1
|
Shang P, Zheng R, Li Y, Han S, Tang S, Wu J, Duan T. Effect of AM fungi on the growth and powdery mildew development of Astragalus sinicus L. under water stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109422. [PMID: 39718283 DOI: 10.1016/j.plaphy.2024.109422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/18/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi are widely existing soil microorganisms that form symbiotic relationships with most terrestrial plants. They are important for enhancing adversity resistance, including resistance to disease and water stresses. Nevertheless, it is not clear whether the benefits can be maintained in regulating the occurrence of plant diseases under drought, flooding stress and during water restoration. In this study, we investigated the effect of AM fungus (Glomus versiforme) on the development of powdery mildew in Chinese milk vetch (Astragalus sinicus) under drought, flooding, and water recovery. The results showed that AM fungal symbiosis promoted the growth of Chinese milk vetch under water stress conditions. It increased the accumulation of ethylene (ET) and jasmonic acid (JA), enhanced the activities of antioxidant enzymes, and decreased the accumulation of salicylic acid (SA) and abscisic acid (ABA). The differentially expressed genes (DEGs) obtained from transcriptome sequencing under each stress were subjected to weighted gene co-expression network analysis (WGCNA), and a total of 12 gene co-expression modules were obtained. The analysis of the relationship between the co-expressed genes in the 12 modules and plant physiological traits showed that the magent, grey60 and darkturquoise modules were significantly associated with ET, SA, JA, ABA, plant defence enzyme activities, malondialdehyde (MDA) and H2O2 content. Water stress and disease were related with the up-regulated expression of genes in the flavonoid biosynthesis and oxidative phosphorylation, plant hormone signal transduction and plant-pathogen interaction pathways. Importantly, inoculation with AM fungus reduced the incidence of powdery mildew under drought stress by 16.54%. In summary, the results of this study showed that inoculation with AM had a positive effect on powdery mildew development tolerance in Chinese milk vetch under drought and flooding stresses and stress recovery. This provides a good basis for field management and sustainable growth of green manure crop Chinese milk vetch.
Collapse
Affiliation(s)
- Panpan Shang
- Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, China
| | - Rongchun Zheng
- Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, China
| | - Yingde Li
- Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, China
| | - Shang Han
- Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, China
| | - Shan Tang
- Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, China
| | - Ji Wu
- Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, China.
| | - Tingyu Duan
- Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, China.
| |
Collapse
|
2
|
Robin-Soriano A, Maurice K, Boivin S, Bourceret A, Laurent-Webb L, Youssef S, Nespoulous J, Boussière I, Berder J, Damasio C, Vincent B, Boukcim H, Ducousso M, Gros-Balthazard M. Absence of Gigasporales and rarity of spores in a hot desert revealed by a multimethod approach. MYCORRHIZA 2024; 34:251-270. [PMID: 39023766 DOI: 10.1007/s00572-024-01160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024]
Abstract
Hot deserts impose extreme conditions on plants growing in arid soils. Deserts are expanding due to climate change, thereby increasing the vulnerability of ecosystems and the need to preserve them. Arbuscular mycorrhizal fungi (AMF) improve plant fitness by enhancing plant water/nutrient uptake and stress tolerance. However, few studies have focused on AMF diversity and community composition in deserts, and the soil and land use parameters affecting them. This study aimed to comprehensively describe AMF ecological features in a 5,000 km2 arid hyperalkaline region in AlUla, Saudi Arabia. We used a multimethod approach to analyse over 1,000 soil and 300 plant root samples of various species encompassing agricultural, old agricultural, urban and natural ecosystems. Our method involved metabarcoding using 18S and ITS2 markers, histological techniques for direct AMF colonization observation and soil spore extraction and observation. Our findings revealed a predominance of AMF taxa assigned to Glomeraceae, regardless of the local conditions, and an almost complete absence of Gigasporales taxa. Land use had little effect on the AMF richness, diversity and community composition, while soil texture, pH and substantial unexplained stochastic variance drove these compositions in AlUla soils. Mycorrhization was frequently observed in the studied plant species, even in usually non-mycorrhizal plant taxa (e.g. Amaranthaceae, Urticaceae). Date palms and Citrus trees, representing two major crops in the region, however, displayed a very low mycorrhizal frequency and intensity. AlUla soils had a very low concentration of spores, which were mostly small. This study generated new insight on AMF and specific behavioral features of these fungi in arid environments.
Collapse
Affiliation(s)
| | - Kenji Maurice
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Stéphane Boivin
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | - Amelia Bourceret
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, Paris, France
| | - Liam Laurent-Webb
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, Paris, France
| | - Sami Youssef
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | - Jérôme Nespoulous
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | - Inès Boussière
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Julie Berder
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | | | - Bryan Vincent
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Hassan Boukcim
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
- ASARI, Mohammed VI Polytechnic University, Laâyoune, Morocco
| | - Marc Ducousso
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | | |
Collapse
|
3
|
Das S, Sarkar S. Arbuscular mycorrhizal fungal contribution towards plant resilience to drought conditions. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1355999. [PMID: 38434188 PMCID: PMC10904651 DOI: 10.3389/ffunb.2024.1355999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Climate changes cause altering rainfall patterns resulting in an increase in drought occurrences globally. These events are disrupting plants and agricultural productivity. To evade droughts, plants try to adapt and modify in the best capacities possible. The plants have adapted by structurally modifying roots, stems, and leaves, as well as modifying functions. Lately, the association of microbial communities with plants has also been proven to be an important factor in aiding resilience. The fungal representatives of the microbial community also help safeguard the plants against drought. We discuss how these fungi associate with plants and contribute to evading drought stress. We specifically focus on Arbuscular mycorrhizal fungi (AMF) mediated mechanisms involving antioxidant defenses, phytohormone mediations, osmotic adjustments, proline expressions, fungal water absorption and transport, morphological modifications, and photosynthesis. We believe understanding the mechanisms would help us to optimize the use of fungi in agricultural practices. That way we could better prepare the plants for the anticipated future drought events.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Soumyadev Sarkar
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
4
|
Mansoor S, Mir MA, Karunathilake EMBM, Rasool A, Ştefănescu DM, Chung YS, Sun HJ. Strigolactones as promising biomolecule for oxidative stress management: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108282. [PMID: 38147706 DOI: 10.1016/j.plaphy.2023.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Strigolactones, which are a group of plant hormones, have emerged as promising biomolecules for effectively managing oxidative stress in plants. Oxidative stress occurs when the production of reactive oxygen species (ROS) exceeds the plant's ability to detoxify or scavenge these harmful molecules. An elevation in reactive oxygen species (ROS) levels often occurs in response to a range of stressors in plants. These stressors encompass both biotic factors, such as fungal, viral, or nematode attacks, as well as abiotic challenges like intense light exposure, drought, salinity, and pathogenic assaults. This ROS surge can ultimately lead to cellular harm and damage. One of the key ways in which strigolactones help mitigate oxidative stress is by stimulating the synthesis and accumulation of antioxidants. These antioxidants act as scavengers of ROS, neutralizing their harmful effects. Additionally, strigolactones also regulate stomatal closure, which reduces water loss and helps alleviate oxidative stress during conditions of drought stress or water deficiencies. By understanding and harnessing the capabilities of strigolactones, it becomes possible to enhance crop productivity and enable plants to withstand environmental stresses in the face of a changing climate. This comprehensive review provides an in-depth exploration of the various roles of strigolactones in plant growth, development, and response to various stresses, with a specific emphasis on their involvement in managing oxidative stress. Strigolactones also play a critical role in detoxifying ROS while regulating the expression of genes related to antioxidant defense pathways, striking a balance between ROS detoxification and production.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Mudasir A Mir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir (SKUAST-K), Shalimar, Srinagar, J&K, 190025, India
| | - E M B M Karunathilake
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Aatifa Rasool
- Department of Fruit Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir (SKUAST-K), Shalimar, Srinagar, J&K, 190025, India
| | - Dragoş Mihail Ştefănescu
- Department of Biology and Environmental Engineering, University of Craiova, A.I.Cuza 13, 200585, Craiova, Romania
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
5
|
Boyno G, Rezaee Danesh Y, Demir S, Teniz N, Mulet JM, Porcel R. The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. Int J Mol Sci 2023; 24:16774. [PMID: 38069097 PMCID: PMC10706366 DOI: 10.3390/ijms242316774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.
Collapse
Affiliation(s)
- Gökhan Boyno
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Semra Demir
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Necmettin Teniz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
6
|
Tariq A, Ullah I, Sardans J, Graciano C, Mussarat S, Ullah A, Zeng F, Wang W, Al-Bakre DA, Ahmed Z, Ali S, Zhang Z, Yaseen A, Peñuelas J. Strigolactones can be a potential tool to fight environmental stresses in arid lands. ENVIRONMENTAL RESEARCH 2023; 229:115966. [PMID: 37100368 DOI: 10.1016/j.envres.2023.115966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Environmental stresses pose a significant threat to plant growth and ecosystem productivity, particularly in arid lands that are more susceptible to climate change. Strigolactones (SLs), carotenoid-derived plant hormones, have emerged as a potential tool for mitigating environmental stresses. METHODS This review aimed to gather information on SLs' role in enhancing plant tolerance to ecological stresses and their possible use in improving the resistance mechanisms of arid land plant species to intense aridity in the face of climate change. RESULTS Roots exude SLs under different environmental stresses, including macronutrient deficiency, especially phosphorus (P), which facilitates a symbiotic association with arbuscular mycorrhiza fungi (AMF). SLs, in association with AMF, improve root system architecture, nutrient acquisition, water uptake, stomatal conductance, antioxidant mechanisms, morphological traits, and overall stress tolerance in plants. Transcriptomic analysis revealed that SL-mediated acclimatization to abiotic stresses involves multiple hormonal pathways, including abscisic acid (ABA), cytokinins (CK), gibberellic acid (GA), and auxin. However, most of the experiments have been conducted on crops, and little attention has been paid to the dominant vegetation in arid lands that plays a crucial role in reducing soil erosion, desertification, and land degradation. All the environmental gradients (nutrient starvation, drought, salinity, and temperature) that trigger SL biosynthesis/exudation prevail in arid regions. The above-mentioned functions of SLs can potentially be used to improve vegetation restoration and sustainable agriculture. CONCLUSIONS Present review concluded that knowledge on SL-mediated tolerance in plants is developed, but still in-depth research is needed on downstream signaling components in plants, SL molecular mechanisms and physiological interactions, efficient methods of synthetic SLs production, and their effective application in field conditions. This review also invites researchers to explore the possible application of SLs in improving the survival rate of indigenous vegetation in arid lands, which can potentially help combat land degradation problems.
Collapse
Affiliation(s)
- Akash Tariq
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| | - Ihteram Ullah
- Department of Plant Breeding & Genetics, Gomal University, Dera Ismail Khan, Pakistan
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola Del Vallès, 08193, Catalonia, Spain
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Sakina Mussarat
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Abd Ullah
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Fanjiang Zeng
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China
| | - Dhafer A Al-Bakre
- Department of Biology, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Zeeshan Ahmed
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Sikandar Ali
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Zhihao Zhang
- Xinjiang Key Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China
| | - Aftab Yaseen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola Del Vallès, 08193, Catalonia, Spain
| |
Collapse
|
7
|
Rani V, Sengar RS, Garg SK, Mishra P, Shukla PK. RETRACTED ARTICLE: Physiological and Molecular Role of Strigolactones as Plant Growth Regulators: A Review. Mol Biotechnol 2023:10.1007/s12033-023-00694-2. [PMID: 36802323 DOI: 10.1007/s12033-023-00694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Affiliation(s)
- Varsha Rani
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India.
| | - R S Sengar
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India.
| | - Sanjay Kumar Garg
- M. J. P. Rohilkhand University, Bareilly, Uttar Pradesh, 243006, India
| | - Pragati Mishra
- Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Pradeep Kumar Shukla
- Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, 211007, India
| |
Collapse
|
8
|
Afshar AS, Abbaspour H. Mycorrhizal symbiosis alleviate salinity stress in pistachio plants by altering gene expression and antioxidant pathways. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:263-276. [PMID: 36875732 PMCID: PMC9981847 DOI: 10.1007/s12298-023-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/18/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
This study investigated how inoculation of salt-stressed Pistacia vera seedlings with Rhizophagus irregularis, an arbuscular mycorrhizal fungus (AMF), affects their biomass, oxidative damage, antioxidant enzyme activity, and gene expression. Pistachio seedlings (N:36) were randomly assigned to AMF inoculation and non-inoculation groups in a pot experiment with 9 replications. Each group was further divided and randomly assigned to two salinity treatments (0 and 300 mM NaCl). At the end of week 4, three pistachio plantlets were randomly selected from each group for Rhizophagus irregularis colonization inspection, physiological and biochemical assays, and biomass measurements. Salinity activated enzymatic and non-enzymatic antioxidant systems in the pistachio plants were studied. The negative effects of salinity included reduced biomass and relative water content (RWC), increased O2 ·-, H2O2, MDA, and electrolytic leakage. Generally, Rhizophagus irregularis was found to mitigate the adverse effects of salinity in pistachio seedlings. AMF inoculation resulted in even further increases in the activities of SODs, POD, CAT, and GR enzymes, upregulating Cu/Zn-SOD, Fe-SOD, Mn-SOD, and GR genes expression in plants under salinity stress. Moreover, AMF significantly increased AsA, α-tocopherol, and carotenoids under both control and salinity conditions. The study concludes with a call for future research into the mechanisms of mycorrhiza-induced tolerance in plants under salinity stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01279-8.
Collapse
Affiliation(s)
| | - Hossein Abbaspour
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Quinodoz P, Lumbroso A, Lachia M, Screpanti C, Rendine S, Horoz B, Bozoflu M, Catak S, Fonné‐Pfister R, Hermann K, De Mesmaeker A. Stereoselective Synthesis and Biological Profile of All Stereoisomers of Lactam Analogues of Strigolactones GR24 and GR18. Helv Chim Acta 2023. [DOI: 10.1002/hlca.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pierre Quinodoz
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Alexandre Lumbroso
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Mathilde Lachia
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Claudio Screpanti
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Stefano Rendine
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Beyza Horoz
- Bogazici University, Department of Chemistry, Bebek 34342 Istanbul Turkey
| | - Mert Bozoflu
- Bogazici University, Department of Chemistry, Bebek 34342 Istanbul Turkey
| | - Saron Catak
- Bogazici University, Department of Chemistry, Bebek 34342 Istanbul Turkey
| | - Raymonde Fonné‐Pfister
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Katrin Hermann
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Alain De Mesmaeker
- Syngenta Crop Protection AG Crop Protection Research Research Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| |
Collapse
|
10
|
Boosting Sustainable Agriculture by Arbuscular Mycorrhiza under Stress Condition: Mechanism and Future Prospective. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5275449. [PMID: 36619307 PMCID: PMC9815931 DOI: 10.1155/2022/5275449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
Global agriculture is frequently subjected to stresses from increased salt content, drought, heavy metals, and other factors, which limit plant growth and production, deteriorate soil health, and constitute a severe danger to global food security. Development of environmentally acceptable mitigation techniques against stresses and restrictions on the use of chemical fertilizers in agricultural fields is essential. Therefore, eco-friendly practises must be kept to prevent the detrimental impacts of stress on agricultural regions. The advanced metabolic machinery needed to handle this issue is not now existent in plants to deal against the stresses. Research has shown that the key role and mechanisms of arbuscular mycorrhiza fungi (AMF) to enhance plant nutrient uptake, immobilisation and translocation of heavy metals, and plant growth-promoting attributes may be suitable agents for plant growth under diversed stressed condition. The successful symbiosis and the functional relationship between the plant and AMF may build the protective regulatory mechansm against the key challenge in particular stress. AMF's compatibility with hyperaccumulator plants has also been supported by studies on gene regulation and theoretical arguments. In order to address this account, the present review included reducing the impacts of biotic and abiotic stress through AMF, the mechanisms of AMF to improve the host plant's capacity to endure stress, and the strategies employed by AM fungus to support plant survival in stressful conditions.
Collapse
|
11
|
Bastías DA, Balestrini R, Pollmann S, Gundel PE. Environmental interference of plant-microbe interactions. PLANT, CELL & ENVIRONMENT 2022; 45:3387-3398. [PMID: 36180415 PMCID: PMC9828629 DOI: 10.1111/pce.14455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Environmental stresses can compromise the interactions of plants with beneficial microbes. In the present review, experimental results showing that stresses negatively affect the abundance and/or functionality of plant beneficial microbes are summarized. It is proposed that the environmental interference of these plant-microbe interactions is explained by the stress-mediated induction of plant signalling pathways associated with defence hormones and reactive oxygen species. These plant responses are recognized to regulate beneficial microbes within plants. The direct negative effect of stresses on microbes may also contribute to the environmental regulation of these plant mutualisms. It is also posited that, in stress situations, beneficial microbes harbour mechanisms that contribute to maintain the mutualistic associations. Beneficial microbes produce effector proteins and increase the antioxidant levels in plants that counteract the detrimental effects of plant stress responses on them. In addition, they deliver specific stress-protective mechanisms that assist to their plant hosts to mitigate the negative effects of stresses. Our study contributes to understanding how environmental stresses affect plant-microbe interactions and highlights why beneficial microbes can still deliver benefits to plants in stressful environments.
Collapse
Affiliation(s)
- Daniel A. Bastías
- AgResearch LimitedGrasslands Research CentrePalmerston NorthNew Zealand
| | | | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Pedro E. Gundel
- IFEVA, CONICET, Universidad de Buenos AiresFacultad de AgronomíaBuenos AiresArgentina
- Centro de Ecología Integrativa, Instituto de Ciencias BiológicasUniversidad de TalcaTalcaChile
| |
Collapse
|
12
|
Alvi AF, Sehar Z, Fatma M, Masood A, Khan NA. Strigolactone: An Emerging Growth Regulator for Developing Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192604. [PMID: 36235470 PMCID: PMC9571818 DOI: 10.3390/plants11192604] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 05/21/2023]
Abstract
Improving plant resilience to changing environmental conditions is the primary focus of today's scientific research globally. It is essential to find various strategies for the better survival of plants with higher resistance potential to climate change. Strigolactones (SLs) are multifunctional β-carotene derivative molecules that determine a range of plant growth and development aspects, such as root architecture, shoot branching, chlorophyll synthesis, and senescence. SLs facilitate strong defense responses against drought, salinity, heavy metal, nutrient starvation, and heat stress. The SLs trigger other hormonal-responsive pathways and determine plant resilience against stressful environments. This review focuses on the mechanisms regulated by SLs and interaction with other plant hormones to regulate plant developmental processes and SLs' influence on the mitigation of plant damage under abiotic stresses. A better understanding of the signaling and perception of SLs may lead to the path for the sustainability of plants in the changing environmental scenario. The SLs may be considered as an opening door toward sustainable agriculture.
Collapse
|
13
|
Okazawa A, Baba A, Okano H, Tokunaga T, Nakaue T, Ogawa T, Shimma S, Sugimoto Y, Ohta D. Involvement of α-galactosidase OmAGAL2 in planteose hydrolysis during seed germination of Orobanche minor. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1992-2004. [PMID: 34850875 PMCID: PMC8982430 DOI: 10.1093/jxb/erab527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/30/2021] [Indexed: 06/01/2023]
Abstract
Root parasitic weeds of the Orobanchaceae, such as witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.), cause serious losses in agriculture worldwide, and efforts have been made to control these parasitic weeds. Understanding the characteristic physiological processes in the life cycle of root parasitic weeds is particularly important to identify specific targets for growth modulators. In our previous study, planteose metabolism was revealed to be activated soon after the perception of strigolactones in germinating seeds of O. minor. Nojirimycin inhibited planteose metabolism and impeded seed germination of O. minor, indicating a possible target for root parasitic weed control. In the present study, we investigated the distribution of planteose in dry seeds of O. minor by matrix-assisted laser desorption/ionization-mass spectrometry imaging. Planteose was detected in tissues surrounding-but not within-the embryo, supporting its suggested role as a storage carbohydrate. Biochemical assays and molecular characterization of an α-galactosidase family member, OmAGAL2, indicated that the enzyme is involved in planteose hydrolysis in the apoplast around the embryo after the perception of strigolactones, to provide the embryo with essential hexoses for germination. These results indicate that OmAGAL2 is a potential molecular target for root parasitic weed control.
Collapse
Affiliation(s)
- Atsushi Okazawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Atsuya Baba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Hikaru Okano
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Tomoya Tokunaga
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Tsubasa Nakaue
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Takumi Ogawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Shuichi Shimma
- Graduate School of Engineering, Osaka University, Suita, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
14
|
Current Studies of the Effects of Drought Stress on Root Exudates and Rhizosphere Microbiomes of Crop Plant Species. Int J Mol Sci 2022; 23:ijms23042374. [PMID: 35216487 PMCID: PMC8874553 DOI: 10.3390/ijms23042374] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 12/16/2022] Open
Abstract
With the warming global climate, drought stress is considered to be the most important abiotic factor limiting plant growth and yield in the world. Drought stress has serious impacts on crop production. Many researchers have studied the influences of drought stress on crop production and plant physiology; however, few researchers have combined root exudates with root-associated microbiomes for their mutual effects under drought conditions. In this review, we systematically illustrate the impact of drought stress on root exudates and root-associated microbiomes, and then we discuss the mutual regulation of root-associated microbiomes and the host plant in helping the plant adapt to drought. Finally, we construct a framework for the mutual connections between the plant, root exudates, and the microbiome. We hope this review can provide some significant guidelines to promote the study of drought resistance in plants in association with the rhizosphere microbiota.
Collapse
|
15
|
Bhoi A, Yadu B, Chandra J, Keshavkant S. Contribution of strigolactone in plant physiology, hormonal interaction and abiotic stresses. PLANTA 2021; 254:28. [PMID: 34241703 DOI: 10.1007/s00425-021-03678-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/30/2021] [Indexed: 05/07/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived molecules, which regulate various developmental and adaptation processes in plants. These are engaged in different aspects of growth such as development of root, leaf senescence, shoot branching, etc. Plants grown under nutrient-deficient conditions enhance SL production that facilitates root architecture and symbiosis of arbuscular mycorrhizal fungi, as a result increases nutrient uptake. The crosstalk of SLs with other phytohormones such as auxin, abscisic acid, cytokinin and gibberellins, in response to abiotic stresses indicates that SLs actively contribute to the regulatory systems of plant stress adaptation. In response to different environmental circumstances such as salinity, drought, heat, cold, heavy metals and nutrient deprivation, these SLs get accumulated in plant tissues. Strigolactones regulate multiple hormonal responsive pathways, which aids plants to surmount stressful environmental constraints as well as reduce negative impact on overall productivity of crops. The external application of SL analog GR24 for its higher bioaccumulation can be one of the possible approaches for establishing various abiotic stress tolerances in plants.
Collapse
Affiliation(s)
- Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India
| | - Bhumika Yadu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India
- School of Life and Allied Sciences, ITM University, Raipur, 492 002, India
| | - Jipsi Chandra
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India.
- National Center for Natural Resources, Pt. Ravishankar Shukla University, Raipur, 492 010, India.
| |
Collapse
|
16
|
De Bauw P, Birindwa D, Merckx R, Boeraeve M, Munyahali W, Peeters G, Bolaji T, Honnay O. Improved genotypes and fertilizers, not fallow duration, increase cassava yields without compromising arbuscular mycorrhizal fungus richness or diversity. MYCORRHIZA 2021; 31:483-496. [PMID: 34173082 DOI: 10.1007/s00572-021-01039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous in agroecosystems, but their role in mediating agricultural yield remains contested. Field experiments testing effects of realistic agronomic practices of intensification on AM fungus composition and yields are scarce, especially in the low-input systems of sub-Saharan Africa. A large, full-factorial field experiment was conducted in South-Kivu (DR Congo), testing effects of fallow duration (6 vs. 12 months), genotype (landrace vs. improved), and fertilizer management (control vs. five combinations omitting N, P, K, and/or secondary macro- and micronutrients) on yields of cassava, an important staple crop strongly colonized by AMF. Furthermore, we used DNA-metabarcoding to evaluate effects of these agronomic practices on the AM fungal communities on the roots. The shorter fallow duration strongly increased diversity and richness of AMF, but this did not correspond with increased yields. Cassava yield was mainly determined by genotype, being largest for the improved genotype, which coincided with a significantly higher sum of AM fungal sequences. Effects of fertilizer or genotype on community composition were minor to absent. We found no evidence that increased AMF richness and diversity enhanced cassava yields. In contrast, the use of the improved genotype and mineral fertilizers strongly benefitted yields, without compromising richness or diversity of AMF. Cassava-AMF associations in this work appear robust to fertilizer amendments and modern genotype improvement.
Collapse
Affiliation(s)
- Pieterjan De Bauw
- Department of Earth and Environmental Sciences, Division Soil and Water Management, Kasteelpark Arenberg, 20-3001, Leuven, KU, Belgium.
| | - Damas Birindwa
- Department of Earth and Environmental Sciences, Division Soil and Water Management, Kasteelpark Arenberg, 20-3001, Leuven, KU, Belgium
- Université Catholique de Bukavu (UCB), Bukavu, Democratic Republic of the Congo
| | - Roel Merckx
- Department of Earth and Environmental Sciences, Division Soil and Water Management, Kasteelpark Arenberg, 20-3001, Leuven, KU, Belgium
| | - Margaux Boeraeve
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| | - Wivine Munyahali
- Université Catholique de Bukavu (UCB), Bukavu, Democratic Republic of the Congo
| | - Gerrit Peeters
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| | - Thanni Bolaji
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| | - Olivier Honnay
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| |
Collapse
|
17
|
Tsiknia M, Tsikou D, Papadopoulou KK, Ehaliotis C. Multi-species relationships in legume roots: From pairwise legume-symbiont interactions to the plant - microbiome - soil continuum. FEMS Microbiol Ecol 2021; 97:5957530. [PMID: 33155054 DOI: 10.1093/femsec/fiaa222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Mutualistic relationships of legume plants with, either bacteria (like rhizobia) or fungi (like arbuscular mycorrhizal fungi), have been investigated intensively, usually as bi-partite interactions. However, diverse symbiotic interactions take place simultaneously or sequentially under field conditions. Their collective, but not additive, contribution to plant growth and performance remains hard to predict, and appears to be furthermore affected by crop species and genotype, non-symbiotic microbial interactions and environmental variables. The challenge is: (i) to unravel the complex overlapping mechanisms that operate between the microbial symbionts as well as between them, their hosts and the rhizosphere (ii) to understand the dynamics of the respective mechanisms in evolutionary and ecological terms. The target for agriculture, food security and the environment, is to use this insight as a solid basis for developing new integrated technologies, practices and strategies for the efficient use of beneficial microbes in legumes and other plants. We review recent advances in our understanding of the symbiotic interactions in legumes roots brought about with the aid of molecular and bioinformatics tools. We go through single symbiont-host interactions, proceed to tripartite symbiont-host interactions, appraise interactions of symbiotic and associative microbiomes with plants in the root-rhizoplane-soil continuum of habitats and end up by examining attempts to validate community ecology principles in the legume-microbe-soil biosystem.
Collapse
Affiliation(s)
- Myrto Tsiknia
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75 st., Athens 11855, Greece
| | - Daniela Tsikou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Kalliope K Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Constantinos Ehaliotis
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75 st., Athens 11855, Greece
| |
Collapse
|
18
|
Phour M, Sehrawat A, Sindhu SS, Glick BR. Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 2020; 241:126589. [DOI: 10.1016/j.micres.2020.126589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
|
19
|
Visentin I, Pagliarani C, Deva E, Caracci A, Turečková V, Novák O, Lovisolo C, Schubert A, Cardinale F. A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. PLANT, CELL & ENVIRONMENT 2020; 43:1613-1624. [PMID: 32196123 DOI: 10.1111/pce.13758] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 05/12/2023]
Abstract
miR156 is a conserved microRNA whose role and induction mechanisms under stress are poorly known. Strigolactones are phytohormones needed in shoots for drought acclimation. They promote stomatal closure ABA-dependently and independently; however, downstream effectors for the former have not been identified. Linkage between miR156 and strigolactones under stress has not been reported. We compared ABA accumulation and sensitivity as well as performances of wt and miR156-overexpressing (miR156-oe) tomato plants during drought. We also quantified miR156 levels in wt, strigolactone-depleted and strigolactone-treated plants, exposed to drought stress. Under irrigated conditions, miR156 overexpression and strigolactone treatment led to lower stomatal conductance and higher ABA sensitivity. Exogenous strigolactones were sufficient for miR156 accumulation in leaves, while endogenous strigolactones were required for miR156 induction by drought. The "after-effect" of drought, by which stomata do not completely re-open after rewatering, was enhanced by both strigolactones and miR156. The transcript profiles of several miR156 targets were altered in strigolactone-depleted plants. Our results show that strigolactones act as a molecular link between drought and miR156 in tomato, and identify miR156 as a mediator of ABA-dependent effect of strigolactones on the after-effect of drought on stomata. Thus, we provide insights into both strigolactone and miR156 action on stomata.
Collapse
Affiliation(s)
- Ivan Visentin
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
| | - Chiara Pagliarani
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
- Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| | - Eleonora Deva
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
- Centre for Biotech & Agricultural Research StrigoLab Srl, Turin, Italy
| | - Alessio Caracci
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
| | - Veronika Turečková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czech Republic
| | - Ondrej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czech Republic
| | - Claudio Lovisolo
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
| | - Andrea Schubert
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
| | - Francesca Cardinale
- Plant Stress Lab, Department of Agriculture, Forestry and Food Science DISAFA - Turin University, Grugliasco, Italy
| |
Collapse
|
20
|
Yoneyama K. Recent progress in the chemistry and biochemistry of strigolactones. JOURNAL OF PESTICIDE SCIENCE 2020; 45:45-53. [PMID: 32508512 PMCID: PMC7251197 DOI: 10.1584/jpestics.d19-084] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Strigolactones (SLs) are plant secondary metabolites derived from carotenoids. SLs play important roles in the regulation of plant growth and development in planta and coordinate interactions between plants and other organisms including root parasitic plants, and symbiotic and pathogenic microbes in the rhizosphere. In the 50 years since the discovery of the first SL, strigol, our knowledge about the chemistry and biochemistry of SLs has advanced explosively, especially over the last two decades. In this review, recent advances in the chemistry and biology of SLs are summarized and possible future outcomes are discussed.
Collapse
Affiliation(s)
- Koichi Yoneyama
- Women’s Future Development Center, Ehime University, 3 Bunkyo-cho, Matsuyama 790–8577, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Abo Nouh FA, Abdel-Azeem AM. Role of Fungi in Adaptation of Agricultural Crops to Abiotic Stresses. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Front Microbiol 2019; 10:2791. [PMID: 31921005 PMCID: PMC6930159 DOI: 10.3389/fmicb.2019.02791] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
Soil salinity has emerged as a serious issue for global food security. It is estimated that currently about 62 million hectares or 20 percent of the world's irrigated land is affected by salinity. The deposition of an excess amount of soluble salt in cultivable land directly affects crop yields. The uptake of high amount of salt inhibits diverse physiological and metabolic processes of plants even impacting their survival. The conventional methods of reclamation of saline soil which involve scraping, flushing, leaching or adding an amendment (e.g., gypsum, CaCl2, etc.) are of limited success and also adversely affect the agro-ecosystems. In this context, developing sustainable methods which increase the productivity of saline soil without harming the environment are necessary. Since long, breeding of salt-tolerant plants and development of salt-resistant crop varieties have also been tried, but these and aforesaid conventional approaches are not able to solve the problem. Salt tolerance and dependence are the characteristics of some microbes. Salt-tolerant microbes can survive in osmotic and ionic stress. Various genera of salt-tolerant plant growth promoting rhizobacteria (ST-PGPR) have been isolated from extreme alkaline, saline, and sodic soils. Many of them are also known to mitigate various biotic and abiotic stresses in plants. In the last few years, potential PGPR enhancing the productivity of plants facing salt-stress have been researched upon suggesting that ST-PGPR can be exploited for the reclamation of saline agro-ecosystems. In this review, ST-PGPR and their potential in enhancing the productivity of saline agro-ecosystems will be discussed. Apart from this, PGPR mediated mechanisms of salt tolerance in different crop plants and future research trends of using ST-PGPR for reclamation of saline soils will also be highlighted.
Collapse
Affiliation(s)
- Dilfuza Egamberdieva
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Stephan Wirth
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | | | - Jitendra Mishra
- DST-CPR, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Naveen K. Arora
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
23
|
Bahadur A, Batool A, Nasir F, Jiang S, Mingsen Q, Zhang Q, Pan J, Liu Y, Feng H. Mechanistic Insights into Arbuscular Mycorrhizal Fungi-Mediated Drought Stress Tolerance in Plants. Int J Mol Sci 2019; 20:E4199. [PMID: 31461957 PMCID: PMC6747277 DOI: 10.3390/ijms20174199] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/03/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic interaction with 80% of known land plants. It has a pronounced impact on plant growth, water absorption, mineral nutrition, and protection from abiotic stresses. Plants are very dynamic systems having great adaptability under continuously changing drying conditions. In this regard, the function of AMF as a biological tool for improving plant drought stress tolerance and phenotypic plasticity, in terms of establishing mutualistic associations, seems an innovative approach towards sustainable agriculture. However, a better understanding of these complex interconnected signaling pathways and AMF-mediated mechanisms that regulate the drought tolerance in plants will enhance its potential application as an innovative approach in environmentally friendly agriculture. This paper reviews the underlying mechanisms that are confidently linked with plant-AMF interaction in alleviating drought stress, constructing emphasis on phytohormones and signaling molecules and their interaction with biochemical, and physiological processes to maintain the homeostasis of nutrient and water cycling and plant growth performance. Likewise, the paper will analyze how the AMF symbiosis helps the plant to overcome the deleterious effects of stress is also evaluated. Finally, we review how interactions between various signaling mechanisms governed by AMF symbiosis modulate different physiological responses to improve drought tolerance. Understanding the AMF-mediated mechanisms that are important for regulating the establishment of the mycorrhizal association and the plant protective responses towards unfavorable conditions will open new approaches to exploit AMF as a bioprotective tool against drought.
Collapse
Affiliation(s)
- Ali Bahadur
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Asfa Batool
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
| | - Shengjin Jiang
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qin Mingsen
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qi Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianbin Pan
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongjun Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huyuan Feng
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
24
|
Fileccia V, Ingraffia R, Amato G, Giambalvo D, Martinelli F. Identification of microRNAS differentially regulated by water deficit in relation to mycorrhizal treatment in wheat. Mol Biol Rep 2019; 46:5163-5174. [PMID: 31327121 DOI: 10.1007/s11033-019-04974-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/09/2019] [Indexed: 11/29/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are soil microrganisms that establish symbiosis with plants positively influencing their resistance to abiotic stresses. The aim of this work was to identify wheat miRNAs differentially regulated by water deficit conditions in presence or absence of AMF treatment. Small RNA libraries were constructed for both leaf and root tissues considering four conditions: control (irrigated) or water deficit in presence/absence of mycorrhizal (AMF) treatment. A total of 12 miRNAs were significantly regulated by water deficit in leaves: five in absence and seven in presence of AMF treatment. In roots, three miRNAs were water deficit-modulated in absence of mycorrhizal treatment while six were regulated in presence of it. The most represented miRNA family was miR167 that was regulated by water deficit in both leaf and root tissues. Interestingly, miR827-5p was differentially regulated in leaves in the absence of mycorrhizal treatment while it was water deficit-modulated in roots irrespective of AMF treatment. In roots, water deficit repressed miR827-5p, miR394, miR6187, miR167e-3p, and miR9666b-3p affecting transcription, RNA synthesis, protein synthesis, and protein modifications. In leaves, mycorrhizae modulated miR5384-3p and miR156e-3p affecting trafficking and cell redox homeostasis. DNA replication and transcription regulation should be targeted by the repression of miR1432-5p and miR166h-3p. This work provided interesting insights into the post-transcriptional mechanisms of wheat responses to water deficit in relation to mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Veronica Fileccia
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Rosolino Ingraffia
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Gaetano Amato
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Dario Giambalvo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | | |
Collapse
|
25
|
Li J, Meng B, Chai H, Yang X, Song W, Li S, Lu A, Zhang T, Sun W. Arbuscular Mycorrhizal Fungi Alleviate Drought Stress in C 3 ( Leymus chinensis) and C 4 ( Hemarthria altissima) Grasses via Altering Antioxidant Enzyme Activities and Photosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:499. [PMID: 31114594 PMCID: PMC6503820 DOI: 10.3389/fpls.2019.00499] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/01/2019] [Indexed: 05/10/2023]
Abstract
As one of the most important limiting factors of grassland productivity, drought is predicted to increase in intensity and frequency. Greenhouse studies suggest that arbuscular mycorrhizal fungi (AMF) can improve plant drought resistance. However, whether AMF can improve plant drought resistance in field conditions and whether the effects of AMF on drought resistance differ among plants with different photosynthetic pathways remain unclear. To evaluate the effect of indigenous AMF on plant drought resistance, an in situ rainfall exclusion experiment was conducted in a temperate meadow in northeast China. The results showed that AMF significantly reduced the negative effects of drought on plant growth. On average, AMF enhanced plant biomass, photosynthetic rate (A), stomatal conductance (g s), intrinsic water use efficiency (iWUE), and superoxide dismutase (SOD) activity of the C3 species Leymus chinensis by 58, 63, 38, 15, and 45%, respectively, and reduced levels of malondialdehyde (MDA) by 32% under light and moderate drought (rainfall exclusion of 30 and 50%, respectively). However, under extreme drought (rainfall exclusion of 70%), AMF elevated only aboveground biomass and catalase (CAT) activities. Averagely, AMF increased the aboveground biomass, A, and CAT activity of Hemarthria altissima (C4) by 37, 28, and 30%, respectively, under light and moderate droughts. The contribution of AMF to plant drought resistance was higher for the C3 species than that for the C4 species under both light and moderate drought conditions. The results highlight potential photosynthetic type differences in the magnitude of AMF-associated enhancement in plant drought resistance. Therefore, AMF may determine plant community structure under future climate change scenarios by affecting the drought resistance of different plant functional groups.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Wei Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
26
|
Effects of Arbuscular Mycorrhizal Fungi on Growth, Photosynthesis, and Nutrient Uptake of Zelkova serrata (Thunb.) Makino Seedlings under Salt Stress. FORESTS 2019. [DOI: 10.3390/f10020186] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salinity is the primary restriction factor for vegetation conservation and the rehabilitation of coastal areas in Eastern China. Arbuscular mycorrhizal fungi (AMF) have been proved to have the ability to alleviate salt stress in plants. However, the role of AMF in relieving salt stress among indigenous trees species is less well known, limiting the application of AMF in the afforestation of local area. In this study, a salt-stress pot experiment was conducted to evaluate the effects of AMF on Zelkova serrata (Thunb.) Makino, a tree species with significant potential for afforestation of coastal area. The Z. serrata seedlings inoculated with three AMF strains (Funneliformis mosseae 1, Funneliformis mosseae 2, and Diversispora tortuosa) were subjected to two salt treatments (0 and 100 mM NaCl) under greenhouse conditions. The results showed that the three AMF strains had positive effects, to a certain extent, on plant growth and photosynthesis under normal condition. However, only F. mosseae 1 and F. mosseae 2 alleviated the inhibition of growth, photosynthesis, and nutrient uptake of Z. serrata seedlings under salt stress. The two AMF strains mitigated salt-induced adverse effects on seedlings mainly by increasing the leaf photosynthetic ability and biomass accumulation by reducing Na+ content, increasing P, K+, and Mg2+ content, as well as by enhancing photosynthetic pigments content and the stomatal conductance of leaves. These results indicated that AMF inoculation is a promising strategy for the afforestation of coastal areas in Eastern China.
Collapse
|
27
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
28
|
Mostofa MG, Li W, Nguyen KH, Fujita M, Tran LSP. Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. PLANT, CELL & ENVIRONMENT 2018; 41:2227-2243. [PMID: 29869792 DOI: 10.1111/pce.13364] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/11/2018] [Accepted: 05/30/2018] [Indexed: 05/19/2023]
Abstract
Phytohormones play central roles in boosting plant tolerance to environmental stresses, which negatively affect plant productivity and threaten future food security. Strigolactones (SLs), a class of carotenoid-derived phytohormones, were initially discovered as an "ecological signal" for parasitic seed germination and establishment of symbiotic relationship between plants and beneficial microbes. Subsequent characterizations have described their functional roles in various developmental processes, including root development, shoot branching, reproductive development, and leaf senescence. SLs have recently drawn much attention due to their essential roles in the regulation of various physiological and molecular processes during the adaptation of plants to abiotic stresses. Reports suggest that the production of SLs in plants is strictly regulated and dependent on the type of stresses that plants confront at various stages of development. Recently, evidence for crosstalk between SLs and other phytohormones, such as abscisic acid, in responses to abiotic stresses suggests that SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Moreover, the prospective roles of SLs in the management of plant growth and development under adverse environmental conditions have been suggested. In this review, we provide a comprehensive discussion pertaining to SL-mediated plant responses and adaptation to abiotic stresses.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kien Huu Nguyen
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Japan
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
29
|
Xu L, Wu C, Oelmüller R, Zhang W. Role of Phytohormones in Piriformospora indica-Induced Growth Promotion and Stress Tolerance in Plants: More Questions Than Answers. Front Microbiol 2018; 9:1646. [PMID: 30140257 PMCID: PMC6094092 DOI: 10.3389/fmicb.2018.01646] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Phytohormones play vital roles in the growth and development of plants as well as in interactions of plants with microbes such as endophytic fungi. The endophytic root-colonizing fungus Piriformospora indica promotes plant growth and performance, increases resistance of colonized plants to pathogens, insects and abiotic stress. Here, we discuss the roles of the phytohormones (auxins, cytokinin, gibberellins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids) in the interaction of P. indica with higher plant species, and compare available data with those from other (beneficial) microorganisms interacting with roots. Crosstalks between different hormones in balancing the plant responses to microbial signals is an emerging topic in current research. Furthermore, phytohormones play crucial roles in systemic signal propagation as well as interplant communication. P. indica interferes with plant hormone synthesis and signaling to stimulate growth, flowering time, differentiation and local and systemic immune responses. Plants adjust their hormone levels in the roots in response to the microbes to control colonization and fungal propagation. The available information on the roles of phytohormones in beneficial root-microbe interactions opens new questions of how P. indica manipulates the plant hormone metabolism to promote the benefits for both partners in the symbiosis.
Collapse
Affiliation(s)
- Le Xu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
30
|
Jia KP, Baz L, Al-Babili S. From carotenoids to strigolactones. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2189-2204. [PMID: 29253188 DOI: 10.1093/jxb/erx476] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 05/18/2023]
Abstract
Strigolactones are phytohormones that regulate various plant developmental and adaptation processes. When released into soil, strigolactones act as chemical signals, attracting symbiotic arbuscular mycorrhizal fungi and inducing seed germination in root-parasitic weeds. Strigolactones are carotenoid derivatives, characterized by the presence of a butenolide ring that is connected by an enol ether bridge to a less conserved second moiety. Carotenoids are isopenoid pigments that differ in structure, number of conjugated double bonds, and stereoconfiguration. Genetic analysis and enzymatic studies have demonstrated that strigolactones originate from all-trans-β-carotene in a pathway that involves the all-trans-/9-cis-β-carotene isomerase DWARF27 and carotenoid cleavage dioxygenase 7 and 8 (CCD7, 8). The CCD7-mediated, regiospecific and stereospecific double-bond cleavage of 9-cis-β-carotene leads to a 9-cis-configured intermediate that is converted by CCD8 via a combination of reactions into the central metabolite carlactone. By catalyzing repeated oxygenation reactions that can be coupled to ring closure, CYP711 enzymes convert carlactone into tricyclic-ring-containing canonical and non-canonical strigolactones. Modifying enzymes, which are mostly unknown, further increase the diversity of strigolactones. This review explores carotenogenesis, provides an update on strigolactone biosynthesis, with emphasis on the substrate specificity and reactions catalyzed by the different enzymes, and describes the regulation of the biosynthetic pathway.
Collapse
Affiliation(s)
- Kun-Peng Jia
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, The Bioactives Lab, Thuwal, Kingdom of Saudi Arabia
| | - Lina Baz
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, The Bioactives Lab, Thuwal, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, The Bioactives Lab, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
31
|
Chang W, Sui X, Fan XX, Jia TT, Song FQ. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings. Front Microbiol 2018; 9:652. [PMID: 29675008 PMCID: PMC5895642 DOI: 10.3389/fmicb.2018.00652] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.
Collapse
Affiliation(s)
- Wei Chang
- College of Forestry, Northeast Forestry University, Harbin, China.,College of Life Sciences, Heilongjiang University, Harbin, China
| | - Xin Sui
- College of Life Sciences, Heilongjiang University, Harbin, China
| | - Xiao-Xu Fan
- College of Life Sciences, Heilongjiang University, Harbin, China
| | - Ting-Ting Jia
- College of Life Sciences, Heilongjiang University, Harbin, China
| | - Fu-Qiang Song
- College of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
32
|
Rozpądek P, Domka AM, Nosek M, Ważny R, Jędrzejczyk RJ, Wiciarz M, Turnau K. The Role of Strigolactone in the Cross-Talk Between Arabidopsis thaliana and the Endophytic Fungus Mucor sp. Front Microbiol 2018; 9:441. [PMID: 29615990 PMCID: PMC5867299 DOI: 10.3389/fmicb.2018.00441] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/26/2018] [Indexed: 01/24/2023] Open
Abstract
Over the last years the role of fungal endophytes in plant biology has been extensively studied. A number of species were shown to positively affect plant growth and fitness, thus attempts have been made to utilize these microorganisms in agriculture and phytoremediation. Plant-fungi symbiosis requires multiple metabolic adjustments of both of the interacting organisms. The mechanisms of these adaptations are mostly unknown, however, plant hormones seem to play a central role in this process. The plant hormone strigolactone (SL) was previously shown to activate hyphae branching of mycorrhizal fungi and to negatively affect pathogenic fungi growth. Its role in the plant-endophytic fungi interaction is unknown. The effect of the synthetic SL analog GR24 on the endophytic fungi Mucor sp. growth, respiration, H2O2 production and the activity of antioxidant enzymes was evaluated. We found fungi colony growth rate was decreased in a GR24 concentration dependent manner. Additionally, the fungi accumulated more H2O2 what was accompanied by an altered activity of antioxidant enzymes. Symbiosis with Mucor sp. positively affected Arabidopsis thaliana growth, but SL was necessary for the establishment of the beneficial interaction. A. thaliana biosynthesis mutants max1 and max4, but not the SL signaling mutant max2 did not develop the beneficial phenotype. The negative growth response was correlated with alterations in SA homeostasis and a significant upregulation of genes encoding selected plant defensins. The fungi were also shown to be able to decompose SL in planta and to downregulate the expression of SL biosynthesis genes. Additionally, we have shown that GR24 treatment with a dose of 1 μM activates the production of SA in A. thaliana. The results presented here provide evidence for a role of SL in the plant-endophyte cross-talk during the mutualistic interaction between Arabidopsis thaliana and Mucor sp.
Collapse
Affiliation(s)
- Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka M. Domka
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Michał Nosek
- Institute of Biology, Pedagogical University of Kraków, Kraków, Poland
| | - Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Monika Wiciarz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
33
|
|
34
|
Torres CA, Sepúlveda G, Kahlaoui B. Phytohormone Interaction Modulating Fruit Responses to Photooxidative and Heat Stress on Apple ( Malus domestica Borkh.). FRONTIERS IN PLANT SCIENCE 2017; 8:2129. [PMID: 29491868 PMCID: PMC5824616 DOI: 10.3389/fpls.2017.02129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/30/2017] [Indexed: 05/23/2023]
Abstract
Sun-related physiological disorders such as sun damage on apples (Malus domestica Borkh) are caused by cumulative photooxidative and heat stress during their growing season triggering morphological, physiological, and biochemical changes in fruit tissues not only while it is on the tree but also after it has been harvested. The objective of the work was to establish the interaction of auxin (indole-3-acetic acid; IAA), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) and its precursor ACC (free and conjugated, MACC) during development of sun-injury-related disorders pre- and post-harvest on apples. Peel tissue was extracted from fruit growing under different sun exposures (Non-exposed, NE; Exposed, EX) and with sun injury symptoms (Moderate, Mod). Sampling was carried out every 15 days from 75 days after full bloom (DAFB) until 120 days post-harvest in cold storage (1°C, > 90%RH). Concentrations of IAA, ABA, JA, SA, were determined using UHPLC mass spectrometry, and ET and ACC (free and conjugated MACC) using gas chromatography. IAA was found not to be related directly to sun injury development, but it decreased 60% in sun exposed tissue, and during fruit development. ABA, JA, SA, and ethylene concentrations were significantly higher (P ≤ 0.05) in Mod tissue, but their concentration, except for ethylene, were not affected by sun exposure. ACC and MACC concentrations increased until 105 DAFB in all sun exposure categories. During post-harvest, ethylene climacteric peak was delayed on EX compared to Mod. ABA and SA concentrations remained stable throughout storage in both tissue. JA dramatically increased post-harvest in both EX and Mod tissue, and orchards, confirming its role in low temperature tolerance. The results suggest that ABA, JA, and SA together with ethylene are modulating some of the abiotic stress defense responses on sun-exposed fruit during photooxidative and heat stress on the tree.
Collapse
Affiliation(s)
- Carolina A. Torres
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
- Centro de Pomaceas, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Gloria Sepúlveda
- Centro de Pomaceas, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Besma Kahlaoui
- Centro de Pomaceas, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| |
Collapse
|
35
|
Saeed W, Naseem S, Ali Z. Strigolactones Biosynthesis and Their Role in Abiotic Stress Resilience in Plants: A Critical Review. FRONTIERS IN PLANT SCIENCE 2017; 8:1487. [PMID: 28894457 PMCID: PMC5581504 DOI: 10.3389/fpls.2017.01487] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/10/2017] [Indexed: 05/03/2023]
Abstract
Strigolactones (SLs), being a new class of plant hormones, play regulatory roles against abiotic stresses in plants. There are multiple hormonal response pathways, which are adapted by the plants to overcome these stressful environmental constraints to reduce the negative impact on overall crop plant productivity. Genetic modulation of the SLs could also be applied as a potential approach in this regard. However, endogenous plant hormones play central roles in adaptation to changing environmental conditions, by mediating growth, development, nutrient allocation, and source/sink transitions. In addition, the hormonal interactions can fine-tune the plant response and determine plant architecture in response to environmental stimuli such as nutrient deprivation and canopy shade. Considerable advancements and new insights into SLs biosynthesis, signaling and transport has been unleashed since the initial discovery. In this review we present basic overview of SL biosynthesis and perception with a detailed discussion on our present understanding of SLs and their critical role to tolerate environmental constraints. The SLs and abscisic acid interplay during the abiotic stresses is particularly highlighted. Main Conclusion: More than shoot branching Strigolactones have uttermost capacity to harmonize stress resilience.
Collapse
Affiliation(s)
| | | | - Zahid Ali
- Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| |
Collapse
|
36
|
|
37
|
López-Ráez JA, Shirasu K, Foo E. Strigolactones in Plant Interactions with Beneficial and Detrimental Organisms: The Yin and Yang. TRENDS IN PLANT SCIENCE 2017; 22:527-537. [PMID: 28400173 DOI: 10.1016/j.tplants.2017.03.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are plant hormones that have important roles as modulators of plant development. They were originally described as ex planta signaling molecules in the rhizosphere that induce the germination of parasitic plants, a role that was later linked to encouraging the beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. Recently, the focus has shifted to examining the role of SLs in plant-microbe interactions, and has revealed roles for SLs in the association of legumes with nitrogen-fixing rhizobacteria and in interactions with disease-causing pathogens. Here, we examine the role of SLs in plant interactions with beneficial and detrimental organisms, and propose possible future biotechnological applications.
Collapse
Affiliation(s)
- Juan A López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Profesor Albareda 1, Granada 18008, Spain.
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Eloise Foo
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|