1
|
Hembach L, Niemeyer PW, Schmitt K, Zegers JMS, Scholz P, Brandt D, Dabisch JJ, Valerius O, Braus GH, Schwarzländer M, de Vries J, Rensing SA, Ischebeck T. Proteome plasticity during Physcomitrium patens spore germination - from the desiccated phase to heterotrophic growth and reconstitution of photoautotrophy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1466-1486. [PMID: 38059656 DOI: 10.1111/tpj.16574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The establishment of moss spores is considered a milestone in plant evolution. They harbor protein networks underpinning desiccation tolerance and accumulation of storage compounds that can be found already in algae and that are also utilized in seeds and pollen. Furthermore, germinating spores must produce proteins that drive the transition through heterotrophic growth to the autotrophic plant. To get insight into the plasticity of this proteome, we investigated it at five timepoints of moss (Physcomitrium patens) spore germination and in protonemata and gametophores. The comparison to previously published Arabidopsis proteome data of seedling establishment showed that not only the proteomes of spores and seeds are functionally related, but also the proteomes of germinating spores and young seedlings. We observed similarities with regard to desiccation tolerance, lipid droplet proteome composition, control of dormancy, and β-oxidation and the glyoxylate cycle. However, there were also striking differences. For example, spores lacked any obvious storage proteins. Furthermore, we did not detect homologs to the main triacylglycerol lipase in Arabidopsis seeds, SUGAR DEPENDENT1. Instead, we discovered a triacylglycerol lipase of the oil body lipase family and a lipoxygenase as being the overall most abundant proteins in spores. This finding indicates an alternative pathway for triacylglycerol degradation via oxylipin intermediates in the moss. The comparison of spores to Nicotiana tabacum pollen indicated similarities for example in regards to resistance to desiccation and hypoxia, but the overall developmental pattern did not align as in the case of seedling establishment and spore germination.
Collapse
Affiliation(s)
- Lea Hembach
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| | - Philipp W Niemeyer
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Kerstin Schmitt
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Jaccoline M S Zegers
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Patricia Scholz
- Laboratoire Reproduction et Développement des Plantes (RDP), UCB Lyon 1, CNRS, INRAE, Université de Lyon, ENS de Lyon, Lyon, France
| | - Dennis Brandt
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| | - Janis J Dabisch
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| | - Oliver Valerius
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Gerhard H Braus
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Till Ischebeck
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Jiang W, He J, Babla M, Wu T, Tong T, Riaz A, Zeng F, Qin Y, Chen G, Deng F, Chen ZH. Molecular evolution and interaction of 14-3-3 proteins with H+-ATPases in plant abiotic stresses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:689-707. [PMID: 37864845 DOI: 10.1093/jxb/erad414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023]
Abstract
Environmental stresses severely affect plant growth and crop productivity. Regulated by 14-3-3 proteins (14-3-3s), H+-ATPases (AHAs) are important proton pumps that can induce diverse secondary transport via channels and co-transporters for the abiotic stress response of plants. Many studies demonstrated the roles of 14-3-3s and AHAs in coordinating the processes of plant growth, phytohormone signaling, and stress responses. However, the molecular evolution of 14-3-3s and AHAs has not been summarized in parallel with evolutionary insights across multiple plant species. Here, we comprehensively review the roles of 14-3-3s and AHAs in cell signaling to enhance plant responses to diverse environmental stresses. We analyzed the molecular evolution of key proteins and functional domains that are associated with 14-3-3s and AHAs in plant growth and hormone signaling. The results revealed evolution, duplication, contraction, and expansion of 14-3-3s and AHAs in green plants. We also discussed the stress-specific expression of those 14-3-3and AHA genes in a eudicotyledon (Arabidopsis thaliana), a monocotyledon (Hordeum vulgare), and a moss (Physcomitrium patens) under abiotic stresses. We propose that 14-3-3s and AHAs respond to abiotic stresses through many important targets and signaling components of phytohormones, which could be promising to improve plant tolerance to single or multiple environmental stresses.
Collapse
Affiliation(s)
- Wei Jiang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jing He
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mohammad Babla
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ting Wu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Tao Tong
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Adeel Riaz
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Fanrong Zeng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yuan Qin
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Fenglin Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
3
|
Chakraborty P, Biswas A, Dey S, Bhattacharjee T, Chakrabarty S. Cytochrome P450 Gene Families: Role in Plant Secondary Metabolites Production and Plant Defense. J Xenobiot 2023; 13:402-423. [PMID: 37606423 PMCID: PMC10443375 DOI: 10.3390/jox13030026] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
Cytochrome P450s (CYPs) are the most prominent family of enzymes involved in NADPH- and O2-dependent hydroxylation processes throughout all spheres of life. CYPs are crucial for the detoxification of xenobiotics in plants, insects, and other organisms. In addition to performing this function, CYPs serve as flexible catalysts and are essential for producing secondary metabolites, antioxidants, and phytohormones in higher plants. Numerous biotic and abiotic stresses frequently affect the growth and development of plants. They cause a dramatic decrease in crop yield and a deterioration in crop quality. Plants protect themselves against these stresses through different mechanisms, which are accomplished by the active participation of CYPs in several biosynthetic and detoxifying pathways. There are immense potentialities for using CYPs as a candidate for developing agricultural crop species resistant to biotic and abiotic stressors. This review provides an overview of the plant CYP families and their functions to plant secondary metabolite production and defense against different biotic and abiotic stresses.
Collapse
Affiliation(s)
- Panchali Chakraborty
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Ashok Biswas
- Annual Bast Fiber Breeding Laboratory, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
- Department of Horticulture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Susmita Dey
- Annual Bast Fiber Breeding Laboratory, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
- Department of Plant Pathology and Seed Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tuli Bhattacharjee
- Department of Chemistry, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Swapan Chakrabarty
- College of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA
- College of Computing, Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
4
|
Mann A, Lata C, Kumar N, Kumar A, Kumar A, Sheoran P. Halophytes as new model plant species for salt tolerance strategies. FRONTIERS IN PLANT SCIENCE 2023; 14:1137211. [PMID: 37251767 PMCID: PMC10211249 DOI: 10.3389/fpls.2023.1137211] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Soil salinity is becoming a growing issue nowadays, severely affecting the world's most productive agricultural landscapes. With intersecting and competitive challenges of shrinking agricultural lands and increasing demand for food, there is an emerging need to build resilience for adaptation to anticipated climate change and land degradation. This necessitates the deep decoding of a gene pool of crop plant wild relatives which can be accomplished through salt-tolerant species, such as halophytes, in order to reveal the underlying regulatory mechanisms. Halophytes are generally defined as plants able to survive and complete their life cycle in highly saline environments of at least 200-500 mM of salt solution. The primary criterion for identifying salt-tolerant grasses (STGs) includes the presence of salt glands on the leaf surface and the Na+ exclusion mechanism since the interaction and replacement of Na+ and K+ greatly determines the survivability of STGs in saline environments. During the last decades or so, various salt-tolerant grasses/halophytes have been explored for the mining of salt-tolerant genes and testing their efficacy to improve the limit of salt tolerance in crop plants. Still, the utility of halophytes is limited due to the non-availability of any model halophytic plant system as well as the lack of complete genomic information. To date, although Arabidopsis (Arabidopsis thaliana) and salt cress (Thellungiella halophila) are being used as model plants in most salt tolerance studies, these plants are short-lived and can tolerate salinity for a shorter duration only. Thus, identifying the unique genes for salt tolerance pathways in halophytes and their introgression in a related cereal genome for better tolerance to salinity is the need of the hour. Modern technologies including RNA sequencing and genome-wide mapping along with advanced bioinformatics programs have advanced the decoding of the whole genetic information of plants and the development of probable algorithms to correlate stress tolerance limit and yield potential. Hence, this article has been compiled to explore the naturally occurring halophytes as potential model plant species for abiotic stress tolerance and to further breed crop plants to enhance salt tolerance through genomic and molecular tools.
Collapse
Affiliation(s)
- Anita Mann
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Charu Lata
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pardesh, India
| | - Naresh Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- Department of Biochemistry, Eternal University, Baru Sahib, Himachal Pardesh, Ludhiana, India
| | - Ashwani Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Parvender Sheoran
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Agriculture Technology Application Research Center, Ludhiana, India
| |
Collapse
|
5
|
Bajus M, Macko-Podgórni A, Grzebelus D, Baránek M. A review of strategies used to identify transposition events in plant genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1080993. [PMID: 36531345 PMCID: PMC9751208 DOI: 10.3389/fpls.2022.1080993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Transposable elements (TEs) were initially considered redundant and dubbed 'junk DNA'. However, more recently they were recognized as an essential element of genome plasticity. In nature, they frequently become active upon exposition of the host to stress conditions. Even though most transposition events are neutral or even deleterious, occasionally they may happen to be beneficial, resulting in genetic novelty providing better fitness to the host. Hence, TE mobilization may promote adaptability and, in the long run, act as a significant evolutionary force. There are many examples of TE insertions resulting in increased tolerance to stresses or in novel features of crops which are appealing to the consumer. Possibly, TE-driven de novo variability could be utilized for crop improvement. However, in order to systematically study the mechanisms of TE/host interactions, it is necessary to have suitable tools to globally monitor any ongoing TE mobilization. With the development of novel potent technologies, new high-throughput strategies for studying TE dynamics are emerging. Here, we present currently available methods applied to monitor the activity of TEs in plants. We divide them on the basis of their operational principles, the position of target molecules in the process of transposition and their ability to capture real cases of actively transposing elements. Their possible theoretical and practical drawbacks are also discussed. Finally, conceivable strategies and combinations of methods resulting in an improved performance are proposed.
Collapse
Affiliation(s)
- Marko Bajus
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Alicja Macko-Podgórni
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Miroslav Baránek
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| |
Collapse
|
6
|
Wang H, Dong Z, Chen J, Wang M, Ding Y, Xue Q, Liu W, Niu Z, Ding X. Genome-wide identification and expression analysis of the Hsp20, Hsp70 and Hsp90 gene family in Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 13:979801. [PMID: 36035705 PMCID: PMC9399769 DOI: 10.3389/fpls.2022.979801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium officinale, an important orchid plant with great horticultural and medicinal values, frequently suffers from abiotic or biotic stresses in the wild, which may influence its well-growth. Heat shock proteins (Hsps) play essential roles in the abiotic stress response of plants. However, they have not been systematically investigated in D. officinale. Here, we identified 37 Hsp20 genes (DenHsp20s), 43 Hsp70 genes (DenHsp70s) and 4 Hsp90 genes (DenHsp90s) in D. officinale genome. These genes were classified into 8, 4 and 2 subfamilies based on phylogenetic analysis and subcellular predication, respectively. Sequence analysis showed that the same subfamily members have relatively conserved gene structures and similar protein motifs. Moreover, we identified 33 pairs of paralogs containing 30 pairs of tandem duplicates and 3 pairs of segmental duplicates among these genes. There were 7 pairs in DenHsp70s under positive selection, which may have important functions in helping cells withstand extreme stress. Numerous gene promoter sequences contained stress and hormone response cis-elements, especially light and MeJA response elements. Under MeJA stress, DenHsp20s, DenHsp70s and DenHsp90s responded to varying degrees, among which DenHsp20-5,6,7,16 extremely up-regulated, which may have a strong stress resistance. Therefore, these findings could provide useful information for evolutional and functional investigations of Hsp20, Hsp70 and Hsp90 genes in D. officinale.
Collapse
Affiliation(s)
- Hongman Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Zuqi Dong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Jianbing Chen
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Meng Wang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Yuting Ding
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| |
Collapse
|
7
|
Mansour MMF, Hassan FAS. How salt stress-responsive proteins regulate plant adaptation to saline conditions. PLANT MOLECULAR BIOLOGY 2022; 108:175-224. [PMID: 34964081 DOI: 10.1007/s11103-021-01232-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 05/20/2023]
Abstract
An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions. Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.
Collapse
Affiliation(s)
| | - Fahmy A S Hassan
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Goussi R, Manfredi M, Marengo E, Derbali W, Cantamessa S, Barbato R, Manaa A. Thylakoid proteome variation of Eutrema salsugineum in response to drought and salinity combined stress. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148482. [PMID: 34418359 DOI: 10.1016/j.bbabio.2021.148482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Abstract
It is well known that plant responses to stress involve different events occurring at different places of the cell/leaf and at different time scales in relation with the plant development. In fact, the organelles proteomes include a wide range of proteins that could include a wide range of proteins showing a considerable change in cellular functions and metabolism process. On this basis, a comparative proteomics analysis and fluorescence induction measurements were performed to investigate the photosynthetic performance and the relative thylakoid proteome variation in Eutrema salsugineum cultivated under salt stress (200 mM NaCl), water deficit stress (PEG) and combined treatment (PEG + NaCl) as a hyperosmotic stress. The obtained results showed a significant decrease of plant growth under drought stress conditions, with the appearance of some toxicity symptoms, especially in plants subjected to combined treatment. Application of salt or water stress alone showed no apparent change in the chlorophyll a fluorescence transients, primary photochemistry (fluorescence kinetics of the O-J phase), the PQ pool state (J-I phase changes), (Fv/Fm) and (Fk/Fj) ratios. However, a considerable decrease of all these parameters was observed under severe osmotic stress (PEG + NaCl). The thylakoid proteome analysis revealed 58 proteins showing a significant variation in their abundance between treatments (up or down regulation). The combined treatment (PEG + NaCl) induced a decrease in the expression of the whole PSII core subunit (D1, D2, CP43, CP47, PsbE and PsbH), whereas the OEC subunits proteins remained constant. An increase in the amount of PsaD, PsaE, PsaF, PsaH, PsaK and PsaN was detected under drought stress (PEG5%). No significant change in the accumulation of Cyt b6 and Cyt f was observed. Some regulated proteins involved in cellular redox homeostasis were detected (glutamine synthetase, phosphoglycerate kinase, transketolase), and showed a significant decrease under the combined treatment. Some oxidative stress related proteins were significantly up-regulated under salt or drought stress and could play a crucial role in the PSI photoprotection and the control of ROS production level.
Collapse
Affiliation(s)
- Rahma Goussi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092, Tunisia; Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, University of Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Walid Derbali
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092, Tunisia
| | - Simone Cantamessa
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; CREA - Research Centre for Forestry and Wood - Italy
| | - Roberto Barbato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Arafet Manaa
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia.
| |
Collapse
|
9
|
Singh A, Panwar R, Mittal P, Hassan MI, Singh IK. Plant cytochrome P450s: Role in stress tolerance and potential applications for human welfare. Int J Biol Macromol 2021; 184:874-886. [PMID: 34175340 DOI: 10.1016/j.ijbiomac.2021.06.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
Cytochrome P450s (CYPs) are a versatile group of enzymes and one of the largest families of proteins, controlling various physiological processes via biosynthetic and detoxification pathways. CYPs perform multiple roles through a critical irreversible enzymatic reaction in which an oxygen atom is inserted within hydrophobic molecules, converting them into the reactive and hydro soluble components. During evolution, plants have acquired significantly more number of CYPs and represent about 1% of the encoded genes . CYPs are highly conserved proteins involved in growth, development and tolerance against biotic and abiotic stresses. Furthermore, CYPs reinforce plants' molecular and chemical defense mechanisms by regulating the biosynthesis of secondary metabolites, enhancing reactive oxygen species (ROS) scavenging and controlling biosynthesis and homeostasis of phytohormones, including abscisic acid (ABA) and jasmonates. Thus, they are the critical targets of metabolic engineering for enhancing plant defense against environmental stresses. Additionally, CYPs are also used as biocatalysts in the fields of pharmacology and phytoremediation. Herein, we highlight the role of CYPs in plant stress tolerance and their applications for human welfare.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India.
| | - Ruby Panwar
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India
| | - Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
10
|
de novo transcriptomic profiling of differentially expressed genes in grass halophyte Urochondra setulosa under high salinity. Sci Rep 2021; 11:5548. [PMID: 33692429 PMCID: PMC7970929 DOI: 10.1038/s41598-021-85220-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Soil salinity is one of the major limiting factors for crop productivity across the world. Halophytes have recently been a source of attraction for exploring the survival and tolerance mechanisms at extreme saline conditions. Urochondra setulosa is one of the obligate grass halophyte that can survive in up to 1000 mM NaCl. The de novo transcriptome of Urochondra leaves at different salt concentrations of 300-500 mM NaCl was generated on Illumina HiSeq. Approximately 352.78 million high quality reads with an average contig length of 1259 bp were assembled de novo. A total of 120,231 unigenes were identified. On an average, 65% unigenes were functionally annotated to known proteins. Approximately 35% unigenes were specific to Urochondra. Differential expression revealed significant enrichment (P < 0.05) of transcription factors, transporters and metabolites suggesting the transcriptional regulation of ion homeostasis and signalling at high salt concentrations in this grass. Also, about 143 unigenes were biologically related to salt stress responsive genes. Randomly selected genes of important pathways were validated for functional characterization. This study provides useful information to understand the gene regulation at extremely saline levels. The study offers the first comprehensive evaluation of Urochondra setulosa leaf transcriptome. Examining non-model organisms that can survive in harsh environment can provide novel insights into the stress coping mechanisms which can be useful to develop improved agricultural crops.
Collapse
|
11
|
Hussain S, Hussain S, Ali B, Ren X, Chen X, Li Q, Saqib M, Ahmad N. Recent progress in understanding salinity tolerance in plants: Story of Na +/K + balance and beyond. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:239-256. [PMID: 33524921 DOI: 10.1016/j.plaphy.2021.01.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 05/07/2023]
Abstract
High salt concentrations in the growing medium can severely affect the growth and development of plants. It is imperative to understand the different components of salt-tolerant network in plants in order to produce the salt-tolerant cultivars. High-affinity potassium transporter- and myelocytomatosis proteins have been shown to play a critical role for salinity tolerance through exclusion of sodium (Na+) ions from sensitive shoot tissues in plants. Numerous genes, that limit the uptake of salts from soil and their transport throughout the plant body, adjust the ionic and osmotic balance of cells in roots and shoots. In the present review, we have tried to provide a comprehensive report of major research advances on different mechanisms regulating plant tolerance to salinity stress at proteomics, metabolomics, genomics and transcriptomics levels. Along with the role of ionic homeostasis, a major focus was given on other salinity tolerance mechanisms in plants including osmoregulation and osmo-protection, cell wall remodeling and integrity, and plant antioxidative defense. Major proteins and genes expressed under salt-stressed conditions and their role in enhancing salinity tolerance in plants are discussed as well. Moreover, this manuscript identifies and highlights the key questions on plant salinity tolerance that remain to be discussed in the future.
Collapse
Affiliation(s)
- Sadam Hussain
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China; Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan; Shanghai Center for Plant Stress Biology, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Xiaolong Ren
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianqian Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Saqib
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Naeem Ahmad
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Vaseva II, Mishev K, Depaepe T, Vassileva V, Van Der Straeten D. The Diverse Salt-Stress Response of Arabidopsis ctr1-1 and ein2-1Ethylene Signaling Mutants Is Linked to Altered Root Auxin Homeostasis. PLANTS 2021; 10:plants10030452. [PMID: 33673672 PMCID: PMC7997360 DOI: 10.3390/plants10030452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
We explored the interplay between ethylene signals and the auxin pool in roots exposed to high salinity using Arabidopsisthaliana wild-type plants (Col-0), and the ethylene-signaling mutants ctr1-1 (constitutive) and ein2-1 (insensitive). The negative effect of salt stress was less pronounced in ctr1-1 individuals, which was concomitant with augmented auxin signaling both in the ctr1-1 controls and after 100 mM NaCl treatment. The R2D2 auxin sensorallowed mapping this active auxin increase to the root epidermal cells in the late Cell Division (CDZ) and Transition Zone (TZ). In contrast, the ethylene-insensitive ein2-1 plants appeared depleted in active auxins. The involvement of ethylene/auxin crosstalk in the salt stress response was evaluated by introducing auxin reporters for local biosynthesis (pTAR2::GUS) and polar transport (pLAX3::GUS, pAUX1::AUX1-YFP, pPIN1::PIN1-GFP, pPIN2::PIN2-GFP, pPIN3::GUS) in the mutants. The constantly operating ethylene-signaling pathway in ctr1-1 was linked to increased auxin biosynthesis. This was accompanied by a steady expression of the auxin transporters evaluated by qRT-PCR and crosses with the auxin transport reporters. The results imply that the ability of ctr1-1 mutant to tolerate high salinity could be related to the altered ethylene/auxin regulatory loop manifested by a stabilized local auxin biosynthesis and transport.
Collapse
Affiliation(s)
- Irina I. Vaseva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria; (K.M.); (V.V.)
- Correspondence: or
| | - Kiril Mishev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria; (K.M.); (V.V.)
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000 Ghent, Belgium; (T.D.); (D.V.D.S.)
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria; (K.M.); (V.V.)
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000 Ghent, Belgium; (T.D.); (D.V.D.S.)
| |
Collapse
|
13
|
Genome-wide identification, classification and expression analysis of the Hsf and Hsp70 gene families in maize. Gene 2020; 770:145348. [PMID: 33333230 DOI: 10.1016/j.gene.2020.145348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/20/2022]
Abstract
Heat shock factors (Hsfs) and heat shock proteins (Hsps) play a critical role in the molecular mechanisms such as plant development and defense against abiotic. As an important food crop, maize is vulnerable to adverse environment such as heat stress and water logging, which leads to a decline in yield and quality. To date, very little is known regarding the structure and function of Hsf and Hsp genes in maize. Although some Hsf and Hsp genes have been characterized in maize, analysis of the entire Hsf and Hsp70 gene families were not completed following Maize (B73) Genome Sequencing Project. Therefore, studying their molecular mechanism and revealing their biological function in plant stress resistance process will contribute to reveal important theoretical significance and application value for improving corn yield and quality. In this study, we have identified 25 ZmHsf and 22 ZmHsp70 genes in maize. The structural characteristics and phylogenetic relationships of the Hsf and Hsp70 gene families of Arabidopsis thaliana, rice and maize were compared. The final 25 ZmHsf proteins and 22 ZmHsp70 proteins were divided into three and four subfamilies, respectively. In addition, chromosomal localization indicated that the ZmHsf and ZmHsp70 genes were unevenly distributed on the chromosome, and the gene structure map revealed the characteristics of their structures. Finally, transcriptome analysis indicated that most of the ZmHsf and ZmHsp70 genes showed different expression patterns at different developmental stages of maize. Further, by semi-quantitative RT-PCR and quantitative real-time PCR analysis, all 25 ZmHsf and 22 ZmHsp70 genes were confirmed to respond to heat stress treatment, indicating that they have potential effects in heat stress response. The analyses performed by combining co-expression network with protein-protein interaction network among the members of the Hsf and Hsp70 gene families in maize further enabled us to recognize components involved in the regulatory network associated with hsfs and hsp70s complex. The predicted subcellular location revealed that maize Hsp70 proteins exhibited a various subcellular distribution, which may be associated with functional diversification in heat stress response. Taken together, our study provides comprehensive information on the members of Hsf and Hsp70 gene families and will help in elucidating their exact function in maize.
Collapse
|
14
|
Chamorro-Flores A, Tiessen-Favier A, Gregorio-Jorge J, Villalobos-López MA, Guevara-García ÁA, López-Meyer M, Arroyo-Becerra A. High levels of glucose alter Physcomitrella patens metabolism and trigger a differential proteomic response. PLoS One 2020; 15:e0242919. [PMID: 33275616 PMCID: PMC7717569 DOI: 10.1371/journal.pone.0242919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022] Open
Abstract
Sugars act not only as substrates for plant metabolism, but also have a pivotal role in signaling pathways. Glucose signaling has been widely studied in the vascular plant Arabidopsis thaliana, but it has remained unexplored in non-vascular species such as Physcomitrella patens. To investigate P. patens response to high glucose treatment, we explored the dynamic changes in metabolism and protein population by applying a metabolomic fingerprint analysis (DIESI-MS), carbohydrate and chlorophyll quantification, Fv/Fm determination and label-free untargeted proteomics. Glucose feeding causes specific changes in P. patens metabolomic fingerprint, carbohydrate contents and protein accumulation, which is clearly different from those of osmotically induced responses. The maximal rate of PSII was not affected although chlorophyll decreased in both treatments. The biological process, cellular component, and molecular function gene ontology (GO) classifications of the differentially expressed proteins indicate the translation process is the most represented category in response to glucose, followed by photosynthesis, cellular response to oxidative stress and protein refolding. Importantly, although several proteins have high fold changes, these proteins have no predicted identity. The most significant discovery of our study at the proteome level is that high glucose increase abundance of proteins related to the translation process, which was not previously evidenced in non-vascular plants, indicating that regulation by glucose at the translational level is a partially conserved response in both plant lineages. To our knowledge, this is the first time that metabolome fingerprint and proteomic analyses are performed after a high sugar treatment in non-vascular plants. These findings unravel evolutionarily shared and differential responses between vascular and non-vascular plants.
Collapse
Affiliation(s)
- Alejandra Chamorro-Flores
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN), Tepetitla de Lardizábal, Tlaxcala, México
| | - Axel Tiessen-Favier
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV Unidad Irapuato), Irapuato, Guanajuato, México
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Instituto Politécnico Nacional-Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ciudad de México, México
| | - Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN), Tepetitla de Lardizábal, Tlaxcala, México
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (IBT-UNAM), Cuernavaca, Morelos, México
| | - Melina López-Meyer
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional (CIIDIR-IPN Unidad Sinaloa), Guasave, Sinaloa, México
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN), Tepetitla de Lardizábal, Tlaxcala, México
| |
Collapse
|
15
|
Na 2CO 3-responsive Photosynthetic and ROS Scavenging Mechanisms in Chloroplasts of Alkaligrass Revealed by Phosphoproteomics. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:271-288. [PMID: 32683046 PMCID: PMC7801222 DOI: 10.1016/j.gpb.2018.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/08/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022]
Abstract
Alkali-salinity exerts severe osmotic, ionic, and high-pH stresses to plants. To understand the alkali-salinity responsive mechanisms underlying photosynthetic modulation and reactive oxygen species (ROS) homeostasis, physiological and diverse quantitative proteomics analyses of alkaligrass (Puccinellia tenuiflora) under Na2CO3 stress were conducted. In addition, Western blot, real-time PCR, and transgenic techniques were applied to validate the proteomic results and test the functions of the Na2CO3-responsive proteins. A total of 104 and 102 Na2CO3-responsive proteins were identified in leaves and chloroplasts, respectively. In addition, 84 Na2CO3-responsive phosphoproteins were identified, including 56 new phosphorylation sites in 56 phosphoproteins from chloroplasts, which are crucial for the regulation of photosynthesis, ion transport, signal transduction, and energy homeostasis. A full-length PtFBA encoding an alkaligrass chloroplastic fructose-bisphosphate aldolase (FBA) was overexpressed in wild-type cells of cyanobacterium Synechocystis sp. Strain PCC 6803, leading to enhanced Na2CO3 tolerance. All these results indicate that thermal dissipation, state transition, cyclic electron transport, photorespiration, repair of photosystem (PS) II, PSI activity, and ROS homeostasis were altered in response to Na2CO3 stress, which help to improve our understanding of the Na2CO3-responsive mechanisms in halophytes.
Collapse
|
16
|
Pandian BA, Sathishraj R, Djanaguiraman M, Prasad PV, Jugulam M. Role of Cytochrome P450 Enzymes in Plant Stress Response. Antioxidants (Basel) 2020; 9:antiox9050454. [PMID: 32466087 PMCID: PMC7278705 DOI: 10.3390/antiox9050454] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Cytochrome P450s (CYPs) are the largest enzyme family involved in NADPH- and/or O2-dependent hydroxylation reactions across all the domains of life. In plants and animals, CYPs play a central role in the detoxification of xenobiotics. In addition to this function, CYPs act as versatile catalysts and play a crucial role in the biosynthesis of secondary metabolites, antioxidants, and phytohormones in higher plants. The molecular and biochemical processes catalyzed by CYPs have been well characterized, however, the relationship between the biochemical process catalyzed by CYPs and its effect on several plant functions was not well established. The advent of next-generation sequencing opened new avenues to unravel the involvement of CYPs in several plant functions such as plant stress response. The expression of several CYP genes are regulated in response to environmental stresses, and they also play a prominent role in the crosstalk between abiotic and biotic stress responses. CYPs have an enormous potential to be used as a candidate for engineering crop species resilient to biotic and abiotic stresses. The objective of this review is to summarize the latest research on the role of CYPs in plant stress response.
Collapse
Affiliation(s)
- Balaji Aravindhan Pandian
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
| | - Rajendran Sathishraj
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
| | - Maduraimuthu Djanaguiraman
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (B.A.P.); (R.S.); (M.D.); (P.V.V.P.)
- Correspondence: ; Tel.: +1-785-532-2755
| |
Collapse
|
17
|
Huihui Z, Xin L, Yupeng G, Mabo L, Yue W, Meijun A, Yuehui Z, Guanjun L, Nan X, Guangyu S. Physiological and proteomic responses of reactive oxygen species metabolism and antioxidant machinery in mulberry (Morus alba L.) seedling leaves to NaCl and NaHCO 3 stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110259. [PMID: 32097787 DOI: 10.1016/j.ecoenv.2020.110259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 05/20/2023]
Abstract
In this paper, the effects of 100 mM NaCl and NaHCO3 stress on reactive oxygen species (ROS) and physiological and proteomic aspects of ROS metabolism in mulberry seedling leaves were studied. The results showed that NaCl stress had little effect on photosynthesis and respiration of mulberry seedling leaves. Superoxide dismutase (SOD) activity and the expression of related proteins in leaves increased by varying degrees, and accumulation of superoxide anion (O2·-) not observed. Under NaHCO3 stress, photosynthesis and respiration were significantly inhibited, while the rate of O2·- production rate and H2O2 content increased. The activity of catalase (CAT) and the expression of CAT (W9RJ43) increased under NaCl stress. In response to NaHCO3 stress, the activity and expression of CAT were significantly decreased, but the ability of H2O2 scavenging of peroxidase (POD) was enhanced. The ascorbic acid-glutathione (AsA-GSH) cycle in mulberry seedling leaves was enhancement in both NaCl and NaHCO3 stress. The expression of 2-Cys peroxiredoxin BAS1 (2-Cys Prx BAS1), together with thioredoxin F (TrxF), thioredoxin O1 (TrxO1), thioredoxin-like protein CITRX (Trx CITRX), and thioredoxin-like protein CDSP32 (Trx CDSP32) were significantly increased under NaCl stress. Under NaHCO3 stress, the expression of the electron donor of ferredoxin-thioredoxin reductase (FTR), together with Trx-related proteins, such as thioredoxin M (TrxM), thioredoxin M4 (TrxM4), thioredoxin X (TrxX), TrxF, and Trx CSDP32 were significantly decreased, suggesting that the thioredoxin-peroxiredoxin (Trx-Prx) pathway's function of scavenging H2O2 of in mulberry seedling leaves was inhibited. Taken together, under NaCl stress, excessive production of O2·- mulberry seedlings leaves was inhibited, and H2O2 was effectively scavenged by CAT, AsA-GSH cycle and Trx-Prx pathway. Under NaHCO3 stress, despite the enhanced functions of POD and AsA-GSH cycle, the scavenging of O2·- by SOD was not effective, and that of H2O2 by CAT and Trx-Prx pathway were inhibited; and in turn, the oxidative damage to mulberry seedling leaves could not be reduced.
Collapse
Affiliation(s)
- Zhang Huihui
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Li Xin
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Guan Yupeng
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Li Mabo
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wang Yue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - An Meijun
- Developmental Center of Heilongjiang Provincial Sericulture and Bee Industry, Harbin, Heilongjiang, China
| | - Zhang Yuehui
- Developmental Center of Heilongjiang Provincial Sericulture and Bee Industry, Harbin, Heilongjiang, China
| | - Liu Guanjun
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xu Nan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China; Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China.
| | - Sun Guangyu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
18
|
Luo W, Komatsu S, Abe T, Matsuura H, Takahashi K. Comparative Proteomic Analysis of Wild-Type Physcomitrella Patens and an OPDA-Deficient Physcomitrella Patens Mutant with Disrupted PpAOS1 and PpAOS2 Genes after Wounding. Int J Mol Sci 2020; 21:ijms21041417. [PMID: 32093080 PMCID: PMC7073133 DOI: 10.3390/ijms21041417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
Wounding is a serious environmental stress in plants. Oxylipins such as jasmonic acid play an important role in defense against wounding. Mechanisms to adapt to wounding have been investigated in vascular plants; however, those mechanisms in nonvascular plants remain elusive. To examine the response to wounding in Physcomitrella patens, a model moss, a proteomic analysis of wounded P. patens was conducted. Proteomic analysis showed that wounding increased the abundance of proteins related to protein synthesis, amino acid metabolism, protein folding, photosystem, glycolysis, and energy synthesis. 12-Oxo-phytodienoic acid (OPDA) was induced by wounding and inhibited growth. Therefore, OPDA is considered a signaling molecule in this plant. Proteomic analysis of a P. patens mutant in which the PpAOS1 and PpAOS2 genes, which are involved in OPDA biosynthesis, are disrupted showed accumulation of proteins involved in protein synthesis in response to wounding in a similar way to the wild-type plant. In contrast, the fold-changes of the proteins in the wild-type plant were significantly different from those in the aos mutant. This study suggests that PpAOS gene expression enhances photosynthesis and effective energy utilization in response to wounding in P. patens.
Collapse
Affiliation(s)
- Weifeng Luo
- Division of Fundamental Agroscience Research, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (W.L.); (T.A.); (H.M.)
| | - Setsuko Komatsu
- Department of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui 910-8505, Japan;
| | - Tatsuya Abe
- Division of Fundamental Agroscience Research, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (W.L.); (T.A.); (H.M.)
| | - Hideyuki Matsuura
- Division of Fundamental Agroscience Research, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (W.L.); (T.A.); (H.M.)
| | - Kosaku Takahashi
- Division of Fundamental Agroscience Research, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (W.L.); (T.A.); (H.M.)
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 165-8502, Japan
- Correspondence:
| |
Collapse
|
19
|
Yadav S, Srivastava A, Biswas S, Chaurasia N, Singh SK, Kumar S, Srivastava V, Mishra Y. Comparison and optimization of protein extraction and two-dimensional gel electrophoresis protocols for liverworts. BMC Res Notes 2020; 13:60. [PMID: 32028996 PMCID: PMC7006083 DOI: 10.1186/s13104-020-4929-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/28/2020] [Indexed: 12/25/2022] Open
Abstract
Objective Liverworts possess historical adaptive strategies for abiotic stresses because they were the first plants that shifted from water to land. Proteomics is a state-of-the-art technique that can capture snapshots of events occurring at the protein level in many organisms. Herein, we highlight the comparison and optimization of an effective protein extraction and precipitation protocol for two-dimensional gel electrophoresis (2-DE) of liverworts. Results We compared three different protein extraction methods, i.e.,1.5 M Tris–HCl (pH 8.8), 50 mM Tris–HCl (pH 7.5), and polyvinylpolypyrrolidone (PVPP) extraction, followed by three precipitation methods, i.e., 80% ethanol, 80% acetone, and 20% tricholoroacetic acid (TCA)–acetone, in a liverwort Dumortiera hirsuta. Among these methods, 50 mM Tris–HCl (pH 7.5) extraction, followed by 20% TCA–acetone precipitation, appeared to be more suitable for 2-DE. Furthermore, we performed modifications during protein washing, re-solubilization in rehydration buffer and isoelectric focusing (IEF). The modifications provided us better results in terms of protein yield, resolution, spot numbers, and intensities for 2-DE gels of D. hirsuta and other two liverworts, i.e., Marchantia paleacea and Plagiochasma appendiculatum. Furthermore, we randomly selected spots from the 2-DE gel of D. hirsuta and identified using mass spectrometry, which confirms the applicability of this protocol for liverworts proteomics.
Collapse
Affiliation(s)
- Sandhya Yadav
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Chaurasia
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793022, India
| | - Sushil Kumar Singh
- Botanical Survey of India Northern Regional Centre, 192, Kaulagarh Road, Dehradun, Uttarakhand, 248003, India
| | - Sanjiv Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691, Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691, Stockholm, Sweden.
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
20
|
Singh D, Yadav R, Kaushik S, Wadhwa N, Kapoor S, Kapoor M. Transcriptome Analysis of ppdnmt2 and Identification of Superoxide Dismutase as a Novel Interactor of DNMT2 in the Moss Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2020; 11:1185. [PMID: 32849734 PMCID: PMC7419982 DOI: 10.3389/fpls.2020.01185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/21/2020] [Indexed: 05/07/2023]
Abstract
DNMT2 is a DNA/tRNA cytosine methyltransferase that is highly conserved in structure and function in eukaryotes. In plants however, limited information is available on the function of this methyltransferase. We have previously reported that in the moss Physcomitrella patens, DNMT2 plays a crucial role in stress recovery and tRNAAsp transcription/stability under salt stress. To further investigate the role of PpDNMT2 at genome level, in this study we have performed RNA sequencing of ppdnmt2. Transcriptome analysis reveals a number of genes and pathways to function differentially and suggests a close link between PpDNMT2 function and osmotic and ionic stress tolerance. We propose PpDNMT2 to play a pivotal role in regulating salt tolerance by affecting molecular networks involved in stress perception and signal transduction that underlie maintenance of ion homeostasis in cells. We also examined interactome of PpDNMT2 using affinity purification (AP) coupled to mass spectrometry (AP-MS). Quantitative proteomic analysis reveals several chloroplast proteins involved in light reactions and carbon assimilation and proteins involved in stress response and some not implicated in stress to co-immunoprecipitate with PpDNMT2. Comparison between transcriptome and interactome datasets has revealed novel association between PpDNMT2 activity and the antioxidant enzyme Superoxide dismutase (SOD), protein turnover mediated by the Ubiquitin-proteasome system and epigenetic gene regulation. PpDNMT2 possibly exists in complex with CuZn-SODs in vivo and the two proteins also directly interact in the yeast nucleus as observed by yeast two-hybrid assay. Taken together, the work presented in this study sheds light on diverse roles of PpDNMT2 in maintaining molecular and physiological homeostasis in P. patens. This is a first report describing transcriptome and interactome of DNMT2 in any land plant.
Collapse
Affiliation(s)
- Darshika Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Radha Yadav
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Shubham Kaushik
- Vproteomics, Valerian Chem Private Limited Green Park Mains, New Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
- *Correspondence: Meenu Kapoor,
| |
Collapse
|
21
|
Xing J, Pan D, Wang L, Tan F, Chen W. Proteomic and physiological responses in mangrove Kandelia candel roots under short-term high-salinity stress. ACTA ACUST UNITED AC 2019; 43:314-325. [PMID: 31768104 PMCID: PMC6823913 DOI: 10.3906/biy-1906-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kandelia candel is one of the mangrove species that are most resistant to environmental stress. As a typical nonsalt-secreting mangrove plant, K. candel is an ideal biological material to analyze the molecular mechanism of salt tolerance in woody plants. In this study, changes in protein abundance and expression profile in K. candel roots under high-salinity stress of 600 mmol L-1 NaCl were analyzed using isobaric tags for relative and absolute quantification (iTRAQ) assay. Moreover, the physiological parameters associated with metabolic pathways in which the differentially abundant proteins (DAPs) are involved were determined. A total of 5577 proteins were identified by iTRAQ analysis of the K. candel root proteins, of which 227 were DAPs with a fold change ratio >1.2 or a fold change ratio <0.83 and a P-value <0.05. A total of 227 DAPs consisting of 110 up-regulated and 117 down-regulated proteins were identified. Our Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the DAPs were primarily involved in biological processes including carbohydrate and energy metabolisms, stress response and defense, cell wall structure, and secondary metabolism. The results of the physiological parameters showed that their profile changes were consistent with those of the proteome analysis. The results of the proteome and physiological parameters showed that K. candel roots could resist high-salinity stress by maintaining a normal Embden-Meyerhof-Parnas and tricarboxylic acid (EMP-TCA) pathway, increasing the activities of various antioxidant enzymes and antioxidant contents, stabilizing the cell wall structure, and accumulating secondary metabolites such as triterpenoids.
Collapse
Affiliation(s)
- Jianhong Xing
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian China.,College of Resources and Chemical Engineering, Sanming University, Sanming, Fujian China
| | - Dezhuo Pan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Lingxia Wang
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia China
| | - Fanglin Tan
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian China
| | - Wei Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| |
Collapse
|
22
|
Comparison between the Transcriptomes of 'KDML105' Rice and a Salt-Tolerant Chromosome Segment Substitution Line. Genes (Basel) 2019; 10:genes10100742. [PMID: 31554292 PMCID: PMC6827086 DOI: 10.3390/genes10100742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/19/2022] Open
Abstract
‘KDML105’ rice, known as jasmine rice, is grown in northeast Thailand. The soil there has high salinity, which leads to low productivity. Chromosome substitution lines (CSSLs) with the ‘KDML105’ rice genetic background were evaluated for salt tolerance. CSSL18 showed the highest salt tolerance among the four lines tested. Based on a comparison between the CSSL18 and ‘KDML105’ transcriptomes, more than 27,000 genes were mapped onto the rice genome. Gene ontology enrichment of the significantly differentially expressed genes (DEGs) revealed that different mechanisms were involved in the salt stress responses between these lines. Biological process and molecular function enrichment analysis of the DEGs from both lines revealed differences in the two-component signal transduction system, involving LOC_Os04g23890, which encodes phototropin 2 (PHOT2), and LOC_Os07g44330, which encodes pyruvate dehydrogenase kinase (PDK), the enzyme that inhibits pyruvate dehydrogenase in respiration. OsPHOT2 expression was maintained in CSSL18 under salt stress, whereas it was significantly decreased in ‘KDML105’, suggesting OsPHOT2 signaling may be involved in salt tolerance in CSSL18. PDK expression was induced only in ‘KDML105’. These results suggested respiration was more inhibited in ‘KDML105’ than in CSSL18, and this may contribute to the higher salt susceptibility of ‘KDML105’ rice. Moreover, the DEGs between ‘KDML105’ and CSSL18 revealed the enrichment in transcription factors and signaling proteins located on salt-tolerant quantitative trait loci (QTLs) on chromosome 1. Two of them, OsIRO2 and OsMSR2, showed the potential to be involved in salt stress response, especially, OsMSR2, whose orthologous genes in Arabidopsis had the potential role in photosynthesis adaptation under salt stress.
Collapse
|
23
|
Keisham M, Jain P, Singh N, von Toerne C, Bhatla SC, Lindermayr C. Deciphering the nitric oxide, cyanide and iron-mediated actions of sodium nitroprusside in cotyledons of salt stressed sunflower seedlings. Nitric Oxide 2019; 88:10-26. [DOI: 10.1016/j.niox.2019.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022]
|
24
|
Singh P, Khadim R, Singh AK, Singh U, Maurya P, Tiwari A, Asthana RK. Biochemical and physiological characterization of a halotolerant Dunaliella salina isolated from hypersaline Sambhar Lake, India. JOURNAL OF PHYCOLOGY 2019; 55:60-73. [PMID: 30118147 DOI: 10.1111/jpy.12777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
The objective of the present study was to characterize intrinsic physiological and biochemical properties of the wall-less unicellular cholorophyte Dunaliella salina isolated from a hypersaline Sambhar Lake. The strain grew optimally at 0.5 M NaCl and 16:8 h L:D photoperiod along with maintaining low level of intracellular Na+ even at higher salinity, emphasizing special features of its cell membranes. It was observed that the cells experienced stress beyond 2 M NaCl as evidenced by increased intracellular reactive oxygen species and antioxidative enzymes, nevertheless proline and malondialdehyde content declined sharply accompanied by higher neutral lipid accumulation. Salinity exceeding 2 M resulted decrease in photosynthetic quantum yield (Fv/Fm) and enhanced glycerol synthesis accompanied by leakage. Super oxide dismutase seemed to play a pivotal role in antioxidative defense as eight isoforms were expressed differentially while catalase and glutathione peroxidase showing no significant change in their expression at higher salinity. The ability of D. salina to grow in range of salinities by sustaining healthy photosynthetic apparatus along with accumulation of valuable products made this alga an ideal organism that can be exploited as resource for biofuel and commercial products.
Collapse
Affiliation(s)
- Prabhakar Singh
- R. N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Riyazat Khadim
- R. N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ankit K Singh
- R. N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Urmilesh Singh
- R. N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Priyanka Maurya
- R. N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anupam Tiwari
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ravi K Asthana
- R. N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
25
|
Wang YH, Gao J, Sun MF, Chen JP, Zhang X, Chen Y, Chen DH. Impacts of soil salinity on Bt protein concentration in square of transgenic Bt cotton. PLoS One 2018; 13:e0207013. [PMID: 30403755 PMCID: PMC6221344 DOI: 10.1371/journal.pone.0207013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022] Open
Abstract
Insect-resistance of transgenic Bacillus thuringiensis (Bt) cotton varies among plants organs and with different environmental conditions. The objective of this study was to examine the influence of soil salinity on Bt protein concentration in cotton squares and to elucidate the potential mechanism of Bt efficacy reduction. Two cotton cultivars (NuCOTN 33B and CCRI 07, salt-sensitive and salt-tolerant) were subjected to salinity stress under four natural saline levels in field conditions in 2015 and 2016 and seven regimes of soil salinity ranged from 0.5 to 18.8 dS m-1 in greenhouse conditions in 2017. Results of field studies revealed that Bt protein content was not significantly changed at 7.13 dS m-1 salinity, but exhibited a significant drop at the 10.41 and 14.16 dS m-1 salinity. The greenhouse experiments further showed similar trends that significant declines of the insecticidal protein contents in squares were detected when soil salinity exceeded 9.1 dS m-1. Meanwhile, high salinity resulted in significant reduction in contents of soluble protein and total nitrogen, activities of nitrate reductase (NR), glutamine synthetase (GS) and glutamic-pyruvic transaminase (GPT), but increased amino acid content, activities of protease and peptidase in cotton squares. High salinity also decreased root vigor (RV), root total absorption area (RTA) and root active absorption area (RAA). The extent of decrease of Bt protein content was more pronounced in NuCOTN 33B than CCRI 07, and CCRI07 exhibited stronger enzymes activities involved in square protein synthesis and higher levels of RV, RTA and RAA. Therefore, the results of our present study indicated that insecticidal protein expression in cotton squares were significantly affected by higher salinity (equal to or higher than 9.1 dS m-1), reduced protein synthesis and increased protein degradation in squares and reduced metabolic activities in roots might lead to the decrease of Bt protein content in squares.
Collapse
Affiliation(s)
- Yong-Hui Wang
- Institute of Agricultural Sciences of Jiangsu Coastal Area, Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, P. R. China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, P. R. China
| | - Jin Gao
- Institute of Agricultural Sciences of Jiangsu Coastal Area, Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, P. R. China
| | - Ming-Fa Sun
- Institute of Agricultural Sciences of Jiangsu Coastal Area, Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, P. R. China
| | - Jian-Ping Chen
- Institute of Agricultural Sciences of Jiangsu Coastal Area, Observation and Experimental Station of Saline Land of Costal Area, Ministry of Agriculture, Yancheng, P. R. China
| | - Xiang Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, P. R. China
| | - Yuan Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, P. R. China
| | - De-Hua Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, P. R. China
- * E-mail:
| |
Collapse
|
26
|
Chen LJ, Zou WS, Fei CY, Wu G, Li XY, Lin HH, Xi DH. α-Expansin EXPA4 Positively Regulates Abiotic Stress Tolerance but Negatively Regulates Pathogen Resistance in Nicotiana tabacum. PLANT & CELL PHYSIOLOGY 2018; 59:2317-2330. [PMID: 30124953 DOI: 10.1093/pcp/pcy155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/30/2018] [Indexed: 05/08/2023]
Abstract
Since they function as cell wall-loosening proteins, expansins can affect plant growth, developmental processes and environmental stress responses. Our previous study demonstrated that changes in Nicotiana tabacum α-expansin 4 (EXPA4) expression affect the sensitivity of tobacco to Tobacco mosaic virus [recombinant TMV encoding green fluorescent protein (TMV-GFP)] infection by Agrobacterium-mediated transient expression. In this study, to characterize the function of tobacco EXPA4 further, EXPA4 RNA interfernce (RNAi) mutants and overexpression lines were generated and assayed for their tolerance to abiotic stress and resistance to pathogens. First, the differential phenotypes and histomorphology of transgenic plants with altered EXPA4 expression indicated that EXPA4 is essential for normal tobacco growth and development. By utilizing tobacco EXPA4 mutants with abiotic stress, it was demonstrated that RNAi mutants have increased hypersensitivity to salt and drought stress. In contrast, the overexpression of EXPA4 in tobacco conferred greater tolerance to salt and drought stress, as indicated by less cell damage, higher fresh weight, higher soluble sugar and proline accumulation, and higher expression levels of several stress-responsive genes. In addition, the overexpression lines were more susceptible to the viral pathogen TMV-GFP when compared with the wild type or RNAi mutants. The induction of the antioxidant system, several defense-associated phytohormones and gene expression was down-regulated in overexpression lines but up-regulated in RNAi mutants when compared with the wild type following TMV-GFP infection. In addition, EXPA4 overexpression also accelerated the disease development of Pseudomonas syringae DC3000 on tobacco. Taken together, these results suggested that EXPA4 appears to be important in tobacco growth and responses to abiotic and biotic stress.
Collapse
Affiliation(s)
- Li-Juan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Wen-Shan Zou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Chun-Yan Fei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Guo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Xin-Yuan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - De-Hui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
27
|
Asrar H, Hussain T, Gul B, Khan MA, Nielsen BL. Differential protein expression reveals salt tolerance mechanisms of Desmostachya bipinnata at moderate and high levels of salinity. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:793-812. [PMID: 32291063 DOI: 10.1071/fp17281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/26/2018] [Indexed: 06/11/2023]
Abstract
A proteomics approach was used to investigate salt tolerance mechanisms of Desmostachya bipinnata (L.) Stapf. Plants were subjected to 0mM (control), 100mM (moderate) and 400mM (high) NaCl. Proteins were separated by two-dimensional gel electrophoresis and identified with available databases. Optimal plant fresh weight was found at moderate salinity but declined at high salinity. Water potential, osmotic potential, Na+/K+ ratio, leaf electrolyte leakage, sugars and proline were altered at high salinity. However, water potential, proline content and electrolyte leakage were maintained at moderate salinity; Na+ and K+ concentrations increased, whereas sugars and osmotic potential decreased. Comparative proteome analysis revealed 103 salt responsive proteins. At moderate salinity, most of the proteins involved in energy metabolism, transport, antioxidative defence and cell growth were either unchanged or increased. Proteins related to amino-acid metabolism were decreased while those associated with secondary metabolism were accumulated. At high salinity, amino-acid metabolism and dehydration responses were evident; proteins of energy metabolism, transport and stress defence were downregulated. These results suggest that an efficient defence system, improved transport of water and metabolites, increased cell wall lignification and regulation of energy and carbohydrate metabolism allowed better potential for plant growth under moderately saline conditions.
Collapse
Affiliation(s)
- Hina Asrar
- Institute of Sustainable Halophyte Utilisation, University of Karachi, Karachi-75270, Pakistan
| | - Tabassum Hussain
- Institute of Sustainable Halophyte Utilisation, University of Karachi, Karachi-75270, Pakistan
| | - Bilquees Gul
- Institute of Sustainable Halophyte Utilisation, University of Karachi, Karachi-75270, Pakistan
| | - M Ajmal Khan
- Institute of Sustainable Halophyte Utilisation, University of Karachi, Karachi-75270, Pakistan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
28
|
Ruiz-Lau N, Sáez Á, Lanza M, Benito B. Genomic and Transcriptomic Compilation of Chloroplast Ionic Transporters of Physcomitrella patens. Study of NHAD Transporters in Na+ and K+ Homeostasis. PLANT & CELL PHYSIOLOGY 2017; 58:2166-2178. [PMID: 29036645 DOI: 10.1093/pcp/pcx150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
K+ is widely used by plant cells, whereas Na+ can easily reach toxic levels during plant growth, which typically occurs in saline environments; however, the effects and functions in the chloroplast have been only roughly estimated. Traditionally, the occurrence of ionic fluxes across the chloroplast envelope or the thylakoid membranes has been mostly deduced from physiological measurements or from knowledge of chloroplast metabolism. However, many of the proteins involved in these fluxes have not yet been characterized. Based on genomic and RNA sequencing (RNA-seq) analyses, we present a comprehensive compilation of genes encoding putative ion transporters and channels expressed in the chloroplasts of the moss Physcomitrella patens, with a special emphasis on those related to Na+ and K+ fluxes. Based on the functional characterization of nhad mutants, we also discuss the putative role of NHAD transporters in Na+ homeostasis and osmoregulation of this organelle and the putative contribution of chloroplasts to salt tolerance in this moss. We demonstrate that NaCl does not affect the chloroplast functionality in Physcomitrella despite significantly modifying expression of ionic transporters and cellular morphology, specifically the chloroplast ultrastructure, revealing a high starch accumulation. Additionally, NHAD transporters apparently do not play any essential roles in salt tolerance.
Collapse
Affiliation(s)
- Nancy Ruiz-Lau
- CONACYT-Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km 1080, Terán 29050, Tuxtla Gutiérrez, Chis, México
| | - Ángela Sáez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Mónica Lanza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
29
|
Kong X, Luo Z, Dong H, Li W, Chen Y. Non-uniform salinity in the root zone alleviates salt damage by increasing sodium, water and nutrient transport genes expression in cotton. Sci Rep 2017; 7:2879. [PMID: 28588258 PMCID: PMC5460137 DOI: 10.1038/s41598-017-03302-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/25/2017] [Indexed: 11/09/2022] Open
Abstract
Non-uniform salinity alleviates salt damage through sets of physiological adjustments in Na+ transport in leaf and water and nutrient uptake in the non-saline root side. However, little is known of how non-uniform salinity induces these adjustments. In this study, RNA sequencing (RNA-Seq) analysis shown that the expression of sodium transport and photosynthesis related genes in the non-uniform treatment were higher than that in the uniform treatment, which may be the reason for the increased photosynthetic (Pn) rate and decreased Na+ content in leaves of the non-uniform salinity treatment. Most of the water and nutrient transport related genes were up-regulated in the non-saline root side but down-regulated in roots of the high-saline side, which might be the key reason for the increased water and nutrient uptake in the non-saline root side. Furthermore, the expression pattern of most differentially expressed transcription factor and hormone related genes in the non-saline root side was similar to that in the high-saline side. The alleviated salt damage by non-uniform salinity was probably attributed to the increased expression of salt tolerance related genes in the leaf and that of water and nutrient uptake genes in the non-saline root side.
Collapse
Affiliation(s)
- Xiangqiang Kong
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Zhen Luo
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Hezhong Dong
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Weijiang Li
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Yizhen Chen
- Cotton Research Center, Shandong Key Lab for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| |
Collapse
|
30
|
Wang J, Liu S, Li C, Wang T, Zhang P, Chen K. PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance. PLoS One 2017; 12:e0172869. [PMID: 28241081 PMCID: PMC5328275 DOI: 10.1371/journal.pone.0172869] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 02/11/2017] [Indexed: 11/17/2022] Open
Abstract
Leucine-rich repeats receptor-like kinases (LRR-RLKs) play important roles in plant growth and development as well as stress responses. Here, 56 LRR-RLK genes were identified in the Antarctic moss Pohlia nutans transcriptome, which were further classified into 11 subgroups based on their extracellular domain. Of them, PnLRR-RLK27 belongs to the LRR II subgroup and its expression was significantly induced by abiotic stresses. Subcellular localization analysis showed that PnLRR-RLK27 was a plasma membrane protein. The overexpression of PnLRR-RLK27 in Physcomitrella significantly enhanced the salinity and ABA tolerance in their gametophyte growth. Similarly, PnLRR-RLK27 heterologous expression in Arabidopsis increased the salinity and ABA tolerance in their seed germination and early root growth as well as the tolerance to oxidative stress. PnLRR-RLK27 overproduction in these transgenic plants increased the expression of salt stress/ABA-related genes. Furthermore, PnLRR-RLK27 increased the activities of reactive oxygen species (ROS) scavengers and reduced the levels of malondialdehyde (MDA) and ROS. Taken together, these results suggested that PnLRR-RLK27 as a signaling regulator confer abiotic stress response associated with the regulation of the stress- and ABA-mediated signaling network.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Shenghao Liu
- Marine Ecology Research Center, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Chengcheng Li
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Tailin Wang
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Pengying Zhang
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Jinan, China
| | - Kaoshan Chen
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China
| |
Collapse
|
31
|
Islam MS, Saito JA, Emdad EM, Ahmed B, Islam MM, Halim A, Hossen QMM, Hossain MZ, Ahmed R, Hossain MS, Kabir SMT, Khan MSA, Khan MM, Hasan R, Aktar N, Honi U, Islam R, Rashid MM, Wan X, Hou S, Haque T, Azam MS, Moosa MM, Elias SM, Hasan AMM, Mahmood N, Shafiuddin M, Shahid S, Shommu NS, Jahan S, Roy S, Chowdhury A, Akhand AI, Nisho GM, Uddin KS, Rabeya T, Hoque SME, Snigdha AR, Mortoza S, Matin SA, Islam MK, Lashkar MZH, Zaman M, Yuryev A, Uddin MK, Rahman MS, Haque MS, Alam MM, Khan H, Alam M. Comparative genomics of two jute species and insight into fibre biogenesis. NATURE PLANTS 2017; 3:16223. [PMID: 28134914 DOI: 10.1038/nplants.2016.223] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/21/2016] [Indexed: 02/08/2023]
Abstract
Jute (Corchorus sp.) is one of the most important sources of natural fibre, covering ∼80% of global bast fibre production1. Only Corchorus olitorius and Corchorus capsularis are commercially cultivated, though there are more than 100 Corchorus species2 in the Malvaceae family. Here we describe high-quality draft genomes of these two species and their comparisons at the functional genomics level to support tailor-designed breeding. The assemblies cover 91.6% and 82.2% of the estimated genome sizes for C. olitorius and C. capsularis, respectively. In total, 37,031 C. olitorius and 30,096 C. capsularis genes are identified, and most of the genes are validated by cDNA and RNA-seq data. Analyses of clustered gene families and gene collinearity show that jute underwent shared whole-genome duplication ∼18.66 million years (Myr) ago prior to speciation. RNA expression analysis from isolated fibre cells reveals the key regulatory and structural genes involved in fibre formation. This work expands our understanding of the molecular basis of fibre formation laying the foundation for the genetic improvement of jute.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Jennifer A Saito
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Emdadul Mannan Emdad
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Borhan Ahmed
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Mohammad Moinul Islam
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Abdul Halim
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Quazi Md Mosaddeque Hossen
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Md Zakir Hossain
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Rasel Ahmed
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Md Sabbir Hossain
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Shah Md Tamim Kabir
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Md Sarwar Alam Khan
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Md Mursalin Khan
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Rajnee Hasan
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Nasima Aktar
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Ummay Honi
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Rahin Islam
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Md Mamunur Rashid
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Xuehua Wan
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Shaobin Hou
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Taslima Haque
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | | | | | - Sabrina M Elias
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - A M Mahedi Hasan
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Niaz Mahmood
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Md Shafiuddin
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Saima Shahid
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | | | - Sharmin Jahan
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Saroj Roy
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,DataSoft Systems Bangladesh Limited, Dhaka 1207, Bangladesh
| | - Amlan Chowdhury
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,DataSoft Systems Bangladesh Limited, Dhaka 1207, Bangladesh
| | - Ashikul Islam Akhand
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,DataSoft Systems Bangladesh Limited, Dhaka 1207, Bangladesh
| | - Golam Morshad Nisho
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,DataSoft Systems Bangladesh Limited, Dhaka 1207, Bangladesh
| | - Khaled Salah Uddin
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,DataSoft Systems Bangladesh Limited, Dhaka 1207, Bangladesh
| | - Taposhi Rabeya
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,DataSoft Systems Bangladesh Limited, Dhaka 1207, Bangladesh
| | - S M Ekramul Hoque
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,DataSoft Systems Bangladesh Limited, Dhaka 1207, Bangladesh
| | - Afsana Rahman Snigdha
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,DataSoft Systems Bangladesh Limited, Dhaka 1207, Bangladesh
| | - Sarowar Mortoza
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,DataSoft Systems Bangladesh Limited, Dhaka 1207, Bangladesh
| | - Syed Abdul Matin
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,DataSoft Systems Bangladesh Limited, Dhaka 1207, Bangladesh
| | - Md Kamrul Islam
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,DataSoft Systems Bangladesh Limited, Dhaka 1207, Bangladesh
| | - M Z H Lashkar
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,DataSoft Systems Bangladesh Limited, Dhaka 1207, Bangladesh
| | - Mahboob Zaman
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,DataSoft Systems Bangladesh Limited, Dhaka 1207, Bangladesh
| | - Anton Yuryev
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Elsevier, Rockville, Maryland, Missouri 63043, USA
| | - Md Kamal Uddin
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Md Sharifur Rahman
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Department of Telecommunications, Dhaka 1208, Bangladesh
| | - Md Samiul Haque
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Md Monjurul Alam
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | - Haseena Khan
- Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maqsudul Alam
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Jute Genome Project, Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh.,Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, Hawaii 96822, USA
| |
Collapse
|
32
|
Tan T, Sun Y, Peng X, Wu G, Bao F, He Y, Zhou H, Lin H. ABSCISIC ACID INSENSITIVE3 Is Involved in Cold Response and Freezing Tolerance Regulation in Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2017; 8:1599. [PMID: 28955377 PMCID: PMC5601040 DOI: 10.3389/fpls.2017.01599] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/31/2017] [Indexed: 05/08/2023]
Abstract
Synopsis This work demonstrates that PpABI3 contributes to freezing tolerance regulation in Physcomitrella patens. Transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3) is known to play a major role in regulating seed dormancy, germination, seedling development as well as stress responses. ABI3 is conserved among land plants; however, its roles in non-seed plants under stress conditions have not been well characterized. In this study, we report that ABI3 is involved in freezing tolerance regulation during cold acclimation at least in part through ABA signaling pathway in moss Physcomitrella patens (P. patens). Deletion of PpABI3 (Δabi3-1) compromises the induction of genes related to cold response and antioxidative protection, resulting in reduced accumulation of cryoprotectants and antioxidants. In addition, photosystem II (PSII) activity is repressed in Δabi3-1 during cold acclimation partially due to alternations of photosynthetic protein complexes compositions. The gametophyte of Δabi3-1 displays severe growth inhibition and developmental deficiency under low temperature condition, while two independent complementary lines display phenotypes similar to that of wild-type P. patens (WT). Furthermore, the freezing tolerance of Δabi3-1 was significantly affected by deletion of PpABI3. These data revealed that PpABI3 plays an important role in low temperature response and freezing tolerance in P. patens.
Collapse
Affiliation(s)
- Tinghong Tan
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Yanni Sun
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Xingji Peng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Guochun Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Fang Bao
- School of Life Sciences, Capital Normal UniversityBeijing, China
| | - Yikun He
- School of Life Sciences, Capital Normal UniversityBeijing, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
- *Correspondence: Huapeng Zhou
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
- Honghui Lin
| |
Collapse
|
33
|
Fesenko I, Seredina A, Arapidi G, Ptushenko V, Urban A, Butenko I, Kovalchuk S, Babalyan K, Knyazev A, Khazigaleeva R, Pushkova E, Anikanov N, Ivanov V, Govorun VM. The Physcomitrella patens Chloroplast Proteome Changes in Response to Protoplastation. FRONTIERS IN PLANT SCIENCE 2016; 7:1661. [PMID: 27867392 PMCID: PMC5095126 DOI: 10.3389/fpls.2016.01661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/21/2016] [Indexed: 05/29/2023]
Abstract
Plant protoplasts are widely used for genetic manipulation and functional studies in transient expression systems. However, little is known about the molecular pathways involved in a cell response to the combined stress factors resulted from protoplast generation. Plants often face more than one type of stress at a time, and how plants respond to combined stress factors is therefore of great interest. Here, we used protoplasts of the moss Physcomitrella patens as a model to study the effects of short-term stress on the chloroplast proteome. Using label-free comparative quantitative proteomic analysis (SWATH-MS), we quantified 479 chloroplast proteins, 219 of which showed a more than 1.4-fold change in abundance in protoplasts. We additionally quantified 1451 chloroplast proteins using emPAI. We observed degradation of a significant portion of the chloroplast proteome following the first hour of stress imposed by the protoplast isolation process. Electron-transport chain (ETC) components underwent the heaviest degradation, resulting in the decline of photosynthetic activity. We also compared the proteome changes to those in the transcriptional level of nuclear-encoded chloroplast genes. Globally, the levels of the quantified proteins and their corresponding mRNAs showed limited correlation. Genes involved in the biosynthesis of chlorophyll and components of the outer chloroplast membrane showed decreases in both transcript and protein abundance. However, proteins like dehydroascorbate reductase 1 and 2-cys peroxiredoxin B responsible for ROS detoxification increased in abundance. Further, genes such as thylakoid ascorbate peroxidase were induced at the transcriptional level but down-regulated at the proteomic level. Together, our results demonstrate that the initial chloroplast reaction to stress is due changes at the proteomic level.
Collapse
Affiliation(s)
- Igor Fesenko
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Anna Seredina
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Georgij Arapidi
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Vasily Ptushenko
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
- Department of Biocatalysis, Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscow, Russia
| | - Anatoly Urban
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Ivan Butenko
- Laboratory of the Proteomic Analysis, Research Institute for Physico-Chemical MedicineMoscow, Russia
| | - Sergey Kovalchuk
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Konstantin Babalyan
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Andrey Knyazev
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Regina Khazigaleeva
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Elena Pushkova
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Nikolai Anikanov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Vadim Ivanov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Vadim M. Govorun
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
- Laboratory of the Proteomic Analysis, Research Institute for Physico-Chemical MedicineMoscow, Russia
| |
Collapse
|
34
|
Azri W, Barhoumi Z, Chibani F, Borji M, Bessrour M, Mliki A. Proteomic responses in shoots of the facultative halophyte Aeluropus littoralis (Poaceae) under NaCl salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1028-1047. [PMID: 32480524 DOI: 10.1071/fp16114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/13/2016] [Indexed: 06/11/2023]
Abstract
Salinity is an environmental constraint that limits agricultural productivity worldwide. Studies on the halophytes provide valuable information to describe the physiological and molecular mechanisms of salinity tolerance. Therefore, because of genetic relationships of Aeluropus littoralis (Willd) Parl. with rice, wheat and barley, the present study was conducted to investigate changes in shoot proteome patterns in response to different salt treatments using proteomic methods. To examine the effect of salinity on A. littoralis proteome pattern, salt treatments (0, 200 and 400mM NaCl) were applied for 24h and 7 and 30 days. After 24h and 7 days exposure to salt treatments, seedlings were fresh and green, but after 30 days, severe chlorosis was established in old leaves of 400mM NaCl-salt treated plants. Comparative proteomic analysis of the leaves revealed that the relative abundance of 95 and 120 proteins was significantly altered in 200 and 400mM NaCl treated plants respectively. Mass spectrometry-based identification was successful for 66 out of 98 selected protein spots. These proteins were mainly involved in carbohydrate, energy, amino acids and protein metabolisms, photosynthesis, detoxification, oxidative stress, translation, transcription and signal transduction. These results suggest that the reduction of proteins related to photosynthesis and induction of proteins involved in glycolysis, tricarboxylic acid (TCA) cycle, and energy metabolism could be the main mechanisms for salt tolerance in A. littoralis. This study provides important information about salt tolerance, and a framework for further functional studies on the identified proteins in A. littoralis.
Collapse
Affiliation(s)
- Wassim Azri
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Zouhaier Barhoumi
- Laboratory of Extremophyle Plants, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Farhat Chibani
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Manel Borji
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Mouna Bessrour
- Laboratory of Extremophyle Plants, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
35
|
Ahmad P, Abdel Latef AAH, Rasool S, Akram NA, Ashraf M, Gucel S. Role of Proteomics in Crop Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1336. [PMID: 27660631 PMCID: PMC5014855 DOI: 10.3389/fpls.2016.01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/18/2016] [Indexed: 05/21/2023]
Abstract
Plants often experience various biotic and abiotic stresses during their life cycle. The abiotic stresses include mainly drought, salt, temperature (low/high), flooding and nutritional deficiency/excess which hamper crop growth and yield to a great extent. In view of a projection 50% of the crop loss is attributable to abiotic stresses. However, abiotic stresses cause a myriad of changes in physiological, molecular and biochemical processes operating in plants. It is now widely reported that several proteins respond to these stresses at pre- and post-transcriptional and translational levels. By knowing the role of these stress inducible proteins, it would be easy to comprehensively expound the processes of stress tolerance in plants. The proteomics study offers a new approach to discover proteins and pathways associated with crop physiological and stress responses. Thus, studying the plants at proteomic levels could help understand the pathways involved in stress tolerance. Furthermore, improving the understanding of the identified key metabolic proteins involved in tolerance can be implemented into biotechnological applications, regarding recombinant/transgenic formation. Additionally, the investigation of identified metabolic processes ultimately supports the development of antistress strategies. In this review, we discussed the role of proteomics in crop stress tolerance. We also discussed different abiotic stresses and their effects on plants, particularly with reference to stress-induced expression of proteins, and how proteomics could act as vital biotechnological tools for improving stress tolerance in plants.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, Sri Pratap CollegeSrinagar, India
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
| | - Arafat A. H. Abdel Latef
- Department of Botany, Faculty of Science, South Valley UniversityQena, Egypt
- Department of Biology, College of Applied Medical Sciences, Taif UniversityTurubah, Saudi Arabia
| | | | - Nudrat A. Akram
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
36
|
Mueller SJ, Hoernstein SNW, Reski R. The mitochondrial proteome of the moss Physcomitrella patens. Mitochondrion 2016; 33:38-44. [PMID: 27450107 DOI: 10.1016/j.mito.2016.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023]
Abstract
Extant basal land plants are routinely used to trace plant evolution and to track strategies for high abiotic stress resistance. Whereas the structure of mitochondrial genomes and RNA editing are already well studied, mitochondrial proteome research is restricted to a few data sets. While the mitochondrial proteome of the model moss Physcomitrella patens is covered to an estimated 15-25% by proteomic evidence to date, the available data have already provided insights into the evolution of metabolic compartmentation, dual targeting and mitochondrial heterogeneity. This review summarizes the current knowledge about the mitochondrial proteome of P. patens, and gives a perspective on its use as a mitochondrial model system. Its amenability to gene editing, metabolic labelling as well as fluorescence microscopy provides a unique platform to study open questions in mitochondrial biology, such as regulation of protein stability, responses to stress and connectivity to other organelles. Future challenges will include improving the proteomic resources for P. patens, and to link protein inventories and modifications as well as evolutionary differences to the functional level.
Collapse
Affiliation(s)
- Stefanie J Mueller
- INRES-Chemical Signalling University of Bonn, Friedrich-Ebert-Allee 144, DE-53113 Bonn, Germany.
| | - Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr.1, DE-79104 Freiburg, Germany.
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr.1, DE-79104 Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, DE-79104 Freiburg, Germany.
| |
Collapse
|
37
|
Bressendorff S, Azevedo R, Kenchappa CS, Ponce de León I, Olsen JV, Rasmussen MW, Erbs G, Newman MA, Petersen M, Mundy J. An Innate Immunity Pathway in the Moss Physcomitrella patens. THE PLANT CELL 2016; 28:1328-42. [PMID: 27268428 PMCID: PMC4944399 DOI: 10.1105/tpc.15.00774] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 05/13/2016] [Accepted: 06/02/2016] [Indexed: 05/22/2023]
Abstract
MAP kinase (MPK) cascades in Arabidopsis thaliana and other vascular plants are activated by developmental cues, abiotic stress, and pathogen infection. Much less is known of MPK functions in nonvascular land plants such as the moss Physcomitrella patens Here, we provide evidence for a signaling pathway in P. patens required for immunity triggered by pathogen associated molecular patterns (PAMPs). This pathway induces rapid growth inhibition, a novel fluorescence burst, cell wall depositions, and accumulation of defense-related transcripts. Two P. patens MPKs (MPK4a and MPK4b) are phosphorylated and activated in response to PAMPs. This activation in response to the fungal PAMP chitin requires a chitin receptor and one or more MAP kinase kinase kinases and MAP kinase kinases. Knockout lines of MPK4a appear wild type but have increased susceptibility to the pathogenic fungi Botrytis cinerea and Alternaria brassisicola Both PAMPs and osmotic stress activate some of the same MPKs in Arabidopsis. In contrast, abscisic acid treatment or osmotic stress of P. patens does not activate MPK4a or any other MPK, but activates at least one SnRK2 kinase. Signaling via MPK4a may therefore be specific to immunity, and the moss relies on other pathways to respond to osmotic stress.
Collapse
Affiliation(s)
- Simon Bressendorff
- Department of Molecular Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Raquel Azevedo
- Department of Molecular Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay
| | - Jakob V Olsen
- Department of Molecular Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Gitte Erbs
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Mari-Anne Newman
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Morten Petersen
- Department of Molecular Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - John Mundy
- Department of Molecular Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
38
|
Shen Y, Du J, Yue L, Zhan X. Proteomic analysis of plasma membrane proteins in wheat roots exposed to phenanthrene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10863-10871. [PMID: 26897580 DOI: 10.1007/s11356-016-6307-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/15/2016] [Indexed: 05/28/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic and toxic to humans through ingestion of contaminated food crops. PAHs can enter crop roots through proton/PAH symporters; however, to date, the symporter remains unclear. Here we reveal, for the first time, the plasma membrane proteome of Triticum aestivum seedling roots in response to phenanthrene (a model PAH) exposure. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF-MS and protein database search engines were employed to analyze and identify phenanthrene-responsive proteins. Over 192 protein spots are reproducibly detected in each gel, while 8 spots are differentially expressed under phenanthrene treatment. Phenanthrene induces five up-regulated proteins distinguished as 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 2, enolase, heat shock protein 80-2, probable mediator of RNA polymerase II transcription subunit 37e (heat shock 70-kDa protein 1), and lactoylglutathione lyase. Three proteins identified as adenosine kinase 2, 4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl glucoside beta-D-glucosidase 1c, and glyceraldehyde-3-phosphate dehydrogenase 3 are down-regulated under exposure to phenanthrene. The up-regulated proteins are related to plant defense response, antioxidant system, and glycolysis. The down-regulated proteins involve the metabolism of high-energy compounds and plant growth. Magnesium, which is able to bind to enolase, can enhance the transport of phenanthrene into wheat roots. Therefore, it is concluded that phenanthrene can induce differential expression of proteins in relation to carbohydrate metabolism, self-defense, and plant growth on wheat root plasma membrane. This study not only provides novel insights into PAH uptake by plant roots and PAH stress responses, but is also a good starting point for further determination and analyses of their functions using genetic and other approaches.
Collapse
Affiliation(s)
- Yu Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jiangxue Du
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Le Yue
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
39
|
Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress. J Proteomics 2016; 143:286-297. [PMID: 27233743 DOI: 10.1016/j.jprot.2016.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Salinity is a major abiotic stress affecting plant growth, development and agriculture productivity. Understanding the molecular mechanisms of salt stress tolerance will provide valuable information for effective crop engineering and breeding. Sugar beet monosomic addition line M14 obtained from the intercross between Beta vulgaris L. and Beta corolliflora Zoss exhibits tolerance to salt stress. In this study, the changes in the M14 proteome and phosphoproteome induced by salt stress were analyzed. We report the characteristics of the M14 plants under 0, 200, and 400mM NaCl using label-free quantitative proteomics approaches. Protein samples were subjected to total proteome profiling using LC-MS/MS and phosphopeptide enrichment to identify phosphopeptides and phosphoproteins. A total of 2182 proteins were identified and 114 proteins showed differential levels under salt stress. Interestingly, 189 phosphoproteins exhibited significant changes at the phosphorylation level under salt stress. Several signaling components associated with salt stress were found, e.g. 14-3-3 and mitogen-activated protein kinases (MAPK). Fifteen differential phosphoproteins and proteins involved in signal transduction were tested at the transcriptional level. The results revealed the short-term salt responsive mechanisms of the special sugar beet M14 line using label-free quantitative phosphoproteomics. BIOLOGICAL SIGNIFICANCE Sugar beet monosomic addition line M14 is a special germplasm with salt stress tolerance. Analysis of the M14 proteome and phosphoproteome under salt stress has provided insight into specific response mechanisms underlying salt stress tolerance. Reversible protein phosphorylation regulates a wide range of cellular processes such as transmembrane signaling, intracellular amplification of signals, and cell-cycle control. This study has identified significantly changed proteins and phosphoproteins, and determined their potential relevance to salt stress response. The knowledge gained can be potentially applied to improving crop salt tolerance.
Collapse
|
40
|
Gao S, Zheng Z, Huan L, Wang G. G6PDH activity highlights the operation of the cyclic electron flow around PSI in Physcomitrella patens during salt stress. Sci Rep 2016; 6:21245. [PMID: 26887288 PMCID: PMC4758081 DOI: 10.1038/srep21245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022] Open
Abstract
Photosynthetic performances and glucose-6-phosphate dehydrogenase (G6PDH) activity in Physcomitrella patens changed greatly during salt stress and recovery. In P. patens, the cyclic electron flow around photosystem (PS) I was much more tolerant to high salt stress than PSII. After high salt stress, the PSII activity recovered much more slowly than that of PSI, which was rapidly restored to pretreatment levels even as PSII was almost inactivate. This result suggested that after salt stress the recovery of the cyclic electron flow around PSI was independent of PSII activity. In addition, G6PDH activity and NADPH content increased under high salt stress. When G6PDH activity was inhibited by glucosamine (Glucm, a G6PDH inhibitor), the cyclic electron flow around PSI and the NADPH content decreased significantly. Additionally, after recovery in liquid medium containing Glucm, the PSI activity was much lower than in liquid medium without Glucm. These results suggested the PSI activity was affected significantly by G6PDH activity and the NADPH content. Based on the above results, we propose that G6PDH in P. patens has a close relationship with the photosynthetic process, possibly providing NADPH for the operation of the cyclic electron flow around PSI during salt stress and promoting the restoration of PSI.
Collapse
Affiliation(s)
- Shan Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenbing Zheng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
41
|
Skorupa M, Gołębiewski M, Domagalski K, Kurnik K, Abu Nahia K, Złoch M, Tretyn A, Tyburski J. Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. maritima. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:56-70. [PMID: 26795151 DOI: 10.1016/j.plantsci.2015.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 05/21/2023]
Abstract
Beta vulgaris ssp. maritima is a halophytic relative of cultivated beets. In the present work a transcriptome response to acute salt stress imposed to excised leaves of sea beet was investigated. Salt treatments consisted of adding NaCl directly to the transpiration stream by immersing the petioles of excised leaves into the salt solutions. Sequencing libraries were generated from leaves subjected to either moderate or strong salt stress. Control libraries were constructed from untreated leaves. Sequencing was performed using the Illumina MiSeq platform. We obtained 32970 unigenes by assembling the pooled reads from all the libraries with Trinity software. Screening the nr database returned 18,362 sequences with functional annotation. Using the reference transcriptome we identified 1,246 genes that were differentially expressed after 48 h of NaCl stress. Genes related to several cellular functions such as membrane transport, osmoprotection, molecular chaperoning, redox metabolism or protein synthesis were differentially expressed in response to salt stress. The response of sea beet leaves to salt treatments was marked out by transcriptomic up-regulation of genes related to photosynthetic carbon fixation, ribosome biogenesis, cell wall-building and cell wall expansion. Furthermore, several novel and undescribed transcripts were responsive to salinity in leaves of sea beet.
Collapse
Affiliation(s)
- Monika Skorupa
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Marcin Gołębiewski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Krzysztof Domagalski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Katarzyna Kurnik
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Karim Abu Nahia
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Michał Złoch
- Department of Microbiology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Andrzej Tretyn
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Jarosław Tyburski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland.
| |
Collapse
|
42
|
An F, Li G, Li QX, Li K, Carvalho LJCB, Ou W, Chen S. The Comparatively Proteomic Analysis in Response to Cold Stress in Cassava Plantlets. PLANT MOLECULAR BIOLOGY REPORTER 2016; 34:1095-1110. [PMID: 27881899 PMCID: PMC5099363 DOI: 10.1007/s11105-016-0987-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a tropical root crop and sensitive to low temperature. However, it is poorly to know how cassava can modify its metabolism and growth to adapt to cold stress. An investigation aimed at a better understanding of cold-tolerant mechanism of cassava plantlets was carried out with the approaches of physiology and proteomics in the present study. The principal component analysis of seven physiological characteristics showed that electrolyte leakage (EL), chlorophyll content, and malondialdehyde (MDA) may be the most important physiological indexes for determining cold-resistant abilities of cassava. The genome-wide proteomic analysis showed that 20 differential proteins had the same patterns in the apical expanded leaves of cassava SC8 and Col1046. They were mainly related to photosynthesis, carbon metabolism and energy metabolism, defense, protein synthesis, amino acid metabolism, signal transduction, structure, detoxifying and antioxidant, chaperones, and DNA-binding proteins, in which 40 % were related with photosynthesis. The remarkable variation in photosynthetic activity and expression level of peroxiredoxin is closely linked with expression levels of proteomic profiles. Moreover, analysis of differentially expressed proteins under cold stress is an important step toward further elucidation of mechanisms of cold stress resistance.
Collapse
Affiliation(s)
- Feifei An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| | - Genghu Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Manoa, HI USA
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| | | | - Wenjun Ou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| |
Collapse
|
43
|
Kumari A, Das P, Parida AK, Agarwal PK. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. FRONTIERS IN PLANT SCIENCE 2015; 6:537. [PMID: 26284080 PMCID: PMC4518276 DOI: 10.3389/fpls.2015.00537] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/01/2015] [Indexed: 05/18/2023]
Abstract
Halophytes are plants which naturally survive in saline environment. They account for ∼1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts. Salinity tolerance in halophytes depends on a set of ecological and physiological characteristics that allow them to grow and flourish in high saline conditions. The ability of halophytes to tolerate high salt is determined by the effective coordination between various physiological processes, metabolic pathways and protein or gene networks responsible for delivering salinity tolerance. The salinity responsive proteins belong to diverse functional classes such as photosynthesis, redox homeostasis; stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction and membrane transport. The important metabolites which are involved in salt tolerance of halophytes are proline and proline analog (4-hydroxy-N-methyl proline), glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methylmucoinositol, and polyamines. In halophytes, the synthesis of specific proteins and osmotically active metabolites control ion and water flux and support scavenging of oxygen radicals under salt stress condition. The present review summarizes the salt tolerance mechanisms of halophytes by elucidating the recent studies that have focused on proteomic, metabolomic, and ionomic aspects of various halophytes in response to salinity. By integrating the information from halophytes and its comparison with glycophytes could give an overview of salt tolerance mechanisms in halophytes, thus laying down the pavement for development of salt tolerant crop plants through genetic modification and effective breeding strategies.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Paromita Das
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Asish Kumar Parida
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Pradeep K. Agarwal
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| |
Collapse
|
44
|
Zhang CX, Tian Y, Cong PH. Proteome Analysis of Pathogen-Responsive Proteins from Apple Leaves Induced by the Alternaria Blotch Alternaria alternata. PLoS One 2015; 10:e0122233. [PMID: 26086845 PMCID: PMC4472855 DOI: 10.1371/journal.pone.0122233] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/10/2015] [Indexed: 11/29/2022] Open
Abstract
Understanding the defence mechanisms used by apple leaves against Alternaria alternate pathogen infection is important for breeding purposes. To investigate the ultrastructural differences between leaf tissues of susceptible and resistant seedlings, in vitro inoculation assays and transmission electron microscopy (TEM) analysis were conducted with two different inoculation assays. The results indicated that the resistant leaves may have certain antifungal activity against A. alternate that is lacking in susceptible leaves. To elucidate the two different host responses to A. alternate infection in apples, the proteomes of susceptible and resistant apple leaves that had or had not been infected with pathogen were characterised using two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionisation time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS). MS identified 43 differentially expressed proteins in two different inoculation assays. The known proteins were categorised into 5 classes, among these proteins, some pathogenesis-related (PR) proteins, such as beta-1,3-glucanase, ascorbate peroxidase (APX), glutathione peroxidase (GPX) and mal d1, were identified in susceptible and resistant hosts and were associated with disease resistance of the apple host. In addition, the different levels of mal d1 in susceptible and resistant hosts may contribute to the outstanding anti-disease properties of resistant leaves against A. alternate. Taken together, the resistance mechanisms of the apple host against A. alternate may be a result of the PR proteins and other defence-related proteins. Given the complexity of the biology involved in the interaction between apple leaves and the A. alternate pathogen, further investigation will yield more valuable insights into the molecular mechanisms of suppression of the A. alternate pathogen. Overall, we outline several novel insights into the response of apple leaves to pathogen attacks. These findings increase our knowledge of pathogen resistance mechanisms, and the data will also promote further investigation into the regulation of the expression of these target proteins.
Collapse
Affiliation(s)
- Cai-xia Zhang
- Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture, P.R. China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, P.R. China
| | - Yi Tian
- Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture, P.R. China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, P.R. China
| | - Pei-hua Cong
- Key Laboratory of Horticulture Crops Germplasm Resources Utilization, Ministry of Agriculture, P.R. China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, P.R. China
- * E-mail:
| |
Collapse
|
45
|
Fesenko IA, Arapidi GP, Skripnikov AY, Alexeev DG, Kostryukova ES, Manolov AI, Altukhov IA, Khazigaleeva RA, Seredina AV, Kovalchuk SI, Ziganshin RH, Zgoda VG, Novikova SE, Semashko TA, Slizhikova DK, Ptushenko VV, Gorbachev AY, Govorun VM, Ivanov VT. Specific pools of endogenous peptides are present in gametophore, protonema, and protoplast cells of the moss Physcomitrella patens. BMC PLANT BIOLOGY 2015; 15:87. [PMID: 25848929 PMCID: PMC4365561 DOI: 10.1186/s12870-015-0468-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/26/2015] [Indexed: 05/27/2023]
Abstract
BACKGROUND Protein degradation is a basic cell process that operates in general protein turnover or to produce bioactive peptides. However, very little is known about the qualitative and quantitative composition of a plant cell peptidome, the actual result of this degradation. In this study we comprehensively analyzed a plant cell peptidome and systematically analyzed the peptide generation process. RESULTS We thoroughly analyzed native peptide pools of Physcomitrella patens moss in two developmental stages as well as in protoplasts. Peptidomic analysis was supplemented by transcriptional profiling and quantitative analysis of precursor proteins. In total, over 20,000 unique endogenous peptides, ranging in size from 5 to 78 amino acid residues, were identified. We showed that in both the protonema and protoplast states, plastid proteins served as the main source of peptides and that their major fraction formed outside of chloroplasts. However, in general, the composition of peptide pools was very different between these cell types. In gametophores, stress-related proteins, e.g., late embryogenesis abundant proteins, were among the most productive precursors. The Driselase-mediated protonema conversion to protoplasts led to a peptide generation "burst", with a several-fold increase in the number of components in the latter. Degradation of plastid proteins in protoplasts was accompanied by suppression of photosynthetic activity. CONCLUSION We suggest that peptide pools in plant cells are not merely a product of waste protein degradation, but may serve as important functional components for plant metabolism. We assume that the peptide "burst" is a form of biotic stress response that might produce peptides with antimicrobial activity from originally functional proteins. Potential functions of peptides in different developmental stages are discussed.
Collapse
Affiliation(s)
- Igor A Fesenko
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Georgij P Arapidi
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Alexander Yu Skripnikov
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Biology Department, Lomonosov Moscow State University, Moscow, 199234 Russian Federation
| | - Dmitry G Alexeev
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Elena S Kostryukova
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Alexander I Manolov
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Ilya A Altukhov
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Regina A Khazigaleeva
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Anna V Seredina
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Sergey I Kovalchuk
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Rustam H Ziganshin
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Viktor G Zgoda
- />Institute of Biomedical Chemistry RAMS im. V.N. Orehovicha, 10, Pogodinskaya Street, Moscow, 119121 Russian Federation
| | - Svetlana E Novikova
- />Institute of Biomedical Chemistry RAMS im. V.N. Orehovicha, 10, Pogodinskaya Street, Moscow, 119121 Russian Federation
| | - Tatiana A Semashko
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Darya K Slizhikova
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Vasilij V Ptushenko
- />A. N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Moscow, 119992 Russian Federation
| | - Alexey Y Gorbachev
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Vadim M Govorun
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Vadim T Ivanov
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| |
Collapse
|
46
|
Parihar P, Singh S, Singh R, Singh VP, Prasad SM. Effect of salinity stress on plants and its tolerance strategies: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4056-75. [PMID: 25398215 DOI: 10.1007/s11356-014-3739-1] [Citation(s) in RCA: 404] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/17/2014] [Indexed: 04/16/2023]
Abstract
The environmental stress is a major area of scientific concern because it constraints plant as well as crop productivity. This situation has been further worsened by anthropogenic activities. Therefore, there is a much scientific saddle on researchers to enhance crop productivity under environmental stress in order to cope with the increasing food demands. The abiotic stresses such as salinity, drought, cold, and heat negatively influence the survival, biomass production and yield of staple food crops. According to an estimate of FAO, over 6% of the world's land is affected by salinity. Thus, salinity stress appears to be a major constraint to plant and crop productivity. Here, we review our understanding of salinity impact on various aspects of plant metabolism and its tolerance strategies in plants.
Collapse
Affiliation(s)
- Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, India
| | | | | | | | | |
Collapse
|
47
|
Thanh NM, Jung H, Lyons RE, Chand V, Tuan NV, Thu VTM, Mather P. A transcriptomic analysis of striped catfish (Pangasianodon hypophthalmus) in response to salinity adaptation: De novo assembly, gene annotation and marker discovery. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 10:52-63. [PMID: 24841517 DOI: 10.1016/j.cbd.2014.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/16/2014] [Accepted: 04/28/2014] [Indexed: 01/25/2023]
Abstract
The striped catfish (Pangasianodon hypophthalmus) culture industry in the Mekong Delta in Vietnam has developed rapidly over the past decade. The culture industry now however, faces some significant challenges, especially related to climate change impacts notably from predicted extensive saltwater intrusion into many low topographical coastal provinces across the Mekong Delta. This problem highlights a need for development of culture stocks that can tolerate more saline culture environments as a response to expansion of saline water-intruded land. While a traditional artificial selection program can potentially address this need, understanding the genomic basis of salinity tolerance can assist development of more productive culture lines. The current study applied a transcriptomic approach using Ion PGM technology to generate expressed sequence tag (EST) resources from the intestine and swim bladder from striped catfish reared at a salinity level of 9ppt which showed best growth performance. Total sequence data generated was 467.8Mbp, consisting of 4,116,424 reads with an average length of 112bp. De novo assembly was employed that generated 51,188 contigs, and allowed identification of 16,116 putative genes based on the GenBank non-redundant database. GO annotation, KEGG pathway mapping, and functional annotation of the EST sequences recovered with a wide diversity of biological functions and processes. In addition, more than 11,600 simple sequence repeats were also detected. This is the first comprehensive analysis of a striped catfish transcriptome, and provides a valuable genomic resource for future selective breeding programs and functional or evolutionary studies of genes that influence salinity tolerance in this important culture species.
Collapse
Affiliation(s)
- Nguyen Minh Thanh
- International University, VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Hyungtaek Jung
- Institute for Future Environment, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia; Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Russell E Lyons
- CSIRO Livestock Industries, Queensland Biosciences Precinct, QLD 4057, Australia.
| | - Vincent Chand
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Nguyen Viet Tuan
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Vo Thi Minh Thu
- International University, VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Peter Mather
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| |
Collapse
|
48
|
Boquete MT, Bermúdez-Crespo J, Aboal JR, Carballeira A, Fernández JÁ. Assessing the effects of heavy metal contamination on the proteome of the moss Pseudoscleropodium purum cross-transplanted between different areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2191-2200. [PMID: 24043506 DOI: 10.1007/s11356-013-2141-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
Protein expression was assessed in samples of Pseudoscleropodium purum cross-transplanted between one unpolluted (UNP) and two polluted (POLL) sites. Firstly, the level of expression (LE) of 17 proteins differed between native mosses from both types of sites, but differences were only maintained throughout the experiment for 5 of them. The LE of these five proteins changed over time in mosses transplanted from UNP to POLL and vice versa, becoming similar to that in autotransplants. However, these changes occurred slower than changes in the heavy metal concentrations measured in the same samples, and therefore they were not related to atmospheric pollution. Although the proteins identified were associated with moss metabolism, the expected growth reduction in samples autotransplanted within POLL (as a result of the down-regulation of photosynthesis-related proteins), did not occur. This supports the hypothesis that mosses growing in polluted areas adapt to heavy metal pollution and are able to reduce/overcome their toxic effects (i.e., reduced growth). Nevertheless, further specific research must be carried out to identify the proteins involved in this type of response, as lack of information on the bryophyte genome precludes us from reaching further conclusions.
Collapse
Affiliation(s)
- M Teresa Boquete
- Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Avda Lope Gómez de Marzoa s/n, Santiago de Compostela, 15782, Spain.
| | - José Bermúdez-Crespo
- Genética, Facultad de Biología, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Jesús R Aboal
- Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Avda Lope Gómez de Marzoa s/n, Santiago de Compostela, 15782, Spain
| | - Alejo Carballeira
- Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Avda Lope Gómez de Marzoa s/n, Santiago de Compostela, 15782, Spain
| | - J Ángel Fernández
- Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Avda Lope Gómez de Marzoa s/n, Santiago de Compostela, 15782, Spain
| |
Collapse
|
49
|
Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 2013; 14:6757-89. [PMID: 23531537 PMCID: PMC3645664 DOI: 10.3390/ijms14046757] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/17/2022] Open
Abstract
The review is focused on plant proteome response to salinity with respect to physiological aspects of plant salt stress response. The attention is paid to both osmotic and ionic effects of salinity stress on plants with respect to several protein functional groups. Therefore, the role of individual proteins involved in signalling, changes in gene expression, protein biosynthesis and degradation and the resulting changes in protein relative abundance in proteins involved in energy metabolism, redox metabolism, stressand defence-related proteins, osmolyte metabolism, phytohormone, lipid and secondary metabolism, mechanical stress-related proteins as well as protein posttranslational modifications are discussed. Differences between salt-sensitive (glycophytes) and salt-tolerant (halophytes) plants are analysed with respect to differential salinity tolerance. In conclusion, contribution of proteomic studies to understanding plant salinity tolerance is summarised and discussed.
Collapse
|
50
|
Horn R, Chudobova I, Hänsel U, Herwartz D, Koskull-Döring PV, Schillberg S. Simultaneous Treatment with Tebuconazole and Abscisic Acid Induces Drought and Salinity Stress Tolerance in Arabidopsis thaliana by Maintaining Key Plastid Protein Levels. J Proteome Res 2013; 12:1266-81. [DOI: 10.1021/pr300931u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ruth Horn
- Department Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen,
Germany
| | - Ivana Chudobova
- Department Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen,
Germany
| | | | - Denise Herwartz
- Department Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen,
Germany
| | | | - Stefan Schillberg
- Department Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen,
Germany
| |
Collapse
|