1
|
Uncu AT, Patat AS, Uncu AO. Whole-genome sequencing and identification of antimicrobial peptide coding genes in parsley (Petroselinum crispum), an important culinary and medicinal Apiaceae species. Funct Integr Genomics 2024; 24:142. [PMID: 39187716 DOI: 10.1007/s10142-024-01423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Parsley is a commonly cultivated Apiaceae species of culinary and medicinal importance. Parsley has several recognized health benefits and the species has been utilized in traditional medicine since ancient times. Although parsley is among the most commonly cultivated members of Apiaceae, no systematic genomic research has been conducted on parsley. In the present work, parsley genome was sequenced using the long-read HiFi (high fidelity) sequencing technology and a draft contig assembly of 1.57 Gb that represents 80.9% of the estimated genome size was produced. The assembly was highly repeat-rich with a repetitive DNA content of 81%. The assembly was phased into a primary and alternate assembly in order to minimize redundant contigs. Scaffolds were constructed with the primary assembly contigs, which were used for the identification of AMP (antimicrobial peptide) genes. Characteristic AMP domains and 3D structures were used to detect and verify antimicrobial peptides. As a result, 23 genes (PcAMP1-23) representing defensin, snakin, thionin, lipid transfer protein and vicilin-like AMP classes were identified. Bioinformatic analyses for the characterization of peptide physicochemical properties indicated that parsley AMPs are extracellular peptides, therefore, plausibly exert their antimicrobial effects through the most commonly described AMP action mechanism of membrane attack. AMPs are attracting increasing attention since they display their fast antimicrobial effects in small doses on both plant and animal pathogens with a significantly reduced risk of resistance development. Therefore, identification and characterization of AMPs is important for their incorporation into plant disease management protocols as well as medicinal research for the treatment of multi-drug resistant infections.
Collapse
Affiliation(s)
- Ali Tevfik Uncu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Konya, 42090, Turkey
| | - Aysenur Soyturk Patat
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Konya, 42090, Turkey
| | - Ayse Ozgur Uncu
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Meram, Konya, 42090, Turkey.
| |
Collapse
|
2
|
Nahirñak V, Almasia NI, Lia VV, Hopp HE, Vazquez Rovere C. Unveiling the defensive role of Snakin-3, a member of the subfamily III of Snakin/GASA peptides in potatoes. PLANT CELL REPORTS 2024; 43:47. [PMID: 38302779 DOI: 10.1007/s00299-023-03108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/05/2023] [Indexed: 02/03/2024]
Abstract
KEY MESSAGE The first in-depth characterization of a subfamily III Snakin/GASA member was performed providing experimental evidence on promoter activity and subcellular localization and unveiling a role of potato Snakin-3 in defense Snakin/GASA proteins share 12 cysteines in conserved positions in the C-terminal region. Most of them were involved in different aspects of plant growth and development, while a small number of these peptides were reported to have antimicrobial activity or participate in abiotic stress tolerance. In potato, 18 Snakin/GASA genes were identified and classified into three groups based on phylogenetic analysis. Snakin-1 and Snakin-2 are members of subfamilies I and II, respectively, and were reported to be implicated not only in defense against pathogens but also in plant development. In this work, we present the first in-depth characterization of Snakin-3, a member of the subfamily III within the Snakin/GASA gene family of potato. Transient co-expression of Snakin-3 fused to the green fluorescent protein and organelle markers revealed that it is located in the endoplasmic reticulum. Furthermore, expression analyses via pSnakin-3::GUS transgenic plants showed GUS staining mainly in roots and vascular tissues of the stem. Moreover, GUS expression levels were increased after inoculation with Pseudomonas syringae pv. tabaci or Pectobacterium carotovorum subsp. carotovorum and also after auxin treatment mainly in roots and stems. To gain further insights into the function of Snakin-3 in planta, potato overexpressing lines were challenged against P. carotovorum subsp. carotovorum showing enhanced tolerance to this bacterial pathogen. In sum, here we report the first functional characterization of a Snakin/GASA gene from subfamily III in Solanaceae. Our findings provide experimental evidence on promoter activity and subcellular localization and reveal a role of potato Snakin-3 in plant defense.
Collapse
Affiliation(s)
- Vanesa Nahirñak
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
| | - Natalia Inés Almasia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
| | - Verónica Viviana Lia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Horacio Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Vazquez Rovere
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina.
| |
Collapse
|
3
|
Yin Y, Cui D, Chi Q, Xu H, Guan P, Zhang H, Jiao T, Wang X, Wang L, Sun H. Reactive oxygen species may be involved in the distinctive biological effects of different doses of 12C 6+ ion beams on Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 14:1337640. [PMID: 38312361 PMCID: PMC10835405 DOI: 10.3389/fpls.2023.1337640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/31/2023] [Indexed: 02/06/2024]
Abstract
Introduction Heavy ion beam is a novel approach for crop mutagenesis with the advantage of high energy transfer line density and low repair effect after injury, however, little investigation on the biological effect on plant was performed. 50 Gy irradiation significantly stimulated the growth of Arabidopsis seedlings, as indicated by an increase in root and biomass, while 200 Gy irradiation significantly inhibited the growth of seedlings, causing a visible decrease in plant growth. Methods The Arabidopsis seeds were irradiated by 12C6+. Monte Carlo simulations were used to calculate the damage to seeds and particle trajectories by ion implantation. The seed epidermis received SEM detection and changes in its organic composition were detected using FTIR. Evidence of ROS and antioxidant systems were analyzed. RNA-seq and qPCR were used to detect changes in seedling transcript levels. Results and discussion Monte Carlo simulations revealed that high-dose irradiation causes various damage. Evidence of ROS and antioxidant systems implies that the emergence of phenotypes in plant cells may be associated with oxidative stress. Transcriptomic analysis of the seedlings demonstrated that 170 DEGs were present in the 50 Gy and 200 Gy groups and GO enrichment indicated that they were mainly associated with stress resistance and cell wall homeostasis. Further GO enrichment of DEGs unique to 50 Gy and 200 Gy revealed 58 50Gy-exclusive DEGs were enriched in response to oxidative stress and jasmonic acid entries, while 435 200 Gy-exclusive DEGs were enriched in relation to oxidative stress, organic cyclic compounds, and salicylic acid. This investigation advances our insight into the biological effects of heavy ion irradiation and the underlying mechanisms.
Collapse
Affiliation(s)
- Yue Yin
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongjie Cui
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| | - Qing Chi
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| | - Hangbo Xu
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| | - Panfeng Guan
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| | - Hanfeng Zhang
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tao Jiao
- Asset Management Co., Ltd, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojie Wang
- School of Bioengineering, Xinxiang University, Xinxiang, China
| | - Lin Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Hao Sun
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Sanya Institute, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Kimura S, Vaattovaara A, Ohshita T, Yokoyama K, Yoshida K, Hui A, Kaya H, Ozawa A, Kobayashi M, Mori IC, Ogata Y, Ishino Y, Sugano SS, Nagano M, Fukao Y. Zinc deficiency-induced defensin-like proteins are involved in the inhibition of root growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1071-1083. [PMID: 37177878 DOI: 10.1111/tpj.16281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The depletion of cellular zinc (Zn) adversely affects plant growth. Plants have adaptation mechanisms for Zn-deficient conditions, inhibiting growth through the action of transcription factors and metal transporters. We previously identified three defensin-like (DEFL) proteins (DEFL203, DEFL206 and DEFL208) that were induced in Arabidopsis thaliana roots under Zn-depleted conditions. DEFLs are small cysteine-rich peptides involved in defense responses, development and excess metal stress in plants. However, the functions of DEFLs in the Zn-deficiency response are largely unknown. Here, phylogenetic tree analysis revealed that seven DEFLs (DEFL202-DEFL208) were categorized into one subgroup. Among the seven DEFLs, the transcripts of five (not DEFL204 and DEFL205) were upregulated by Zn deficiency, consistent with the presence of cis-elements for basic-region leucine-zipper 19 (bZIP19) or bZIP23 in their promoter regions. Microscopic observation of GFP-tagged DEFL203 showed that DEFL203-sGFP was localized to the apoplast and plasma membrane. Whereas a single mutation of the DEFL202 or DEFL203 genes only slightly affected root growth, defl202 defl203 double mutants showed enhanced root growth under all growth conditions. We also showed that the size of the root meristem was increased in the double mutants compared with the wild type. Our results suggest that DEFL202 and DEFL203 are redundantly involved in the inhibition of root growth under Zn-deficient conditions through a reduction in root meristem length and cell number.
Collapse
Affiliation(s)
- Sachie Kimura
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Aleksia Vaattovaara
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, University of Helsinki, Helsinki, FI-00014, Finland
| | - Tomoya Ohshita
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Kotomi Yokoyama
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Kota Yoshida
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Agnes Hui
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Hidetaka Kaya
- Department of Food Production Science, Ehime University, Ehime, 790-8566, Japan
| | - Ai Ozawa
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Mami Kobayashi
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan
| | - Yoshiyuki Ogata
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, Osaka, 599-8531, Japan
| | - Yoko Ishino
- Graduate School of Innovation and Technology Management, Yamaguchi University, Yamaguchi, 755-8611, Japan
| | - Shigeo S Sugano
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, 525-8577, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, 305-8566, Japan
| | - Minoru Nagano
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Yoichiro Fukao
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| |
Collapse
|
5
|
Dutta P, Mahanta M, Singh SB, Thakuria D, Deb L, Kumari A, Upamanya GK, Boruah S, Dey U, Mishra AK, Vanlaltani L, VijayReddy D, Heisnam P, Pandey AK. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1145715. [PMID: 37255560 PMCID: PMC10225716 DOI: 10.3389/fpls.2023.1145715] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Trichoderma spp. (Hypocreales) are used worldwide as a lucrative biocontrol agent. The interactions of Trichoderma spp. with host plants and pathogens at a molecular level are important in understanding the various mechanisms adopted by the fungus to attain a close relationship with their plant host through superior antifungal/antimicrobial activity. When working in synchrony, mycoparasitism, antibiosis, competition, and the induction of a systemic acquired resistance (SAR)-like response are considered key factors in deciding the biocontrol potential of Trichoderma. Sucrose-rich root exudates of the host plant attract Trichoderma. The soluble secretome of Trichoderma plays a significant role in attachment to and penetration and colonization of plant roots, as well as modulating the mycoparasitic and antibiosis activity of Trichoderma. This review aims to gather information on how Trichoderma interacts with host plants and its role as a biocontrol agent of soil-borne phytopathogens, and to give a comprehensive account of the diverse molecular aspects of this interaction.
Collapse
Affiliation(s)
- Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Madhusmita Mahanta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | | | - Dwipendra Thakuria
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Arti Kumari
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Gunadhya K. Upamanya
- Sarat Chandra Singha (SCS) College of Agriculture, Assam Agricultural University (Jorhat), Dhubri, Assam, India
| | - Sarodee Boruah
- Krishi Vigyan Kendra (KVK)-Tinsukia, Assam Agricultural University (Jorhat), Tinsukia, Assam, India
| | - Utpal Dey
- Krishi Vigyan Kendra (KVK)-Sepahijala, Central Agricultural University (Imphal), Tripura, Sepahijala, India
| | - A. K. Mishra
- Department of Plant Pathology, Dr Rajendra Prasad Central Agricultural University, Bihar, Samastipur, India
| | - Lydia Vanlaltani
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Dumpapenchala VijayReddy
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Punabati Heisnam
- Department of Agronomy, Central Agricultural University (Imphal), Pasighat, India
| | - Abhay K. Pandey
- Department of Mycology and Microbiology, Tea Research Association, North Bengal Regional, R & D Center, Jalpaiguri, West Bengal, India
| |
Collapse
|
6
|
Morales AE, Soto N, Delgado C, Hernández Y, Carrillo L, Ferrero C, Enríquez GA. Expression of Mn-sod, PAL1, aos1 and HPL genes in soybean plants overexpressing the NmDef02 defensin. Transgenic Res 2023; 32:223-233. [PMID: 37131050 DOI: 10.1007/s11248-023-00350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
Plant defensins are a potential tool in crop improvement programs through biotechnology. Their antifungal action makes them attractive molecules for the production of transgenic plants. Information is currently lacking on what happens to the expression of defense genes in transgenic plants that overexpress a defensin. Here we show the relative expression of four defense-related genes: Mn-sod, PAL1, aos1 and HPL evaluated in two transgenic soybean events (Def1 and Def17) constitutively expressing the NmDef02 defensin gene from Nicotiana megalosiphon. The expression of these defense genes showed a differential profile in the transgenic events, with the increased expression of the aos1 gene and the repression of the Mn-sod gene in both events, when compared to the non-transgenic control. Furthermore, the expression of the PAL1 gene only increased in the Def17 event. The results indicate that although there were some changes in the expression of defense genes in transgenic plants overexpressing the defensin NmDef02; the morphoagronomic parameters evaluated were similar to the non-transgenic control. Understanding the molecular changes that occur in these transgenic plants could be of interest in the short, medium and long term.
Collapse
Affiliation(s)
- Alejandro E Morales
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Natacha Soto
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba.
| | - Celia Delgado
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Yuniet Hernández
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Leonardo Carrillo
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Camilo Ferrero
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Gil A Enríquez
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| |
Collapse
|
7
|
Islam S, Akhand MRN, Hasan M. Evolutionary trend of bovine β-defensin proteins toward functionality prediction: A domain-based bioinformatics study. Heliyon 2023; 9:e14158. [PMID: 36938430 PMCID: PMC10015202 DOI: 10.1016/j.heliyon.2023.e14158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Defensins are small cationic cysteine-rich and amphipathic peptides that form of three-dimensional β-strand structure connected by disulfide bonds. Defensins form key elements of the innate immune system of multicellular organisms. They not only possess broad-spectrum antimicrobial activity but also have diverse roles, including cell signaling, ion channel agitation, toxic functions, and enzyme inhibitor activities in various animals. Although the role of β-defensins in immune responses against infectious agents and reproduction could be significant, inadequate genomic information is available to explain the whole β-defensin repertoire in cattle. No domain or motif-based functional analyses have been previously reported. In addition, how do defensins possess this magnitude of functions in the immune system is still not clear. Our present study, therefore, investigated the sequence divergence and evolutionary relations of bovine defensin proteins with those of humans. Our domain-based evolutionary analysis revealed four major clusters with significant domain variation while reserving a main antimicrobial activity. Our study revealed the β-defensin domain as the ancestor domain, and it is preserved in the first group of defensin protein with no α-helix in its structure. Due to natural selection, some domains have evolved independently within clusters II and III, while some proteins have lost their domain characteristics. Cluster IV contains the most recently evolved domains. Some proteins of all but cluster I might have adopted the functional characteristics of α-defensins which is largely absent in cattle. The proteins show different patterns of disulfide bridges and multiple signature patterns which might render them specialized functions in different tissue to combat against various pathogens.
Collapse
Affiliation(s)
- Saiful Islam
- Department of Physiology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Mst Rubaiat Nazneen Akhand
- Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet-3100, Bangladesh
- Corresponding author.
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
8
|
Sano N, Malabarba J, Chen Z, Gaillard S, Windels D, Verdier J. Chromatin dynamics associated with seed desiccation tolerance/sensitivity at early germination in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 13:1059493. [PMID: 36507374 PMCID: PMC9729785 DOI: 10.3389/fpls.2022.1059493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Desiccation tolerance (DT) has contributed greatly to the adaptation of land plants to severe water-deficient conditions. DT is mostly observed in reproductive parts in flowering plants such as seeds. The seed DT is lost at early post germination stage but is temporally re-inducible in 1 mm radicles during the so-called DT window following a PEG treatment before being permanently silenced in 5 mm radicles of germinating seeds. The molecular mechanisms that activate/reactivate/silence DT in developing and germinating seeds have not yet been elucidated. Here, we analyzed chromatin dynamics related to re-inducibility of DT before and after the DT window at early germination in Medicago truncatula radicles to determine if DT-associated genes were transcriptionally regulated at the chromatin levels. Comparative transcriptome analysis of these radicles identified 948 genes as DT re-induction-related genes, positively correlated with DT re-induction. ATAC-Seq analyses revealed that the chromatin state of genomic regions containing these genes was clearly modulated by PEG treatment and affected by growth stages with opened chromatin in 1 mm radicles with PEG (R1P); intermediate openness in 1 mm radicles without PEG (R1); and condensed chromatin in 5 mm radicles without PEG (R5). In contrast, we also showed that the 103 genes negatively correlated with the re-induction of DT did not show any transcriptional regulation at the chromatin level. Additionally, ChIP-Seq analyses for repressive marks H2AK119ub and H3K27me3 detected a prominent signal of H3K27me3 on the DT re-induction-related gene sequences at R5 but not in R1 and R1P. Moreover, no clear H2AK119ub marks was observed on the DT re-induction-related gene sequences at both developmental radicle stages, suggesting that silencing of DT process after germination will be mainly due to H3K27me3 marks by the action of the PRC2 complex, without involvement of PRC1 complex. The dynamic of chromatin changes associated with H3K27me3 were also confirmed on seed-specific genes encoding potential DT-related proteins such as LEAs, oleosins and transcriptional factors. However, several transcriptional factors did not show a clear link between their decrease of chromatin openness and H3K27me3 levels, suggesting that their accessibility may also be regulated by additional factors, such as other histone modifications. Finally, in order to make these comprehensive genome-wide analyses of transcript and chromatin dynamics useful to the scientific community working on early germination and DT, we generated a dedicated genome browser containing all these data and publicly available at https://iris.angers.inrae.fr/mtseedepiatlas/jbrowse/?data=Mtruncatula.
Collapse
|
9
|
Insights on KP4 Killer Toxin-like Proteins of Fusarium Species in Interspecific Interactions. J Fungi (Basel) 2022; 8:jof8090968. [PMID: 36135693 PMCID: PMC9506348 DOI: 10.3390/jof8090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
KP4 killer toxins are secreted proteins that inhibit cell growth and induce cell death in target organisms. In Fusarium graminearum, KP4-like (KP4L) proteins contribute to fungal virulence in wheat seedling rot and are expressed during Fusarium head blight development. However, fungal KP4L proteins are also hypothesized to support fungal antagonism by permeabilizing cell walls of competing fungi to enable penetration of toxic compounds. Here, we report the differential expression patterns of F. graminearum KP4L genes (Fgkp4l-1, -2, -3 and -4) in a competitive interaction, using Trichoderma gamsii as the antagonist. The results from dual cultures indicate that Fgkp4l-3 and Fgkp4l-4 could participate in the recognition at the distance of the antagonist, while all Fgkp4l genes were highly activated in the pathogen during the physical interaction of both fungi. Only Fgkp4l-4 was up-regulated during the interaction with T. gamsii in wheat spikes. This suggests the KP4L proteins could participate in supporting F. graminearum interspecific interactions, even in living plant tissues. The distribution of KP4L orthologous within the genus Fusarium revealed they are more represented in species with broad host-plant range than in host-specific species. Phylogeny inferred provides evidence that KP4L genes evolved through gene duplications, gene loss and sequence diversification in the genus Fusarium.
Collapse
|
10
|
Salgado MG, Demina IV, Maity PJ, Nagchowdhury A, Caputo A, Krol E, Loderer C, Muth G, Becker A, Pawlowski K. Legume NCRs and nodule-specific defensins of actinorhizal plants—Do they share a common origin? PLoS One 2022; 17:e0268683. [PMID: 35980975 PMCID: PMC9387825 DOI: 10.1371/journal.pone.0268683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
The actinorhizal plant Datisca glomerata (Datiscaceae, Cucurbitales) establishes a root nodule symbiosis with actinobacteria from the earliest branching symbiotic Frankia clade. A subfamily of a gene family encoding nodule-specific defensin-like cysteine-rich peptides is highly expressed in D. glomerata nodules. Phylogenetic analysis of the defensin domain showed that these defensin-like peptides share a common evolutionary origin with nodule-specific defensins from actinorhizal Fagales and with nodule-specific cysteine-rich peptides (NCRs) from legumes. In this study, the family member with the highest expression levels, DgDef1, was characterized. Promoter-GUS studies on transgenic hairy roots showed expression in the early stage of differentiation of infected cells, and transient expression in the nodule apex. DgDef1 contains an N-terminal signal peptide and a C-terminal acidic domain which are likely involved in subcellular targeting and do not affect peptide activity. In vitro studies with E. coli and Sinorhizobium meliloti 1021 showed that the defensin domain of DgDef1 has a cytotoxic effect, leading to membrane disruption with 50% lethality for S. meliloti 1021 at 20.8 μM. Analysis of the S. meliloti 1021 transcriptome showed that, at sublethal concentrations, DgDef1 induced the expression of terminal quinol oxidases, which are associated with the oxidative stress response and are also expressed during symbiosis. Overall, the changes induced by DgDef1 are reminiscent of those of some legume NCRs, suggesting that nodule-specific defensin-like peptides were part of the original root nodule toolkit and were subsequently lost in most symbiotic legumes, while being maintained in the actinorhizal lineages.
Collapse
Affiliation(s)
- Marco Guedes Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Irina V Demina
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Anurupa Nagchowdhury
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Andrea Caputo
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Elizaveta Krol
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Christoph Loderer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Günther Muth
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anke Becker
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Art v 1 IgE epitopes of patients and humanized mice are conformational. J Allergy Clin Immunol 2022; 150:920-930. [PMID: 35738928 DOI: 10.1016/j.jaci.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/31/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Worldwide, pollen of the weed mugwort (Artemisiavulgaris) is a major cause of severe respiratory allergy, with its major allergen, Art v 1, being the key pathogenic molecule for millions of patients. Humanized mice transgenic for a human T-cell receptor specific for the major Art v 1 T-cell epitope and the corresponding HLA have been made. OBJECTIVE We sought to characterize IgE epitopes of Art v 1-sensitized patients and humanized mice for molecular immunotherapy of mugwort allergy. METHODS Four overlapping peptides incorporating surface-exposed amino acids representing the full-length Art v 1 sequence were synthesized and used to search for IgE reactivity to sequential epitopes. For indirect mapping, peptide-specific rabbit antibodies were raised to block IgE against surface-exposed epitopes on folded Art v 1. IgE reactivity and basophil activation studies were performed in clinically defined mugwort-allergic patients. Secondary structure of recombinant (r) Art v 1 and peptides was determined by circular dichroism spectroscopy. RESULTS Mugwort-allergic patients and humanized mice sensitized by allergen inhalation showed IgE reactivity and/or basophil activation mainly to folded, complete Art v 1 but not to unfolded, sequential peptide epitopes. Blocking of allergic patients' IgE with peptide-specific rabbit antisera identified a hitherto unknown major conformational IgE binding site in the C-terminal Art v 1 domain. CONCLUSIONS Identification of the new major conformational IgE binding site on Art v 1, which can be blocked with IgG raised against non-IgE reactive Art v 1 peptides, is an important basis for the development of a hypoallergenic peptide vaccine for mugwort allergy.
Collapse
|
12
|
Leannec-Rialland V, Atanasova V, Chereau S, Tonk-Rügen M, Cabezas-Cruz A, Richard-Forget F. Use of Defensins to Develop Eco-Friendly Alternatives to Synthetic Fungicides to Control Phytopathogenic Fungi and Their Mycotoxins. J Fungi (Basel) 2022; 8:229. [PMID: 35330231 PMCID: PMC8950385 DOI: 10.3390/jof8030229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022] Open
Abstract
Crops are threatened by numerous fungal diseases that can adversely affect the availability and quality of agricultural commodities. In addition, some of these fungal phytopathogens have the capacity to produce mycotoxins that pose a serious health threat to humans and livestock. To facilitate the transition towards sustainable environmentally friendly agriculture, there is an urgent need to develop innovative methods allowing a reduced use of synthetic fungicides while guaranteeing optimal yields and the safety of the harvests. Several defensins have been reported to display antifungal and even-despite being under-studied-antimycotoxin activities and could be promising natural molecules for the development of control strategies. This review analyses pioneering and recent work addressing the bioactivity of defensins towards fungal phytopathogens; the details of approximately 100 active defensins and defensin-like peptides occurring in plants, mammals, fungi and invertebrates are listed. Moreover, the multi-faceted mechanism of action employed by defensins, the opportunity to optimize large-scale production procedures such as their solubility, stability and toxicity to plants and mammals are discussed. Overall, the knowledge gathered within the present review strongly supports the bright future held by defensin-based plant protection solutions while pointing out the obstacles that still need to be overcome to translate defensin-based in vitro research findings into commercial products.
Collapse
Affiliation(s)
- Valentin Leannec-Rialland
- Université de Bordeaux, UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France;
| | - Vessela Atanasova
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| | - Sylvain Chereau
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| | - Miray Tonk-Rügen
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- Institute of Nutritional Sciences, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| | - Alejandro Cabezas-Cruz
- Anses, Ecole Nationale Vétérinaire d’Alfort, UMR Parasitic Molecular Biology and Immunology (BIPAR), Laboratoire de Santé Animale, INRAE, 94700 Maison-Alfort, France
| | - Florence Richard-Forget
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| |
Collapse
|
13
|
Hawamda AIM, Reichert S, Ali MA, Nawaz MA, Austerlitz T, Schekahn P, Abbas A, Tenhaken R, Bohlmann H. Characterization of an Arabidopsis Defensin-like Gene Conferring Resistance against Nematodes. PLANTS (BASEL, SWITZERLAND) 2022; 11:280. [PMID: 35161268 PMCID: PMC8838067 DOI: 10.3390/plants11030280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
Arabidopsis contains 317 genes for defensin-like (DEFL) peptides. DEFLs have been grouped into different families based mainly on cysteine motifs. The DEFL0770 group contains seven genes, of which four are strongly expressed in roots. We found that the expression of these genes is downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii as revealed by RNAseq analysis. We have studied one gene of this group, At3g59930, in detail. A promoter::GUS line revealed that the gene is only expressed in roots but not in other plant organs. Infection of the GUS line with larvae of H. schachtii showed a strong downregulation of GUS expression in infection sites as early as 1 dpi, confirming the RNAseq data. The At3g59930 peptide had only weak antimicrobial activity against Botrytis cinerea. Overexpression lines had no enhanced resistance against this fungus but were more resistant to H. schachtii infection. Our data indicate that At3g59930 is involved in resistance to nematodes which is probably not due to direct nematicidal activity.
Collapse
Affiliation(s)
- Abdalmenem I. M. Hawamda
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Agricultural Biotechnology, Faculty of Agricultural Science and Technology, Palestine Technical University-Kadoorie (PTUK), Tulkarm P.O. Box 7, Palestine
| | - Susanne Reichert
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Muhammad Amjad Ali
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Amjad Nawaz
- Siberian Federal Scientific Centre of Agrobiotechnology, Russian Academy of Sciences, 630501 Krasnoobsk, Russia;
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| | - Tina Austerlitz
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Patricia Schekahn
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Amjad Abbas
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Raimund Tenhaken
- Plant Physiology, University of Salzburg, 5020 Salzburg, Austria;
| | - Holger Bohlmann
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| |
Collapse
|
14
|
Shalovylo YI, Yusypovych YM, Hrunyk NI, Roman II, Zaika VK, Krynytskyy HT, Nesmelova IV, Kovaleva VA. Seed-derived defensins from Scots pine: structural and functional features. PLANTA 2021; 254:129. [PMID: 34817648 DOI: 10.1007/s00425-021-03788-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The recombinant PsDef5.1 defensin inhibits the growth of phytopathogenic fungi, Gram-positive and Gram-negative bacteria, and human pathogen Candida albicans. Expression of seed-derived Scots pine defensins is tissue-specific and developmentally regulated. Plant defensins are ubiquitous antimicrobial peptides that possess a broad spectrum of activities and multi-functionality. The genes for these antimicrobial proteins form a multigenic family in the plant genome and are expressed in every organ. Most of the known defensins have been isolated from seeds of various monocot and dicot species, but seed-derived defensins have not yet been characterized in gymnosperms. This study presents the isolation of two new 249 bp cDNA sequences from Scots pine seeds with 97.9% nucleotide homology named PsDef5.1 and PsDef5.2. Their deduced amino acid sequences have typical plant defensin features, including an endoplasmic reticulum signal sequence of 31 amino acids (aa), followed by a characteristic defensin domain of 51 aa. To elucidate the functional activity of new defensins, we expressed the mature form of PsDef5.1 in a prokaryotic system. The purified recombinant peptide exhibited activity against the phytopathogenic fungi and Gram-negative and Gram-positive bacteria with the IC50 of 5-18 µM. Moreover, it inhibited the growth of the human pathogen Candida albicans with the IC50 of 6.0 µM. Expression analysis showed that transcripts of PsDef5.1-2 genes were present in immature and mature pine seeds and different parts of seedlings at the early stage of germination. In addition, unlike the PsDef5.2, the PsDef5.1 gene was expressed in the reproductive organs. Our findings indicate that novel defensins are promising candidates for transgenic application and the development of new antimicrobial drugs.
Collapse
Affiliation(s)
- Yulia I Shalovylo
- Ukrainian National Forestry University, 103, Gen. Chuprynka, St., Lviv, 79057, Ukraine
| | - Yurii M Yusypovych
- Ukrainian National Forestry University, 103, Gen. Chuprynka, St., Lviv, 79057, Ukraine
| | - Nataliya I Hrunyk
- Ukrainian National Forestry University, 103, Gen. Chuprynka, St., Lviv, 79057, Ukraine
| | - Ivan I Roman
- Ivan Franko National University of Lviv, 1, Saksagansky St., Lviv, 79005, Ukraine
| | - Volodymyr K Zaika
- Ukrainian National Forestry University, 103, Gen. Chuprynka, St., Lviv, 79057, Ukraine
| | - Hryhoriy T Krynytskyy
- Ukrainian National Forestry University, 103, Gen. Chuprynka, St., Lviv, 79057, Ukraine
| | - Irina V Nesmelova
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, 28223, USA
| | - Valentina A Kovaleva
- Ukrainian National Forestry University, 103, Gen. Chuprynka, St., Lviv, 79057, Ukraine.
| |
Collapse
|
15
|
Erdem Büyükkiraz M, Kesmen Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J Appl Microbiol 2021; 132:1573-1596. [PMID: 34606679 DOI: 10.1111/jam.15314] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs) are compounds, which have inhibitory activity against microorganisms. In the last decades, AMPs have become powerful alternative agents that have met the need for novel anti-infectives to overcome increasing antibiotic resistance problems. Moreover, recent epidemics and pandemics are increasing the popularity of AMPs, due to the urgent necessity for effective antimicrobial agents in combating the new emergence of microbial diseases. AMPs inhibit a wide range of microorganisms through diverse and special mechanisms by targeting mainly cell membranes or specific intracellular components. In addition to extraction from natural sources, AMPs are produced in various hosts using recombinant methods. More recently, the synthetic analogues of AMPs, designed with some modifications, are predicted to overcome the limitations of stability, toxicity and activity associated with natural AMPs. AMPs have potential applications as antimicrobial agents in food, agriculture, environment, animal husbandry and pharmaceutical industries. In this review, we have provided an overview of the structure, classification and mechanism of action of AMPs, as well as discussed opportunities for their current and potential applications.
Collapse
Affiliation(s)
- Mine Erdem Büyükkiraz
- School of Health Sciences, Department of Nutrition and Dietetics, Cappadocia University, Nevsehir, Turkey
| | - Zülal Kesmen
- Engineering Faculty, Department of Food Engineering, Erciyes University, Kayseri, Turkey
| |
Collapse
|
16
|
Omidvar R, Vosseler N, Abbas A, Gutmann B, Grünwald-Gruber C, Altmann F, Siddique S, Bohlmann H. Analysis of a gene family for PDF-like peptides from Arabidopsis. Sci Rep 2021; 11:18948. [PMID: 34556705 PMCID: PMC8460643 DOI: 10.1038/s41598-021-98175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Plant defensins are small, basic peptides that have a characteristic three-dimensional folding pattern which is stabilized by four disulfide bridges. We show here that Arabidopsis contains in addition to the proper plant defensins a group of 9 plant defensin-like (PdfL) genes. They are all expressed at low levels while GUS fusions of the promoters showed expression in most tissues with only minor differences. We produced two of the encoded peptides in E. coli and tested the antimicrobial activity in vitro. Both were highly active against fungi but had lower activity against bacteria. At higher concentrations hyperbranching and swollen tips, which are indicative of antimicrobial activity, were induced in Fusarium graminearum by both peptides. Overexpression lines for most PdfL genes were produced using the 35S CaMV promoter to study their possible in planta function. With the exception of PdfL4.1 these lines had enhanced resistance against F. oxysporum. All PDFL peptides were also transiently expressed in Nicotiana benthamiana leaves with agroinfiltration using the pPZP3425 vector. In case of PDFL1.4 this resulted in complete death of the infiltrated tissues after 7 days. All other PDFLs resulted only in various degrees of small necrotic lesions. In conclusion, our results show that at least some of the PdfL genes could function in plant resistance.
Collapse
Affiliation(s)
- Reza Omidvar
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Nadine Vosseler
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Amjad Abbas
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Birgit Gutmann
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- RIVIERA Pharma and Cosmetics GmbH, Holzhackerstraße 1, Tulln, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Shahid Siddique
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria.
| |
Collapse
|
17
|
Ochoa-Zarzosa A, Báez-Magaña M, Guzmán-Rodríguez JJ, Flores-Alvarez LJ, Lara-Márquez M, Zavala-Guerrero B, Salgado-Garciglia R, López-Gómez R, López-Meza JE. Bioactive Molecules From Native Mexican Avocado Fruit (Persea americana var. drymifolia): A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:133-142. [PMID: 33704631 DOI: 10.1007/s11130-021-00887-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Avocado (Persea americana Mill.) is a tree native from central and eastern México that belongs to the Lauraceae family. Avocado has three botanical varieties known as Mexican (P. americana var. drymifolia), West Indian (P. americana var. americana), and Guatemalan (P. americana var. guatemalensis). It is an oil-rich fruit appreciated worldwide because of its nutritional value and the content of bioactive molecules. Several avocado molecules show attractive activities of interest in medicine. Avocado fatty acids have beneficial effects on cardiovascular disease risk factors. Besides, this fruit possesses a high content of carotenoids and phenolic compounds with possible antifungal, anti-cancer and antioxidant activities. Moreover, several metabolites have been reported with anti-inflammatory effects. Also, an unsaponifiable fraction of avocado in combination with soybean oil is used for the treatment of osteoarthritis. The Mexican variety is native from México and is characterized by the anise aroma in leaves and by small thin-skinned fruits of rich flavor and excellent quality. However, the study of the bioactive molecules of the fruit has not been addressed in detail. In this work, we achieved a literature review on the inflammatory, immunomodulatory and cytotoxic properties of long-chain fatty acids and derivatives from Mexican avocado seed. Also, the antioxidant and anti-inflammatory properties of the oil extracted from the avocado seed are referred. Finally, the antimicrobial, immunomodulatory, and cytotoxic activities of some antimicrobial peptides expressed in the fruit are reviewed.
Collapse
Affiliation(s)
- Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr, Morelia-Zinapécuaro, Posta Veterinaria, Michoacán, C.P. 58893, Morelia, México
| | - Marisol Báez-Magaña
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr, Morelia-Zinapécuaro, Posta Veterinaria, Michoacán, C.P. 58893, Morelia, México
| | - Jaquelina Julia Guzmán-Rodríguez
- Campus Irapuato-Salamanca, División de Ciencias de la Vida, Posgrado en Biociencias, Universidad de Guanajuato, 36500, Irapuato, Guanajuato, México
| | - Luis José Flores-Alvarez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr, Morelia-Zinapécuaro, Posta Veterinaria, Michoacán, C.P. 58893, Morelia, México
| | - Mónica Lara-Márquez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr, Morelia-Zinapécuaro, Posta Veterinaria, Michoacán, C.P. 58893, Morelia, México
| | - Baruc Zavala-Guerrero
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58004, Morelia, Michoacán, México
| | - Rafael Salgado-Garciglia
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58004, Morelia, Michoacán, México
| | - Rodolfo López-Gómez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58004, Morelia, Michoacán, México
| | - Joel Edmundo López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr, Morelia-Zinapécuaro, Posta Veterinaria, Michoacán, C.P. 58893, Morelia, México.
| |
Collapse
|
18
|
Struyfs C, Cammue BPA, Thevissen K. Membrane-Interacting Antifungal Peptides. Front Cell Dev Biol 2021; 9:649875. [PMID: 33912564 PMCID: PMC8074791 DOI: 10.3389/fcell.2021.649875] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Shwaiki LN, Arendt EK, Lynch KM. Plant compounds for the potential reduction of food waste - a focus on antimicrobial peptides. Crit Rev Food Sci Nutr 2021; 62:4242-4265. [PMID: 33480260 DOI: 10.1080/10408398.2021.1873733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A large portion of global food waste is caused by microbial spoilage. The modern approach to preserve food is to apply different hurdles for microbial pathogens to overcome. These vary from thermal processes and chemical additives, to the application of irradiation and modified atmosphere packaging. Even though such preservative techniques exist, loss of food to spoilage still prevails. Plant compounds and peptides represent an untapped source of potential novel natural food preservatives. Of these, antimicrobial peptides (AMPs) are very promising for exploitation. AMPs are a significant component of a plant's innate defense system. Numerous studies have demonstrated the potential application of these AMPs; however, more studies, particularly in the area of food preservation are warranted. This review examines the literature on the application of AMPs and other plant compounds for the purpose of reducing food losses and waste (including crop protection). A focus is placed on the plant defensins, their natural extraction and synthetic production, and their safety and application in food preservation. In addition, current challenges and impediments to their full exploitation are discussed.
Collapse
Affiliation(s)
- Laila N Shwaiki
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kieran M Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Azmi S, Hussain MK. Analysis of structures, functions, and transgenicity of phytopeptides defensin and thionin: a review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-020-00093-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
Antimicrobial peptides are very primitive innate defense molecules of almost all organisms, from microbes to mammalians and vascular seed-bearing plants. Antimicrobial peptides of plants categorized into cysteine-rich peptides (CRPs) and others and most of the antimicrobial peptides belong to CRPs group. These peptides reported showing the great extent of protecting property against bacteria, fungi, viruses, insect, nematode, and another kind of microbes. To develop a resistant plant against pathogenic fungi, there have been several studies executed to understand the efficiency of transgenicity of these antimicrobial peptides.
Main text
Apart from the intrinsic property of the higher organism for identifying and activating microbial attack defense device, it also involves innate defense mechanism and molecules. In the current review article, apart from the structural and functional characterization of peptides defensin and thionin, we have attempted to provide a succinct overview of the transgenic development of these defense peptides, that are expressed in a constitutive and or over-expressive manner when biotic and abiotic stress inflicted. Transgenic of different peptides show different competence in plants. Most of the transgenic studies made for defensin and thionin revealed the effective transgenic capacity of these peptides.
Conclusion
There have been several studies reported successful development of transgenic plants based on peptides defensin and thionin and observed diverse level of resistance-conferring potency in different plants against phytopathogenic fungi. But due to long regulatory process, there has not been marketed any antimicrobial peptides based transgenic plants yet. However, success report state that possibly in near future transgenic plants of AMPs would be released with devoid of harmful effect, with good efficiency, reproducibility, stability, and least production cost.
Collapse
|
21
|
Petre B. Toward the Discovery of Host-Defense Peptides in Plants. Front Immunol 2020; 11:1825. [PMID: 32973760 PMCID: PMC7472956 DOI: 10.3389/fimmu.2020.01825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 11/13/2022] Open
Abstract
Defense peptides protect multicellular eukaryotes from infections. In biomedical sciences, a dominant conceptual framework refers to defense peptides as host-defense peptides (HDPs), which are bifunctional peptides with both direct antimicrobial and immunomodulatory activities. No HDP has been reported in plants so far, and the very concept of HDP has not been captured yet by the plant science community. Plant science thus lacks the conceptual framework that would coordinate research efforts aimed at discovering plant HDPs. In this perspective article, I used bibliometric and literature survey approaches to raise awareness about the HDP concept among plant scientists, and to encourage research efforts aimed at discovering plant HDPs. Such discovery would enrich our comprehension of the function and evolution of the plant immune system, and provide us with novel molecular tools to develop innovative strategies to control crop diseases.
Collapse
|
22
|
Odintsova TI, Slezina MP, Istomina EA. Defensins of Grasses: A Systematic Review. Biomolecules 2020; 10:E1029. [PMID: 32664422 PMCID: PMC7407236 DOI: 10.3390/biom10071029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
The grass family (Poaceae) is one of the largest families of flowering plants, growing in all climatic zones of all continents, which includes species of exceptional economic importance. The high adaptability of grasses to adverse environmental factors implies the existence of efficient resistance mechanisms that involve the production of antimicrobial peptides (AMPs). Of plant AMPs, defensins represent one of the largest and best-studied families. Although wheat and barley seed γ-thionins were the first defensins isolated from plants, the functional characterization of grass defensins is still in its infancy. In this review, we summarize the current knowledge of the characterized defensins from cultivated and selected wild-growing grasses. For each species, isolation of defensins or production by heterologous expression, peptide structure, biological activity, and structure-function relationship are described, along with the gene expression data. We also provide our results on in silico mining of defensin-like sequences in the genomes of all described grass species and discuss their potential functions. The data presented will form the basis for elucidation of the mode of action of grass defensins and high adaptability of grasses to environmental stress and will provide novel potent molecules for practical use in medicine and agriculture.
Collapse
|
23
|
Characterization, expression profiling, and functional analysis of a Populus trichocarpa defensin gene and its potential as an anti-Agrobacterium rooting medium additive. Sci Rep 2019; 9:15359. [PMID: 31653915 PMCID: PMC6814764 DOI: 10.1038/s41598-019-51762-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/25/2019] [Indexed: 01/07/2023] Open
Abstract
The diverse antimicrobial properties of defensins have attracted wide scientific interest in recent years. Also, antimicrobial peptides (AMPs), including cecropins, histatins, defensins, and cathelicidins, have recently become an antimicrobial research hotspot for their broad-spectrum antibacterial and antifungal activities. In addition, defensins play important roles in plant growth, development, and physiological metabolism, and demonstrate tissue specificity and regulation in response to pathogen attack or abiotic stress. In this study, we performed molecular cloning, characterization, expression profiling, and functional analysis of a defensin from Populus trichocarpa. The PtDef protein was highly expressed in the prokaryotic Escherichia coli system as a fusion protein (TrxA–PtDef). The purified protein exhibited strong antibacterial and antifungal functions. We then applied PtDef to rooting culture medium as an alternative exogenous additive to cefotaxime. PtDef expression levels increased significantly following both biotic and abiotic treatment. The degree of leaf damage observed in wild-type (WT) and transgenic poplars indicates that transgenic poplars that overexpress the PtDef gene gain enhanced disease resistance to Septotis populiperda. To further study the salicylic acid (SA) and jasmonic acid (JA) signal transduction pathways, SA- and JA-related and pathogenesis-related genes were analyzed using quantitative reverse-transcription polymerase chain reaction; there were significant differences in these pathways between transgenic and WT poplars. The defensin from Populus trichocarpa showed significant activity of anti-bacteria and anti-fungi. According to the results of qRT-PCR and physiological relevant indicators, the applied PtDef to rooting culture medium was chosen as an alternative exogenous additive to cefotaxime. Overexpressing the PtDef gene in poplar improve the disease resistance to Septotis populiperda.
Collapse
|
24
|
Sher Khan R, Iqbal A, Malak R, Shehryar K, Attia S, Ahmed T, Ali Khan M, Arif M, Mii M. Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech 2019; 9:192. [PMID: 31065492 PMCID: PMC6488698 DOI: 10.1007/s13205-019-1725-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/19/2019] [Indexed: 10/26/2022] Open
Abstract
Natural antimicrobial peptides have been shown as one of the important tools to combat certain pathogens and play important role as a part of innate immune system in plants and, also adaptive immunity in animals. Defensin is one of the antimicrobial peptides with a diverse nature of mechanism against different pathogens like viruses, bacteria and fungi. They have a broad function in humans, vertebrates, invertebrates, insects, and plants. Plant defensins primarily interact with membrane lipids for their biological activity. Several antimicrobial peptides (AMPs) have been overexpressed in plants for enhanced disease protection. The plants defensin peptides have been efficiently employed as an effective strategy for control of diseases in plants. They can be successfully integrated in plants genome along with some other peptide genes in order to produce transgenic crops for enhanced disease resistance. This review summarizes plant defensins, their expression in plants and enhanced disease resistance potential against phytopathogens.
Collapse
Affiliation(s)
- Raham Sher Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Aneela Iqbal
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Radia Malak
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Kashmala Shehryar
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Syeda Attia
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Talaat Ahmed
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Mubarak Ali Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Masahiro Mii
- Center for Environment, Health and Field Sciences, Chiba University Japan, Chiba, Japan
| |
Collapse
|
25
|
Odintsova TI, Slezina MP, Istomina EA, Korostyleva TV, Kasianov AS, Kovtun AS, Makeev VJ, Shcherbakova LA, Kudryavtsev AM. Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: a focus on structural diversity and role in induced resistance. PeerJ 2019; 7:e6125. [PMID: 30643692 PMCID: PMC6329339 DOI: 10.7717/peerj.6125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/18/2018] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) are the main components of the plant innate immune system. Defensins represent the most important AMP family involved in defense and non-defense functions. In this work, global RNA sequencing and de novo transcriptome assembly were performed to explore the diversity of defensin-like (DEFL) genes in the wheat Triticum kiharae and to study their role in induced resistance (IR) mediated by the elicitor metabolites of a non-pathogenic strain FS-94 of Fusarium sambucinum. Using a combination of two pipelines for DEFL mining in transcriptome data sets, as many as 143 DEFL genes were identified in T. kiharae, the vast majority of them represent novel genes. According to the number of cysteine residues and the cysteine motif, wheat DEFLs were classified into ten groups. Classical defensins with a characteristic 8-Cys motif assigned to group 1 DEFLs represent the most abundant group comprising 52 family members. DEFLs with a characteristic 4-Cys motif CX{3,5}CX{8,17}CX{4,6}C named group 4 DEFLs previously found only in legumes were discovered in wheat. Within DEFL groups, subgroups of similar sequences originated by duplication events were isolated. Variation among DEFLs within subgroups is due to amino acid substitutions and insertions/deletions of amino acid sequences. To identify IR-related DEFL genes, transcriptional changes in DEFL gene expression during elicitor-mediated IR were monitored. Transcriptional diversity of DEFL genes in wheat seedlings in response to the fungus Fusarium oxysporum, FS-94 elicitors, and the combination of both (elicitors + fungus) was demonstrated, with specific sets of up- and down-regulated DEFL genes. DEFL expression profiling allowed us to gain insight into the mode of action of the elicitors from F. sambucinum. We discovered that the elicitors up-regulated a set of 24 DEFL genes. After challenge inoculation with F. oxysporum, another set of 22 DEFLs showed enhanced expression in IR-displaying seedlings. These DEFLs, in concert with other defense molecules, are suggested to determine enhanced resistance of elicitor-pretreated wheat seedlings. In addition to providing a better understanding of the mode of action of the elicitors from FS-94 in controlling diseases, up-regulated IR-specific DEFL genes represent novel candidates for genetic transformation of plants and development of pathogen-resistant crops.
Collapse
Affiliation(s)
- Tatyana I Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Marina P Slezina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Istomina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Artem S Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kovtun
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Larisa A Shcherbakova
- All-Russian Research Institute of Phytopathology, B. Vyazyomy, Moscow Region, Russia
| | | |
Collapse
|
26
|
Lu S, Faris JD. Fusarium graminearum KP4-like proteins possess root growth-inhibiting activity against wheat and potentially contribute to fungal virulence in seedling rot. Fungal Genet Biol 2018; 123:1-13. [PMID: 30465882 DOI: 10.1016/j.fgb.2018.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/29/2022]
Abstract
The virally encoded KP4 killer toxin protein was first identified from Ustilago maydis (Um), and its homologues are present in diverse fungi and in one species of moss. No KP4-like (KP4L) proteins have been functionally characterized. Here, we report the identification and functional analysis of four KP4L proteins from Fusarium graminearum (Fg), the primary causal pathogen of Fusarium head blight (FHB), which is also known to associate with seedling rot of wheat. The four FgKP4L proteins (FgKP4L-1, -2, -3 and -4) are encoded by small open reading frames (378-825 bp) located on chromosome 1 with the FgKP4L-1, -2 and -3 genes clustering together. Sequence analysis indicated that FgKP4L proteins have conserved domains predicted to form a three-dimensional alpha/beta-sandwich structure as first reported for UmKP4, with FgKP4L-4 featuring double Kp4 domains. Further analyses revealed that the FgKP4L genes are expressed in vitro under certain stress conditions, and all up-regulated during FHB and/or seedling rot development, the recombinant FgKP4L-2 protein does not induce cell death in wheat leaves or spikelets, but inhibits root growth of young seedlings, and the elimination of the FgKP4L-1/-2/-3 gene cluster from the fungal genome results in reduced virulence in seedling rot but not in FHB. Database searches revealed KP4L proteins from ∼80 fungal species with more than half from human/animal pathogens. Phylogenetic analysis suggested that UmKP4 and the moss KP4L proteins are closely related to those from a zygromycete and Aspergillus, respectively, implying cross-kingdom horizontal gene transfer.
Collapse
Affiliation(s)
- Shunwen Lu
- US Department of Agriculture, Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND 58102-2765, USA.
| | - Justin D Faris
- US Department of Agriculture, Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND 58102-2765, USA
| |
Collapse
|
27
|
Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. PHYTOCHEMISTRY 2018; 154:94-105. [PMID: 30031244 DOI: 10.1016/j.phytochem.2018.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 05/20/2023]
Abstract
Antimicrobial peptides (AMPs), the self-defence products of organisms, are extensively distributed in plants. They can be classified into several groups, including thionins, defensins, snakins, lipid transfer proteins, glycine-rich proteins, cyclotides and hevein-type proteins. AMPs can be extracted and isolated from different plants and plant organs such as stems, roots, seeds, flowers and leaves. They perform various physiological defensive mechanisms to eliminate viruses, bacteria, fungi and parasites, and so could be used as therapeutic and preservative agents. Research on AMPs has sought to obtain more detailed and reliable information regarding the selection of suitable plant sources and the use of appropriate isolation and purification techniques, as well as examining the mode of action of these peptides. Well-established AMP purification techniques currently used include salt precipitation methods, absorption-desorption, a combination of ion-exchange and reversed-phase C18 solid phase extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), and the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method. Beyond these traditional methods, this review aims to highlight new and different approaches to the selection, characterisation, isolation, purification, mode of action and bioactivity assessment of a range of AMPs collected from plant sources. The information gathered will be helpful in the search for novel AMPs distributed in the plant kingdom, as well as providing future directions for the further investigation of AMPs for possible use on humans.
Collapse
Affiliation(s)
- Swee-Seong Tang
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Zakaria H Prodhan
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Sudhangshu K Biswas
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Cheng-Foh Le
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia.
| | - Shamala D Sekaran
- Faculty of Medicine, MAHSA University, Saujana Putra Campus, 42610, Jenjarum, Selangor, Malaysia.
| |
Collapse
|
28
|
Kirkpatrick CL, Parsley NC, Bartges TE, Cooke ME, Evans WS, Heil LR, Smith TJ, Hicks LM. Fungal Secretome Analysis via PepSAVI-MS: Identification of the Bioactive Peptide KP4 from Ustilago maydis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:859-865. [PMID: 29404970 PMCID: PMC5983367 DOI: 10.1007/s13361-017-1880-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 05/13/2023]
Abstract
Fungal secondary metabolites represent a rich and largely untapped source for bioactive molecules, including peptides with substantial structural diversity and pharmacological potential. As methods proceed to take a deep dive into fungal genomes, complimentary methods to identify bioactive components are required to keep pace with the expanding fungal repertoire. We developed PepSAVI-MS to expedite the search for natural product bioactive peptides and herein demonstrate proof-of-principle applicability of the pipeline for the discovery of bioactive peptides from fungal secretomes via identification of the antifungal killer toxin KP4 from Ustilago maydis P4. This work opens the door to investigating microbial secretomes with a new lens, and could have broad applications across human health, agriculture, and food safety. Graphical Abstract.
Collapse
Affiliation(s)
- Christine L Kirkpatrick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole C Parsley
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tessa E Bartges
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Madeline E Cooke
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wilaysha S Evans
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lilian R Heil
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas J Smith
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
|
30
|
Parisi K, Shafee TMA, Quimbar P, van der Weerden NL, Bleackley MR, Anderson MA. The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol 2018; 88:107-118. [PMID: 29432955 DOI: 10.1016/j.semcdb.2018.02.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/18/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
Plant defensins are an extensive family of small cysteine rich proteins characterised by a conserved cysteine stabilised alpha beta protein fold which resembles the structure of insect and vertebrate defensins. However, secondary structure and disulphide topology indicates two independent superfamilies of defensins with similar structures that have arisen via an extreme case of convergent evolution. Defensins from plants and insects belong to the cis-defensin superfamily whereas mammalian defensins belong to the trans-defensin superfamily. Plant defensins are produced by all species of plants and although the structure is highly conserved, the amino acid sequences are highly variable with the exception of the cysteine residues that form the stabilising disulphide bonds and a few other conserved residues. The majority of plant defensins are components of the plant innate immune system but others have evolved additional functions ranging from roles in sexual reproduction and development to metal tolerance. This review focuses on the antifungal mechanisms of plant defensins. The activity of plant defensins is not limited to plant pathogens and many of the described mechanisms have been elucidated using yeast models. These mechanisms are more complex than simple membrane permeabilisation induced by many small antimicrobial peptides. Common themes that run through the characterised mechanisms are interactions with specific lipids, production of reactive oxygen species and induction of cell wall stress. Links between sequence motifs and functions are highlighted where appropriate. The complexity of the interactions between plant defensins and fungi helps explain why this protein superfamily is ubiquitous in plant innate immunity.
Collapse
Affiliation(s)
- Kathy Parisi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Thomas M A Shafee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Pedro Quimbar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Nicole L van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia.
| |
Collapse
|
31
|
Deb D, Shrestha A, Maiti IB, Dey N. Recombinant Promoter (MUASCsV8CP) Driven Totiviral Killer Protein 4 (KP4) Imparts Resistance Against Fungal Pathogens in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2018; 9:278. [PMID: 29556246 PMCID: PMC5844984 DOI: 10.3389/fpls.2018.00278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/16/2018] [Indexed: 05/19/2023]
Abstract
Development of disease-resistant plant varieties achieved by engineering anti-microbial transgenes under the control of strong promoters can suffice the inhibition of pathogen growth and simultaneously ensure enhanced crop production. For evaluating the prospect of such strong promoters, we comprehensively characterized the full-length transcript promoter of Cassava Vein Mosaic Virus (CsVMV; -565 to +166) and identified CsVMV8 (-215 to +166) as the highest expressing fragment in both transient and transgenic assays. Further, we designed a new chimeric promoter 'MUASCsV8CP' through inter-molecular hybridization among the upstream activation sequence (UAS) of Mirabilis Mosaic Virus (MMV; -297 to -38) and CsVMV8, as the core promoter (CP). The MUASCsV8CP was found to be ∼2.2 and ∼2.4 times stronger than the CsVMV8 and CaMV35S promoters, respectively, while its activity was found to be equivalent to that of the CaMV35S2 promoter. Furthermore, we generated transgenic tobacco plants expressing the totiviral 'Killer protein KP4' (KP4) under the control of the MUASCsV8CP promoter. Recombinant KP4 was found to accumulate both in the cytoplasm and apoplast of plant cells. The agar-based killing zone assays revealed enhanced resistance of plant-derived KP4 against two deuteromycetous foliar pathogenic fungi viz. Alternaria alternata and Phoma exigua var. exigua. Also, transgenic plants expressing KP4 inhibited the growth progression of these fungi and conferred significant fungal resistance in detached-leaf and whole plant assays. Taken together, we establish the potential of engineering "in-built" fungal stress-tolerance in plants by expressing KP4 under a novel chimeric caulimoviral promoter in a transgenic approach.
Collapse
Affiliation(s)
- Debasish Deb
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Ankita Shrestha
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Indu B. Maiti
- Department of Molecular Plant Virology and Plant Genetic Engineering, KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, Bhubaneswar, India
- *Correspondence: Nrisingha Dey, ;
| |
Collapse
|
32
|
Xia X, Cheng L, Zhang S, Wang L, Hu J. The role of natural antimicrobial peptides during infection and chronic inflammation. Antonie van Leeuwenhoek 2017; 111:5-26. [PMID: 28856473 DOI: 10.1007/s10482-017-0929-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/15/2017] [Indexed: 01/12/2023]
Abstract
Natural antimicrobial peptides (AMPs), a family of small polypeptides that are produced by constitutive or inducible expression in organisms, are integral components of the host innate immune system. In addition to their broad-spectrum antibacterial activity, natural AMPs also have many biological activities against fungi, viruses and parasites. Natural AMPs exert multiple immunomodulatory roles that may predominate under physiological conditions where they lose their microbicidal properties in serum and tissue environments. Increased drug resistance among microorganisms is occurring far more quickly than the discovery of new antibiotics. Natural AMPs have shown promise as 'next generation antibiotics' due to their broad-spectrum curative effects, low toxicity, the fact that they are not residual in animals, and the low rates of resistance exhibited by many pathogens. Many types of synthetic AMPs are currently being tested in clinical trials for the prevention and treatment of various diseases such as chemotherapy-associated infections, diabetic foot ulcers, catheter-related infections, and other conditions. Here, we provide an overview of the types and functions of natural AMPs and their role in combating microorganisms and different infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China
| | - Likun Cheng
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, People's Republic of China
| | - Shouping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China.
| |
Collapse
|
33
|
Rowley PA. The frenemies within: viruses, retrotransposons and plasmids that naturally infect Saccharomyces yeasts. Yeast 2017; 34:279-292. [PMID: 28387035 DOI: 10.1002/yea.3234] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/07/2022] Open
Abstract
Viruses are a major focus of current research efforts because of their detrimental impact on humanity and their ubiquity within the environment. Bacteriophages have long been used to study host-virus interactions within microbes, but it is often forgotten that the single-celled eukaryote Saccharomyces cerevisiae and related species are infected with double-stranded RNA viruses, single-stranded RNA viruses, LTR-retrotransposons and double-stranded DNA plasmids. These intracellular nucleic acid elements have some similarities to higher eukaryotic viruses, i.e. yeast retrotransposons have an analogous lifecycle to retroviruses, the particle structure of yeast totiviruses resembles the capsid of reoviruses and segregation of yeast plasmids is analogous to segregation strategies used by viral episomes. The powerful experimental tools available to study the genetics, cell biology and evolution of S. cerevisiae are well suited to further our understanding of how cellular processes are hijacked by eukaryotic viruses, retrotransposons and plasmids. This article has been written to briefly introduce viruses, retrotransposons and plasmids that infect Saccharomyces yeasts, emphasize some important cellular proteins and machineries with which they interact, and suggest the evolutionary consequences of these interactions. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Paul A Rowley
- Department of Biological Sciences, The University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
34
|
Cools TL, Struyfs C, Cammue BPA, Thevissen K. Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol 2017; 12:441-454. [DOI: 10.2217/fmb-2016-0181] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plant defensins are small, cationic peptides with a highly conserved 3D structure. They have been studied extensively in the past decades. Various biological activities have been attributed to plant defensins, such as anti-insect and antimicrobial activities, but they are also known to affect ion channels and display antitumor activity. This review focuses on the structure, biological activity and antifungal mode of action of some well-characterized plant defensins, with particular attention to their fungal membrane target(s), their induced cell death mechanisms as well as their antibiofilm activity. As plant defensins are, in general, not toxic to human cells, show in vivo efficacy and have low frequencies of resistance occurrence, they are of particular interest in the fight against fungal infections.
Collapse
Affiliation(s)
- Tanne L Cools
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Caroline Struyfs
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Bruno PA Cammue
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| |
Collapse
|
35
|
Tarr DEK. Establishing a reference array for the CS-αβ superfamily of defensive peptides. BMC Res Notes 2016; 9:490. [PMID: 27863510 PMCID: PMC5116183 DOI: 10.1186/s13104-016-2291-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND "Invertebrate defensins" belong to the cysteine-stabilized alpha-beta (CS-αβ), also known as the scorpion toxin-like, superfamily. Some other peptides belonging to this superfamily of defensive peptides are indistinguishable from "defensins," but have been assigned other names, making it unclear what, if any, criteria must be met to qualify as an "invertebrate defensin." In addition, there are other groups of defensins in invertebrates and vertebrates that are considered to be evolutionarily unrelated to those in the CS-αβ superfamily. This complicates analyses and discussions of this peptide group. This paper investigates the criteria for classifying a peptide as an invertebrate defensin, suggests a reference cysteine array that may be helpful in discussing peptides in this superfamily, and proposes that the superfamily (rather than the name "defensin") is the appropriate context for studying the evolution of invertebrate defensins with the CS-αβ fold. METHODS CS-αβ superfamily sequences were identified from previous literature and BLAST searches of public databases. Sequences were retrieved from databases, and the relevant motifs were identified and used to create a conceptual alignment to a ten-cysteine reference array. Amino acid sequences were aligned in MEGA6 with manual adjustments to ensure accurate alignment of cysteines. Phylogenetic analyses were performed in MEGA6 (maximum likelihood) and MrBayes (Bayesian). RESULTS Across invertebrate taxa, the term "defensin" is not consistently applied based on number of cysteines, cysteine spacing pattern, spectrum of antimicrobial activity, or phylogenetic relationship. The analyses failed to reveal any criteria that unify "invertebrate defensins" and differentiate them from other defensive peptides in the CS-αβ superfamily. Sequences from various groups within the CS-αβ superfamily of defensive peptides can be described by a ten-cysteine reference array that aligns their defining structural motifs. CONCLUSIONS The proposed ten-cysteine reference array can be used in addition to current nomenclature to compare sequences in the CS-αβ superfamily and clarify their features relative to one another. This will facilitate analysis and discussion of "invertebrate defensins" in an appropriate evolutionary context, rather than relying on nomenclature.
Collapse
Affiliation(s)
- D Ellen K Tarr
- Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
36
|
A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger. PLoS One 2016; 11:e0165755. [PMID: 27835655 PMCID: PMC5106034 DOI: 10.1371/journal.pone.0165755] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes.
Collapse
|
37
|
Characterization of 4 TaGAST genes during spike development and seed germination and their response to exogenous phytohormones in common wheat. Mol Biol Rep 2016; 43:1435-1449. [PMID: 27649990 DOI: 10.1007/s11033-016-4077-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
Gibberellic acid (GA) is involved in the regulation of plant growth and development. We defined GA-stimulated transcript (GAST) gene family and characterized its four members (TaGAST1, 2, 3, and 4) in wheat spikes. Triticum aestivum whole spikes were collected at ten developmental stages and dehulled spikelets were obtained at various days after flowering. Expression of TaGAST1, 2, 3, and 4 was analyzed using RT-PCR at inflorescence development stages, in different tissues, and after phytohormones application. To identify proteins interacting with TaGAST1, yeast two-hybridization was performed and BiFC analysis was used for verification. TaGAST1 was expressed at the inflorescence stage and only expressed in seedlings under abscisic acid (ABA) treatment after phytohormone treatment. TaGAST2 and TaGAST3 showed moderate expression in the spike, vigorous transcript accumulation in the seedling, and up-regulation by exogenous GA in early germination stages. TaGAST4 was predominantly expressed in the seedling. Wheat cyclophilin A-1 (TaCypA1), identified as a TaGAST1-interacting protein, showed opposite expression pattern in the developing spike to TaGAST1. TaCypA1 transcript was slightly up-regulated by GA, slightly down-regulated by paclobutrazol, and was maintained after ABA treatment. The interaction of TaGAST1 with TaCypA1 is targeted to the plasma membrane. TaGAST1 was specifically expressed in the wheat spike and was stimulated by exogenous GA treatment. TaGAST2 and TaGAST3 expression in germinating seeds and seedlings was higher than that in the spike stage. TaGAST4 was not expressed in all developmental stages. TaGAST1 and TaCypA1 might be expressed antagonistically during wheat spike development.
Collapse
|
38
|
Bircheneder S, Dresselhaus T. Why cellular communication during plant reproduction is particularly mediated by CRP signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4849-61. [PMID: 27382112 DOI: 10.1093/jxb/erw271] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Secreted cysteine-rich peptides (CRPs) represent one of the main classes of signalling peptides in plants. Whereas post-translationally modified small non-CRP peptides (psNCRPs) are mostly involved in signalling events during vegetative development and interactions with the environment, CRPs are overrepresented in reproductive processes including pollen germination and growth, self-incompatibility, gamete activation and fusion as well as seed development. In this opinion paper we compare the involvement of both types of peptides in vegetative and reproductive phases of the plant lifecycle. Besides their conserved cysteine pattern defining structural features, CRPs exhibit hypervariable primary sequences and a rapid evolution rate. As a result, CRPs represent a pool of highly polymorphic signalling peptides involved in species-specific functions during reproduction and thus likely represent key players to trigger speciation in plants by supporting reproductive isolation. In contrast, precursers of psNCRPs are proteolytically processed into small functional domains with high sequence conservation and act in more general processes. We discuss parallels in downstream processes of CRP signalling in both reproduction and defence against pathogenic fungi and alien pollen tubes, with special emphasis on the role of ROS and ion channels. In conclusion we suggest that CRP signalling during reproduction in plants has evolved from ancient defence mechanisms.
Collapse
Affiliation(s)
- Susanne Bircheneder
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
39
|
A synthetic antimicrobial peptide BTD-S expressed in Arabidopsis thaliana confers enhanced resistance to Verticillium dahliae. Mol Genet Genomics 2016; 291:1647-61. [PMID: 27138919 DOI: 10.1007/s00438-016-1209-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
Abstract
BTD-S is a synthetic non-cyclic θ-defensin derivative which was previously designed in our laboratory based on baboon θ-defensins (BTDs). It shows robust antimicrobial activity against economically important phytopathogen, Verticillium dahliae. Here, we deduced the coding nucleotide sequence of BTD-S and introduced the gene into wild-type (ecotype Columbia-0) Arabidopsis thaliana plants. Results demonstrated that BTD-S-transgenic lines displayed in bioassays inhibitory effects on the growth of V. dahliae in vivo and in vitro. Based on symptom severity, enhanced resistance was found in a survey of BTD-S-transgenic lines. Besides, crude protein extracts from root tissues of BTD-S-transformed plants significantly restricted the growth of fungal hyphae and the germination of conidia. Also, fungal biomass over time determined by real-time PCR demonstrated the overgrowth of V. dahliae in wild-type plants 2-3 weeks after inoculation, while almost no fungal DNA was detected in aerial tissues of their transgenic progenitors. The result suggested that fungus failed to invade and progress acropetally up to establish a systemic infection in BTD-S-transgenic plants. Moreover, the assessment of basal defense responses was performed in the leaves of WT and BTD-S-transgenic plants. The mitigated oxidative stress and low antioxidase level in BTD-S-transgenic plants revealed that BTD-S acts via permeabilizing target microbial membranes, which is in a category different from hypersensitive response-dependent defense. Taken together, our results demonstrate that BTD-S is a promising gene to be explored for transgenic engineering for plant protection against Verticillium wilt.
Collapse
|
40
|
Mith O, Benhamdi A, Castillo T, Bergé M, MacDiarmid CW, Steffen J, Eide DJ, Perrier V, Subileau M, Gosti F, Berthomieu P, Marquès L. The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells. Microbiologyopen 2015; 4:409-22. [PMID: 25755096 PMCID: PMC4475384 DOI: 10.1002/mbo3.248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/06/2015] [Accepted: 02/02/2015] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides represent an expanding family of peptides involved in innate immunity of many living organisms. They show an amazing diversity in their sequence, structure, and mechanism of action. Among them, plant defensins are renowned for their antifungal activity but various side activities have also been described. Usually, a new biological role is reported along with the discovery of a new defensin and it is thus not clear if this multifunctionality exists at the family level or at the peptide level. We previously showed that the plant defensin AhPDF1.1b exhibits an unexpected role by conferring zinc tolerance to yeast and plant cells. In this paper, we further explored this activity using different yeast genetic backgrounds: especially the zrc1 mutant and an UPRE-GFP reporter yeast strain. We showed that AhPDF1.1b interferes with adaptive cell response in the endoplasmic reticulum to confer cellular zinc tolerance. We thus highlighted that, depending on its cellular localization, AhPDF1.1b exerts quite separate activities: when it is applied exogenously, it is a toxin against fungal and also root cells, but when it is expressed in yeast cells, it is a peptide that modulates the cellular adaptive response to zinc overload.
Collapse
Affiliation(s)
- Oriane Mith
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Asma Benhamdi
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Teddy Castillo
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Muriel Bergé
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Colin W MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Janet Steffen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Véronique Perrier
- INRA/CIRAD UMR 1028 IATE Ingénierie des Agropolymères et Technologies Emergentes, Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Maeva Subileau
- INRA/CIRAD UMR 1028 IATE Ingénierie des Agropolymères et Technologies Emergentes, Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Françoise Gosti
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Pierre Berthomieu
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Laurence Marquès
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| |
Collapse
|
41
|
Plant antimicrobial peptides as potential anticancer agents. BIOMED RESEARCH INTERNATIONAL 2015; 2015:735087. [PMID: 25815333 PMCID: PMC4359852 DOI: 10.1155/2015/735087] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022]
Abstract
Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy.
Collapse
|
42
|
Brown DW, Busman M, Proctor RH. Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:809-823. [PMID: 24742071 DOI: 10.1094/mpmi-09-13-0281-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The transition from one lifestyle to another in some fungi is initiated by a single orthologous gene, SGE1, that regulates markedly different genes in different fungi. Despite these differences, many of the regulated genes encode effector proteins or proteins involved in the synthesis of secondary metabolites (SM), both of which can contribute to pathogenicity. Fusarium verticillioides is both an endophyte and a pathogen of maize and can grow as a saprophyte on dead plant material. During growth on live maize plants, the fungus can synthesize a number of toxic SM, including fumonisins, fusarins, and fusaric acid, that can contaminate kernels and kernel-based food and feed. In this study, the role of F. verticillioides SGE1 in pathogenicity and secondary metabolism was examined by gene deletion analysis and transcriptomics. SGE1 is not required for vegetative growth or conidiation but is required for wild-type pathogenicity and affects synthesis of multiple SM, including fumonisins and fusarins. Induced expression of SGE1 enhanced or reduced expression of hundreds of genes, including numerous putative effector genes that could contribute to growth in planta; genes encoding cell surface proteins; gene clusters required for synthesis of fusarins, bikaverin, and an unknown metabolite; as well as the gene encoding the fumonisin cluster transcriptional activator. Together, our results indicate that SGE1 has a role in global regulation of transcription in F. verticillioides that impacts but is not absolutely required for secondary metabolism and pathogenicity on maize.
Collapse
|
43
|
Heterologous expression and solution structure of defensin from lentil Lens culinaris. Biochem Biophys Res Commun 2014; 451:252-7. [DOI: 10.1016/j.bbrc.2014.07.104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 11/20/2022]
|
44
|
Muñoz A, Chu M, Marris PI, Sagaram US, Kaur J, Shah DM, Read ND. Specific domains of plant defensins differentially disrupt colony initiation, cell fusion and calcium homeostasis inNeurospora crassa. Mol Microbiol 2014; 92:1357-74. [DOI: 10.1111/mmi.12634] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Alberto Muñoz
- Fungal Cell Biology Group; Institute of Cell Biology; University of Edinburgh; Edinburgh EH9 3JH UK
- Manchester Fungal Infection Group; Institute of Inflammation and Repair; CTF Building; University of Manchester; Manchester M13 9NT UK
| | - Meiling Chu
- Fungal Cell Biology Group; Institute of Cell Biology; University of Edinburgh; Edinburgh EH9 3JH UK
| | - Peter I. Marris
- Fungal Cell Biology Group; Institute of Cell Biology; University of Edinburgh; Edinburgh EH9 3JH UK
| | - Uma S. Sagaram
- Donald Danforth Plant Science Center; St Louis MO 63132 USA
| | - Jagdeep Kaur
- Donald Danforth Plant Science Center; St Louis MO 63132 USA
| | - Dilip M. Shah
- Donald Danforth Plant Science Center; St Louis MO 63132 USA
| | - Nick D. Read
- Fungal Cell Biology Group; Institute of Cell Biology; University of Edinburgh; Edinburgh EH9 3JH UK
- Manchester Fungal Infection Group; Institute of Inflammation and Repair; CTF Building; University of Manchester; Manchester M13 9NT UK
| |
Collapse
|
45
|
Kovaleva V, Cramer R, Krynytskyy H, Gout I, Gout R. Analysis of tyrosine phosphorylation and phosphotyrosine-binding proteins in germinating seeds from Scots pine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:33-40. [PMID: 23542181 DOI: 10.1016/j.plaphy.2013.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 02/05/2013] [Indexed: 06/02/2023]
Abstract
Protein tyrosine phosphorylation in angiosperms has been implicated in various physiological processes, including seed development and germination. In conifers, the role of tyrosine phosphorylation and the mechanisms of its regulation are yet to be investigated. In this study, we examined the profile of protein tyrosine phosphorylation in Scots pine seeds at different stages of germination. We detected extensive protein tyrosine phosphorylation in extracts from Scots pine (Pinus sylvestris L.) dormant seeds. In addition, the pattern of tyrosine phosphorylation was found to change significantly during seed germination, especially at earlier stages of post-imbibition which coincides with the initiation of cell division, and during the period of intensive elongation of hypocotyls. To better understand the molecular mechanisms of phosphotyrosine signaling, we employed affinity purification and mass spectrometry for the identification of pTyr-binding proteins from the extracts of Scots pine seedlings. Using this approach, we purified two proteins of 10 and 43 kDa, which interacted specifically with pTyr-Sepharose and were identified by mass spectrometry as P. sylvestris defensin 1 (PsDef1) and aldose 1-epimerase (EC:5.1.3.3), respectively. Additionally, we demonstrated that both endogenous and recombinant PsDef1 specifically interact with pTyr-Sepharose, but not Tyr-beads. As the affinity purification approach did not reveal the presence of proteins with known pTyr binding domains (SH2, PTB and C2), we suggest that plants may have evolved a different mode of pTyr recognition, which yet remains to be uncovered.
Collapse
Affiliation(s)
- Valentina Kovaleva
- Ukrainian National Forestry University, Chuprynka St., 103, Lviv, Ukraine
| | - Rainer Cramer
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | | | - Ivan Gout
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Roman Gout
- Ukrainian National Forestry University, Chuprynka St., 103, Lviv, Ukraine.
| |
Collapse
|
46
|
Nallu S, Silverstein KAT, Samac DA, Bucciarelli B, Vance CP, VandenBosch KA. Regulatory patterns of a large family of defensin-like genes expressed in nodules of Medicago truncatula. PLoS One 2013; 8:e60355. [PMID: 23573247 PMCID: PMC3613412 DOI: 10.1371/journal.pone.0060355] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/25/2013] [Indexed: 12/31/2022] Open
Abstract
Root nodules are the symbiotic organ of legumes that house nitrogen-fixing bacteria. Many genes are specifically induced in nodules during the interactions between the host plant and symbiotic rhizobia. Information regarding the regulation of expression for most of these genes is lacking. One of the largest gene families expressed in the nodules of the model legume Medicago truncatula is the nodule cysteine-rich (NCR) group of defensin-like (DEFL) genes. We used a custom Affymetrix microarray to catalog the expression changes of 566 NCRs at different stages of nodule development. Additionally, bacterial mutants were used to understand the importance of the rhizobial partners in induction of NCRs. Expression of early NCRs was detected during the initial infection of rhizobia in nodules and expression continued as nodules became mature. Late NCRs were induced concomitantly with bacteroid development in the nodules. The induction of early and late NCRs was correlated with the number and morphology of rhizobia in the nodule. Conserved 41 to 50 bp motifs identified in the upstream 1,000 bp promoter regions of NCRs were required for promoter activity. These cis-element motifs were found to be unique to the NCR family among all annotated genes in the M. truncatula genome, although they contain sub-regions with clear similarity to known regulatory motifs involved in nodule-specific expression and temporal gene regulation.
Collapse
Affiliation(s)
- Sumitha Nallu
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Kevin A. T. Silverstein
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Deborah A. Samac
- US Department of Agriculture-Agricultural Research Service-Plant Science Research Unit, Saint Paul, Minnesota, United States of America
| | - Bruna Bucciarelli
- US Department of Agriculture-Agricultural Research Service-Plant Science Research Unit, Saint Paul, Minnesota, United States of America
| | - Carroll P. Vance
- US Department of Agriculture-Agricultural Research Service-Plant Science Research Unit, Saint Paul, Minnesota, United States of America
| | - Kathryn A. VandenBosch
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
47
|
Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes. PLoS One 2013; 8:e58992. [PMID: 23527067 PMCID: PMC3601123 DOI: 10.1371/journal.pone.0058992] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/08/2013] [Indexed: 12/18/2022] Open
Abstract
Plant genomes contain several hundred defensin-like (DEFL) genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species.
Collapse
|
48
|
Hegedüs N, Marx F. Antifungal proteins: More than antimicrobials? FUNGAL BIOL REV 2013; 26:132-145. [PMID: 23412850 PMCID: PMC3569713 DOI: 10.1016/j.fbr.2012.07.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 01/01/2023]
Abstract
Antimicrobial proteins (AMPs) are widely distributed in nature. In higher eukaryotes, AMPs provide the host with an important defence mechanism against invading pathogens. AMPs of lower eukaryotes and prokaryotes may support successful competition for nutrients with other microorganisms of the same ecological niche. AMPs show a vast variety in structure, function, antimicrobial spectrum and mechanism of action. Most interestingly, there is growing evidence that AMPs also fulfil important biological functions other than antimicrobial activity. The present review focuses on the mechanistic function of small, cationic, cysteine-rich AMPs of mammals, insects, plants and fungi with antifungal activity and specifically aims at summarizing current knowledge concerning additional biological properties which opens novel aspects for their future use in medicine, agriculture and biotechnology.
Collapse
Affiliation(s)
| | - Florentine Marx
- Corresponding author. Tel.: +43 512 9003 70207; fax: +43 512 9003 73100.
| |
Collapse
|
49
|
De Coninck B, Cammue BP, Thevissen K. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2012.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Vijayan S, Imani J, Tanneeru K, Guruprasad L, Kogel KH, Kirti PB. Enhanced antifungal and insect α-amylase inhibitory activities of Alpha-TvD1, a peptide variant of Tephrosia villosa defensin (TvD1) generated through in vitro mutagenesis. Peptides 2012; 33:220-9. [PMID: 22244814 DOI: 10.1016/j.peptides.2011.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 11/29/2022]
Abstract
TvD1 is a small, cationic, and highly stable defensin from the weedy legume, Tephrosia villosa with demonstrated in vitro antifungal activity. We show here peptide modifications in TvD1 that lead to enhanced antifungal activities. Three peptide variants, S32R, D37R, and Alpha-TvD1 (-G-M-T-R-T-) with variations in and around the β2-β3 loop region that imposes the two β-strands, β2 and β3 were generated through in vitro mutagenesis. Alpha-TvD1 exhibited enhanced antifungal activity against the fungal pathogens, Fusarium culmorum and Fusarium oxysporum with respective IC(50) values of 2.5 μM and 3.0 μM, when compared to S32R (<5.0 μM and >5.0 μM), D37R (5.5 μM and 4.5 μM), and the wild type TvD1 (6.5 μM). Because of the enhanced antifungal activity, this variant peptide was characterized further. Growth of F. culmorum in the presence of Alpha-TvD1 showed deformities in hyphal walls and nuclear damage. With respect to the plant pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000, both Alpha-TvD1 and the wild type TvD1 showed comparable antibacterial activity. Both wild type TvD1 and Alpha-TvD1 displayed inhibitory activity against the α-amylase of the mealworm beetle, Tenebrio molitor (TMA) with the latter showing enhanced activity. The human salivary as well as barley α-amylase activities were not inhibited even at concentrations of up to 50 μM, which has been predicted to be due to differences in the pocket size and the size of the interacting loops. Present study shows that the variant Alpha-TvD1 exhibits enhanced antifungal as well as insect α-amylase inhibitory activity.
Collapse
Affiliation(s)
- S Vijayan
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | | | | | | | |
Collapse
|