1
|
Kumar S, Singh A, Bist CMS, Sharma M. Advancements in genetic techniques and functional genomics for enhancing crop traits and agricultural sustainability. Brief Funct Genomics 2024; 23:607-623. [PMID: 38679487 DOI: 10.1093/bfgp/elae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Genetic variability is essential for the development of new crop varieties with economically beneficial traits. The traits can be inherited from wild relatives or induced through mutagenesis. Novel genetic elements can then be identified and new gene functions can be predicted. In this study, forward and reverse genetics approaches were described, in addition to their applications in modern crop improvement programs and functional genomics. By using heritable phenotypes and linked genetic markers, forward genetics searches for genes by using traditional genetic mapping and allele frequency estimation. Despite recent advances in sequencing technology, omics and computation, genetic redundancy remains a major challenge in forward genetics. By analyzing close-related genes, we will be able to dissect their functional redundancy and predict possible traits and gene activity patterns. In addition to these predictions, sophisticated reverse gene editing tools can be used to verify them, including TILLING, targeted insertional mutagenesis, gene silencing, gene targeting and genome editing. By using gene knock-down, knock-up and knock-out strategies, these tools are able to detect genetic changes in cells. In addition, epigenome analysis and editing enable the development of novel traits in existing crop cultivars without affecting their genetic makeup by increasing epiallelic variants. Our understanding of gene functions and molecular dynamics of various biological phenomena has been revised by all of these findings. The study also identifies novel genetic targets in crop species to improve yields and stress tolerances through conventional and non-conventional methods. In this article, genetic techniques and functional genomics are specifically discussed and assessed for their potential in crop improvement.
Collapse
Affiliation(s)
- Surender Kumar
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Anupama Singh
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Chander Mohan Singh Bist
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla-171001, Himachal Pradesh, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Dharamshala-176215, Himachal Pradesh, India
| |
Collapse
|
2
|
Sareen B, Pudake RN, Sevanthi AM, Solanke AU. Biotechnological approaches to reduce the phytic acid content in millets to improve nutritional quality. PLANTA 2024; 260:99. [PMID: 39294492 DOI: 10.1007/s00425-024-04525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
MAIN CONCLUSION The review article summarizes the approaches and potential targets to address the challenges of anti-nutrient like phytic acid in millet grains for nutritional improvement. Millets are a diverse group of minor cereal grains that are agriculturally important, nutritionally rich, and the oldest cereals in the human diet. The grains are important for protein, vitamins, macro and micronutrients, fibre, and energy sources. Despite a high amount of nutrients, millet grains also contain anti-nutrients that limit the proper utilization of nutrients and finally affect their dietary quality. Our study aims to outline the genomic information to identify the target areas of research for the exploration of candidate genes for nutritional importance and show the possibilities to address the presence of anti-nutrient (phytic acid) in millets. So, the physicochemical accessibility of micronutrients increases and the agronomic traits can do better. Several strategies have been adopted to minimize the phytic acid, a predominant anti-nutrient in cereal grains. In the present review, we highlight the potential of biotechnological tools and genome editing approaches to address phytic acid in millets. It also highlights the biosynthetic pathway of phytic acid and potential targets for knockout or silencing to achieve low phytic acid content in millets.
Collapse
Affiliation(s)
- Bhuvnesh Sareen
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Ramesh Namdeo Pudake
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
- Amity University, Uttar Pradesh, Noida, India.
| | | | - Amolkumar U Solanke
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
3
|
Zhou L, Asad MAU, Guan X, Pan G, Zhang Y, Cheng F. Rice myo-inositol-3-phosphate synthase 2 (RINO2) alleviates heat injury-induced impairment in pollen germination and tube growth by modulating Ca 2+ signaling and actin filament cytoskeleton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:861-878. [PMID: 38761097 DOI: 10.1111/tpj.16802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Low phytic acid (lpa) crop is considered as an effective strategy to improve crop nutritional quality, but a substantial decrease in phytic acid (PA) usually has negative effect on agronomic performance and its response to environment adversities. Myo-inositol-3-phosphate synthase (MIPS) is the rate-limiting enzyme in PA biosynthesis pathway, and regarded as the prime target for engineering lpa crop. In this paper, the rice MIPS gene (RINO2) knockout mutants and its wild type were performed to investigate the genotype-dependent alteration in the heat injury-induced spikelet fertility and its underlying mechanism for rice plants being imposed to heat stress at anthesis. Results indicated that RINO2 knockout significantly enhanced the susceptibility of rice spikelet fertility to heat injury, due to the severely exacerbated obstacles in pollen germination and pollen tube growth in pistil for RINO2 knockout under high temperature (HT) at anthesis. The loss of RINO2 function caused a marked reduction in inositol and phosphatidylinositol derivative concentrations in the HT-stressed pollen grains, which resulted in the strikingly lower content of phosphatidylinositol 4,5-diphosphate (PI (4,5) P2) in germinating pollen grain and pollen tube. The insufficient supply of PI (4,5) P2 in the HT-stressed pollen grains disrupted normal Ca2+ gradient in the apical region of pollen tubes and actin filament cytoskeleton in growing pollen tubes. The severely repressed biosynthesis of PI (4,5) P2 was among the regulatory switch steps leading to the impaired pollen germination and deformed pollen tube growth for the HT-stressed pollens of RINO2 knockout mutants.
Collapse
Affiliation(s)
- Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad-Asad-Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Gang Pan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yan Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Collaborative Innovation Centre for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, 210095, China
| |
Collapse
|
4
|
Sahu A, Verma R, Gupta U, Kashyap S, Sanyal I. An Overview of Targeted Genome Editing Strategies for Reducing the Biosynthesis of Phytic Acid: an Anti-nutrient in Crop Plants. Mol Biotechnol 2024; 66:11-25. [PMID: 37061991 DOI: 10.1007/s12033-023-00722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/11/2023] [Indexed: 04/17/2023]
Abstract
Anti-nutrients are substances either found naturally or are of synthetic origin, which leads to the inactivation of nutrients and limits their utilization in metabolic processes. Phytic acid is classified as an anti-nutrient, as it has a strong binding affinity with most minerals like Fe, Zn, Mg, Ca, Mn, and Cd and impairs their proper metabolism. Removing anti-nutrients from cereal grains may enable the bioavailability of both macro- and micronutrients which is the desired goal of genetic engineering tools for the betterment of agronomic traits. Several strategies have been adopted to minimize phytic acid content in plants. Pursuing the molecular strategies, there are several studies, which result in the decrement of the total phytic acid content in grains of major as well as minor crops. Biosynthesis of phytic acid mainly takes place in the seed comprising lipid-dependent and lipid-independent pathways, involving various enzymes. Furthermore, some studies show that interruption of these enzymes may involve the pleiotropic effect. However, using modern biotechnological approaches, undesirable agronomic traits can be removed. This review presents an overview of different genes encoding the various enzymes involved in the biosynthetic pathway of phytic acid which is being targeted for its reduction. It also, highlights and enumerates the variety of potential applications of genome editing tools such as TALEN, ZFN, and CRISPR/Cas9 to knock out the desired genes, and RNAi for their silencing.
Collapse
Affiliation(s)
- Anshu Sahu
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Rita Verma
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Uma Gupta
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Shashi Kashyap
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P, 226001, India.
| |
Collapse
|
5
|
Duraiswamy A, Sneha A. NM, Jebakani K. S, Selvaraj S, Pramitha J. L, Selvaraj R, Petchiammal K. I, Kather Sheriff S, Thinakaran J, Rathinamoorthy S, Kumar P. R. Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future. FRONTIERS IN PLANT SCIENCE 2023; 13:1070398. [PMID: 36874916 PMCID: PMC9976781 DOI: 10.3389/fpls.2022.1070398] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The consumption of healthy food, in order to strengthen the immune system, is now a major focus of people worldwide and is essential to tackle the emerging pandemic concerns. Moreover, research in this area paves the way for diversification of human diets by incorporating underutilized crops which are highly nutritious and climate-resilient in nature. However, although the consumption of healthy foods increases nutritional uptake, the bioavailability of nutrients and their absorption from foods also play an essential role in curbing malnutrition in developing countries. This has led to a focus on anti-nutrients that interfere with the digestion and absorption of nutrients and proteins from foods. Anti-nutritional factors in crops, such as phytic acid, gossypol, goitrogens, glucosinolates, lectins, oxalic acid, saponins, raffinose, tannins, enzyme inhibitors, alkaloids, β-N-oxalyl amino alanine (BOAA), and hydrogen cyanide (HCN), are synthesized in crop metabolic pathways and are interconnected with other essential growth regulation factors. Hence, breeding with the aim of completely eliminating anti-nutrition factors tends to compromise desirable features such as yield and seed size. However, advanced techniques, such as integrated multi-omics, RNAi, gene editing, and genomics-assisted breeding, aim to breed crops in which negative traits are minimized and to provide new strategies to handle these traits in crop improvement programs. There is also a need to emphasize individual crop-based approaches in upcoming research programs to achieve smart foods with minimum constraints in future. This review focuses on progress in molecular breeding and prospects for additional approaches to improve nutrient bioavailability in major crops.
Collapse
Affiliation(s)
- Aishwarya Duraiswamy
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Nancy Mano Sneha A.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sherina Jebakani K.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sellakumar Selvaraj
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Lydia Pramitha J.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Ramchander Selvaraj
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Indira Petchiammal K.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sharmili Kather Sheriff
- Agronomy, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Jenita Thinakaran
- Horticulture, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Samundeswari Rathinamoorthy
- Crop Physiology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Ramesh Kumar P.
- Plant Biochemistry, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
6
|
Kumar J, Kumar A, Sen Gupta D, Kumar S, DePauw RM. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity (Edinb) 2022; 128:473-496. [PMID: 35249099 PMCID: PMC9178024 DOI: 10.1038/s41437-022-00513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Ron M DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
7
|
Calmodulin and Its Interactive Proteins Participate in Regulating the Explosive Growth of Alexandrium pacificum (Dinoflagellate). Int J Mol Sci 2021; 23:ijms23010145. [PMID: 35008568 PMCID: PMC8745774 DOI: 10.3390/ijms23010145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Alexandrium pacificum is a typical dinoflagellate that can cause harmful algal blooms, resulting in negative impacts on ecology and human health. The calcium (Ca2+) signal transduction pathway plays an important role in cell proliferation. Calmodulin (CaM) and CaM-related proteins are the main cellular Ca2+ sensors, and can act as an intermediate in the Ca2+ signal transduction pathway. In this study, the proteins that interacted with CaM of A. pacificum were screened by two-dimensional electrophoresis analysis and far western blots under different growth conditions including lag phase and high phosphorus and manganese induced log phase (HPM). The interactive proteins were then identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Four proteins were identified, including Ca2+/CaM-dependent protein kinase, serine/threonine kinase, annexin, and inositol-3-phosphate synthase, which all showed high expression levels under HPM. The gene expression levels encoding these four proteins were also up-regulated under HPM, as revealed by quantitative polymerase chain reaction, suggesting that the identified proteins participate in the Ca2+ transport channel and cell cycle regulation to promote cell division. A network of proteins interacting with CaM and their target proteins involved in the regulation of cell proliferation was raised, which provided new insights into the mechanisms behind the explosive growth of A. pacificum.
Collapse
|
8
|
DeMers LC, Raboy V, Li S, Saghai Maroof MA. Network Inference of Transcriptional Regulation in Germinating Low Phytic Acid Soybean Seeds. FRONTIERS IN PLANT SCIENCE 2021; 12:708286. [PMID: 34531883 PMCID: PMC8438133 DOI: 10.3389/fpls.2021.708286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 05/14/2023]
Abstract
The low phytic acid (lpa) trait in soybeans can be conferred by loss-of-function mutations in genes encoding myo-inositol phosphate synthase and two epistatically interacting genes encoding multidrug-resistance protein ATP-binding cassette (ABC) transporters. However, perturbations in phytic acid biosynthesis are associated with poor seed vigor. Since the benefits of the lpa trait, in terms of end-use quality and sustainability, far outweigh the negatives associated with poor seed performance, a fuller understanding of the molecular basis behind the negatives will assist crop breeders and engineers in producing variates with lpa and better germination rate. The gene regulatory network (GRN) for developing low and normal phytic acid soybean seeds was previously constructed, with genes modulating a variety of processes pertinent to phytic acid metabolism and seed viability being identified. In this study, a comparative time series analysis of low and normal phytic acid soybeans was carried out to investigate the transcriptional regulatory elements governing the transitional dynamics from dry seed to germinated seed. GRNs were reverse engineered from time series transcriptomic data of three distinct genotypic subsets composed of lpa soybean lines and their normal phytic acid sibling lines. Using a robust unsupervised network inference scheme, putative regulatory interactions were inferred for each subset of genotypes. These interactions were further validated by published regulatory interactions found in Arabidopsis thaliana and motif sequence analysis. Results indicate that lpa seeds have increased sensitivity to stress, which could be due to changes in phytic acid levels, disrupted inositol phosphate signaling, disrupted phosphate ion (Pi) homeostasis, and altered myo-inositol metabolism. Putative regulatory interactions were identified for the latter two processes. Changes in abscisic acid (ABA) signaling candidate transcription factors (TFs) putatively regulating genes in this process were identified as well. Analysis of the GRNs reveal altered regulation in processes that may be affecting the germination of lpa soybean seeds. Therefore, this work contributes to the ongoing effort to elucidate molecular mechanisms underlying altered seed viability, germination and field emergence of lpa crops, understanding of which is necessary in order to mitigate these problems.
Collapse
Affiliation(s)
- Lindsay C. DeMers
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Victor Raboy
- National Small Grains Germplasm Research Center, Agricultural Research Service (USDA), Aberdeen, ID, United States
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - M. A. Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
9
|
Silva VM, Putti FF, White PJ, Reis ARD. Phytic acid accumulation in plants: Biosynthesis pathway regulation and role in human diet. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:132-146. [PMID: 33991859 DOI: 10.1016/j.plaphy.2021.04.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Phytate or phytic acid (PA), is a phosphorus (P) containing compound generated by the stepwise phosphorylation of myo-inositol. It forms complexes with some nutrient cations, such as Ca, Fe and Zn, compromising their absorption and thus acting as an anti-nutrient in the digestive tract of humans and monogastric animals. Conversely, PAs are an important form of P storage in seeds, making up to 90% of total seed P. Phytates also play a role in germination and are related to the synthesis of abscisic acid and gibberellins, the hormones involved in seed germination. Decreasing PA content in plants is desirable for human dietary. Therefore, low phytic acid (lpa) mutants might present some negative pleiotropic effects, which could impair germination and seed viability. In the present study, we review current knowledge of the genes encoding enzymes that function in different stages of PA synthesis, from the first phosphorylation of myo-inositol to PA transport into seed reserve tissues, and the application of this knowledge to reduce PA concentrations in edible crops to enhance human diet. Finally, phylogenetic data for PA concentrations in different plant families and distributed across several countries under different environmental conditions are compiled. The results of the present study help explain the importance of PA accumulation in different plant families and the distribution of PA accumulation in different foods.
Collapse
Affiliation(s)
| | | | - Philip J White
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | |
Collapse
|
10
|
Jin H, Yu X, Yang Q, Fu X, Yuan F. Transcriptome analysis identifies differentially expressed genes in the progenies of a cross between two low phytic acid soybean mutants. Sci Rep 2021; 11:8740. [PMID: 33888781 PMCID: PMC8062490 DOI: 10.1038/s41598-021-88055-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Phytic acid (PA) is a major antinutrient that cannot be digested by monogastric animals, but it can decrease the bioavailability of micronutrients (e.g., Zn and Fe). Lowering the PA content of crop seeds will lead to enhanced nutritional traits. Low-PA mutant crop lines carrying more than one mutated gene (lpa) have lower PA contents than mutants with a single lpa mutant gene. However, little is known about the link between PA pathway intermediates and downstream regulatory activities following the mutation of these genes in soybean. Consequently, we performed a comparative transcriptome analysis using an advanced generation recombinant inbred line with low PA levels [2mlpa (mips1/ipk1)] and a sibling line with homozygous non-mutant alleles and normal PA contents [2MWT (MIPS1/IPK1)]. An RNA sequencing analysis of five seed developmental stages revealed 7945 differentially expressed genes (DEGs) between the 2mlpa and 2MWT seeds. Moreover, 3316 DEGs were associated with 128 metabolic and signal transduction pathways and 4980 DEGs were annotated with 345 Gene Ontology terms related to biological processes. Genes associated with PA metabolism, photosynthesis, starch and sucrose metabolism, and defense mechanisms were among the DEGs in 2mlpa. Of these genes, 36 contributed to PA metabolism, including 22 genes possibly mediating the low-PA phenotype of 2mlpa. The expression of most of the genes associated with photosynthesis (81 of 117) was down-regulated in 2mlpa at the late seed developmental stage. In contrast, the expression of three genes involved in sucrose metabolism was up-regulated at the late seed developmental stage, which might explain the high sucrose content of 2mlpa soybeans. Furthermore, 604 genes related to defense mechanisms were differentially expressed between 2mlpa and 2MWT. In this study, we detected a low PA content as well as changes to multiple metabolites in the 2mlpa mutant. These results may help elucidate the regulation of metabolic events in 2mlpa. Many genes involved in PA metabolism may contribute to the substantial decrease in the PA content and the moderate accumulation of InsP3-InsP5 in the 2mlpa mutant. The other regulated genes related to photosynthesis, starch and sucrose metabolism, and defense mechanisms may provide additional insights into the nutritional and agronomic performance of 2mlpa seeds.
Collapse
Affiliation(s)
- Hangxia Jin
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaomin Yu
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qinghua Yang
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xujun Fu
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Fengjie Yuan
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Kumar A, Singh B, Raigond P, Sahu C, Mishra UN, Sharma S, Lal MK. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Res Int 2021; 142:110193. [PMID: 33773669 DOI: 10.1016/j.foodres.2021.110193] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Phytic acid (PA), [myo-inositol 1,2,3,4,5,6-hexakisphosphate] is the principal storage compound of phosphorus (P) and account for 65%-85% of the seeds total P. The negative charge on PA attracts and chelates metal cations resulting in a mixed insoluble salt, phytate. Phytate contains six negatively charged ions, chelates divalent cations such as Fe2+, Zn2+, Mg2+, and Ca2+ rendering them unavailable for absorption by monogastric animals. This may lead to micronutrient deficiencies in humans since they lack the enzyme phytase that hydrolyzes phytate and releases the bound micronutrients. There are two main concerns about the presence of PA in human diet. The first is its negative impact on the bioavailability of several minerals and the second is the evidence of PA inhibiting various proteases essential for protein degradation and the subsequent digestion in stomach and small intestine. The beneficial role of PA has been underestimated due to its distinct negative consequences. PA is reported to be a potent natural plant antioxidant which plays a protective role against oxidative stress in seeds and preventive role in various human diseases. Recently beneficial roles of PA as an antidiabetic and antibacterial agent has been reported. Thus, the development of grains with low-PA and modified distribution pattern can be achieved through fine-tuning of its content in the seeds.
Collapse
Affiliation(s)
- Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR- National Rice Research Institute (ICAR-NRRI), Cuttack-753006, Odisha, India
| | - Brajesh Singh
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India
| | - Pinky Raigond
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India
| | - Chandrasekhar Sahu
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India
| | - Udit Nandan Mishra
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India
| | - Srigopal Sharma
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India; Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
12
|
Pramitha JL, Rana S, Aggarwal PR, Ravikesavan R, Joel AJ, Muthamilarasan M. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. ADVANCES IN GENETICS 2020; 107:89-120. [PMID: 33641749 DOI: 10.1016/bs.adgen.2020.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural or synthetic compounds that interfere with the bioavailability of nutrients are called antinutrients. Phytic acid (PA) is one of the major antinutrients present in the grains and acts as a chelator of micronutrients. The presence of six reactive phosphate groups in PA hinders the absorption of micronutrients in the gut of non-ruminants. Consumption of PA-rich diet leads to deficiency of minerals such as iron and zinc among human population. On the contrary, PA is a natural antioxidant, and PA-derived molecules function in various signal transduction pathways. Therefore, optimal concentration of PA needs to be maintained in plants to avoid adverse pleiotropic effects, as well as to ensure micronutrient bioavailability in the diets. Given this, the chapter enumerates the structure, biosynthesis, and accumulation of PA in food grains followed by their roles in growth, development, and stress responses. Further, the chapter elaborates on the antinutritional properties of PA and explains the conventional breeding and transgene-based approaches deployed to develop low-PA varieties. Studies have shown that conventional breeding methods could develop low-PA lines; however, the pleiotropic effects of these methods viz. reduced yield, embryo abnormalities, and poor seed quality hinder the use of breeding strategies. Overexpression of phytase in the endosperm and RNAi-mediated silencing of genes involved in myo-inositol biosynthesis overcome these constraints. Next-generation genome editing approaches, including CRISPR-Cas9 enable the manipulation of more than one gene involved in PA biosynthesis pathway through multiplex editing, and scope exists to deploy such tools in developing varieties with optimal PA levels.
Collapse
Affiliation(s)
- J Lydia Pramitha
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Rajasekaran Ravikesavan
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - A John Joel
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University, Aduthurai, Tamil Nadu, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
13
|
Hu L, Zhou K, Ren G, Yang S, Liu Y, Zhang Z, Li Y, Gong X, Ma F. Myo-inositol mediates reactive oxygen species-induced programmed cell death via salicylic acid-dependent and ethylene-dependent pathways in apple. HORTICULTURE RESEARCH 2020; 7:138. [PMID: 32922810 PMCID: PMC7459343 DOI: 10.1038/s41438-020-00357-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 05/08/2023]
Abstract
As a versatile compound, myo-inositol plays vital roles in plant biochemistry and physiology. We previously showed that exogenous application of myo-inositol had a positive role in salinity tolerance in Malus hupehensis Rehd. In this study, we used MdMIPS (the rate-limiting gene of myo-inositol biosynthesis) transgenic apple lines to gain new insights into the physiological role of myo-inositol in apple. Decreasing myo-inositol biosynthesis in apple lines by RNA silencing of MdMIPS1/2 led to extensive programmed cell death, which manifested as necrosis of both the leaves and roots and, ultimately, plant death. Necrosis was directly caused by the excessive accumulation of reactive oxygen species, which may be closely associated with the cell wall polysaccharide-mediated increase in salicylic acid and a compromised antioxidant system, and this process was enhanced by an increase in ethylene production. In addition, a high accumulation of sorbitol promoted necrosis. This synergetic interplay between salicylic acid and ethylene was further supported by the fact that increased myo-inositol accumulation significantly delayed leaf senescence in MdMIPS1-overexpressing apple lines. Taken together, our results indicated that apple myo-inositol regulates reactive oxygen species-induced programmed cell death through salicylic acid-dependent and ethylene-dependent pathways.
Collapse
Affiliation(s)
- Lingyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Kun Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Guijin Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Shulin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Yuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Yangtiansu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi China
| |
Collapse
|
14
|
Sharma N, Chaudhary C, Khurana P. Wheat Myo-inositol phosphate synthase influences plant growth and stress responses via ethylene mediated signaling. Sci Rep 2020; 10:10766. [PMID: 32612188 PMCID: PMC7329911 DOI: 10.1038/s41598-020-67627-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/26/2020] [Indexed: 11/28/2022] Open
Abstract
L-myo-inositol phosphate synthase (MIPS; EC 5.5.1.4) is involved in abiotic stress tolerance, however its disruption and overexpression has also been associated with enhanced tolerance to pathogens. The molecular mechanism underlying the role of MIPS in growth, immunity and abiotic stress tolerance remains uncharacterized. We explore the molecular mechanism of MIPS action during growth and heat stress conditions. We raised and characterized the TaMIPS over-expressing rice transgenics which showed a reduced reproductive potential. Transcriptome analysis of overexpression transgenics revealed the activation of ET/JA dependent immune response. Pull-down analysis revealed the interaction of TaMIPS-B with ethylene related proteins. Our results suggest an essential requirement of MIPS for mediating the ethylene response and regulate the growth. A model is proposed outlining how fine tuning of MIPS regulate growth and stress tolerance of the plant.
Collapse
Affiliation(s)
- Naveen Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Chanderkant Chaudhary
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
15
|
Redekar NR, Glover NM, Biyashev RM, Ha BK, Raboy V, Maroof MAS. Genetic interactions regulating seed phytate and oligosaccharides in soybean (Glycine max L.). PLoS One 2020; 15:e0235120. [PMID: 32584851 PMCID: PMC7316244 DOI: 10.1371/journal.pone.0235120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Two low-phytate soybean (Glycine max (L.) Merr.) mutant lines- V99-5089 (mips mutation on chromosome 11) and CX-1834 (mrp-l and mrp-n mutations on chromosomes 19 and 3, respectively) have proven to be valuable resources for breeding of low-phytate, high-sucrose, and low-raffinosaccharide soybeans, traits that are highly desirable from a nutritional and environmental standpoint. A recombinant inbred population derived from the cross CX1834 x V99-5089 provides an opportunity to study the effect of different combinations of these three mutations on soybean phytate and oligosaccharides levels. Of the 173 recombinant inbred lines tested, 163 lines were homozygous for various combinations of MIPS and two MRP loci alleles. These individuals were grouped into eight genotypic classes based on the combination of SNP alleles at the three mutant loci. The two genotypic classes that were homozygous mrp-l/mrp-n and either homozygous wild-type or mutant at the mips locus (MIPS/mrp-l/mrp-n or mips/mrp-l/mrp-n) displayed relatively similar ~55% reductions in seed phytate, 6.94 mg g -1 and 6.70 mg g-1 respectively, as compared with 15.2 mg g-1 in the wild-type MIPS/MRP-L/MRP-N seed. Therefore, in the presence of the double mutant mrp-l/mrp-n, the mips mutation did not cause a substantially greater decrease in seed phytate level. However, the nutritionally-desirable high-sucrose/low-stachyose/low-raffinose seed phenotype originally observed in soybeans homozygous for the mips allele was reversed in the presence of mrp-l/mrp-n mutations: homozygous mips/mrp-l/mrp-n seed displayed low-sucrose (7.70%), high-stachyose (4.18%), and the highest observed raffinose (0.94%) contents per gram of dry seed. Perhaps the block in phytic acid transport from its cytoplasmic synthesis site to its storage site, conditioned by mrp-l/mrp-n, alters myo-inositol flux in mips seeds in a way that restores to wild-type levels the mips conditioned reductions in raffinosaccharides. Overall this study determined the combinatorial effects of three low phytic acid causing mutations on regulation of seed phytate and oligosaccharides in soybean.
Collapse
Affiliation(s)
- Neelam R. Redekar
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Natasha M. Glover
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ruslan M. Biyashev
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Bo-Keun Ha
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, Georgia, United States of America
| | - Victor Raboy
- National Small Grains Germplasm Center, USDA-ARS, Aberdeen, Idaho, United States of America
| | - M. A. Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
16
|
Basak N, Krishnan V, Pandey V, Punjabi M, Hada A, Marathe A, Jolly M, Palaka BK, Ampasala DR, Sachdev A. Expression profiling and in silico homology modeling of Inositol penta kisphosphate 2-kinase, a potential candidate gene for low phytate trait in soybean. 3 Biotech 2020; 10:268. [PMID: 32523862 DOI: 10.1007/s13205-020-02260-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/14/2020] [Indexed: 11/27/2022] Open
Abstract
Low phytate soybeans are desirable both from a nutritional and economic standpoint. Inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase (IPK1), optimizes the metabolic flux of phytate generation in soybean and thus shows much promise as a likely candidate for pathway regulation. In the present study, the differential spatial and temporal expression profiling of GmIpk1 and its two homologs Glyma06g03310 and Glyma04g03310 were carried out in Glycine max L. var Pusa 9712 revealing the early stages of seed development to be the potential target for gene manipulation. NCBI databank was screened using BLASTp to retrieve 32 plant IPK1 sequences showing high homology to GmIPK1 and its homologs. Bio-computational tools were employed to predict the protein's properties, conserved domains, and secondary structures. Using state-of-the-art in silico physicochemical approach, the three-dimensional (3D) GmIPK1 protein model (PMD ID-PM0079931), was developed based on Arabidopsis thaliana (PDB ID: 4AQK). Superimposition of 4AQK and best model of GmIPK1 revealed that the GmIPK1 aligned well and shows a sequence identity score of 54.32% with 4AQK and a low RMSD of 0.163 nm and almost similar structural features. The modeled structure was further refined considering the stereochemical geometry, energy and packing environment between the model and the template along with validation of its intrinsic dynamics. Molecular dynamics simulation studies of GmIPK1 were carried out to obtain structural insights and to understand the interactive behavior of this enzyme with ligands ADP and IP6. The results of this study provide some fundamental knowledge on the distinct mechanistic step performed by the key residues to elucidate the structure-function relationship of GmIPK1, as an initiative towards engineering "low phytate soybean".
Collapse
Affiliation(s)
- Nabaneeta Basak
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Veda Krishnan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vanita Pandey
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- Quality and Basic Sciences Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - Mansi Punjabi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Alkesh Hada
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Ashish Marathe
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- Biotechnology Lab, ICAR-National Institute of Biotic Stress Management, Raipur, Chattisgarh 493225 India
| | - Monica Jolly
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | - Dinakara R Ampasala
- Centre for Bioinformatics, Pondicherry University, Puducherry, 605 014 India
| | - Archana Sachdev
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
17
|
Bizzarri M, Delledonne M, Ferrarini A, Tononi P, Zago E, Vittori D, Damiani F, Paolocci F. Whole-Transcriptome Analysis Unveils the Synchronized Activities of Genes for Fructans in Developing Tubers of the Jerusalem Artichoke. FRONTIERS IN PLANT SCIENCE 2020; 11:101. [PMID: 32153609 PMCID: PMC7046554 DOI: 10.3389/fpls.2020.00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
Helianthus tuberosus L., known as the Jerusalem artichoke, is a hexaploid plant species, adapted to low-nutrient soils, that accumulates high levels of inulin in its tubers. Inulin is a fructose-based polysaccharide used either as dietary fiber or for the production of bioethanol. Key enzymes involved in inulin biosynthesis are well known. However, the gene networks underpinning tuber development and inulin accumulation in H. tuberous remain elusive. To fill this gap, we selected 6,365 expressed sequence tags (ESTs) from an H. tuberosus library to set up a microarray platform and record their expression across three tuber developmental stages, when rhizomes start enlarging (T0), at maximum tuber elongation rate (T3), and at tuber physiological maturity (Tm), in "VR" and "K8-HS142"clones. The former was selected as an early tuberizing and the latter as a late-tuberizing clone. We quantified inulin and starch levels, and qRT-PCR confirmed the expression of critical genes accounting for inulin biosynthesis. The microarray analysis revealed that the differences in morphological and physiological traits between tubers of the two clones are genetically determined since T0 and that is relatively low the number of differentially expressed ESTs across the stages shared between the clones (93). The expression of ESTs for sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan:fructan 1-fructosyltransferase (1-FFT), the two critical genes for fructans polymerization, resulted to be temporarily synchronized and mirror the progress of inulin accumulation and stretching. The expression of ESTs for starch biosynthesis was insignificant throughout the developmental stages of the clones in line with the negligible level of starch into their mature tubers, where inulin was the dominant polysaccharide. Overall, our study disclosed candidate genes underpinning the development and storage of carbohydrates in the tubers of two H. tuberosus clones. A model according to which the steady-state levels of 1-SST and 1-FFT transcripts are developmentally controlled and might represent a limiting factor for inulin accumulation has been provided. Our finding may have significant repercussions for breeding clones with improved levels of inulin for food and chemical industry.
Collapse
Affiliation(s)
- Marco Bizzarri
- Department of Science and Technology for Agriculture, Forests, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy
| | | | | | - Paola Tononi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elisa Zago
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Doriano Vittori
- Department of Science and Technology for Agriculture, Forests, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy
| | - Francesco Damiani
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Perugia, Italy
| | - Francesco Paolocci
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Perugia, Italy
| |
Collapse
|
18
|
Zhao S, Chen A, Chen C, Li C, Xia R, Wang X. Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean. PHYSIOLOGIA PLANTARUM 2019; 166:712-728. [PMID: 30288747 DOI: 10.1111/ppl.12847] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
To elucidate molecular mechanisms controlling differential growth responses to root colonization by arbuscular mycorrhizal (AM) fungi varying in colonization and cooperative behavior, a pot experiment was carried out using two soybean genotypes and three AM inocula. The results showed that inoculation by cooperative Rhizophagus irregularis (Ri) or less cooperative Glomus aggregatum with high AM colonization (Ga-H) significantly promoted plant growth compared with inoculation by G. aggregatum with low AM colonization (Ga-L). A comparative RNA sequencing analysis of the root transcriptomes showed that fatty acid synthesis pathway was significantly enriched in all three AM inoculation roots. However, sugar metabolism and transport were significantly enriched only in Ri and Ga-H inoculation, which was consistent with positive growth responses in these two inoculation treatments. Accordingly, the expression levels of the key genes related to sugar metabolism and transport were also upregulated in Ri and Ga-H roots compared with Ga-L roots. Of them, two sugars will eventually be exported transporters (SWEET) transporter genes, GmSWEET6 (Glyma.04G198600) and GmSWEET15 (Glyma.06G166800), and one invertase (Glyma.17G227900) gene were exclusively induced only in Ri and Ga-H roots. Promoter analyses in transgenic soybean roots further demonstrated that GUS driven by the GmSWEET6 promoter was highly expressed in arbuscule-containing cortical cells. Additionally, Ri and Ga-H inoculation increased the contents of sucrose, glucose and fructose in both shoots and roots compared with those of Ga-L and non-mycorrhizal. These results imply that positive mycorrhizal growth responses in plants might mostly be due to the stimulation of photosynthate metabolism and transport by AM fungal inoculum with high colonization capabilities.
Collapse
Affiliation(s)
- Shaopeng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - A Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chengchen Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiurong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
19
|
Kumar A, Kumar V, Krishnan V, Hada A, Marathe A, C P, Jolly M, Sachdev A. Seed targeted RNAi-mediated silencing of GmMIPS1 limits phytate accumulation and improves mineral bioavailability in soybean. Sci Rep 2019; 9:7744. [PMID: 31123331 PMCID: PMC6533290 DOI: 10.1038/s41598-019-44255-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 03/26/2019] [Indexed: 11/30/2022] Open
Abstract
Phytic acid (PA), the major phosphorus reserve in soybean seeds (60-80%), is a potent ion chelator, causing deficiencies that leads to malnutrition. Several forward and reverse genetics approaches have ever since been explored to reduce its phytate levels to improve the micronutrient and phosphorous availability. Transgenic technology has met with success by suppressing the expression of the PA biosynthesis-related genes in several crops for manipulating their phytate content. In our study, we targeted the disruption of the expression of myo-inositol-3-phosphate synthase (MIPS1), the first and the rate limiting enzyme in PA biosynthesis in soybean seeds, by both antisense (AS) and RNAi approaches, using a seed specific promoter, vicilin. PCR and Southern analysis revealed stable integration of transgene in the advanced progenies. The transgenic seeds (T4) of AS (MS14-28-12-29-3-5) and RNAi (MI51-32-22-1-13-6) soybean lines showed 38.75% and 41.34% reduction in phytate levels respectively, compared to non-transgenic (NT) controls without compromised growth and seed development. The electron microscopic examination also revealed reduced globoid crystals in the Protein storage vacoules (PSVs) of mature T4 seeds compared to NT seed controls. A significant increase in the contents of Fe2+ (15.4%, 21.7%), Zn2+ (7.45%, 11.15%) and Ca2+ (10.4%, 15.35%) were observed in MS14-28-12-29-3-5 and MI51-32-22-1-13-6 transgenic lines, respectively, compared to NT implicating improved mineral bioavailability. This study signifies proof-of-concept demonstration of seed-specific PA reduction and paves the path towards low phytate soybean through pathway engineering using the new and precise editing tools.
Collapse
Affiliation(s)
- Awadhesh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Varun Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, (H.P.), India
| | - Veda Krishnan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Alkesh Hada
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ashish Marathe
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Parameswaran C
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Monica Jolly
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Archana Sachdev
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
20
|
Goßner S, Yuan F, Zhou C, Tan Y, Shu Q, Engel KH. Stability of the Metabolite Signature Resulting from the MIPS1 Mutation in Low Phytic Acid Soybean ( Glycine max L. Merr.) Mutants upon Cross-Breeding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5043-5052. [PMID: 30977368 DOI: 10.1021/acs.jafc.9b00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The low phytic acid ( lpa) soybean ( Glycine max L. Merr.) mutant Gm-lpa-TW-1-M, resulting from a 2 bp deletion in GmMIPS1, was crossed with a commercial cultivar. F3 and F5 progenies were subjected to nontargeted GC-based metabolite profiling, allowing analysis of a broad array of low molecular weight constituents. In the homozygous lpa mutant progenies the intended phytic acid reduction was accompanied by remarkable metabolic changes of nutritionally relevant constituents such as reduced contents of raffinose oligosaccharides and galactosyl cyclitols as well as increased concentrations in sucrose and various free amino acids. The mutation-induced metabolite signature was nearly unaffected by the cross-breeding and consistently expressed over generations and in different growing seasons. Therefore, not only the primary MIPS1 lpa mutant but also its progenies might be valuable genetic resources for commercial breeding programs to produce soybean seeds stably exhibiting improved phytate-related and nutritional properties.
Collapse
Affiliation(s)
- Sophia Goßner
- Chair of General Food Technology , Technical University of Munich , Maximus-von-Imhof-Forum 2 , Freising-Weihenstephan D-85354 , Germany
| | - Fengjie Yuan
- Institute of Crop Science and Nuclear Technology Utilization , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| | - Chenguang Zhou
- Chair of General Food Technology , Technical University of Munich , Maximus-von-Imhof-Forum 2 , Freising-Weihenstephan D-85354 , Germany
| | - Yuanyuan Tan
- State Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Plant Germplasm, Institute of Crop Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Qingyao Shu
- State Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Plant Germplasm, Institute of Crop Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Karl-Heinz Engel
- Chair of General Food Technology , Technical University of Munich , Maximus-von-Imhof-Forum 2 , Freising-Weihenstephan D-85354 , Germany
| |
Collapse
|
21
|
A Cotton ( Gossypium hirsutum) Myo-Inositol-1-Phosphate Synthase ( GhMIPS1D) Gene Promotes Root Cell Elongation in Arabidopsis. Int J Mol Sci 2019; 20:ijms20051224. [PMID: 30862084 PMCID: PMC6429088 DOI: 10.3390/ijms20051224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/24/2023] Open
Abstract
Myo-inositol-1-phosphate synthase (MIPS, EC 5.5.1.4) plays important roles in plant growth and development, stress responses, and cellular signal transduction. MIPS genes were found preferably expressed during fiber cell initiation and early fast elongation in upland cotton (Gossypium hirsutum), however, current understanding of the function and regulatory mechanism of MIPS genes to involve in cotton fiber cell growth is limited. Here, by genome-wide analysis, we identified four GhMIPS genes anchoring onto four chromosomes in G. hirsutum and analyzed their phylogenetic relationship, evolutionary dynamics, gene structure and motif distribution, which indicates that MIPS genes are highly conserved from prokaryotes to green plants, with further exon-intron structure analysis showing more diverse in Brassicales plants. Of the four GhMIPS members, based on the significant accumulated expression of GhMIPS1D at the early stage of fiber fast elongating development, thereby, the GhMIPS1D was selected to investigate the function of participating in plant development and cell growth, with ectopic expression in the loss-of-function Arabidopsis mips1 mutants. The results showed that GhMIPS1D is a functional gene to fully compensate the abnormal phenotypes of the deformed cotyledon, dwarfed plants, increased inflorescence branches, and reduced primary root lengths in Arabidopsis mips1 mutants. Furthermore, shortened root cells were recovered and normal root cells were significantly promoted by ectopic expression of GhMIPS1D in Arabidopsis mips1 mutant and wild-type plants respectively. These results serve as a foundation for understanding the MIPS family genes in cotton, and suggest that GhMIPS1D may function as a positive regulator for plant cell elongation.
Collapse
|
22
|
Agapito-Tenfen SZ, Vilperte V, Traavik TI, Nodari RO. Systematic miRNome profiling reveals differential microRNAs in transgenic maize metabolism. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:37. [PMID: 30294516 PMCID: PMC6153861 DOI: 10.1186/s12302-018-0168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND While some genetically modified organisms (GMOs) are created to produce new double-stranded RNA molecules (dsRNA), in others, such molecules may occur as an unintended effect of the genetic engineering process. Furthermore, GMOs might produce naturally occurring dsRNA molecules in higher or lower quantities than its non-transgenic counterpart. This study is the first to use high-throughput technology to characterize the miRNome of commercialized GM maize events and to investigate potential alterations in miRNA regulatory networks. RESULTS Thirteen different conserved miRNAs were found to be dys-regulated in GM samples. The insecticide Bt GM variety had the most distinct miRNome. These miRNAs target a range of endogenous transcripts, such as transcription factors and nucleic acid binding domains, which play key molecular functions in basic genetic regulation. In addition, we have identified 20 potential novel miRNAs with target transcripts involved in lipid metabolism in maize. isomiRs were also found in 96 conserved miRNAs sequences, as well as potential transgenic miRNA sequences, which both can be a source of potential off-target effects in the plant genome. We have also provided information on technical limitations and when to carry on additional in vivo experimental testing. CONCLUSIONS These findings do not reveal hazards per se but show that robust and reproducible miRNA profiling technique can strengthen the assessment of risk by detecting any new intended and unintended dsRNA molecules, regardless of the outcome, at any stage of GMO development.
Collapse
Affiliation(s)
| | - Vinicius Vilperte
- Departamento de Fitotecnia, Universidade Federal de Santa Catarina, Florianópolis, 88034000 Brazil
- Present Address: Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz University of Hannover, 30419 Hannover, Germany
| | - Terje Ingemar Traavik
- GenØk–Centre for Biosafety, Forskningsparken i Breivika, Sykehusveien 23, 9294 Tromsø, Norway
| | - Rubens Onofre Nodari
- Departamento de Fitotecnia, Universidade Federal de Santa Catarina, Florianópolis, 88034000 Brazil
| |
Collapse
|
23
|
Punjabi M, Bharadvaja N, Sachdev A, Krishnan V. Molecular characterization, modeling, and docking analysis of late phytic acid biosynthesis pathway gene, inositol polyphosphate 6-/ 3-/ 5-kinase, a potential candidate for developing low phytate crops. 3 Biotech 2018; 8:344. [PMID: 30073129 PMCID: PMC6064606 DOI: 10.1007/s13205-018-1343-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/06/2018] [Indexed: 01/08/2023] Open
Abstract
The coding sequence of inositol polyphosphate 6-/3-/5-kinase (GmIPK2) gene was identified and cloned from popular Indian soybean cultivar Pusa-16. The clone was predicted to encode 279 amino acids long, 30.97 kDa protein. Multiple sequence alignment revealed an inositol phosphate-binding motif, PxxxDxKxG throughout the IPK2 sequences along with other motifs unique to inositol phosphate kinase superfamily. Eight α-helices and eight β-strands in antiparallel β-sheets arrangement were predicted in the secondary structure of GmIPK2. The temporal analysis of GmIPK2 revealed maximum expression in the seed tissues during later stages of development while spatially the transcript levels were lowest in leaf and stem tissues. Endosperm-specific cis-regulatory motifs (GCN4 and Skn_1) which support high levels of expression, as observed in the developing seeds, were detected in its promoter region. The protein structure of GmIPK2 was modeled based on the crystal structure of inositol polyphosphate multikinase from Arabidopsis thaliana (PDB:4FRF) and subsequently docked with inositol phosphate ligands (PDB: 5GUG-I3P and PDB: 4A69-I0P). Molecular dynamics (MD) simulation established the structural stability of both, modeled enzyme and ligand-bound complexes. Docking in combination with trajectory analysis for 50 ns MD run confirmed the participation of Lys105, Lys126 and Arg153 residues in the formation of a network of hydrogen bonds to stabilize the ligand-receptor interaction. Results of the present study thus provide valuable information on structural and functional aspects of GmIPK2 which shall assist in strategizing our long-term goal of achieving phytic acid reduction in soybean by genetic modification of its biosynthetic pathway to develop a nutritionally enhanced crop in the future.
Collapse
Affiliation(s)
- Mansi Punjabi
- Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), New Delhi, 110042 India
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), New Delhi, 110042 India
| | - Archana Sachdev
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Veda Krishnan
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
24
|
Punjabi M, Bharadvaja N, Jolly M, Dahuja A, Sachdev A. Development and Evaluation of Low Phytic Acid Soybean by siRNA Triggered Seed Specific Silencing of Inositol Polyphosphate 6-/3-/5-Kinase Gene. FRONTIERS IN PLANT SCIENCE 2018; 9:804. [PMID: 29963066 PMCID: PMC6011814 DOI: 10.3389/fpls.2018.00804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 05/25/2018] [Indexed: 05/27/2023]
Abstract
Soybean is one of the leading oilseed crop in the world and is showing a remarkable surge in its utilization in formulating animal feeds and supplements. Its dietary consumption, however, is incongruent with its existing industrial demand due to the presence of anti-nutritional factors in sufficiently large amounts. Phytic acid in particular raises concern as it causes a concomitant loss of indigestible complexed minerals and charged proteins in the waste and results in reduced mineral bioavailability in both livestock and humans. Reducing the seed phytate level thus seems indispensable to overcome the nutritional menace associated with soy grain consumption. In order to conceive our objective we designed and expressed a inositol polyphosphate 6-/3-/5-kinase gene-specific RNAi construct in the seeds of Pusa-16 soybean cultivar. We subsequently conducted a genotypic, phenotypic and biochemical analysis of the developed putative transgenic populations and found very low phytic acid levels, moderate accumulation of inorganic phosphate and elevated mineral content in some lines. These low phytic acid lines did not show any reduction in seedling emergence and displayed an overall good agronomic performance.
Collapse
Affiliation(s)
- Mansi Punjabi
- Department of Biotechnology, Delhi Technological University, New Delhi, India
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Monica Jolly
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Anil Dahuja
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Archana Sachdev
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
25
|
Fleet CM, Yen JY, Hill EA, Gillaspy GE. Co-suppression of AtMIPS demonstrates cooperation of MIPS1, MIPS2 and MIPS3 in maintaining myo-inositol synthesis. PLANT MOLECULAR BIOLOGY 2018; 97:253-263. [PMID: 29777485 DOI: 10.1007/s11103-018-0737-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Co-suppressed MIPS2 transgenic lines allow bypass of the embryo lethal phenotype of the previously published triple knock-out and demonstrate the effects of MIPS on later stages of development. Regulation of inositol production is of interest broadly for its effects on plant growth and development. The enzyme L-myo-inositol 1-phosphate synthase (MIPS, also known as IPS) isomerizes D-glucose-6-P to D-inositol 3-P, and this is the rate-limiting step in inositol production. In Arabidopsis thaliana, the MIPS enzyme is encoded by three different genes, (AtMIPS1, AtMIPS2 and AtMIPS3), each of which has been shown to produce proteins with biochemically similar properties but differential expression patterns. Here, we report phenotypic and biochemical effects of MIPS co-suppression. We show that some plants engineered to overexpress MIPS2 in fact show reduced expression of AtMIPS1, AtMIPS2 and AtMIPS3, and show altered vegetative phenotype, reduced size and root length, and delayed flowering. Additionally, these plants show reduced inositol, increased glucose levels, and alteration of other metabolites. Our results suggest that the three AtMIPS genes work together to impact the overall synthesis of myo-inositol and overall inositol homeostasis.
Collapse
Affiliation(s)
- C M Fleet
- Biology Department, Emory & Henry College, Emory, VA, 24327, USA.
| | - J Y Yen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 93405, USA
| | - E A Hill
- Biology Department, Emory & Henry College, Emory, VA, 24327, USA
- Lincoln Memorial University College of Veterinary Medicine, Harrogate, TN, 37752, USA
| | - G E Gillaspy
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
26
|
Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato. Mol Biotechnol 2018; 59:343-352. [PMID: 28674943 DOI: 10.1007/s12033-017-0022-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.
Collapse
|
27
|
Yang Q, Sang S, Chen Y, Wei Z, Wang P. The Role of Arabidopsis Inositol Polyphosphate Kinase AtIPK2β in Glucose Suppression of Seed Germination and Seedling Development. PLANT & CELL PHYSIOLOGY 2018; 59:343-354. [PMID: 29216370 DOI: 10.1093/pcp/pcx186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Seed germination and subsequent seedling development are critical phases in plants. These processes are regulated by a complex molecular network in which sugar has been reported to play an essential role. However, factors affecting sugar responses remain to be fully elucidated. In this study, we demonstrate that AtIPK2β, known to participate in the synthesis of myo-inositol 1,2,3,4,5,6-hexakisphosphate (IP6, phytate), affects Arabidopsis responses to glucose during seed germination. The loss-of-function mutant atipk2β showed increased sensitivity to 6% glucose and paclobutrazol (PAC). Yeast two-hybrid assay showed that AtIPK2β interacts with sucrose non-fermenting-1-related protein kinase (SnRK1.1), and bimolecular fluorescence complementation (BiFC) and pull-down assay further confirmed this interaction. Moreover, AtIPK2β was phosphorylated by SnRK1.1 in vitro, and the effect of restoring AtIPK2β to yeast cells lacking IPK2 (Δipk2) was abolished by catalytically active SnRK1.1. Further analysis indicated that IP6 reduces the suppression of seed germination caused by glucose, accompanied by altered expression levels of glucose-/hormone-responsive genes. Collectively, these findings indicate that AtIPK2β and IP6 are involved in glucose suppression of seed germination and that AtIPK2β enzyme activity is likely to be regulated by SnRK1.1.
Collapse
Affiliation(s)
- Qiaofeng Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Sihong Sang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yao Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaoyun Wei
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
28
|
Marathe A, Krishnan V, Vinutha T, Dahuja A, Jolly M, Sachdev A. Exploring the role of Inositol 1,3,4-trisphosphate 5/6 kinase-2 (GmITPK2) as a dehydration and salinity stress regulator in Glycine max (L.) Merr. through heterologous expression in E. coli. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:331-341. [PMID: 29289899 DOI: 10.1016/j.plaphy.2017.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 05/26/2023]
Abstract
Phytic acid (PA) is implicative in a spectrum of biochemical and physiological processes involved in plant stress response. Inositol 1,3,4, Tris phosphate 5/6 kinase (ITPK), a polyphosphate kinase that converts Inositol 1,3,4 trisphosphate to Inositol 1,3,4,5/6 tetra phosphate, averting the inositol phosphate pool towards PA biosynthesis, is a key regulator that exists in four different isoforms in soybean. In the present study, in-silico analysis of the promoter region of ITPKs was done and among the four isoforms, promoter region of GmITPK2 showed the presence of two MYB binding elements for drought inducibility and one for ABA response. Expression profiling through qRT-PCR under drought and salinity stress showed higher expression of GmITPK2 isoform compared to the other members of the family. The study revealed GmITPK2 as an early dehydration responsive gene which is also induced by dehydration and exogenous treatment with ABA. To evaluate the osmo-protective role of GmITPK2, attempts were made to assess the bacterial growth on Luria Broth media containing 200 mM NaCl, 16% PEG and 100 μM ABA, individually. The transformed E. coli BL21 (DE3) cells harbouring the GmITPK2 gene depicted better growth on the media compared to the bacterial cells containing the vector alone. Similarly, the growth of the transformed cells in the liquid media containing 200 mM NaCl, 16% PEG and 100 μM ABA showed higher absorbance at 600 nm compared to control, at different time intervals. The GmITPK2 recombinant E. coli cells showing tolerance to drought and salinity thus demonstrated the functional redundancy of the gene across taxa. The purity and specificity of the recombinant protein was assessed and confirmed through PAGE showing a band of ∼35 kDa on western blotting using Anti- Penta His- HRP conjugate antibody. To the best of our knowledge, the present study is the first report exemplifying the role of GmITPK2 isoform in drought and salinity tolerance in soybean.
Collapse
Affiliation(s)
| | - Veda Krishnan
- Division of Biochemistry, ICAR - IARI, New Delhi, India
| | - T Vinutha
- Division of Biochemistry, ICAR - IARI, New Delhi, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR - IARI, New Delhi, India
| | - Monica Jolly
- Division of Biochemistry, ICAR - IARI, New Delhi, India
| | | |
Collapse
|
29
|
Belgaroui N, Lacombe B, Rouached H, Hanin M. Phytase overexpression in Arabidopsis improves plant growth under osmotic stress and in combination with phosphate deficiency. Sci Rep 2018; 8:1137. [PMID: 29348608 PMCID: PMC5773496 DOI: 10.1038/s41598-018-19493-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/07/2017] [Indexed: 12/28/2022] Open
Abstract
Engineering osmotolerant plants is a challenge for modern agriculture. An interaction between osmotic stress response and phosphate homeostasis has been reported in plants, but the identity of molecules involved in this interaction remains unknown. In this study we assessed the role of phytic acid (PA) in response to osmotic stress and/or phosphate deficiency in Arabidopsis thaliana. For this purpose, we used Arabidopsis lines (L7 and L9) expressing a bacterial beta-propeller phytase PHY-US417, and a mutant in inositol polyphosphate kinase 1 gene (ipk1-1), which were characterized by low PA content, 40% (L7 and L9) and 83% (ipk1-1) of the wild-type (WT) plants level. We show that the PHY-overexpressor lines have higher osmotolerance and lower sensitivity to abscisic acid than ipk1-1 and WT. Furthermore, PHY-overexpressors showed an increase by more than 50% in foliar ascorbic acid levels and antioxidant enzyme activities compared to ipk1-1 and WT plants. Finally, PHY-overexpressors are more tolerant to combined mannitol stresses and phosphate deficiency than WT plants. Overall, our results demonstrate that the modulation of PA improves plant growth under osmotic stress, likely via stimulation of enzymatic and non-enzymatic antioxidant systems, and that beside its regulatory role in phosphate homeostasis, PA may be also involved in fine tuning osmotic stress response in plants.
Collapse
Affiliation(s)
- Nibras Belgaroui
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, BP "1177", 3018, Sfax, Tunisia
| | - Benoit Lacombe
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Hatem Rouached
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | - Moez Hanin
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, BP "1177", 3018, Sfax, Tunisia. .,Unité de Génomique Fonctionnelle et Physiologie des Plantes, Institut Supérieur de Biotechnologie, Université de Sfax, BP "1175", 3038, Sfax, Tunisia.
| |
Collapse
|
30
|
Characterization and molecular modeling of Inositol 1,3,4 tris phosphate 5/6 kinase-2 from Glycine max (L) Merr.: comprehending its evolutionary conservancy at functional level. 3 Biotech 2018; 8:50. [PMID: 29354361 DOI: 10.1007/s13205-017-1076-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/26/2017] [Indexed: 01/20/2023] Open
Abstract
Soybean genome encodes a family of four inositol 1,3,4 trisphosphate 5/6 kinases which belong to the ATP-GRASP group of proteins. Inositol 1,3,4 trisphosphate kinase-2 (GmItpk2), catalyzing the ATP-dependent phosphorylation of Inositol 1,3,4 trisphosphate (IP3) to Inositol 1,3,4,5 tetra phosphate or Inositol 1,3,4,6 tetra phosphate, is a key enzyme diverting the flux of inositol phosphate pool towards phytate biosynthesis. Although considerable research on characterizing genes involved in phytate biosynthesis is accomplished at genomic and transcript level, characterization of the proteins is yet to be explored. In the present study, we report the isolation and expression of single copy Itpk2 (948 bp) from Glycine max cv Pusa-16 predicted to encode 315 amino acid protein with an isoelectric point of 5.9. Sequence analysis revealed that GmITPK2 shared highest similarity (80%) with Phaseolus vulgaris. The predicted 3D model confirmed 12 α helices and 14 β barrel sheets with ATP-binding site close to β sheet present towards the C-terminus of the protein molecule. Spatio-temporal transcript profiling signified GmItpk2 to be seed specific, with higher transcript levels in the early stage of seed development. The present study using various molecular and bio-computational tools could, therefore, help in improving our understanding of this key enzyme and prove to be a potential target towards generating low phytate trait in nutritionally rich crop like soybean.
Collapse
|
31
|
Sousa NL, Cabral GB, Vieira PM, Baldoni AB, Aragão FJL. Bio-detoxification of ricin in castor bean (Ricinus communis L.) seeds. Sci Rep 2017; 7:15385. [PMID: 29133924 PMCID: PMC5684206 DOI: 10.1038/s41598-017-15636-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023] Open
Abstract
Ricin is a highly toxic ribosome-inactivating lectin occurring in the seeds of castor bean (Ricinus communis L.). Castor bean grows throughout tropical and sub-tropical regions and is a very important crop due to its high seed content of ricinoleic acid, an unusual fatty acid, which has several industrial applications. However, due to the presence of the toxin, castor bean can cause death after the exposure of animals to low doses of ricin through skin contact, injection, inhalation or oral routes. Aiming to generate a detoxified genotype, we explored the RNAi concept in order to silence the ricin coding genes in the endosperm of castor bean seeds. Results indicated that ricin genes were effectively silenced in genetically modified (GM) plants, and ricin proteins were not detected by ELISA. Hemagglutination activity was not observed with proteins isolated from GM seeds. In addition, we demonstrated that seed proteins from GM plants were not toxic to rat intestine epithelial cells or to Swiss Webster mice. After oil extraction, bio-detoxified castor bean cake, which is very rich in valuable proteins, can be used for animal feeding. Gene silencing would make castor bean cultivation safer for farmers, industrial workers and society.
Collapse
Affiliation(s)
- Natália L Sousa
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, 70770-900, Brasília, DF, Brazil
- Universidade de Brasília, Departamento de Biologia Celular, Campus Universitário, 70910-900, Brasília, DF, Brazil
| | - Glaucia B Cabral
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, 70770-900, Brasília, DF, Brazil
| | - Pabline M Vieira
- Instituto Federal Goiano, Campus Urutaí, Laboratório de Biotecnologia, 75790-000, Urutaí, GO, Brazil
| | - Aisy B Baldoni
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, 70770-900, Brasília, DF, Brazil
- Embrapa Agrossilvipastoril, Rod. dos Pioneiros MT-222, 78550-970, Sinop, MT, Brazil
| | - Francisco J L Aragão
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, 70770-900, Brasília, DF, Brazil.
| |
Collapse
|
32
|
Chen L, Liao H. Engineering crop nutrient efficiency for sustainable agriculture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:710-735. [PMID: 28600834 DOI: 10.1111/jipb.12559] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/21/2023]
Abstract
Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency.
Collapse
Affiliation(s)
- Liyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
33
|
Han C, Zhen S, Zhu G, Bian Y, Yan Y. Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:320-327. [PMID: 28415032 DOI: 10.1016/j.plaphy.2017.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
In this study, we performed the first comparative metabolomic analysis of the wheat embryo and endosperm during seed germination using GC-MS/MS. In total, 82 metabolites were identified in the embryo and endosperm. Principal component analysis (PCA), metabolite-metabolite correlation and hierarchical cluster analysis (HCA) revealed distinct dynamic changes in metabolites between the embryo and endosperm during seed germination. Generally, the metabolite changes in the embryo were much greater than those in the endosperm, suggesting that the embryo is more active than the endosperm during seed germination. Most amino acids were upregulated in both embryo and endosperm, while polysaccharides and organic acids associated with sugars were mainly downregulated in the embryo. Most of the sugars showed an upregulated trend in the endosperm, but significant changes in lipids occurred only in the embryo. Our results suggest that the embryo mobilises mainly protein and lipid metabolism, while the endosperm mobilises storage starch and minor protein metabolism during seed germination. The primary energy was generated mainly in the embryo by glycolysis during seed imbibition. The embryo containing most of the genetic information showed increased nucleotides during seed germination process, indicating more active transcription and translation metabolisms.
Collapse
Affiliation(s)
- Caixia Han
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Shoumin Zhen
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Gengrui Zhu
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yanwei Bian
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434025 Jingzhou, China.
| |
Collapse
|
34
|
Yuan F, Yu X, Dong D, Yang Q, Fu X, Zhu S, Zhu D. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants. BMC PLANT BIOLOGY 2017; 17:16. [PMID: 28100173 PMCID: PMC5242038 DOI: 10.1186/s12870-016-0953-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/16/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Seed germination is important to soybean (Glycine max) growth and development, ultimately affecting soybean yield. A lower seed field emergence has been the main hindrance for breeding soybeans low in phytate. Although this reduction could be overcome by additional breeding and selection, the mechanisms of seed germination in different low phytate mutants remain unknown. In this study, we performed a comparative transcript analysis of two low phytate soybean mutants (TW-1 and TW-1-M), which have the same mutation, a 2 bp deletion in GmMIPS1, but show a significant difference in seed field emergence, TW-1-M was higher than that of TW-1 . RESULTS Numerous genes analyzed by RNA-Seq showed markedly different expression levels between TW-1-M and TW-1 mutants. Approximately 30,000-35,000 read-mapped genes and ~21000-25000 expressed genes were identified for each library. There were ~3900-9200 differentially expressed genes (DEGs) in each contrast library, the number of up-regulated genes was similar with down-regulated genes in the mutant TW-1and TW-1-M. Gene ontology functional categories of DEGs indicated that the ethylene-mediated signaling pathway, the abscisic acid-mediated signaling pathway, response to hormone, ethylene biosynthetic process, ethylene metabolic process, regulation of hormone levels, and oxidation-reduction process, regulation of flavonoid biosynthetic process and regulation of abscisic acid-activated signaling pathway had high correlations with seed germination. In total, 2457 DEGs involved in the above functional categories were identified. Twenty-two genes with 20 biological functions were the most highly up/down- regulated (absolute value Log2FC >5) in the high field emergence mutant TW-1-M and were related to metabolic or signaling pathways. Fifty-seven genes with 36 biological functions had the greatest expression abundance (FRPM >100) in germination-related pathways. CONCLUSIONS Seed germination in the soybean low phytate mutants is a very complex process, which involves a series of physiological, morphological and transcriptional changes. Compared with TW-1, TW-1-M had a very different gene expression profile, which included genes related to plant hormones, antioxidation, anti-stress and energy metabolism processes. Our research provides a molecular basis for understanding germination mechanisms, and is also an important resource for the genetic analysis of germination in low phytate crops. Plant hormone- and antioxidation-related genes might strongly contribute to the high germination rate in the TW-1-M mutant.
Collapse
Affiliation(s)
- Fengjie Yuan
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Xiaomin Yu
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Dekun Dong
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Qinghua Yang
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Xujun Fu
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Shenlong Zhu
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Danhua Zhu
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| |
Collapse
|
35
|
Zhang S, Yang W, Zhao Q, Zhou X, Jiang L, Ma S, Liu X, Li Y, Zhang C, Fan Y, Chen R. Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism. BMC Genomics 2016; 17:129. [PMID: 26911482 PMCID: PMC4765147 DOI: 10.1186/s12864-016-2476-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND D-myo-inositol phosphates (IPs) are a series of phosphate esters. Myo-inositol hexakisphosphate (phytic acid, IP6) is the most abundant IP and has negative effects on animal and human nutrition. IPs play important roles in plant development, stress responses, and signal transduction. However, the metabolic pathways and possible regulatory mechanisms of IPs in maize are unclear. In this study, the B73 (high in phytic acid) and Qi319 (low in phytic acid) lines were selected for RNA-Seq analysis from 427 inbred lines based on a screening of IP levels. By integrating the metabolite data with the RNA-Seq data at three different kernel developmental stages (12, 21 and 30 days after pollination), co-regulatory networks were constructed to explore IP metabolism and its interactions with other pathways. RESULTS Differentially expressed gene analyses showed that the expression of MIPS and ITPK was related to differences in IP metabolism in Qi319 and B73. Moreover, WRKY and ethylene-responsive transcription factors (TFs) were common among the differentially expressed TFs, and are likely to be involved in the regulation of IP metabolism. Six co-regulatory networks were constructed, and three were chosen for further analysis. Based on network analyses, we proposed that the GA pathway interacts with the IP pathway through the ubiquitination pathway, and that Ca(2+) signaling functions as a bridge between IPs and other pathways. IP pools were found to be transported by specific ATP-binding cassette (ABC) transporters. Finally, three candidate genes (Mf3, DH2 and CB5) were identified and validated using Arabidopsis lines with mutations in orthologous genes or RNA interference (RNAi)-transgenic maize lines. Some mutant or RNAi lines exhibited seeds with a low-phytic-acid phenotype, indicating perturbation of IP metabolism. Mf3 likely encodes an enzyme involved in IP synthesis, DH2 encodes a transporter responsible for IP transport across organs and CB5 encodes a transporter involved in IP co-transport into vesicles. CONCLUSIONS This study provides new insights into IP metabolism and regulation, and facilitates our development of a better understanding of the functions of IPs and how they interact with other pathways involved in plant development and stress responses. Three new genes were discovered and preliminarily validated, thereby increasing our knowledge of IP metabolism.
Collapse
Affiliation(s)
- Shaojun Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Wenzhu Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Qianqian Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Xiaojin Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Shuai Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Ye Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| | - Rumei Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), 100081, Beijing, China.
| |
Collapse
|
36
|
Redekar NR, Biyashev RM, Jensen RV, Helm RF, Grabau EA, Maroof MAS. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines. BMC Genomics 2015; 16:1074. [PMID: 26678836 PMCID: PMC4683714 DOI: 10.1186/s12864-015-2283-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low phytic acid (lpa) crops are potentially eco-friendly alternative to conventional normal phytic acid (PA) crops, improving mineral bioavailability in monogastric animals as well as decreasing phosphate pollution. The lpa crops developed to date carry mutations that are directly or indirectly associated with PA biosynthesis and accumulation during seed development. These lpa crops typically exhibit altered carbohydrate profiles, increased free phosphate, and lower seedling emergence, the latter of which reduces overall crop yield, hence limiting their large-scale cultivation. Improving lpa crop yield requires an understanding of the downstream effects of the lpa genotype on seed development. Towards that end, we present a comprehensive comparison of gene-expression profiles between lpa and normal PA soybean lines (Glycine max) at five stages of seed development using RNA-Seq approaches. The lpa line used in this study carries single point mutations in a myo-inositol phosphate synthase gene along with two multidrug-resistance protein ABC transporter genes. RESULTS RNA sequencing data of lpa and normal PA soybean lines from five seed-developmental stages (total of 30 libraries) were used for differential expression and functional enrichment analyses. A total of 4235 differentially expressed genes, including 512-transcription factor genes were identified. Eighteen biological processes such as apoptosis, glucan metabolism, cellular transport, photosynthesis and 9 transcription factor families including WRKY, CAMTA3 and SNF2 were enriched during seed development. Genes associated with apoptosis, glucan metabolism, and cellular transport showed enhanced expression in early stages of lpa seed development, while those associated with photosynthesis showed decreased expression in late developmental stages. The results suggest that lpa-causing mutations play a role in inducing and suppressing plant defense responses during early and late stages of seed development, respectively. CONCLUSIONS This study provides a global perspective of transcriptomal changes during soybean seed development in an lpa mutant. The mutants are characterized by earlier expression of genes associated with cell wall biosynthesis and a decrease in photosynthetic genes in late stages. The biological processes and transcription factors identified in this study are signatures of lpa-causing mutations.
Collapse
Affiliation(s)
- Neelam R Redekar
- Department of Crop and Soil Environmental Sciences, Virginia Tech, 185 AgQuad Lane, 24061, Blacksburg, VA, USA.
| | - Ruslan M Biyashev
- Department of Crop and Soil Environmental Sciences, Virginia Tech, 185 AgQuad Lane, 24061, Blacksburg, VA, USA.
| | - Roderick V Jensen
- Department of Biological Sciences, Virginia Tech, Life Science I building, 24061, Blacksburg, VA, USA.
| | - Richard F Helm
- Department of Biochemistry, Virginia Tech, Life Science I building, 24061, Blacksburg, VA, USA.
| | - Elizabeth A Grabau
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Price Hall, 24061, Blacksburg, VA, USA.
| | - M A Saghai Maroof
- Department of Crop and Soil Environmental Sciences, Virginia Tech, 185 AgQuad Lane, 24061, Blacksburg, VA, USA.
| |
Collapse
|
37
|
Sparvoli F, Cominelli E. Seed Biofortification and Phytic Acid Reduction: A Conflict of Interest for the Plant? PLANTS 2015; 4:728-55. [PMID: 27135349 PMCID: PMC4844270 DOI: 10.3390/plants4040728] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023]
Abstract
Most of the phosphorus in seeds is accumulated in the form of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6). This molecule is a strong chelator of cations important for nutrition, such as iron, zinc, magnesium, and calcium. For this reason, InsP6 is considered an antinutritional factor. In recent years, efforts to biofortify seeds through the generation of low phytic acid (lpa) mutants have been noteworthy. Moreover, genes involved in the biosynthesis and accumulation of this molecule have been isolated and characterized in different species. Beyond its role in phosphorus storage, phytic acid is a very important signaling molecule involved in different regulatory processes during plant development and responses to different stimuli. Consequently, many lpa mutants show different negative pleitotropic effects. The strength of these pleiotropic effects depends on the specific mutated gene, possible functional redundancy, the nature of the mutation, and the spatio-temporal expression of the gene. Breeding programs or transgenic approaches aimed at development of new lpa mutants must take into consideration these different aspects in order to maximize the utility of these mutants.
Collapse
Affiliation(s)
- Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| |
Collapse
|
38
|
Sanju S, Siddappa S, Thakur A, Shukla PK, Srivastava N, Pattanayak D, Sharma S, Singh BP. Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Funct Integr Genomics 2015; 15:697-706. [PMID: 26077032 DOI: 10.1007/s10142-015-0446-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 11/26/2022]
Abstract
RNA interference (RNAi) has proved a powerful genetic tool for silencing genes in plants. Host-induced gene silencing of pathogen genes has provided a gene knockout strategy for a wide range of biotechnological applications. The RXLR effector Avr3a gene is largely responsible for virulence of oomycete plant pathogen Phytophthora infestans. In this study, we attempted to silence the Avr3a gene of P. infestans through RNAi technology. The P. infestans inoculation resulted in lower disease progression and a reduction in pathogen load, as demonstrated by disease scoring and quantification of pathogen biomass in terms of Pi08 repetitive elements, respectively. Transgenic plants induced moderate silencing of Avr3a, and the presence and/or expression of small interfering RNAs, as determined through Northern hybridization, indicated siRNA targeted against Avr3a conferred moderate resistance to P. infestans. The single effector gene did not provide complete resistance against P. infestans. Although the Avr3a effector gene could confer moderate resistance, for complete resistance, the cumulative effect of effector genes in addition to Avr3a needs to be considered. In this study, we demonstrated that host-induced RNAi is an effective strategy for functional genomics in oomycetes.
Collapse
Affiliation(s)
- Suman Sanju
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Aditi Thakur
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Pradeep K Shukla
- Sam Higginbottom Institute of Agriculture, School of Biological Sciences, Allahabad, 211007, Uttara Pradesh, India.
| | | | - Debasis Pattanayak
- ICAR-National Research Centre for Plant Biotechnology, IARI, New Delhi, 110012, India.
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - B P Singh
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| |
Collapse
|
39
|
Pradhan A, Naik N, Kumar Sahoo K. RNAi Mediated Drought and Salinity Stress Tolerance in Plants. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.612200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Shunmugam ASK, Bock C, Arganosa GC, Georges F, Gray GR, Warkentin TD. Accumulation of Phosphorus-Containing Compounds in Developing Seeds of Low-Phytate Pea (Pisum sativum L.) Mutants. PLANTS (BASEL, SWITZERLAND) 2014; 4:1-26. [PMID: 27135314 PMCID: PMC4844337 DOI: 10.3390/plants4010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/17/2014] [Indexed: 11/16/2022]
Abstract
Low phytic acid (lpa) crops are low in phytic acid and high in inorganic phosphorus (Pi). In this study, two lpa pea genotypes, 1-150-81, 1-2347-144, and their progenitor CDC Bronco were grown in field trials for two years. The lpa genotypes were lower in IP₆ and higher in Pi when compared to CDC Bronco. The total P concentration was similar in lpa genotypes and CDC Bronco throughout the seed development. The action of myo-inositol phosphate synthase (MIPS) (EC 5.5.1.4) is the first and rate-limiting step in the phytic acid biosynthesis pathway. Aiming at understanding the genetic basis of the lpa mutation in the pea, a 1530 bp open reading frame of MIPS was amplified from CDC Bronco and the lpa genotypes. Sequencing results showed no difference in coding sequence in MIPS between CDC Bronco and lpa genotypes. Transcription levels of MIPS were relatively lower at 49 days after flowering (DAF) than at 14 DAF for CDC Bronco and lpa lines. This study elucidated the rate and accumulation of phosphorus compounds in lpa genotypes. The data also demonstrated that mutation in MIPS was not responsible for the lpa trait in these pea lines.
Collapse
Affiliation(s)
- Arun S K Shunmugam
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| | - Cheryl Bock
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada.
| | - Gene C Arganosa
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| | - Fawzy Georges
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada.
| | - Gordon R Gray
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| | - Thomas D Warkentin
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
41
|
Belgaroui N, Zaidi I, Farhat A, Chouayekh H, Bouain N, Chay S, Curie C, Mari S, Masmoudi K, Davidian JC, Berthomieu P, Rouached H, Hanin M. Over-expression of the Bacterial Phytase US417 in Arabidopsis Reduces the Concentration of Phytic Acid and Reveals Its Involvement in the Regulation of Sulfate and Phosphate Homeostasis and Signaling. ACTA ACUST UNITED AC 2014; 55:1912-24. [DOI: 10.1093/pcp/pcu122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Li WX, Zhao HJ, Pang WQ, Cui HR, Poirier Y, Shu QY. Seed-specific silencing of OsMRP5 reduces seed phytic acid and weight in rice. Transgenic Res 2014; 23:585-99. [PMID: 24648215 DOI: 10.1007/s11248-014-9792-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 03/10/2014] [Indexed: 11/29/2022]
Abstract
Phytic acid (PA) is poorly digested by humans and monogastric animals and negatively affects human/animal nutrition and the environment. Rice mutants with reduced PA content have been developed but are often associated with reduced seed weight and viability, lacking breeding value. In the present study, a new approach was explored to reduce seed PA while attaining competitive yield. The OsMRP5 gene, of which mutations are known to reduce seed PA as well as seed yield and viability, was down-regulated specifically in rice seeds by using an artificial microRNA driven by the rice seed specific promoter Ole18. Seed PA contents were reduced by 35.8-71.9% in brown rice grains of transgenic plants compared to their respective null plants (non-transgenic plants derived from the same event). No consistent significant differences of plant height or number of tillers per plant were observed, but significantly lower seed weights (up to 17.8% reduction) were detected in all transgenic lines compared to null plants, accompanied by reductions of seed germination and seedling emergence. It was observed that the silencing of the OsMRP5 gene increased the inorganic P (Pi) levels (up to 7.5 times) in amounts more than the reduction of PA-P in brown rice. This indicates a reduction in P content in other cellular compounds, such as lipids and nucleic acids, which may affect overall seed development. Put together, the present study demonstrated that seed specific silencing of OsMRP5 could significantly reduce the PA content and increase Pi levels in seeds; however, it also significantly lowers seed weight in rice. Discussions were made regarding future directions towards producing agronomically competitive and nutritionally valuable low PA rice.
Collapse
Affiliation(s)
- Wen-Xu Li
- State Key Laboratory of Rice Biology and Key Laboratory of Nuclear-Agricultural Sciences of the Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | | | | | | | | | | |
Collapse
|
43
|
Saurabh S, Vidyarthi AS, Prasad D. RNA interference: concept to reality in crop improvement. PLANTA 2014; 239:543-64. [PMID: 24402564 DOI: 10.1007/s00425-013-2019-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 12/21/2013] [Indexed: 05/18/2023]
Abstract
The phenomenon of RNA interference (RNAi) is involved in sequence-specific gene regulation driven by the introduction of dsRNA resulting in inhibition of translation or transcriptional repression. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in opening a new vista for crop improvement. RNAi technology is precise, efficient, stable and better than antisense technology. It has been employed successfully to alter the gene expression in plants for better quality traits. The impact of RNAi to improve the crop plants has proved to be a novel approach in combating the biotic and abiotic stresses and the nutritional improvement in terms of bio-fortification and bio-elimination. It has been employed successfully to bring about modifications of several desired traits in different plants. These modifications include nutritional improvements, reduced content of food allergens and toxic compounds, enhanced defence against biotic and abiotic stresses, alteration in morphology, crafting male sterility, enhanced secondary metabolite synthesis and seedless plant varieties. However, crop plants developed by RNAi strategy may create biosafety risks. So, there is a need for risk assessment of GM crops in order to make RNAi a better tool to develop crops with biosafety measures. This article is an attempt to review the RNAi, its biochemistry, and the achievements attributed to the application of RNAi in crop improvement.
Collapse
Affiliation(s)
- Satyajit Saurabh
- Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835125, India
| | | | | |
Collapse
|
44
|
Non-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA). Mol Biotechnol 2014; 55:87-100. [PMID: 23381873 DOI: 10.1007/s12033-013-9648-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Of late non-coding RNAs (ncRNAs)-mediated gene silencing is an influential tool deliberately deployed to negatively regulate the expression of targeted genes. In addition to the widely employed small interfering RNA (siRNA)-mediated gene silencing approach, other variants like artificial miRNA (amiRNA), miRNA mimics, and artificial transacting siRNAs (tasiRNAs) are being explored and successfully deployed in developing non-coding RNA-based genetically modified plants. The ncRNA-based gene manipulations are typified with mobile nature of silencing signals, interference from viral genome-derived suppressor proteins, and an obligation for meticulous computational analysis to prevaricate any inadvertent effects. In a broad sense, risk assessment inquiries for genetically modified plants based on the expression of ncRNAs are competently addressed by the environmental risk assessment (ERA) models, currently in vogue, designed for the first generation transgenic plants which are based on the expression of heterologous proteins. Nevertheless, transgenic plants functioning on the foundation of ncRNAs warrant due attention with respect to their unique attributes like off-target or non-target gene silencing effects, small RNAs (sRNAs) persistence, food and feed safety assessments, problems in detection and tracking of sRNAs in food, impact of ncRNAs in plant protection measures, effect of mutations etc. The role of recent developments in sequencing techniques like next generation sequencing (NGS) and the ERA paradigm of the different countries in vogue are also discussed in the context of ncRNA-based gene manipulations.
Collapse
|
45
|
Saxena SC, Salvi P, Kaur H, Verma P, Petla BP, Rao V, Kamble N, Majee M. Differentially expressed myo-inositol monophosphatase gene (CaIMP) in chickpea (Cicer arietinum L.) encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity and improves seed germination and seedling growth under abiotic stresses. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5623-39. [PMID: 24123252 PMCID: PMC3871819 DOI: 10.1093/jxb/ert336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
myo-Inositol monophosphatase (IMP) is an essential enzyme in the myo-inositol metabolic pathway where it primarily dephosphorylates myo-inositol 1-phosphate to maintain the cellular inositol pool which is important for many metabolic and signalling pathways in plants. The stress-induced increased accumulation of inositol has been reported in a few plants including chickpea; however, the role and regulation of IMP is not well defined in response to stress. In this work, it has been shown that IMP activity is distributed in all organs in chickpea and was noticeably enhanced during environmental stresses. Subsequently, using degenerate oligonucleotides and RACE strategy, a full-length IMP cDNA (CaIMP) was cloned and sequenced. Biochemical study revealed that CaIMP encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity, although maximum activity was observed with the myo-inositol 1-phosphate and l-galactose 1-phosphate substrates. Transcript analysis revealed that CaIMP is differentially expressed and regulated in different organs, stresses and phytohormones. Complementation analysis in Arabidopsis further confirmed the role of CaIMP in l-galactose 1-phosphate and myo-inositol 1-phosphate hydrolysis and its participation in myo-inositol and ascorbate biosynthesis. Moreover, Arabidopsis transgenic plants over-expressing CaIMP exhibited improved tolerance to stress during seed germination and seedling growth, while the VTC4/IMP loss-of-function mutants exhibited sensitivity to stress. Collectively, CaIMP links various metabolic pathways and plays an important role in improving seed germination and seedling growth, particularly under stressful environments.
Collapse
Affiliation(s)
- Saurabh C. Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prafull Salvi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Harmeet Kaur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pooja Verma
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bhanu Prakash Petla
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Venkateswara Rao
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nitin Kamble
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
46
|
Kudapa H, Ramalingam A, Nayakoti S, Chen X, Zhuang WJ, Liang X, Kahl G, Edwards D, Varshney RK. Functional genomics to study stress responses in crop legumes: progress and prospects. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1221-1233. [PMID: 32481190 DOI: 10.1071/fp13191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/22/2013] [Indexed: 06/11/2023]
Abstract
Legumes are important food crops worldwide, contributing to more than 33% of human dietary protein. The production of crop legumes is frequently impacted by abiotic and biotic stresses. It is therefore important to identify genes conferring resistance to biotic stresses and tolerance to abiotic stresses that can be used to both understand molecular mechanisms of plant response to the environment and to accelerate crop improvement. Recent advances in genomics offer a range of approaches such as the sequencing of genomes and transcriptomes, gene expression microarray as well as RNA-seq based gene expression profiling, and map-based cloning for the identification and isolation of biotic and abiotic stress-responsive genes in several crop legumes. These candidate stress associated genes should provide insights into the molecular mechanisms of stress tolerance and ultimately help to develop legume varieties with improved stress tolerance and productivity under adverse conditions. This review provides an overview on recent advances in the functional genomics of crop legumes that includes the discovery as well as validation of candidate genes.
Collapse
Affiliation(s)
- Himabindu Kudapa
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru 502324, India
| | - Abirami Ramalingam
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru 502324, India
| | - Swapna Nayakoti
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru 502324, India
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wei-Jian Zhuang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guenter Kahl
- Goethe University Frankfurt am Main, Institute for Molecular BioSciences, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
| | - David Edwards
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, St Lucia, Qld 4072, Australia
| | - Rajeev K Varshney
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru 502324, India
| |
Collapse
|
47
|
Zhao HJ, Cui HR, Xu XH, Tan YY, Fu JJ, Liu GZ, Poirier Y, Shu QY. Characterization of OsMIK in a rice mutant with reduced phytate content reveals an insertion of a rearranged retrotransposon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:3009-20. [PMID: 24042572 DOI: 10.1007/s00122-013-2189-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 09/05/2013] [Indexed: 05/12/2023]
Abstract
The rice low phytic acid (lpa) mutant Os-lpa-XS110-1(XS-lpa) has ~45 % reduction in seed phytic acid (PA) compared with the wild-type cultivar Xiushui 110. Previously, a single recessive gene mutation was shown to be responsible for the lpa phenotype and was mapped to a region of chromosome 3 near OsMIK (LOC_Os03g52760) and OsIPK1 (LOC_Os03g51610), two genes involved in PA biosynthesis. Here, we report the identification of a large insert in the intron of OsMIK in the XS-lpa mutant. Sequencing of fragments amplified through TAIL-PCRs revealed that the insert was a derivative of the LINE retrotransposon gene LOC_Os03g56910. Further analyses revealed the following characteristics of the insert and its impacts: (1) the inserted sequence of LOC_Os03g56910 was split at its third exon and rejoined inversely, with its 5' and 3' flanking sequences inward and the split third exon segments outward; (2) the LOC_Os03g56910 remained in its original locus in XS-lpa, and the insertion probably resulted from homologous recombination repair of a DNA double strand break; (3) while the OsMIK transcripts of XS-lpa and Xiushui 110 were identical, substantial reductions of the transcript abundance (~87 %) and the protein level (~60 %) were observed in XS-lpa, probably due to increased methylation in its promoter region. The above findings are discussed in the context of plant mutagenesis, epigenetics and lpa breeding.
Collapse
Affiliation(s)
- Hai-Jun Zhao
- State Key Laboratory of Rice Biology and Key Laboratory of Nuclear-Agricultural Sciences of the Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1). PLoS One 2013; 8:e68161. [PMID: 23844166 PMCID: PMC3699528 DOI: 10.1371/journal.pone.0068161] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/30/2013] [Indexed: 02/03/2023] Open
Abstract
Phytic acid (InsP6) is considered to be the major source of phosphorus and inositol phosphates in most cereal grains. However, InsP6 is not utilized efficiently by monogastric animals due to lack of phytase enzyme. Furthermore, due to its ability to chelate mineral cations, phytic acid is considered to be an antinutrient that renders these minerals unavailable for absorption. In view of these facts, reducing the phytic acid content in cereal grains is a desired goal for the genetic improvement of several crops. In the present study, we report the RNAi-mediated seed-specific silencing (using the Oleosin18 promoter) of the IPK1 gene, which catalyzes the last step of phytic acid biosynthesis in rice. The presence of the transgene cassette in the resulting transgenic plants was confirmed by molecular analysis, indicating the stable integration of the transgene. The subsequent T4 transgenic seeds revealed 3.85-fold down-regulation in IPK1 transcripts, which correlated to a significant reduction in phytate levels and a concomitant increase in the amount of inorganic phosphate (Pi). The low-phytate rice seeds also accumulated 1.8-fold more iron in the endosperm due to the decreased phytic acid levels. No negative effects were observed on seed germination or in any of the agronomic traits examined. The results provide evidence that silencing of IPK1 gene can mediate a substantial reduction in seed phytate levels without hampering the growth and development of transgenic rice plants.
Collapse
|
49
|
Tang Y, Tan S, Xue H. Arabidopsis inositol 1,3,4-trisphosphate 5/6 kinase 2 is required for seed coat development. Acta Biochim Biophys Sin (Shanghai) 2013; 45:549-60. [PMID: 23595027 DOI: 10.1093/abbs/gmt039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inositol 1,3,4-trisphosphate 5/6 kinase (ITPK) phosphorylates inositol 1,3,4-trisphosphate to form inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4,6-tetrakisphosphate which can be finally transferred to inositol hexaphosphate (IP₆) and play important roles during plant growth and development. There are 4 putative ITPK members in Arabidopsis. Expression pattern analysis showed that ITPK2 is constitutively expressed in various tissues. A T-DNA knockout mutant of ITPK2 was identified and scanning electron microscopy (SEM) analysis showed that the epidermis structure of seed coat was irregularly formed in seeds of itpk2-1 mutant, resulting in the increased permeability of seed coat to tetrazolium salts. Further analysis by gas chromatography coupled with mass spectrometry of lipid polyester monomers in cell wall confirmed a dramatic decrease in composition of suberin and cutin, which relate to the permeability of seed coat and the formation of which is accompanied with seed coat development. These results indicate that ITPK2 plays an essential role in seed coat development and lipid polyester barrier formation.
Collapse
Affiliation(s)
- Yong Tang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
50
|
Dong J, Yan W, Bock C, Nokhrina K, Keller W, Georges F. Perturbing the metabolic dynamics of myo-inositol in developing Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways. BMC PLANT BIOLOGY 2013; 13:84. [PMID: 23692661 PMCID: PMC3680054 DOI: 10.1186/1471-2229-13-84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/09/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND myo-Inositol (Ins) metabolism during early stages of seed development plays an important role in determining the distributional relationships of some seed storage components such as the antinutritional factors, sucrose galactosides (also known as raffinose oligosaccharides) and phytic acid (PhA) (myo-inositol 1,2,3,4,5,6-hexakisphosphate). The former is a group of oligosaccharides, which plays a role in desiccation at seed maturation. They are not easily digested by monogastric animals, hence their flatulence-causing properties. Phytic acid is highly negatively charged, which chelates positive ions of essential minerals and decreases their bioavailability. It is also a major cause of phosphate-related water pollution. Our aim was to investigate the influence of competitive diversion of Ins as common substrate on the biosynthesis of phytate and sucrose galactosides. RESULTS We have studied the initial metabolic patterns of Ins in developing seeds of Brassica napus and determined that early stages of seed development are marked by rapid deployment of Ins into a variety of pathways, dominated by interconversion of polar (Ins phosphates) and non-polar (phospholipids) species. In a time course experiment at early stages of seed development, we show Ins to be a highly significant constituent of the endosperm and seed coat, but with no phytate biosynthesis occurring in either tissue. Phytate accumulation appears to be confined mainly within the embryo throughout seed development and maturation. In our approach, the gene for myo-inositol methyltransferase (IMT), isolated from Mesembryanthemum crystallinum (ice plant), was transferred to B. napus under the control of the seed-specific promoters, napin and phaseolin. Introduction of this new metabolic step during seed development prompted Ins conversion to the corresponding monomethyl ether, ononitol, and affected phytate accumulation. We were able to produce homozygous transgenic lines with 19%-35% average phytate reduction. Additionally, changes in the raffinose content and related sugars occurred along with enhanced sucrose levels. Germination rates, viability and other seed parameters were unaffected by the IMT transgene over-expression. CONCLUSIONS Competitive methylation of Ins during seed development reduces seed antinutritional components and enhances its nutritional characteristics while maintaining adequate phosphate reserves. Such approach should potentially raise the canola market value and likely, that of other crops.
Collapse
Affiliation(s)
- Jinzhuo Dong
- Wilmar International, 56 Neil Rd, Singapore 088830, Singapore
| | - Wei Yan
- National Research Council Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Cheryl Bock
- National Research Council Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Kateryna Nokhrina
- National Research Council Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Wilf Keller
- Ag-West Bio Inc, 101 – 111 Research Drive, Saskatoon, SK S7N 3R2, Canada
| | - Fawzy Georges
- National Research Council Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| |
Collapse
|