPC isoform 1 (AhPEPC1) gene increased the lipid content by 5.7%–10.3%. This indicated that AhPEPC1 might be related to plant lipid accumulation. The transgenic plants underwent more root elongation than the wild-type under salinity stress. Additionally, the specific down regulation of the AhPEPC1 gene improved the salt tolerance in peanuts. This is the first report on the role of PEPC in lipid accumulation and salt tolerance in peanuts.
Collapse
|
15
|
Zhang B, Liu JY. Cotton cytosolic pyruvate kinase GhPK6 participates in fast fiber elongation regulation in a ROS-mediated manner. PLANTA 2016; 244:915-26. [PMID: 27316434 DOI: 10.1007/s00425-016-2557-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/11/2016] [Indexed: 05/18/2023]
Abstract
Cotton cytosolic pyruvate kinase GhPK6 is preferentially expressed in the late stage of fiber elongation process, transgenic experiments indicated that its expression level was negatively correlated to cell expansion rate. Pyruvate kinase (PK) plays vital regulatory roles in rapid cell growth in mammals. However, the function of PK in plant cell growth remains unclear. In allotetraploid upland cotton (Gossypium hirsutum L.), a total of 33 PK genes are encoded by the genome. Analysis of the transcriptome data indicated that only two cytosolic PK genes, GhPK6 and its duplicated gene GhPK26, are preferentially expressed in elongating cotton fiber cells. RT-qPCR and western blot analyses revealed that the expression of GhPK6 was negatively correlated with fiber elongation rate, which well explains the observed sharp increase of cytosolic PK activity at the end of fast fiber elongation process. Furthermore, virus-induced gene silencing of GhPK6 in cotton plants resulted in increased fiber cell elongation and reduced reactive oxygen species (ROS) accumulation. On the contrary, Arabidopsis plants ectopically expressing GhPK6 exhibited ROS-mediated growth inhibition, whereas the addition of ROS scavenging reagents could partly rescue this inhibition. These data collectively suggested that GhPK6 might play an important role in regulating cotton fiber elongation in a ROS-dependent inhibition manner.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Subramanian S, Ricci E, Souleimanov A, Smith DL. A Proteomic Approach to Lipo-Chitooligosaccharide and Thuricin 17 Effects on Soybean GerminationUnstressed and Salt Stress. PLoS One 2016; 11:e0160660. [PMID: 27560934 PMCID: PMC4999219 DOI: 10.1371/journal.pone.0160660] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/23/2016] [Indexed: 12/13/2022] Open
Abstract
Salt stress is an important abiotic stressor affecting crop growth and productivity. Of the 20 percent of the terrestrial earth's surface available as agricultural land, 50 percent is estimated by the United Nations Environment Program to be salinized to the level that crops growing on it will be salt-stressed. Increased soil salinity has profound effects on seed germination and germinating seedlings as they are frequently confronted with much higher salinities than vigorously growing plants, because germination usually occurs in surface soils, the site of greatest soluble salt accumulation. The growth of soybean exposed to 40 mM NaCl is negatively affected, while an exposure to 80 mM NaCl is often lethal. When treated with the bacterial signal compounds lipo-chitooligosaccharide (LCO) and thuricin 17 (Th17), soybean seeds (variety Absolute RR) responded positively at salt stress of up to 150 mM NaCl. Shotgun proteomics of unstressed and 100 mM NaCl stressed seeds (48 h) in combination with the LCO and Th17 revealed many known, predicted, hypothetical and unknown proteins. In all, carbon, nitrogen and energy metabolic pathways were affected under both unstressed and salt stressed conditions when treated with signals. PEP carboxylase, Rubisco oxygenase large subunit, pyruvate kinase, and isocitrate lyase were some of the noteworthy proteins enhanced by the signals, along with antioxidant glutathione-S-transferase and other stress related proteins. These findings suggest that the germinating seeds alter their proteome based on bacterial signals and on stress, the specificity of this response plays a crucial role in organ maturation and transition from one stage to another in the plants' life cycle; understanding this response is of fundamental importance in agriculture and, as a result, global food security. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD004106.
Collapse
Affiliation(s)
- Sowmyalakshmi Subramanian
- Department of Plant Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Emily Ricci
- Department of Plant Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Alfred Souleimanov
- Department of Plant Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Donald L. Smith
- Department of Plant Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, H9X3V9, Canada
| |
Collapse
|
17
|
Khan MN, Sakata K, Komatsu S. Proteomic analysis of soybean hypocotyl during recovery after flooding stress. J Proteomics 2015; 121:15-27. [PMID: 25818724 DOI: 10.1016/j.jprot.2015.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 02/04/2023]
Abstract
Soybean is a nutritionally important crop, but exhibits reduced growth and yields under flooding stress. To investigate soybean responses during post-flooding recovery, a gel-free proteomic technique was used to examine the protein profile in the hypocotyl. Two-day-old soybeans were flooded for 2 days and hypocotyl was collected under flooding and during the post-flooding recovery period. A total of 498 and 70 proteins were significantly changed in control and post-flooding recovering soybeans, respectively. Based on proteomic and clustering analyses, three proteins were selected for mRNA expression and enzyme activity assays. Pyruvate kinase was increased under flooding, but gradually decreased during post-flooding recovery period at protein abundance, mRNA, and enzyme activity levels. Nucleotidylyl transferase was decreased under flooding and increased during post-flooding recovery at both mRNA expression and enzyme activity levels. Beta-ketoacyl reductase 1 was increased under flooding and decreased during recovery at protein abundance and mRNA expression levels, but its enzyme activity gradually increased during the post-flooding recovery period. These results suggest that pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase play key roles in post-flooding recovery in soybean hypocotyl by promoting glycolysis for the generation of ATP and regulation of secondary metabolic pathways. BIOLOGICAL SIGNIFICANCE This study analyzed post-flooding recovery response mechanisms in soybean hypocotyl, which is a model organ for studying secondary growth, using a gel-free proteomic technique. Mass spectrometry analysis of proteins extracted from soybean hypocotyls identified 20 common proteins between control and flooding-stressed soybeans that changed significantly in abundance over time. The hypocotyl proteins that changed during post-flooding recovery were assigned to protein, development, secondary metabolism, and glycolysis categories. The analysis revealed that three proteins, pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase, were increased in hypocotyl under flooding conditions and during post-flooding recovery. The proteins are involved in glycolysis, nucleotide synthesis and amino acid activation, and complex fatty acid biosynthesis.
Collapse
Affiliation(s)
- Mudassar Nawaz Khan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Katsumi Sakata
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
18
|
Auslender EL, Dorion S, Dumont S, Rivoal J. Expression, purification and characterization of Solanum tuberosum recombinant cytosolic pyruvate kinase. Protein Expr Purif 2015; 110:7-13. [PMID: 25573389 DOI: 10.1016/j.pep.2014.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
The cDNA encoding for a Solanum tuberosum cytosolic pyruvate kinase 1 (PKc1) highly expressed in tuber tissue was cloned in the bacterial expression vector pProEX HTc. The construct carried a hexahistidine tag in N-terminal position to facilitate purification of the recombinant protein. Production of high levels of soluble recombinant PKc1 in Escherichia coli was only possible when using a co-expression strategy with the chaperones GroES-GroEL. Purification of the protein by Ni(2 +) chelation chromatography yielded a single protein with an apparent molecular mass of 58kDa and a specific activity of 34unitsmg(-1) protein. The recombinant enzyme had an optimum pH between 6 and 7. It was relatively heat stable as it retained 80% of its activity after 2min at 75°C. Hyperbolic saturation kinetics were observed with ADP and UDP whereas sigmoidal saturation was observed during analysis of phosphoenolpyruvate binding. Among possible effectors tested, aspartate and glutamate had no effect on enzyme activity, whereas α-ketoglutarate and citrate were the most potent inhibitors. When tested on phosphoenolpyruvate saturation kinetics, these latter compounds increased S0.5. These findings suggest that S. tuberosum PKc1 is subject to a strong control by respiratory metabolism exerted via citrate and other tricarboxylic acid cycle intermediates.
Collapse
Affiliation(s)
- Evgenia L Auslender
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Qc H1X 2B2, Canada
| | - Sonia Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Qc H1X 2B2, Canada
| | - Sébastien Dumont
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Qc H1X 2B2, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Qc H1X 2B2, Canada.
| |
Collapse
|
19
|
Morgan HP, Zhong W, McNae IW, Michels PAM, Fothergill-Gilmore LA, Walkinshaw MD. Structures of pyruvate kinases display evolutionarily divergent allosteric strategies. ROYAL SOCIETY OPEN SCIENCE 2014; 1:140120. [PMID: 26064527 PMCID: PMC4448766 DOI: 10.1098/rsos.140120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/11/2014] [Indexed: 05/13/2023]
Abstract
The transition between the inactive T-state (apoenzyme) and active R-state (effector bound enzyme) of Trypanosoma cruzi pyruvate kinase (PYK) is accompanied by a symmetrical 8° rigid body rocking motion of the A- and C-domain cores in each of the four subunits, coupled with the formation of additional salt bridges across two of the four subunit interfaces. These salt bridges provide increased tetramer stability correlated with an enhanced specificity constant (k cat/S 0.5). A detailed kinetic and structural comparison between the potential drug target PYKs from the pathogenic protists T. cruzi, T. brucei and Leishmania mexicana shows that their allosteric mechanism is conserved. By contrast, a structural comparison of trypanosomatid PYKs with the evolutionarily divergent PYKs of humans and of bacteria shows that they have adopted different allosteric strategies. The underlying principle in each case is to maximize (k cat/S 0.5) by stabilizing and rigidifying the tetramer in an active R-state conformation. However, bacterial and mammalian PYKs have evolved alternative ways of locking the tetramers together. In contrast to the divergent allosteric mechanisms, the PYK active sites are highly conserved across species. Selective disruption of the varied allosteric mechanisms may therefore provide a useful approach for the design of species-specific inhibitors.
Collapse
|
20
|
Comparative Profiling Analysis of Central Metabolites inEuglena gracilisunder Various Cultivation Conditions. Biosci Biotechnol Biochem 2014; 75:2253-6. [DOI: 10.1271/bbb.110482] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Zhang Y, Xiao W, Luo L, Pang J, Rong W, He C. Downregulation of OsPK1, a cytosolic pyruvate kinase, by T-DNA insertion causes dwarfism and panicle enclosure in rice. PLANTA 2012; 235:25-38. [PMID: 21805151 DOI: 10.1007/s00425-011-1471-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/22/2011] [Indexed: 05/13/2023]
Abstract
Pyruvate kinase (PK) catalyzes the final step of glycolysis. There are few reports on the role of PK in rice. Here, we identified a novel rice dwarf mutant, designated as ospk1, showing dwarfism, panicle enclosure, reduced seed set, and outgrowth of axillary buds from culm nodes. Sequence analyses of 5'-RACE indicated that a single T-DNA was inserted in the transcriptional regulatory region of OsPK1 in ospk1. Quantitative RT-PCR result showed that OsPK1 expression was decreased by approximately 90% in ospk1 compared with that in WT. Enzyme assay and transient expression in protoplasts indicated that OsPK1 encodes a cytosolic PK (PK(c)). Complementation with OsPK1 demonstrated that OsPK1 is responsible for the phenotype of ospk1. Quantitative RT-PCR and GUS staining analyses exhibited that OsPK1 was expressed mainly in leaf mesophyll cells, phloem companion cells in stems, and cortical parenchyma cells in roots. The transcriptions of four other putative enzymes involved in the glycolysis/gluconeogenesis pathway were altered in ospk1. The amount of pyruvate is decreased in ospk1. We propose that OsPK1 plays an important role through affecting the glycolytic pathway. The contents of glucose and fructose were markedly accumulated in flag leaf blade and panicle of ospk1. The sucrose level in panicle of ospk1 was decreased by approximately 84%. These findings indicated that both monosaccharide metabolism and sugar transport are altered due to the decreased expression of OsPK1. Together, these results provide new insights into the role of PK(c) in plant morphological development, especially plant height.
Collapse
Affiliation(s)
- Yan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | |
Collapse
|
22
|
Nanjo Y, Skultety L, Uváčková L, Klubicová K, Hajduch M, Komatsu S. Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings. J Proteome Res 2012; 11:372-85. [PMID: 22136409 DOI: 10.1021/pr200701y] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flooding injury is a major problem in soybean cultivation. A proteomics approach was used to clarify the occurrence of changes in protein expression level and phosphorylation in soybeans under flooding stress. Two-day-old seedlings were flooded for 1 day, proteins were extracted from root tips of the seedlings and digested with trypsin, and their expression levels and phosphorylation states were compared to those of untreated controls using mass spectrometry-based proteomics techniques. Phosphoproteins were enriched using a phosphoprotein purification column prior to digestion and mass spectrometry. The expression of proteins involved in energy production increased as a result of flooding, while expression of proteins involved in protein folding and cell structure maintenance decreased. Flooding induced changes of phosphorylation status of proteins involved in energy generation, protein synthesis and cell structure maintenance. The response to flooding stress may be regulated by both modulation of protein expression and phosphorylation state. Energy-demanding and production-related metabolic pathways may be particularly subject to regulation by changes in protein phosphorylation during flooding.
Collapse
Affiliation(s)
- Yohei Nanjo
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Piattoni CV, Bustos DM, Guerrero SA, Iglesias AÁ. Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase is phosphorylated in wheat endosperm at serine-404 by an SNF1-related protein kinase allosterically inhibited by ribose-5-phosphate. PLANT PHYSIOLOGY 2011; 156:1337-50. [PMID: 21546456 PMCID: PMC3135918 DOI: 10.1104/pp.111.177261] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/02/2011] [Indexed: 05/17/2023]
Abstract
Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) is a cytosolic unconventional glycolytic enzyme of plant cells regulated by phosphorylation in heterotrophic tissues. After interaction with 14-3-3 proteins, the phosphorylated enzyme becomes less active and more sensitive to regulation by adenylates and inorganic pyrophosphate. Here, we acknowledge that in wheat (Triticum aestivum), np-Ga3PDHase is specifically phosphorylated by the SnRK (SNF1-related) protein kinase family. Interestingly, only the kinase present in heterotrophic tissues (endosperm and shoots, but not in leaves) was found active. The specific SnRK partially purified from endosperm exhibited a requirement for Mg(2+) or Mn(2+) (being Ca(2+) independent), having a molecular mass of approximately 200 kD. The kinase also phosphorylated standard peptides SAMS, AMARA, and SP46, as well as endogenous sucrose synthase, results suggesting that it could be a member of the SnRK1 subfamily. Concurrently, the partially purified wheat SnRK was recognized by antibodies raised against a peptide conserved between SnRK1s from sorghum (Sorghum bicolor) and maize (Zea mays) developing seeds. The wheat kinase was allosterically inhibited by ribose-5-phosphate and, to a lesser extent, by fructose-1,6-bisphosphate and 3-phosphoglycerate, while glucose-6-phosphate (the main effector of spinach [Spinacia oleracea] leaves, SnRK1) and trehalose-6-phosphate produced little or no effect. Results support a distinctive allosteric regulation of SnRK1 present in photosynthetic or heterotrophic plant tissues. After in silico analysis, we constructed two np-Ga3PDHase mutants, S404A and S447A, identifying serine-404 as the target of phosphorylation. Results suggest that both np-Ga3PDHase and the specific kinase could be under control, critically affecting the metabolic scenario involving carbohydrates and reducing power partition and storage in heterotrophic plant cells.
Collapse
Affiliation(s)
| | | | | | - Alberto Álvaro Iglesias
- Instituto de Agrobiotecnología del Litoral (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Litoral), Facultad de Bioquímica y Ciencias Biológicas, Paraje “El Pozo,” S3000ZAA Santa Fe, Argentina (C.V.P., S.A.G., A.A.I.); Instituto Tecnológico de Chascomús (Consejo Nacional de Investigaciones Científicas y Técnicas), 7130 Chascomus, Argentina (D.M.B.)
| |
Collapse
|
24
|
The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 2011; 436:15-34. [DOI: 10.1042/bj20110078] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled enzyme located at the core of plant C-metabolism that catalyses the irreversible β-carboxylation of PEP to form oxaloacetate and Pi. The critical role of PEPC in assimilating atmospheric CO2 during C4 and Crassulacean acid metabolism photosynthesis has been studied extensively. PEPC also fulfils a broad spectrum of non-photosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis and nitrogen assimilation. An impressive array of strategies has evolved to co-ordinate in vivo PEPC activity with cellular demands for C4–C6 carboxylic acids. To achieve its diverse roles and complex regulation, PEPC belongs to a small multigene family encoding several closely related PTPCs (plant-type PEPCs), along with a distantly related BTPC (bacterial-type PEPC). PTPC genes encode ~110-kDa polypeptides containing conserved serine-phosphorylation and lysine-mono-ubiquitination sites, and typically exist as homotetrameric Class-1 PEPCs. In contrast, BTPC genes encode larger ~117-kDa polypeptides owing to a unique intrinsically disordered domain that mediates BTPC's tight interaction with co-expressed PTPC subunits. This association results in the formation of unusual ~900-kDa Class-2 PEPC hetero-octameric complexes that are desensitized to allosteric effectors. BTPC is a catalytic and regulatory subunit of Class-2 PEPC that is subject to multi-site regulatory phosphorylation in vivo. The interaction between divergent PEPC polypeptides within Class-2 PEPCs adds another layer of complexity to the evolution, physiological functions and metabolic control of this essential CO2-fixing plant enzyme. The present review summarizes exciting developments concerning the functions, post-translational controls and subcellular location of plant PTPC and BTPC isoenzymes.
Collapse
|
25
|
Beczner F, Dancs G, Sós-Hegedus A, Antal F, Bánfalvi Z. Interaction between SNF1-related kinases and a cytosolic pyruvate kinase of potato. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1046-1051. [PMID: 20434234 DOI: 10.1016/j.jplph.2010.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/29/2010] [Accepted: 03/02/2010] [Indexed: 05/29/2023]
Abstract
SNF1-related protein kinases (SnRKs) are widely conserved in plants. Previous studies have shown that members of the SnRK1 subfamily phosphorylate and inactivate at least four important plant metabolic enzymes: 3-hydroxy-3-methylglutaryl-CoA reductase, sucrose phosphate synthase, nitrate reductase, and trehalose phosphate synthase 5. In this paper, we demonstrate that two SnRK1 proteins of potato, PKIN1 and StubSNF1, interact with a cytosolic pyruvate kinase (PK(c)) of potato in a yeast two-hybrid assay. The interacting domain of PK(c) is located in its C-terminal region and contains the putative SnRK1 recognition motif ALHRIGS(500)ASVI. Our results indicate that both SnRK1s influence PK(c) activity in vivo. Antisense repression of SnRK1s alters the intensity and light/dark periodicity of PK activity in leaves. However, the differences between PK activity curves in antisense PKIN1 and antisense StubSNF1 lines indicated that the function of the two kinases is not identical in potato.
Collapse
Affiliation(s)
- Farkas Beczner
- Agricultural Biotechnology Center, H-2101 Gödöllo, P.O. Box 411, Hungary
| | | | | | | | | |
Collapse
|
26
|
Houston NL, Hajduch M, Thelen JJ. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism. PLANT PHYSIOLOGY 2009; 151:857-68. [PMID: 19675154 PMCID: PMC2754632 DOI: 10.1104/pp.109.141622] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 08/11/2009] [Indexed: 05/20/2023]
Abstract
Seed maturation or seed filling is a phase of development that plays a major role in the storage reserve composition of a seed. In many plant seeds photosynthesis plays a major role in this process, although oilseeds, such as castor (Ricinus communis), are capable of accumulating oil without the benefit of photophosphorylation to augment energy demands. To characterize seed filling in castor, a systematic quantitative proteomics study was performed. Two-dimensional gel electrophoresis was used to resolve and quantify Cy-dye-labeled proteins expressed at 2, 3, 4, 5, and 6 weeks after flowering in biological triplicate. Expression profiles for 660 protein spot groups were established, and of these, 522 proteins were confidently identified by liquid chromatography-tandem mass spectrometry by mining against the castor genome. Identified proteins were classified according to function, and the most abundant groups of proteins were involved in protein destination and storage (34%), energy (19%), and metabolism (15%). Carbon assimilatory pathways in castor were compared with previous studies of photosynthetic oilseeds, soybean (Glycine max) and rapeseed (Brassica napus). These comparisons revealed differences in abundance and number of protein isoforms at numerous steps in glycolysis. One such difference was the number of enolase isoforms and their sum abundance; castor had approximately six times as many isoforms as soy and rapeseed. Furthermore, Rubisco was 11-fold less prominent in castor compared to rapeseed. These and other differences suggest some aspects of carbon flow, carbon recapture, as well as ATP and NADPH production in castor differs from photosynthetic oilseeds.
Collapse
Affiliation(s)
- Norma L Houston
- Interdisciplinary Plant Group and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
27
|
Oliver SN, Lunn JE, Urbanczyk-Wochniak E, Lytovchenko A, van Dongen JT, Faix B, Schmälzlin E, Fernie AR, Geigenberger P. Decreased expression of cytosolic pyruvate kinase in potato tubers leads to a decline in pyruvate resulting in an in vivo repression of the alternative oxidase. PLANT PHYSIOLOGY 2008; 148:1640-54. [PMID: 18829984 PMCID: PMC2577264 DOI: 10.1104/pp.108.126516] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/24/2008] [Indexed: 05/18/2023]
Abstract
The aim of this work was to investigate the effect of decreased cytosolic pyruvate kinase (PKc) on potato (Solanum tuberosum) tuber metabolism. Transgenic potato plants with strongly reduced levels of PKc were generated by RNA interference gene silencing under the control of a tuber-specific promoter. Metabolite profiling showed that decreased PKc activity led to a decrease in the levels of pyruvate and some other organic acids involved in the tricarboxylic acid cycle. Flux analysis showed that this was accompanied by changes in carbon partitioning, with carbon flux being diverted from glycolysis toward starch synthesis. However, this metabolic shift was relatively small and hence did not result in enhanced starch levels in the tubers. Although total respiration rates and the ATP to ADP ratio were largely unchanged, transgenic tubers showed a strong decrease in the levels of alternative oxidase (AOX) protein and a corresponding decrease in the capacity of the alternative pathway of respiration. External feeding of pyruvate to tuber tissue or isolated mitochondria resulted in activation of the AOX pathway, both in the wild type and the PKc transgenic lines, providing direct evidence for the regulation of AOX by changes in pyruvate levels. Overall, these results provide evidence for a crucial role of PKc in the regulation of pyruvate levels as well as the level of the AOX in heterotrophic plant tissue, and furthermore reveal that these parameters are interlinked in vivo.
Collapse
Affiliation(s)
- Sandra N Oliver
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wheeler MCG, Arias CL, Tronconi MA, Maurino VG, Andreo CS, Drincovitch MF. Arabidopsis thaliana NADP-malic enzyme isoforms: high degree of identity but clearly distinct properties. PLANT MOLECULAR BIOLOGY 2008; 67:231-42. [PMID: 18288573 DOI: 10.1007/s11103-008-9313-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/08/2008] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana genome contains four NADP-malic enzymes genes (NADP-ME1-4). NADP-ME4 is localized to plastids whereas the other isoforms are cytosolic. NADP-ME2 and 4 are constitutively expressed, while NADP-ME1 is restricted to secondary roots and NADP-ME3 to trichomes and pollen. Although the four isoforms share remarkably high degree of identity (75-90%), recombinant NADP-ME1 through 4 show distinct kinetic properties, both in the forward (malate oxidative decarboxylation) and reverse (pyruvate reductive carboxylation) reactions. The four isoforms behave differently in terms of reversibility, with NADP-ME2 presenting the highest reverse catalytic efficiency. When analyzing the activity of each isoform in the presence of metabolic effectors, NADP-ME2 was the most highly regulated isoform, especially in its activation by certain effectors. Several metabolites modulate both the forward and reverse reactions, exhibiting dual effects in some cases. Therefore, pyruvate reductive carboxylation may be relevant in vivo, especially in some cellular compartments and conditions. In order to identify residues or segments of the NADP-ME primary structure that could be involved in the differences among the isoforms, NADP-ME2 mutants and deletions were analysed. The results obtained show that Arg115 is involved in fumarate activation, while the amino-terminal part is critical for aspartate and CoA activation, as well as for the reverse reaction. As a whole, these studies show that minimal changes in the primary structure are responsible for the different kinetic behaviour of each AtNADP-ME isoform. In this way, the co-expression of some isoforms in the same cellular compartment would not imply redundancy but represents specificity of function.
Collapse
Affiliation(s)
- Mariel C Gerrard Wheeler
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
29
|
Uhrig RG, O'Leary B, Spang HE, MacDonald JA, She YM, Plaxton WC. Coimmunopurification of phosphorylated bacterial- and plant-type phosphoenolpyruvate carboxylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds. PLANT PHYSIOLOGY 2008; 146:1346-57. [PMID: 18184736 PMCID: PMC2259066 DOI: 10.1104/pp.107.110361] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 12/30/2007] [Indexed: 05/20/2023]
Abstract
The phosphoenolpyruvate carboxylase (PEPC) interactome of developing castor oil seed (COS; Ricinus communis) endosperm was assessed using coimmunopurification (co-IP) followed by proteomic analysis. Earlier studies suggested that immunologically unrelated 107-kD plant-type PEPCs (p107/PTPC) and 118-kD bacterial-type PEPCs (p118/BTPC) are subunits of an unusual 910-kD hetero-octameric class 2 PEPC complex of developing COS. The current results confirm that a tight physical interaction occurs between p118 and p107 because p118 quantitatively coimmunopurified with p107 following elution of COS extracts through an anti-p107-IgG immunoaffinity column. No PEPC activity or immunoreactive PEPC polypeptides were detected in the corresponding flow-through fractions. Although BTPCs lack the N-terminal phosphorylation motif characteristic of PTPCs, Pro-Q Diamond phosphoprotein staining, immunoblotting with phospho-serine (Ser)/threonine Akt substrate IgG, and phosphate-affinity PAGE established that coimmunopurified p118 was multiphosphorylated at unique Ser and/or threonine residues. Tandem mass spectrometric analysis of an endoproteinase Lys-C p118 peptide digest demonstrated that Ser-425 is subject to in vivo proline-directed phosphorylation. The co-IP of p118 with p107 did not appear to be influenced by their phosphorylation status. Because p118 phosphorylation was unchanged 48 h following elimination of photosynthate supply due to COS depodding, the signaling mechanisms responsible for photosynthate-dependent p107 phosphorylation differ from those controlling p118's in vivo phosphorylation. A 110-kD PTPC coimmunopurified with p118 and p107 when depodded COS was used. The plastidial pyruvate dehydrogenase complex (PDC(pl)) was identified as a novel PEPC interactor. Thus, a putative metabolon involving PEPC and PDC(pl) could function to channel carbon from phosphoenolpyruvate to acetyl-coenzyme A and/or to recycle CO(2) from PDC(pl) to PEPC.
Collapse
Affiliation(s)
- R Glen Uhrig
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Andre C, Froehlich JE, Moll MR, Benning C. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. THE PLANT CELL 2007; 19:2006-22. [PMID: 17557808 PMCID: PMC1955724 DOI: 10.1105/tpc.106.048629] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Glycolysis is a ubiquitous pathway thought to be essential for the production of oil in developing seeds of Arabidopsis thaliana and oil crops. Compartmentation of primary metabolism in developing embryos poses a significant challenge for testing this hypothesis and for the engineering of seed biomass production. It also raises the question whether there is a preferred route of carbon from imported photosynthate to seed oil in the embryo. Plastidic pyruvate kinase catalyzes a highly regulated, ATP-producing reaction of glycolysis. The Arabidopsis genome encodes 14 putative isoforms of pyruvate kinases. Three genes encode subunits alpha, beta(1), and beta(2) of plastidic pyruvate kinase. The plastid enzyme prevalent in developing seeds likely has a subunit composition of 4alpha4beta(1), is most active at pH 8.0, and is inhibited by Glu. Disruption of the gene encoding the beta(1) subunit causes a reduction in plastidic pyruvate kinase activity and 60% reduction in seed oil content. The seed oil phenotype is fully restored by expression of the beta(1) subunit-encoding cDNA and partially by the beta(2) subunit-encoding cDNA. Therefore, the identified pyruvate kinase catalyzes a crucial step in the conversion of photosynthate into oil, suggesting a preferred plastid route from its substrate phosphoenolpyruvate to fatty acids.
Collapse
Affiliation(s)
- Carl Andre
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
31
|
de Bari L, Valenti D, Pizzuto R, Atlante A, Passarella S. Phosphoenolpyruvate metabolism in Jerusalem artichoke mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:281-94. [PMID: 17418088 DOI: 10.1016/j.bbabio.2007.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 01/17/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
We report here initial studies on phosphoenolpyruvate metabolism in coupled mitochondria isolated from Jerusalem artichoke tubers. It was found that: (1) phosphoenolpyruvate can be metabolized by Jerusalem artichoke mitochondria by virtue of the presence of the mitochondrial pyruvate kinase, shown both immunologically and functionally, located in the inner mitochondrial compartments and distinct from the cytosolic pyruvate kinase as shown by the different pH and inhibition profiles. (2) Jerusalem artichoke mitochondria can take up externally added phosphoenolpyruvate in a proton compensated manner, in a carrier-mediated process which was investigated by measuring fluorimetrically the oxidation of intramitochondrial pyridine nucleotide which occurs as a result of phosphoenolpyruvate uptake and alternative oxidase activation. (3) The addition of phosphoenolpyruvate causes pyruvate and ATP production, as monitored via HPLC, with their efflux into the extramitochondrial phase investigated fluorimetrically. Such an efflux occurs via the putative phosphoenolpyruvate/pyruvate and phosphoenolpyruvate/ATP antiporters, which differ from each other and from the pyruvate and the adenine nucleotide carriers, in the light of the different sensitivity to non-penetrant compounds. These carriers were shown to regulate the rate of efflux of both pyruvate and ATP. The appearance of citrate and oxaloacetate outside mitochondria was also found as a result of phosphoenolpyruvate addition.
Collapse
Affiliation(s)
- Lidia de Bari
- Istituto di Biomembrane e Bioenergetica, CNR, Via G. Amendola 165/A, 70126, Bari, Italy
| | | | | | | | | |
Collapse
|
32
|
Tripodi KE, Turner WL, Gennidakis S, Plaxton WC. In vivo regulatory phosphorylation of novel phosphoenolpyruvate carboxylase isoforms in endosperm of developing castor oil seeds. PLANT PHYSIOLOGY 2005; 139:969-78. [PMID: 16169958 PMCID: PMC1256010 DOI: 10.1104/pp.105.066647] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Our previous research characterized two phosphoenolpyruvate (PEP) carboxylase (PEPC) isoforms (PEPC1 and PEPC2) from developing castor oil seeds (COS). The association of a shared 107-kD subunit (p107) with an immunologically unrelated bacterial PEPC-type 64-kD polypeptide (p64) leads to marked physical and kinetic differences between the PEPC1 p107 homotetramer and PEPC2 p107/p64 heterooctamer. Here, we describe the production of antiphosphorylation site-specific antibodies to the conserved p107 N-terminal serine-6 phosphorylation site. Immunoblotting established that the serine-6 of p107 is phosphorylated in COS PEPC1 and PEPC2. This phosphorylation was reversed in vitro following incubation of clarified COS extracts or purified PEPC1 or PEPC2 with mammalian protein phosphatase type 2A and is not involved in a potential PEPC1 and PEPC2 interconversion. Similar to other plant PEPCs examined to date, p107 phosphorylation increased PEPC1 activity at pH 7.3 by decreasing its K(m)(PEP) and sensitivity to L-malate inhibition, while enhancing glucose-6-P activation. By contrast, p107 phosphorylation increased PEPC2's K(m)(PEP) and sensitivity to malate, glutamic acid, and aspartic acid inhibition. Phosphorylation of p107 was promoted during COS development (coincident with a >5-fold increase in the I(50) [malate] value for total PEPC activity in desalted extracts) but disappeared during COS desiccation. The p107 of stage VII COS became fully dephosphorylated in planta 48 h following excision of COS pods or following 72 h of dark treatment of intact plants. The in vivo phosphorylation status of p107 appears to be modulated by photosynthate recently translocated from source leaves into developing COS.
Collapse
Affiliation(s)
- Karina E Tripodi
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|