1
|
Bhatt U, Singh H, Kalaji HM, Strasser RJ, Soni V. Decoding the physicochemical basis of resurrection: the journey of lichen Flavoparmelia caperata through prolonged water scarcity to full rehydration. BMC PLANT BIOLOGY 2024; 24:1268. [PMID: 39730993 DOI: 10.1186/s12870-024-05751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/25/2024] [Indexed: 12/29/2024]
Abstract
Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases. The first phase, characterized by rapid rehydration, involves the conversion of non-functional reaction centers (RCs) into functional PSII RCs, and the accumulation of ROS along with the increment in SOD antioxidant enzyme. These coordinated mechanisms initiate the light reaction of photosynthesis by forming active light-harvesting complexes (LHCs). This adaptation ensures efficient recovery, as evidenced by specific energy fluxes (ABS/RC, TR/RC, ET/RC, and DI/RC), phenomenological fluxes (ABS/CS, TR/CS, ET/CS, and DI/CS), quantum efficiencies (ФP0, ФE0, and ФD0), primary and secondary photochemistry, photochemical and non-photochemical quenching, and performance index, highlighting the essential role of rapid water uptake in restoring turgor pressure for cell structure and function maintenance. The interconnected network of antioxidant defenses, including catalase (CAT) and peroxidase (POD), underscores the plant's ability to cope with oxidative stress during resilience. The acid phosphomonoesterase (PME) enzymatic activity corresponds to its role in releasing phosphate for essential cellular functions and post-rehydration thallus growth. The activity of CAT, GPOD, and PME signifies the gradual reactivation of lichen F. caperata. Moreover, the investigation into chlorophyll a fluorescence emphasizes the efficient reactivation of the photosynthetic process in F. caperata. In conclusion, lichen F. caperata demonstrates significant potential for desiccation tolerance through the rapid transformation of chloroplasts, chlorophylls, and PSII RCs from their inactive to active states upon rehydration. This research not only enhances our understanding of desiccation tolerance in resurrection plants but also highlights the importance of lichens, particularly F. caperata, as valuable models for studying plant resilience in challenging environments.
Collapse
Affiliation(s)
- Upma Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Hardeep Singh
- Botany Section, Regional Ayurveda Research Institute, Jaral Pandoh, Mandi-175124, Himachal Pradesh, India
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw, Poland
- University of Life Sciences, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Reto J Strasser
- Plant Bioenergetics Laboratory, University of Geneva, Geneva, Switzerland
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.
| |
Collapse
|
2
|
Bohutskyi P, Pomraning KR, Jenkins JP, Kim YM, Poirier BC, Betenbaugh MJ, Magnuson JK. Mixed and membrane-separated culturing of synthetic cyanobacteria-yeast consortia reveals metabolic cross-talk mimicking natural cyanolichens. Sci Rep 2024; 14:25303. [PMID: 39455633 PMCID: PMC11511929 DOI: 10.1038/s41598-024-74743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolite exchange mediates crucial interactions in microbial communities, significantly impacting global carbon and nitrogen cycling. Understanding these chemically-mediated interactions is essential for elucidating natural community functions and developing engineered synthetic communities. This study investigated membrane-separated bioreactors (mBRs) as a novel tool to identify transient metabolites and their producers/consumers in mixed microbial communities. We compared three co-culture methods (direct mixed, 2-chamber mBR, and 3-chamber mBR) to grow a synthetic binary community of the cyanobacterium Synechococcus elongatus PCC 7942 and the fungus Rhodotorula toruloides NBRC 0880, as well as axenic S. elongatus. Despite not being natural lichen constituents, these organisms exhibited interactions resembling those in cyanolichens. S. elongatus fixed CO2 into sugars as the primary shared metabolite, while R. toruloides secreted various biochemicals, predominantly sugar alcohols, mirroring the metabolite exchange observed in natural lichens. The mBR systems successfully captured metabolite gradients and revealed rapidly consumed compounds, including TCA cycle intermediates and amino acids. Our approach demonstrated that the 2-chamber mBR optimally balanced metabolite exchange and growth dynamics. This study provides insights into cross-species metabolic interactions and presents a valuable tool for investigating and engineering synthetic microbial communities with potential applications in biotechnology and environmental science.
Collapse
Affiliation(s)
- Pavlo Bohutskyi
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA.
| | - Kyle R Pomraning
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jackson P Jenkins
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Brenton C Poirier
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jon K Magnuson
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
3
|
Fan D, Liu L, Cao S, Liao R, Liu C, Zhou Q. Transcriptional analysis of the dimorphic fungus Umbilicaria muehlenbergii reveals the molecular mechanism of phenotypic transition. World J Microbiol Biotechnol 2023; 39:170. [PMID: 37185920 DOI: 10.1007/s11274-023-03618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
The lichen-forming fungus Umbilicaria muehlenbergii undergoes a phenotypic transition from a yeast-like to a pseudohyphal form. However, it remains unknown if a common mechanism is involved in the phenotypic switch of U. muehlenbergii at the transcriptional level. Further, investigation of the phenotype switch molecular mechanism in U. muehlenbergii has been hindered by incomplete genomic sequencing data. Here, the phenotypic characteristics of U. muehlenbergii were investigated after cultivation on several carbon sources, revealing that oligotrophic conditions due to nutrient stress (reduced strength PDA (potato dextrose agar) media) exacerbated the pseudohyphal growth of U. muehlenbergii. Further, the addition of sorbitol, ribitol, and mannitol exacerbated the pseudohyphal growth of U. muehlenbergii regardless of PDA medium strength. Transcriptome analysis of U. muehlenbergii grown in normal and nutrient-stress conditions revealed the presence of several biological pathways with altered expression levels during nutrient stress and related to carbohydrate, protein, DNA/RNA and lipid metabolism. Further, the results demonstrated that altered biological pathways can cooperate during pseudohyphal growth, including pathways involved in the production of protectants, acquisition of other carbon sources, or adjustment of energy metabolism. Synergistic changes in the functioning of these pathways likely help U. muehlenbergii cope with dynamic stimuli. These results provide insights into the transcriptional response of U. muehlenbergii during pseudohyphal growth under oligotrophic conditions. Specifically, the transcriptomic analysis indicated that pseudohyphal growth is an adaptive mechanism of U. muehlenbergii that facilitates its use of alternative carbon sources to maintain survival.
Collapse
Affiliation(s)
- Dongjie Fan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Lushan Liu
- Emergency Department of China Rehabilitation Research Center, Capital medical University, Fengtai District, No. 10 Jiaomen North Street, Beijing, 100068, China
| | - Shunan Cao
- Key Laboratory for Polar Science MNR, Polar Research Institute of China, NO.1000 Xuelong Road, Pudong, Shanghai, China
| | - Rui Liao
- ChosenMed Technology Company Limited, Economic and Technological Development Area, Jinghai Industrial Park, No. 156 Fourth Jinghai Road, Beijing, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China.
| | - Qiming Zhou
- ChosenMed Technology Company Limited, Economic and Technological Development Area, Jinghai Industrial Park, No. 156 Fourth Jinghai Road, Beijing, China.
| |
Collapse
|
4
|
Ren M, Jiang S, Wang Y, Pan X, Pan F, Wei X. Discovery and excavation of lichen bioactive natural products. Front Microbiol 2023; 14:1177123. [PMID: 37138611 PMCID: PMC10149937 DOI: 10.3389/fmicb.2023.1177123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Lichen natural products are a tremendous source of new bioactive chemical entities for drug discovery. The ability to survive in harsh conditions can be directly correlated with the production of some unique lichen metabolites. Despite the potential applications, these unique metabolites have been underutilized by pharmaceutical and agrochemical industries due to their slow growth, low biomass availability, and technical challenges involved in their artificial cultivation. At the same time, DNA sequence data have revealed that the number of encoded biosynthetic gene clusters in a lichen is much higher than in natural products, and the majority of them are silent or poorly expressed. To meet these challenges, the one strain many compounds (OSMAC) strategy, as a comprehensive and powerful tool, has been developed to stimulate the activation of silent or cryptic biosynthetic gene clusters and exploit interesting lichen compounds for industrial applications. Furthermore, the development of molecular network techniques, modern bioinformatics, and genetic tools is opening up a new opportunity for the mining, modification, and production of lichen metabolites, rather than merely using traditional separation and purification techniques to obtain small amounts of chemical compounds. Heterologous expressed lichen-derived biosynthetic gene clusters in a cultivatable host offer a promising means for a sustainable supply of specialized metabolites. In this review, we summarized the known lichen bioactive metabolites and highlighted the application of OSMAC, molecular network, and genome mining-based strategies in lichen-forming fungi for the discovery of new cryptic lichen compounds.
Collapse
Affiliation(s)
- Meirong Ren
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Shuhua Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd., Jiujiang, China
| | - Feng Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd., Jiujiang, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Spribille T, Resl P, Stanton DE, Tagirdzhanova G. Evolutionary biology of lichen symbioses. THE NEW PHYTOLOGIST 2022; 234:1566-1582. [PMID: 35302240 DOI: 10.1111/nph.18048] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/21/2021] [Indexed: 05/28/2023]
Abstract
Lichens are the symbiotic outcomes of open, interspecies relationships, central to which are a fungus and a phototroph, typically an alga and/or cyanobacterium. The evolutionary processes that led to the global success of lichens are poorly understood. In this review, we explore the goods and services exchange between fungus and phototroph and how this propelled the success of both symbiont and symbiosis. Lichen fungal symbionts count among the only filamentous fungi that expose most of their mycelium to an aerial environment. Phototrophs export carbohydrates to the fungus, which converts them to specific polyols. Experimental evidence suggests that polyols are not only growth and respiratory substrates but also play a role in anhydrobiosis, the capacity to survive desiccation. We propose that this dual functionality is pivotal to the evolution of fungal symbionts, enabling persistence in environments otherwise hostile to fungi while simultaneously imposing costs on growth. Phototrophs, in turn, benefit from fungal protection from herbivory and light stress, while appearing to exert leverage over fungal sex and morphogenesis. Combined with the recently recognized habit of symbionts to occur in multiple symbioses, this creates the conditions for a multiplayer marketplace of rewards and penalties that could drive symbiont selection and lichen diversification.
Collapse
Affiliation(s)
- Toby Spribille
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Philipp Resl
- Institute of Biology, University of Graz, Universitätsplatz 3, Graz, 8010, Austria
| | - Daniel E Stanton
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Gulnara Tagirdzhanova
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
6
|
Anderson J, Lévesque N, Caron F, Beckett P, Spiers GA. A review on the use of lichens as a biomonitoring tool for environmental radioactivity. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 243:106797. [PMID: 34968948 DOI: 10.1016/j.jenvrad.2021.106797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Lichens have been widely used as a biomonitoring tool to record the distribution and concentration of airborne radioactivity and pollutants such as metals. There are limitations, however: although pollutants can be preserved in lichen tissues for long periods of time, not all radioactive and inert elements behave similarly. The chemical species of elements at the source, once captured, and the mode of storage within lichens play a role in this biomonitoring tool. Lichens are a symbiotic association of an algal or cyanobacterial partner (photobiont) with a fungal host (mycobiont). Lichens grow independently of the host substrates, including rocks, soils, trees and human-made structures. Lacking a root system, lichen nutrient or contaminant uptake is mostly through direct atmospheric inputs, mainly as wet and dry deposition. As lichens grow in a large variety of environments and are resilient in harsh climates, they are adapted to capture and retain nutrients from airborne sources. The context of this review partially relates to future deployment of small modular reactors (SMRs) and mining in remote areas of Canada. SMRs have been identified as a future source of energy (electricity and heat) for remote off-grid mines, potentially replacing diesel fuel generation facilities. For licensing purposes, SMR deployment and mine development requires capabilities to monitor background contaminants (natural radioactivity and metals) before, during and after deployment, including for decommissioning and removal. Key aspects reviewed herein include: (1) how lichens have been used in the past to monitor radioactivity; (2) radiocontaminants capture and storage in lichens; (3) longevity of radiocontaminant storage in lichen tissues; and (4) limitations of lichens use for monitoring radiocontaminants and selected metals.
Collapse
Affiliation(s)
- J Anderson
- Mirarco Mining Innovation and Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON, P3E 2C6, Canada; Harquail School of Earth Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON, P3E 2C6, Canada
| | - N Lévesque
- Mirarco Mining Innovation and Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON, P3E 2C6, Canada; School of Biological, Chemical & Forensic Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON, P3E 2C6, Canada
| | - F Caron
- Mirarco Mining Innovation and Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON, P3E 2C6, Canada.
| | - P Beckett
- Vale Living with Lakes Centre, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON, P3E 2C6, Canada
| | - G A Spiers
- Harquail School of Earth Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON, P3E 2C6, Canada
| |
Collapse
|
7
|
|
8
|
Nazem-Bokaee H, Hom EFY, Warden AC, Mathews S, Gueidan C. Towards a Systems Biology Approach to Understanding the Lichen Symbiosis: Opportunities and Challenges of Implementing Network Modelling. Front Microbiol 2021; 12:667864. [PMID: 34012428 PMCID: PMC8126723 DOI: 10.3389/fmicb.2021.667864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Lichen associations, a classic model for successful and sustainable interactions between micro-organisms, have been studied for many years. However, there are significant gaps in our understanding about how the lichen symbiosis operates at the molecular level. This review addresses opportunities for expanding current knowledge on signalling and metabolic interplays in the lichen symbiosis using the tools and approaches of systems biology, particularly network modelling. The largely unexplored nature of symbiont recognition and metabolic interdependency in lichens could benefit from applying a holistic approach to understand underlying molecular mechanisms and processes. Together with ‘omics’ approaches, the application of signalling and metabolic network modelling could provide predictive means to gain insights into lichen signalling and metabolic pathways. First, we review the major signalling and recognition modalities in the lichen symbioses studied to date, and then describe how modelling signalling networks could enhance our understanding of symbiont recognition, particularly leveraging omics techniques. Next, we highlight the current state of knowledge on lichen metabolism. We also discuss metabolic network modelling as a tool to simulate flux distribution in lichen metabolic pathways and to analyse the co-dependence between symbionts. This is especially important given the growing number of lichen genomes now available and improved computational tools for reconstructing such models. We highlight the benefits and possible bottlenecks for implementing different types of network models as applied to the study of lichens.
Collapse
Affiliation(s)
- Hadi Nazem-Bokaee
- CSIRO Australian National Herbarium, Centre for Australian National Biodiversity Research, National Research Collections Australia, NCMI, Canberra, ACT, Australia.,CSIRO Land and Water, Canberra, ACT, Australia.,CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| | - Erik F Y Hom
- Department of Biology and Center for Biodiversity and Conservation Research, The University of Mississippi, University City, MS, United States
| | | | - Sarah Mathews
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Cécile Gueidan
- CSIRO Australian National Herbarium, Centre for Australian National Biodiversity Research, National Research Collections Australia, NCMI, Canberra, ACT, Australia
| |
Collapse
|
9
|
Gasulla F, del Campo EM, Casano LM, Guéra A. Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae. PLANTS (BASEL, SWITZERLAND) 2021; 10:807. [PMID: 33923980 PMCID: PMC8073698 DOI: 10.3390/plants10040807] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
Lichens are symbiotic associations (holobionts) established between fungi (mycobionts) and certain groups of cyanobacteria or unicellular green algae (photobionts). This symbiotic association has been essential in the colonization of terrestrial dry habitats. Lichens possess key mechanisms involved in desiccation tolerance (DT) that are constitutively present such as high amounts of polyols, LEA proteins, HSPs, a powerful antioxidant system, thylakoidal oligogalactolipids, etc. This strategy allows them to be always ready to survive drastic changes in their water content. However, several studies indicate that at least some protective mechanisms require a minimal time to be induced, such as the induction of the antioxidant system, the activation of non-photochemical quenching including the de-epoxidation of violaxanthin to zeaxanthin, lipid membrane remodeling, changes in the proportions of polyols, ultrastructural changes, marked polysaccharide remodeling of the cell wall, etc. Although DT in lichens is achieved mainly through constitutive mechanisms, the induction of protection mechanisms might allow them to face desiccation stress in a better condition. The proportion and relevance of constitutive and inducible DT mechanisms seem to be related to the ecology at which lichens are adapted to.
Collapse
Affiliation(s)
- Francisco Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, 28802 Madrid, Spain; (E.M.d.C.); (L.M.C.)
| | | | | | - Alfredo Guéra
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, 28802 Madrid, Spain; (E.M.d.C.); (L.M.C.)
| |
Collapse
|
10
|
Grimm M, Grube M, Schiefelbein U, Zühlke D, Bernhardt J, Riedel K. The Lichens' Microbiota, Still a Mystery? Front Microbiol 2021; 12:623839. [PMID: 33859626 PMCID: PMC8042158 DOI: 10.3389/fmicb.2021.623839] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/10/2021] [Indexed: 01/03/2023] Open
Abstract
Lichens represent self-supporting symbioses, which occur in a wide range of terrestrial habitats and which contribute significantly to mineral cycling and energy flow at a global scale. Lichens usually grow much slower than higher plants. Nevertheless, lichens can contribute substantially to biomass production. This review focuses on the lichen symbiosis in general and especially on the model species Lobaria pulmonaria L. Hoffm., which is a large foliose lichen that occurs worldwide on tree trunks in undisturbed forests with long ecological continuity. In comparison to many other lichens, L. pulmonaria is less tolerant to desiccation and highly sensitive to air pollution. The name-giving mycobiont (belonging to the Ascomycota), provides a protective layer covering a layer of the green-algal photobiont (Dictyochloropsis reticulata) and interspersed cyanobacterial cell clusters (Nostoc spec.). Recently performed metaproteome analyses confirm the partition of functions in lichen partnerships. The ample functional diversity of the mycobiont contrasts the predominant function of the photobiont in production (and secretion) of energy-rich carbohydrates, and the cyanobiont's contribution by nitrogen fixation. In addition, high throughput and state-of-the-art metagenomics and community fingerprinting, metatranscriptomics, and MS-based metaproteomics identify the bacterial community present on L. pulmonaria as a surprisingly abundant and structurally integrated element of the lichen symbiosis. Comparative metaproteome analyses of lichens from different sampling sites suggest the presence of a relatively stable core microbiome and a sampling site-specific portion of the microbiome. Moreover, these studies indicate how the microbiota may contribute to the symbiotic system, to improve its health, growth and fitness.
Collapse
Affiliation(s)
- Maria Grimm
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Martin Grube
- Institute of Plant Sciences, Karl-Franzens-University Graz, Graz, Austria
| | | | - Daniela Zühlke
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Jörg Bernhardt
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Vitali M, Antonucci A, Owczarek M, Guidotti M, Astolfi ML, Manigrasso M, Avino P, Bhattacharya B, Protano C. Air quality assessment in different environmental scenarios by the determination of typical heavy metals and Persistent Organic Pollutants in native lichen Xanthoria parietina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113013. [PMID: 31415978 DOI: 10.1016/j.envpol.2019.113013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/08/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
The study was aimed to evaluate the ability of native lichen Xanthoria (X.) parietina to biomonitor and bioaccumulate some heavy metals (As, Cd, Co, Cr, Ni, Pb), PAHs, PCDDs, PCDFs, PCBs and PBDEs and to evaluate the use of the native X. parietina as a multi-tracer tool for scenarios characterized by different anthropogenic pressures. Samples of native X. parietina were collected in six different sites (two green, two residential and two industrial areas, respectively) and analyzed for the target compounds. The results show that X. parietina was a useful tool for the biomonitoring of air quality in the selected areas, and was able to bioaccumulate all the studied metals and POPs. In particular, the total concentrations dry weight (dw) ranged between 8.1 and 103.4 mg kg-1 for metals, from 113 × 103 to 183 × 103 ng kg-1 for PAHs, from 868 to 7685 ng kg-1 for PCBs, from 14.3 to 113.8 ng kg-1 for PCDDs/Fs (∑TEq = 0.9-7.1), and from 194 to 554 ng kg-1 for PBDEs. Besides, in general, the levels of analytes recovered in the different samples of lichen show an increasing trend from green to industrial sites, especially for PCBs (mean values equal to 1218, 4253 and 7192 ng kg-1 respectively for green, residential and industrial areas). The statistical approach, based on Pearson's correlation and principal component analysis tests, showed that one of the industrial sites was well-separated from the others, that resulted grouped due to some similarities.
Collapse
Affiliation(s)
- Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Arianna Antonucci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Malgorzata Owczarek
- Arpa Lazio, Regional Agency for Environmental Protection, Sede di Rieti, via Salaria per l'Aquila 8, I-02100 Rieti, Italy
| | - Maurizio Guidotti
- Arpa Lazio, Regional Agency for Environmental Protection, Sede di Rieti, via Salaria per l'Aquila 8, I-02100 Rieti, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Maurizio Manigrasso
- Department of Technological Innovations, INAIL, via IV Novembre 144, I-00187 Rome, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis, I-86100 Campobasso, Italy; Institute of Ecotoxicology & Environmental Sciences, In-700156 Kolkata, India
| | - Badal Bhattacharya
- Institute of Ecotoxicology & Environmental Sciences, In-700156 Kolkata, India
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
12
|
Brakni R, Ali Ahmed M, Burger P, Schwing A, Michel G, Pomares C, Hasseine L, Boyer L, Fernandez X, Landreau A, Michel T. UHPLC-HRMS/MS Based Profiling of Algerian Lichens and Their Antimicrobial Activities. Chem Biodivers 2018; 15:e1800031. [PMID: 29505125 DOI: 10.1002/cbdv.201800031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/01/2018] [Indexed: 12/29/2022]
Abstract
Lichens are complex symbiotic organisms able to produce a vast array of compounds. The Algerian lichen diversity has only prompted little interest even given the 1085 species listed. Herein, the chemodiversity of four Algerian lichens including Cladonia rangiformis, Ramalina farinaceae, R. fastigiata, and Roccella phycopsis was investigated. A dereplication strategy, using ultra high performance liquid chromatography-high resolution-electrospray ionization-mass spectrometry (UHPLC-HRMS/MS), was carried out for a comprehensive characterization of their substances including phenolics, depsides, depsidones, depsones, dibenzofurans, and aliphatic acids. Some known compounds were identified for the first time in some species. Additionally, the lichenic extracts were evaluated for their antifungal and antimicrobial activities on human pathogenic strains (Candida albicans, C. glabrata, Aspergillus fumigatus, Staphylococcus aureus, and Escherichia coli). Cyclohexane extracts were found particularly active against human pathogenic fungi with MIC80 values ranging from 8 to 62.5 μg/mL, without cytotoxicity. This study highlights the therapeutic and prophylactic potential of lichenic extracts as antibacterial and antifungal agents.
Collapse
Affiliation(s)
- Rafika Brakni
- Département de Biologie, Laboratoire de Biologie Végétale et Environnement, Université Badji-Mokhtar, BP 23000, Annaba, Algeria
| | - Monia Ali Ahmed
- Département de Biologie, Laboratoire de Biologie Végétale et Environnement, Université Badji-Mokhtar, BP 23000, Annaba, Algeria
| | - Pauline Burger
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Parc Valrose, 06108, Nice Cedex 2, France
| | - Aurélie Schwing
- Université Côte d'Azur, C3M Inserm, U1065, 06204, Nice Cedex 3, France
| | - Grégory Michel
- Université Côte d'Azur, C3M Inserm, U1065, 06204, Nice Cedex 3, France
| | - Christelle Pomares
- Université Côte d'Azur, C3M Inserm, U1065, 06204, Nice Cedex 3, France.,Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Nice, 06202, Nice Cedex 3, France
| | - Lillia Hasseine
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Nice, 06202, Nice Cedex 3, France
| | - Laurent Boyer
- Université Côte d'Azur, C3M Inserm, U1065, 06204, Nice Cedex 3, France.,Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Nice, 06202, Nice Cedex 3, France
| | - Xavier Fernandez
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Parc Valrose, 06108, Nice Cedex 2, France
| | - Anne Landreau
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Parc Valrose, 06108, Nice Cedex 2, France.,Université d'Angers, Université Bretagne - Loire, Faculté de santé, Département pharmacie, 16 bd Daviers, 49045, Angers cedex 01, France
| | - Thomas Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Parc Valrose, 06108, Nice Cedex 2, France
| |
Collapse
|
13
|
de la Torre Noetzel R, Miller AZ, de la Rosa JM, Pacelli C, Onofri S, García Sancho L, Cubero B, Lorek A, Wolter D, de Vera JP. Cellular Responses of the Lichen Circinaria gyrosa in Mars-Like Conditions. Front Microbiol 2018; 9:308. [PMID: 29556220 PMCID: PMC5845166 DOI: 10.3389/fmicb.2018.00308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
Lichens are extremely resistant organisms that colonize harsh climatic areas, some of them defined as "Mars-analog sites." There still remain many unsolved questions as to how lichens survive under such extreme conditions. Several studies have been performed to test the resistance of various lichen species under space and in simulated Mars-like conditions. The results led to the proposal that Circinaria gyrosa (Lecanoromycetes, Ascomycota) is one of the most durable astrobiological model lichens. However, although C. gyrosa has been exposed to Mars-like environmental conditions while in a latent state, it has not been exposed in its physiologically active mode. We hypothesize that the astrobiological test system "Circinaria gyrosa," could be able to be physiologically active and to survive under Mars-like conditions in a simulation chamber, based on previous studies performed at dessicated-dormant stage under simulated Mars-like conditions, that showed a complete recover of the PSII activity (Sánchez et al., 2012). Epifluorescence and confocal laser scanning microscopy (CLSM) showed that living algal cells were more abundant in samples exposed to niche conditions, which simulated the conditions in micro-fissures and micro-caves close to the surface that have limited scattered or time-dependent light exposure, than in samples exposed to full UV radiation. The medulla was not structurally affected, suggesting that the niche exposure conditions did not disturb the lichen thalli structure and morphology as revealed by field emission scanning electron microscopy (FESEM). In addition, changes in the lichen thalli chemical composition were determined by analytical pyrolysis. The chromatograms resulting from analytical pyrolysis at 500°C revealed that lichen samples exposed to niche conditions and full UV radiation consisted primarily of glycosidic compounds, lipids, and sterols, which are typical constituents of the cell walls. However, specific differences could be detected and used as markers of the UV-induced damage to the lichen membranes. Based on its viability responses after rehydration, our study shows that the test lichen survived the 30-day incubation in the Mars chamber particularly under niche conditions. However, the photobiont was not able to photosynthesize under the Mars-like conditions, which indicates that the surface of Mars is not a habitable place for C. gyrosa.
Collapse
Affiliation(s)
- Rosa de la Torre Noetzel
- Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial, Madrid, Spain
| | - Ana Z Miller
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - José M de la Rosa
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | | | - Beatriz Cubero
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Andreas Lorek
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Berlin, Germany
| | - David Wolter
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Berlin, Germany
| | - Jean P de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Berlin, Germany
| |
Collapse
|
14
|
Kono M, Tanabe H, Ohmura Y, Satta Y, Terai Y. Physical contact and carbon transfer between a lichen-forming Trebouxia alga and a novel Alphaproteobacterium. MICROBIOLOGY-SGM 2017; 163:678-691. [PMID: 28535846 DOI: 10.1099/mic.0.000461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent progress in molecular techniques has begun to alter traditional recognition of lichens as symbiotic organisms comprised of a fungus and photosynthetic partners (green algae and/or cyanobacteria). Diverse organisms, especially various non-photosynthetic bacteria, are now indicated to be integral components of lichen symbiosis. Although lichen-associated bacteria are inferred to have functions that could support the symbiosis, little is known about their physical and nutritional interaction with fungi and algae. In the present study, we identified specific interaction between a lichen-forming alga and a novel bacterium. Trebouxia alga was isolated from a lichen, Usnea hakonensis, and kept as a strain for 8 years. Although no visible bacterial colonies were observed in this culture, high-throughput sequencing of DNA isolated from the culture revealed that the strain is composed of a Trebouxia alga and an Alphaproteobacterium species. In situ hybridization showed that bacterial cells were localized on the surface of the algal cells. Physiological assays revealed that the bacterium was able to use ribitol, glucose and mannitol, all of which are known to exist abundantly in lichens. It was resistant to three antibiotics. Bacteria closely related to this species were also identified in lichen specimens, indicating that U. hakonensis may commonly associate with this group of bacteria. These features of the novel bacterium suggest that it may be involved in carbon cycling of U. hakonensis as a member of lichen symbiosis and less likely to have become associated with the alga after isolation from a lichen.
Collapse
Affiliation(s)
- Mieko Kono
- SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Hideyuki Tanabe
- SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Yoshihito Ohmura
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| | - Yoko Satta
- SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Yohey Terai
- SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
15
|
Huang X, Wang L, Laserna AKC, Li SFY. Correlations in the elemental and metabolic profiles of the lichenDirinaria pictaafter road traffic exposure. Metallomics 2017; 9:1610-1621. [DOI: 10.1039/c7mt00207f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diverse metabolites were identified in lichens and their correlations with heavy metals revealed metabolic toxicity and the detoxification mechanism.
Collapse
Affiliation(s)
- Xulei Huang
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Lei Wang
- Department of Chemistry
- National University of Singapore
- Singapore
| | | | - Sam Fong Yau Li
- Department of Chemistry
- National University of Singapore
- Singapore
- NUS Environmental Research Institute (NERI)
- Singapore 117411
| |
Collapse
|
16
|
Spatial Molecular Architecture of the Microbial Community of a Peltigera Lichen. mSystems 2016; 1:mSystems00139-16. [PMID: 28028548 PMCID: PMC5183598 DOI: 10.1128/msystems.00139-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/17/2016] [Indexed: 11/25/2022] Open
Abstract
Microbial communities have evolved over centuries to live symbiotically. The direct visualization of such communities at the chemical and functional level presents a challenge. Overcoming this challenge may allow one to visualize the spatial distributions of specific molecules involved in symbiosis and to define their functional roles in shaping the community structure. In this study, we examined the diversity of microbial genes and taxa and the presence of biosynthetic gene clusters by metagenomic sequencing and the compartmentalization of organic chemical components within a lichen using mass spectrometry. This approach allowed the identification of chemically distinct sections within this composite organism. Using our multipronged approach, various fungal natural products, not previously reported from lichens, were identified and two different fungal layers were visualized at the chemical level. Microbes are commonly studied as individual species, but they exist as mixed assemblages in nature. At present, we know very little about the spatial organization of the molecules, including natural products that are produced within these microbial networks. Lichens represent a particularly specialized type of symbiotic microbial assemblage in which the component microorganisms exist together. These composite microbial assemblages are typically comprised of several types of microorganisms representing phylogenetically diverse life forms, including fungi, photosymbionts, bacteria, and other microbes. Here, we employed matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) imaging mass spectrometry to characterize the distributions of small molecules within a Peltigera lichen. In order to probe how small molecules are organized and localized within the microbial consortium, analytes were annotated and assigned to their respective producer microorganisms using mass spectrometry-based molecular networking and metagenome sequencing. The spatial analysis of the molecules not only reveals an ordered layering of molecules within the lichen but also supports the compartmentalization of unique functions attributed to various layers. These functions include chemical defense (e.g., antibiotics), light-harvesting functions associated with the cyanobacterial outer layer (e.g., chlorophyll), energy transfer (e.g., sugars) surrounding the sun-exposed cyanobacterial layer, and carbohydrates that may serve a structural or storage function and are observed with higher intensities in the non-sun-exposed areas (e.g., complex carbohydrates). IMPORTANCE Microbial communities have evolved over centuries to live symbiotically. The direct visualization of such communities at the chemical and functional level presents a challenge. Overcoming this challenge may allow one to visualize the spatial distributions of specific molecules involved in symbiosis and to define their functional roles in shaping the community structure. In this study, we examined the diversity of microbial genes and taxa and the presence of biosynthetic gene clusters by metagenomic sequencing and the compartmentalization of organic chemical components within a lichen using mass spectrometry. This approach allowed the identification of chemically distinct sections within this composite organism. Using our multipronged approach, various fungal natural products, not previously reported from lichens, were identified and two different fungal layers were visualized at the chemical level.
Collapse
|
17
|
Hájek J, Barták M, Hazdrová J, Forbelská M. Sensitivity of photosynthetic processes to freezing temperature in extremophilic lichens evaluated by linear cooling and chlorophyll fluorescence. Cryobiology 2016; 73:329-334. [PMID: 27729220 DOI: 10.1016/j.cryobiol.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
Extremophilic lichens and their photosynthesizing photobionts from the cold regions of Earth are adapted to perform photosynthesis at subzero temperatures. To evaluate interspecific differences in the critical temperature for primary photochemical processes of photosynthesis, we exposed lichen thalli of Usnea antarctica, Usnea aurantiaco-atra, and Umbilicaria cylindrica to linear cooling from +20 to -50 °C at a constant rate of 2 °C min-1. Simultaneously, two chlorophyll fluorescence parameters (FV/FM - potential yield of photosynthetic processes in photosystem II, ΦPSII - effective quantum yield of PS II) evaluating a gradual subzero temperature-induced decline in photosynthetic processes were measured by a modulated fluorometer. For the studied species, the response of FV/FM and ΦPSII to declining temperature showed an S-curve shape. The decline in FV/FM and ΦPSII at low temperatures started at -5 and +5 °C, respectively in the majority of cases. The decline was, however, species-specific. U. aurantiaco-atra showed a constant-rate decline of ΦPSII from the physiological temperature 20 °C. U. antarctica exhibited the first sign of FV/FM decline at -12 °C. The critical temperature related to full inhibition of the photosynthetic processes in PSII (FV/FM), was found at -20 °C. However, this occurred at -30 °C for U. cylindrica. In an individual sample, the critical temperature for FV/FM was typically lower than for ΦPSII. The method of linear cooling combined with simultaneous measurements of chlorophyll fluorescence parameters proved to be an efficient tool in the estimation of extremophilic species sensitivity/resistance to freezing.
Collapse
Affiliation(s)
- Josef Hájek
- Laboratory of Photosynthetic Processes, Section of Plant Physiology and Anatomy, Institute of Experimental Biology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Miloš Barták
- Laboratory of Photosynthetic Processes, Section of Plant Physiology and Anatomy, Institute of Experimental Biology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jana Hazdrová
- Laboratory of Photosynthetic Processes, Section of Plant Physiology and Anatomy, Institute of Experimental Biology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marie Forbelská
- Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| |
Collapse
|
18
|
Li H, Wei JC. Functional analysis of thioredoxin from the desert lichen-forming fungus, Endocarpon pusillum Hedwig, reveals its role in stress tolerance. Sci Rep 2016; 6:27184. [PMID: 27251605 PMCID: PMC4890037 DOI: 10.1038/srep27184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/13/2016] [Indexed: 01/05/2023] Open
Abstract
Endocarpon pusillum is a lichen-forming fungus with an outstanding stress resistance property closely related to its antioxidant system. In this study, thioredoxin (Trx), one of the main components of antioxidant defense systems in E. pusillum (EpTrx), was characterized and analyzed both in transgenic yeasts and in vitro. Our analyses identified that the heterologous expression of EpTrx in the yeast Pichia pastoris significantly enhanced its resistance to osmotic and oxidative stresses. Assays in vitro showed EpTrx acted as a disulfide reductase as well as a molecular chaperone by assembling into various polymeric structures. Upon exposure to heat-shock stress, EpTrx exhibited weaker disulfide reductase activity but stronger chaperone activity, which coincided with the switching of the protein complexes from low molecular weight forms to high molecular weight complexes. Specifically, we found that Cys31 near but not at the active site was crucial in promoting the structural and functional transitions, most likely by accelerating the formation of intermolecular disulfide bond. Transgenic Saccharomyces cerevisiae harboring the native EpTrx exhibited stronger tolerance to oxidative, osmotic and high temperature stresses than the corresponding yeast strain containing the mutant EpTrx (C31S). Our results provide the first molecular evidence on how Trx influences stress response in lichen-forming fungi.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang-Chun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Carniel FC, Gerdol M, Montagner A, Banchi E, De Moro G, Manfrin C, Muggia L, Pallavicini A, Tretiach M. New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach. PLANT MOLECULAR BIOLOGY 2016; 91:319-339. [PMID: 26992400 DOI: 10.1007/s11103-016-0468-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Trebouxia is the most common lichen-forming genus of aero-terrestrial green algae and all its species are desiccation tolerant (DT). The molecular bases of this remarkable adaptation are, however, still largely unknown. We applied a transcriptomic approach to a common member of the genus, T. gelatinosa, to investigate the alteration of gene expression occurring after dehydration and subsequent rehydration in comparison to cells kept constantly hydrated. We sequenced, de novo assembled and annotated the transcriptome of axenically cultured T. gelatinosa by using Illumina sequencing technology. We tracked the expression profiles of over 13,000 protein-coding transcripts. During the dehydration/rehydration cycle c. 92 % of the total protein-coding transcripts displayed a stable expression, suggesting that the desiccation tolerance of T. gelatinosa mostly relies on constitutive mechanisms. Dehydration and rehydration affected mainly the gene expression for components of the photosynthetic apparatus, the ROS-scavenging system, Heat Shock Proteins, aquaporins, expansins, and desiccation related proteins (DRPs), which are highly diversified in T. gelatinosa, whereas Late Embryogenesis Abundant Proteins were not affected. Only some of these phenomena were previously observed in other DT green algae, bryophytes and resurrection plants, other traits being distinctive of T. gelatinosa, and perhaps related to its symbiotic lifestyle. Finally, the phylogenetic inference extended to DRPs of other chlorophytes, embryophytes and bacteria clearly pointed out that DRPs of chlorophytes are not orthologous to those of embryophytes: some of them were likely acquired through horizontal gene transfer from extremophile bacteria which live in symbiosis within the lichen thallus.
Collapse
Affiliation(s)
- Fabio Candotto Carniel
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
- Institute of Botany, University of Innsbruck, Sternwartestraße, 15, 6020, Innsbruck, Austria
| | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy.
| | - Alice Montagner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Elisa Banchi
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Gianluca De Moro
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Chiara Manfrin
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Lucia Muggia
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Alberto Pallavicini
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Mauro Tretiach
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| |
Collapse
|
20
|
Mladenov P, Finazzi G, Bligny R, Moyankova D, Zasheva D, Boisson AM, Brugière S, Krasteva V, Alipieva K, Simova S, Tchorbadjieva M, Goltsev V, Ferro M, Rolland N, Djilianov D. In vivo spectroscopy and NMR metabolite fingerprinting approaches to connect the dynamics of photosynthetic and metabolic phenotypes in resurrection plant Haberlea rhodopensis during desiccation and recovery. FRONTIERS IN PLANT SCIENCE 2015; 6:564. [PMID: 26257765 PMCID: PMC4508511 DOI: 10.3389/fpls.2015.00564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/09/2015] [Indexed: 05/06/2023]
Abstract
The resurrection plant Haberlea rhodopensis was used to study dynamics of drought response of photosynthetic machinery parallel with changes in primary metabolism. A relation between leaf water content and photosynthetic performance was established, enabling us to perform a non-destructive evaluation of the plant water status during stress. Spectroscopic analysis of photosynthesis indicated that, at variance with linear electron flow (LEF) involving photosystem (PS) I and II, cyclic electron flow around PSI remains active till almost full dry state at the expense of the LEF, due to the changed protein organization of photosynthetic apparatus. We suggest that, this activity could have a photoprotective role and prevent a complete drop in adenosine triphosphate (ATP), in the absence of LEF, to fuel specific energy-dependent processes necessary for the survival of the plant, during the late states of desiccation. The NMR fingerprint shows the significant metabolic changes in several pathways. Due to the declining of LEF accompanied by biosynthetic reactions during desiccation, a reduction of the ATP pool during drought was observed, which was fully and quickly recovered after plants rehydration. We found a decline of valine accompanied by lipid degradation during stress, likely to provide alternative carbon sources for sucrose accumulation at late stages of desiccation. This accumulation, as well as the increased levels of glycerophosphodiesters during drought stress could provide osmoprotection to the cells.
Collapse
Affiliation(s)
- Petko Mladenov
- Abiotic Stress Group, Agrobioinstitute, Agricultural AcademySofia, Bulgaria
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble AlpesINRA, Grenoble, France
| | - Richard Bligny
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble AlpesINRA, Grenoble, France
| | - Daniela Moyankova
- Abiotic Stress Group, Agrobioinstitute, Agricultural AcademySofia, Bulgaria
| | - Diana Zasheva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of SciencesSofia, Bulgaria
| | - Anne-Marie Boisson
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble AlpesINRA, Grenoble, France
| | - Sabine Brugière
- Laboratoire de Biologie à Grande Echelle, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, Université Grenoble AlpesINSERM, Grenoble, France
| | - Vasilena Krasteva
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia UniversitySofia, Bulgaria
| | - Kalina Alipieva
- Laboratory “Nuclear Magnetic Resonance", Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of SciencesSofia, Bulgaria
| | - Svetlana Simova
- Laboratory “Nuclear Magnetic Resonance", Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of SciencesSofia, Bulgaria
| | | | - Vasiliy Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia UniversitySofia, Bulgaria
| | - Myriam Ferro
- Laboratoire de Biologie à Grande Echelle, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, Université Grenoble AlpesINSERM, Grenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble AlpesINRA, Grenoble, France
- *Correspondence: Dimitar Djilianov, Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria, ; Norbert Rolland, Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble Alpes, INRA, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France,
| | - Dimitar Djilianov
- Abiotic Stress Group, Agrobioinstitute, Agricultural AcademySofia, Bulgaria
- *Correspondence: Dimitar Djilianov, Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, 8 Dragan Tsankov Boulevard, 1164 Sofia, Bulgaria, ; Norbert Rolland, Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, CNRS, Université Grenoble Alpes, INRA, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France,
| |
Collapse
|
21
|
Wang Y, Zhang X, Zhou Q, Zhang X, Wei J. Comparative transcriptome analysis of the lichen-forming fungus Endocarpon pusillum elucidates its drought adaptation mechanisms. SCIENCE CHINA-LIFE SCIENCES 2014; 58:89-100. [PMID: 25480323 DOI: 10.1007/s11427-014-4760-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/06/2014] [Indexed: 01/16/2023]
Abstract
The lichen-forming fungus was isolated from the desert lichen Endocarpon pusillum that is extremely drought resistant. To understand the molecular mechanisms of drought resistance in the fungus, we employed RNA-seq and quantitative real-time PCR to compare and characterize the differentially expressed genes in pure culture at two different water levels and with that in desiccated lichen. The comparative transcriptome analysis indicated that a total of 1781 genes were differentially expressed between samples cultured under normal and PEG-induced drought stress conditions. Similar to those in drought resistance plants and non-lichenized fungi, the common drought-resistant mechanisms were differentially expressed in E. pusillum. However, the expression change of genes involved in osmotic regulation in E. pusillum is different, which might be the evidence for the feature of drought adaptation. Interestingly, different from other organisms, some genes involved in drought adaption mechanisms showed significantly different expression patterns between the presence and absence of drought stress in E. pusillum. The expression of 23 candidate stress responsive genes was further confirmed by quantitative real-time PCR using dehydrated E. pusillum lichen thalli. This study provides a valuable resource for future research on lichen-forming fungi and shall facilitate future functional studies of the specific genes related to drought resistance.
Collapse
Affiliation(s)
- YanYan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
22
|
Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration. Proc Natl Acad Sci U S A 2014; 111:E4560-7. [PMID: 25313036 DOI: 10.1073/pnas.1406251111] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.
Collapse
|
23
|
Kumar J, Dhar P, Tayade AB, Gupta D, Chaurasia OP, Upreti DK, Arora R, Srivastava RB. Antioxidant capacities, phenolic profile and cytotoxic effects of saxicolous lichens from trans-Himalayan cold desert of Ladakh. PLoS One 2014; 9:e98696. [PMID: 24937759 PMCID: PMC4061001 DOI: 10.1371/journal.pone.0098696] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/06/2014] [Indexed: 12/11/2022] Open
Abstract
Fourteen saxicolous lichens from trans-Himalayan Ladakh region were identified by morpho-anatomical and chemical characteristics. The n-hexane, methanol and water extracts of the lichens were evaluated for their antioxidant capacities. The lichen extracts showing high antioxidant capacities and rich phenolic content were further investigated to determine their cytotoxic activity on human HepG2 and RKO carcinoma cell lines. The ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging capacities and β-carotene-linoleic acid bleaching property exhibited analogous results where the lichen extracts showed high antioxidant action. The lichen extracts were also found to possess good amount of total proanthocyanidin, flavonoid and polyphenol. The methanolic extract of Lobothallia alphoplaca exhibited highest FRAP value. Methanolic extract of Xanthoparmelia stenophylla showed the highest ABTS radical scavenging capacity. The n-hexane extract of Rhizoplaca chrysoleuca exhibited highest DPPH radical scavenging capacity. Highest antioxidant capacity in terms of β-carotene linoleic acid bleaching property was observed in the water extract of Xanthoria elegans. Similarly, Melanelia disjuncta water extract showed highest NO scavenging capacity. Among n-hexane, methanol and water extracts of all lichens, the methanolic extract of Xanthoparmelia mexicana showed highest total proanthocyanidin, flavonoid and polyphenol content. From cytotoxic assay, it was observed that the methanolic extracts of L. alphoplaca and M. disjuncta were exhibiting high cytotoxic effects against cancer cell growth. Similarly, the water extract of Dermatocarpon vellereum, Umbilicaria vellea, X. elegans and M. disjuncta and the methanolic extract of M. disjuncta and X. stenophylla were found to possess high antioxidant capacities and were non-toxic and may be used as natural antioxidants for stress related problems. Our studies go on to prove that the unique trans-Himalayan lichens are a hitherto untapped bioresource with immense potential for discovery of new chemical entities, and this biodiversity needs to be tapped sustainably.
Collapse
Affiliation(s)
- Jatinder Kumar
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| | - Priyanka Dhar
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| | - Amol B. Tayade
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| | - Damodar Gupta
- Medicinal and Aromatic Plants Laboratory, Radiation Biotechnology Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi, India
| | - Om P. Chaurasia
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| | - Dalip K. Upreti
- Lichenology Laboratory, Plant Biodiversity and Conservation Biology Division, CSIR- National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Rajesh Arora
- Medicinal and Aromatic Plants Laboratory, Radiation Biotechnology Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi, India
- Office of the Director General-Life Sciences, DRDO Bhawan, New Delhi, India
| | - Ravi B. Srivastava
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| |
Collapse
|
24
|
Junttila S, Laiho A, Gyenesei A, Rudd S. Whole transcriptome characterization of the effects of dehydration and rehydration on Cladonia rangiferina, the grey reindeer lichen. BMC Genomics 2013; 14:870. [PMID: 24325588 PMCID: PMC3878897 DOI: 10.1186/1471-2164-14-870] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/14/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Lichens are symbiotic organisms with a fungal and an algal or a cyanobacterial partner. Lichens inhabit some of the harshest climates on earth and most lichen species are desiccation-tolerant. Lichen desiccation-tolerance has been studied at the biochemical level and through proteomics, but the underlying molecular genetic mechanisms remain largely unexplored. The objective of our study was to examine the effects of dehydration and rehydration on the gene expression of Cladonia rangiferina. RESULTS Samples of C. rangiferina were collected at several time points during both the dehydration and rehydration process and the gene expression intensities were measured using a custom DNA microarray. Several genes, which were differentially expressed in one or more time points, were identified. The microarray results were validated using qRT-PCR analysis. Enrichment analysis of differentially expressed transcripts was also performed to identify the Gene Ontology terms most associated with the rehydration and dehydration process. CONCLUSIONS Our data identify differential expression patterns for hundreds of genes that are modulated during dehydration and rehydration in Cladonia rangiferina. These dehydration and rehydration events clearly differ from each other at the molecular level and the largest changes to gene expression are observed within minutes following rehydration. Distinct changes are observed during the earliest stage of rehydration and the mechanisms not appear to be shared with the later stages of wetting or with drying. Several of the most differentially expressed genes are similar to genes identified in previous studies that have investigated the molecular mechanisms of other desiccation-tolerant organisms. We present here the first microarray experiment for any lichen species and have for the first time studied the genetic mechanisms behind lichen desiccation-tolerance at the whole transcriptome level.
Collapse
Affiliation(s)
- Sini Junttila
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu, Turku, Finland
- The Finnish Microarray and Sequencing Centre, Turku Centre for Biotechnology, Tykistökatu, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu, Turku, Finland
- The Finnish Microarray and Sequencing Centre, Turku Centre for Biotechnology, Tykistökatu, Turku, Finland
| | - Attila Gyenesei
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu, Turku, Finland
- The Finnish Microarray and Sequencing Centre, Turku Centre for Biotechnology, Tykistökatu, Turku, Finland
| | - Stephen Rudd
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu, Turku, Finland
| |
Collapse
|
25
|
Junttila S, Rudd S. Characterization of a transcriptome from a non-model organism, Cladonia rangiferina, the grey reindeer lichen, using high-throughput next generation sequencing and EST sequence data. BMC Genomics 2012; 13:575. [PMID: 23110403 PMCID: PMC3534622 DOI: 10.1186/1471-2164-13-575] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lichens are symbiotic organisms that have a remarkable ability to survive in some of the most extreme terrestrial climates on earth. Lichens can endure frequent desiccation and wetting cycles and are able to survive in a dehydrated molecular dormant state for decades at a time. Genetic resources have been established in lichen species for the study of molecular systematics and their taxonomic classification. No lichen species have been characterised yet using genomics and the molecular mechanisms underlying the lichen symbiosis and the fundamentals of desiccation tolerance remain undescribed. We report the characterisation of a transcriptome of the grey reindeer lichen, Cladonia rangiferina, using high-throughput next-generation transcriptome sequencing and traditional Sanger EST sequencing data. RESULTS Altogether 243,729 high quality sequence reads were de novo assembled into 16,204 contigs and 49,587 singletons. The genome of origin for the sequences produced was predicted using Eclat with sequences derived from the axenically grown symbiotic partners used as training sequences for the classification model. 62.8% of the sequences were classified as being of fungal origin while the remaining 37.2% were predicted as being of algal origin. The assembled sequences were annotated by BLASTX comparison against a non-redundant protein sequence database with 34.4% of the sequences having a BLAST match. 29.3% of the sequences had a Gene Ontology term match and 27.9% of the sequences had a domain or structural match following an InterPro search. 60 KEGG pathways with more than 10 associated sequences were identified. CONCLUSIONS Our results present a first transcriptome sequencing and de novo assembly for a lichen species and describe the ongoing molecular processes and the most active pathways in C. rangiferina. This brings a meaningful contribution to publicly available lichen sequence information. These data provide a first glimpse into the molecular nature of the lichen symbiosis and characterise the transcriptional space of this remarkable organism. These data will also enable further studies aimed at deciphering the genetic mechanisms behind lichen desiccation tolerance.
Collapse
Affiliation(s)
- Sini Junttila
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Stephen Rudd
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| |
Collapse
|
26
|
Death by protein damage in irradiated cells. DNA Repair (Amst) 2012; 11:12-21. [DOI: 10.1016/j.dnarep.2011.10.024] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 12/12/2022]
|
27
|
Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 2011; 98:253-79. [DOI: 10.1007/s00114-011-0775-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 01/27/2023]
|
28
|
Green TGA, Sancho LG, Pintado A. Ecophysiology of Desiccation/Rehydration Cycles in Mosses and Lichens. PLANT DESICCATION TOLERANCE 2011. [DOI: 10.1007/978-3-642-19106-0_6] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
|
30
|
Kranner I, Beckett R, Hochman A, Nash TH. Desiccation-Tolerance in Lichens: A Review. THE BRYOLOGIST 2008; 111:576-593. [PMID: 0 DOI: 10.1639/0007-2745-111.4.576] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
31
|
Heber U. Photoprotection of green plants: a mechanism of ultra-fast thermal energy dissipation in desiccated lichens. PLANTA 2008; 228:641-650. [PMID: 18587600 DOI: 10.1007/s00425-008-0766-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 05/16/2008] [Indexed: 05/26/2023]
Abstract
In order to survive sunlight in the absence of water, desiccation-tolerant green plants need to be protected against photooxidation. During drying of the chlorolichen Cladonia rangiformis and the cyanolichen Peltigera neckeri, chlorophyll fluorescence decreased and stable light-dependent charge separation in reaction centers of the photosynthetic apparatus was lost. The presence of light during desiccation increased loss of fluorescence in the chlorolichen more than that in the cyanolichen. Heating of desiccated Cladonia thalli, but not of Peltigera thalli, increased fluorescence emission more after the lichen had been dried in the light than after drying in darkness. Activation of zeaxanthin-dependent energy dissipation by protonation of the PsbS protein of thylakoid membranes was not responsible for the increased loss of chlorophyll fluorescence by the chlorolichen during drying in the light. Glutaraldehyde inhibited loss of chlorophyll fluorescence during drying. Desiccation-induced loss of chlorophyll fluorescence and of light-dependent charge separation are interpreted to indicate activation of a highly effective mechanism of photoprotection in the lichens. Activation is based on desiccation-induced conformational changes of a pigment-protein complex. Absorbed light energy is converted into heat within a picosecond or femtosecond time domain. When present during desiccation, light interacts with the structural changes of the protein providing increased photoprotection. Energy dissipation is inactivated and structural changes are reversed when water becomes available again. Reversibility of ultra-fast thermal dissipation of light energy avoids photo-damage in the absence of water and facilitates the use of light for photosynthesis almost as soon as water becomes available.
Collapse
Affiliation(s)
- Ulrich Heber
- Julius-von-Sachs- Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany.
| |
Collapse
|