1
|
Li XH, Kang XJ, Zhang XY, Su LN, Bi X, Wang RL, Xing SY, Sun LM. Formation mechanism and regulation analysis of trumpet leaf in Ginkgo biloba L. FRONTIERS IN PLANT SCIENCE 2024; 15:1367121. [PMID: 39086912 PMCID: PMC11288918 DOI: 10.3389/fpls.2024.1367121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Introduction The research on plant leaf morphology is of great significance for understanding the development and evolution of plant organ morphology. As a relict plant, the G. biloba leaf morphology typically exhibits bifoliate and peltate forms. However, throughout its long evolutionary history, Ginkgo leaves have undergone diverse changes. Methods This study focuses on the distinct "trumpet" leaves and normal fan-shaped leaves of G. biloba for analysis of their phenotypes, photosynthetic activity, anatomical observations, as well as transcriptomic and metabolomic analyses. Results The results showed that trumpet-shaped G. biloba leaves have fewer cells, significant morphological differences between dorsal and abaxial epidermal cells, leading to a significantly lower net photosynthetic rate. Additionally, this study found that endogenous plant hormones such as GA, auxin, and JA as well as metabolites such as flavonoids and phenolic acids play roles in the formation of trumpet-shaped G. biloba leaves. Moreover, the experiments revealed the regulatory mechanisms of various key biological processes and gene expressions in the trumpet-shaped leaves of G. biloba. Discussion Differences in the dorsal and abdominal cells of G. biloba leaves can cause the leaf to curl, thus reducing the overall photosynthetic efficiency of the leaves. However, the morphology of plant leaves is determined during the primordia leaf stage. In the early stages of leaf development, the shoot apical meristem (SAM) determines the developmental morphology of dicotyledonous plant leaves. This process involves the activity of multiple gene families and small RNAs. The establishment of leaf morphology is complexly regulated by various endogenous hormones, including the effect of auxin on cell walls. Additionally, changes in intracellular ion concentrations, such as fluctuations in Ca2+ concentration, also affect cell wall rigidity, thereby influencing leaf growth morphology.
Collapse
Affiliation(s)
- Xin-hui Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiao-jing Kang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Xin-yue Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Li-ning Su
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Xing Bi
- Department of Publicity, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Rui-long Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Shi-yan Xing
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| | - Li-min Sun
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
2
|
Li Q, Wang Y, Sun Z, Li H, Liu H. The Biosynthesis Process of Small RNA and Its Pivotal Roles in Plant Development. Int J Mol Sci 2024; 25:7680. [PMID: 39062923 PMCID: PMC11276867 DOI: 10.3390/ijms25147680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In the realm of plant biology, small RNAs (sRNAs) are imperative in the orchestration of gene expression, playing pivotal roles across a spectrum of developmental sequences and responses to environmental stressors. The biosynthetic cascade of sRNAs is characterized by an elaborate network of enzymatic pathways that meticulously process double-stranded RNA (dsRNA) precursors into sRNA molecules, typically 20 to 30 nucleotides in length. These sRNAs, chiefly microRNAs (miRNAs) and small interfering RNAs (siRNAs), are integral in guiding the RNA-induced silencing complex (RISC) to selectively target messenger RNAs (mRNAs) for post-transcriptional modulation. This regulation is achieved either through the targeted cleavage or the suppression of translational efficiency of the mRNAs. In plant development, sRNAs are integral to the modulation of key pathways that govern growth patterns, organ differentiation, and developmental timing. The biogenesis of sRNA itself is a fine-tuned process, beginning with transcription and proceeding through a series of processing steps involving Dicer-like enzymes and RNA-binding proteins. Recent advances in the field have illuminated the complex processes underlying the generation and function of small RNAs (sRNAs), including the identification of new sRNA categories and the clarification of their involvement in the intercommunication among diverse regulatory pathways. This review endeavors to evaluate the contemporary comprehension of sRNA biosynthesis and to underscore the pivotal role these molecules play in directing the intricate performance of plant developmental processes.
Collapse
Affiliation(s)
| | | | | | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Q.L.); (Y.W.); (Z.S.)
| | - Huan Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Q.L.); (Y.W.); (Z.S.)
| |
Collapse
|
3
|
Vashisht I, Dhaka N, Jain R, Sood A, Sharma N, Sharma MK, Sharma R. Non-coding RNAs-mediated environmental surveillance determines male fertility in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108030. [PMID: 37708711 DOI: 10.1016/j.plaphy.2023.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Plants are continuously exposed to environmental stresses leading to significant yield losses. With the changing climatic conditions, the intensity and duration of these stresses are expected to increase, posing a severe threat to crop productivity worldwide. Male gametogenesis is one of the most sensitive developmental stages. Exposure to environmental stresses during this stage leads to male sterility and yield loss. Elucidating the underlying molecular mechanism of environment-affected male sterility is essential to address this challenge. High-throughput RNA sequencing studies, loss-of-function phenotypes of sRNA biogenesis genes and functional genomics studies with non-coding RNAs have started to unveil the roles of small RNAs, long non-coding RNAs and the complex regulatory interactions between them in regulating male fertility under different growth regimes. Here, we discuss the current understanding of the non-coding RNA-mediated environmental stress surveillance and regulation of male fertility in plants. The candidate ncRNAs emerging from these studies can be leveraged to generate environment-sensitive male sterile lines for hybrid breeding or mitigate the impact of climate change on male fertility, as the situation demands.
Collapse
Affiliation(s)
- Ira Vashisht
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Namrata Dhaka
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rubi Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Akanksha Sood
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Niharika Sharma
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, 2800, Australia
| | - Manoj K Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
4
|
Sharma S, Sett S, Das T, Prasad A, Prasad M. Recent perspective of non-coding RNAs at the nexus of plant-pathogen interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107852. [PMID: 37356385 DOI: 10.1016/j.plaphy.2023.107852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
In natural habitats, plants are exploited by pathogens in biotrophic or necrotrophic ways. Concurrently, plants have evolved their defense systems for rapid perception of pathogenic effectors and begin concerted cellular reprogramming pathways to confine the pathogens at the entry sites. During the reorganization of cellular signaling mechanisms following pathogen attack, non-coding RNAs serves an indispensable role either as a source of resistance or susceptibility. Besides the well-studied functions of non-coding RNAs related to plant development and abiotic stress responses, previous and recent discoveries have established that non-coding RNAs like miRNAs, siRNAs, lncRNAs and phasi-RNAs can fine tune plant defense responses by targeting various signaling pathways. In this review, recapitulation of previous reports associated with non-coding RNAs as a defense responder against virus, bacteria and fungus attacks and insightful discussion will lead us to conceive innovative ideas to fight against approaching threats of resistant breaking pathogens.
Collapse
Affiliation(s)
| | - Susmita Sett
- National Institute of Plant Genome Research, New Delhi, India.
| | - Tuhin Das
- National Institute of Plant Genome Research, New Delhi, India.
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
5
|
Mishra V, Sarkar AK. Serotonin: A frontline player in plant growth and stress responses. PHYSIOLOGIA PLANTARUM 2023; 175:e13968. [PMID: 37402164 DOI: 10.1111/ppl.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Serotonin is a well-studied pineal hormone that functions as a neurotransmitter in mammals and is found in varying amounts in diverse plant species. By modulating gene and phytohormonal crosstalk, serotonin has a significant role in plant growth and stress response, including root, shoot, flowering, morphogenesis, and adaptability responses to numerous environmental signals. Despite its prevalence and importance in plant growth and development, its molecular action, regulation and signalling processes remain unknown. Here, we highlight the current knowledge of the role of serotonin-mediated regulation of plant growth and stress response. We focus on serotonin and its regulatory connections with phytohormonal crosstalk and address their possible functions in coordinating diverse phytohormonal responses during distinct developmental phases, correlating with melatonin. Additionally, we have also discussed the possible role of microRNAs (miRNAs) in the regulation of serotonin biosynthesis. In summary, serotonin may act as a node molecule to coordinate the balance between plant growth and stress response, which may shed light on finding its key regulatory pathways for uncovering its mysterious molecular network.
Collapse
Affiliation(s)
- Vishnu Mishra
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ananda K Sarkar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Ghosh S, Patra S, Ray S. A Combinatorial Nanobased Spray-Induced Gene Silencing Technique for Crop Protection and Improvement. ACS OMEGA 2023; 8:22345-22351. [PMID: 37396279 PMCID: PMC10308407 DOI: 10.1021/acsomega.3c01968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
Recent research reports have shown that plant pests and pathogens have depleted the crop yield widely, which has led to an increased dependence on commercial pesticides and fungicides. Increased usage of these pesticides has also shown adverse effects on the environment, therefore many techniques have been implemented for solving the issue, some of which include using nanobioconjugates, RNA(i), which put into use double-stranded RNAs to inhibit gene expression. A more innovative and eco-friendly strategy includes spray induced gene silencing, which is being increasingly implemented. This review delves into the eco-friendly approach of spray induced gene silencing (SIGS) in combination with nanobioconjugates, which have been used concerning various plant hosts and their pathogens to provide improved protection. Furthermore, nanotechnological advancements have been understood by addressing the scientific gaps to provide a rationale for the development of updated techniques in crop protection.
Collapse
Affiliation(s)
- Snigdha Ghosh
- Amity
Institute of Biotechnology, Amity University,
Kolkata, Plot No: 36, 37, and 38 Major Arterial Road, Action Area II, Kadampukur
Village, Rajarhat, Newtown, Kolkata, West Bengal-700135, India
| | - Snehanjana Patra
- Amity
Institute of Biotechnology, Amity University,
Kolkata, Plot No: 36, 37, and 38 Major Arterial Road, Action Area II, Kadampukur
Village, Rajarhat, Newtown, Kolkata, West Bengal-700135, India
| | - Sarmistha Ray
- Amity
Institute of Biotechnology, Amity University,
Kolkata, Plot No: 36, 37, and 38 Major Arterial Road, Action Area II, Kadampukur
Village, Rajarhat, Newtown, Kolkata, West Bengal-700135, India
| |
Collapse
|
7
|
Zhang X, Du M, Yang Z, Wang Z, Lim KJ. Biogenesis, Mode of Action and the Interactions of Plant Non-Coding RNAs. Int J Mol Sci 2023; 24:10664. [PMID: 37445841 DOI: 10.3390/ijms241310664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The central dogma of genetics, which outlines the flow of genetic information from DNA to RNA to protein, has long been the guiding principle in molecular biology. In fact, more than three-quarters of the RNAs produced by transcription of the plant genome are not translated into proteins, and these RNAs directly serve as non-coding RNAs in the regulation of plant life activities at the molecular level. The breakthroughs in high-throughput transcriptome sequencing technology and the establishment and improvement of non-coding RNA experiments have now led to the discovery and confirmation of the biogenesis, mechanisms, and synergistic effects of non-coding RNAs. These non-coding RNAs are now predicted to play important roles in the regulation of gene expression and responses to stress and evolution. In this review, we focus on the synthesis, and mechanisms of non-coding RNAs, and we discuss their impact on gene regulation in plants.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Mingjun Du
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
8
|
Xiao Y, Maeda S, Otomo T, MacRae IJ. Structural basis for RNA slicing by a plant Argonaute. Nat Struct Mol Biol 2023; 30:778-784. [PMID: 37127820 PMCID: PMC10868596 DOI: 10.1038/s41594-023-00989-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Argonaute (AGO) proteins use small RNAs to recognize transcripts targeted for silencing in plants and animals. Many AGOs cleave target RNAs using an endoribonuclease activity termed 'slicing'. Slicing by DNA-guided prokaryotic AGOs has been studied in detail, but structural insights into RNA-guided slicing by eukaryotic AGOs are lacking. Here we present cryogenic electron microscopy structures of the Arabidopsis thaliana Argonaute10 (AtAgo10)-guide RNA complex with and without a target RNA representing a slicing substrate. The AtAgo10-guide-target complex adopts slicing-competent and slicing-incompetent conformations that are unlike known prokaryotic AGO structures. AtAgo10 slicing activity is licensed by docking target (t) nucleotides t9-t13 into a surface channel containing the AGO endoribonuclease active site. A β-hairpin in the L1 domain secures the t9-t13 segment and coordinates t9-t13 docking with extended guide-target pairing. Results show that prokaryotic and eukaryotic AGOs use distinct mechanisms for achieving target slicing and provide insights into small interfering RNA potency.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Shintaro Maeda
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Takanori Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
9
|
Hajieghrari B, Niazi A. Phylogenetic and Evolutionary Analysis of Plant Small RNA 2'-O-Methyltransferase (HEN1) Protein Family. J Mol Evol 2023:10.1007/s00239-023-10109-0. [PMID: 37191719 DOI: 10.1007/s00239-023-10109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
HUA ENHANCER 1 (HEN1) is a pivotal mediator in protecting sRNAs from 3'-end uridylation and 3' to 5' exonuclease-mediated degradation in plants. Here, we investigated the pattern of the HEN1 protein family evolutionary history and possible relationships in the plant lineages using protein sequence analyses and conserved motifs composition, functional domain identification, architecture, and phylogenetic tree reconstruction and evolutionary history inference. According to our results, HEN1 protein sequences bear several highly conserved motifs in plant species retained during the evolution from their ancestor. However, several motifs are present only in Gymnosperms and Angiosperms. A similar trend showed for their domain architecture. At the same time, phylogenetic analysis revealed the grouping of the HEN1 proteins in the three main super clads. In addition, the Neighbor-net network analysis result provides some nodes have multiple parents indicating a few conflicting signals in the data, which is not the consequence of sampling error, the effect of the selected model, or the estimation method. By reconciling the protein and species tree, we considered the gene duplications in several given species and found 170 duplication events in the evolution of HEN1 in the plant lineages. According to our analysis, the main HEN1 superclass mostly showed orthologous sequences that illustrate the vertically transmitting of HEN1 to the main lines. However, in both orthologous and paralogs, we predicted insignificant structural deviations. Our analysis implies that small local structural changes that occur continuously during the folds can moderate the changes created in the sequence. According to our results, we proposed a hypothetical model and evolutionary trajectory for the HEN1 protein family in the plant kingdom.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, P.O. Box 74135-111, Jahrom, Islamic Republic of Iran.
| | - Ali Niazi
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Islamic Republic of Iran
| |
Collapse
|
10
|
Jeynes-Cupper K, Catoni M. Long distance signalling and epigenetic changes in crop grafting. FRONTIERS IN PLANT SCIENCE 2023; 14:1121704. [PMID: 37021313 PMCID: PMC10067726 DOI: 10.3389/fpls.2023.1121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Humans have used grafting for more than 4000 years to improve plant production, through physically joining two different plants, which can continue to grow as a single organism. Today, grafting is becoming increasingly more popular as a technique to increase the production of herbaceous horticultural crops, where rootstocks can introduce traits such as resistance to several pathogens and/or improving the plant vigour. Research in model plants have documented how long-distance signalling mechanisms across the graft junction, together with epigenetic regulation, can produce molecular and phenotypic changes in grafted plants. Yet, most of the studied examples rely on proof-of-concept experiments or on limited specific cases. This review explores the link between research findings in model plants and crop species. We analyse studies investigating the movement of signalling molecules across the graft junction and their implications on epigenetic regulation. The improvement of genomics analyses and the increased availability of genetic resources has allowed to collect more information on potential benefits of grafting in horticultural crop models. Ultimately, further research into this topic will enhance our ability to use the grafting technique to exploit genetic and epigenetic variation in crops, as an alternative to traditional breeding.
Collapse
Affiliation(s)
| | - Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
| |
Collapse
|
11
|
Guzmán-Benito I, Achkar NP, Bologna N, Ursache R. CRISPR/Cas-mediated inplanta gene targeting: current advances and challenges. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad072. [PMID: 36861321 DOI: 10.1093/jxb/erad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 06/18/2023]
Abstract
We can use gene targeting (GT) to make modifications at a specific region in a plant's genome and create high-precision tools for plant biotechnology and breeding. However, its low efficiency is a major barrier to its use in plants. The discovery of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas-based site-specific nucleases capable of inducing double-strand breaks in desired loci resulted in the development of novel approaches for plant GT. Several studies have recently demonstrated improvements in GT efficiency through cell-type-specific expression of Cas nucleases, the use of self-amplified GT-vector DNA, or manipulation of RNA silencing and DNA repair pathways. In this review, we summarize recent advances in CRISPR/Cas-mediated GT in plants and discuss potential efficiency improvements. Increasing the efficiency of GT technology will help us pave the way for increased crop yields and food safety in environmentally friendly agriculture.
Collapse
Affiliation(s)
- Irene Guzmán-Benito
- The Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Natalia Patricia Achkar
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| | - Nicolas Bologna
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| | - Robertas Ursache
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
12
|
A Novel miRNA in Rice Associated with the Low Seed Setting Rate Symptom of Rice Stripe Virus. Int J Mol Sci 2023; 24:ijms24043675. [PMID: 36835087 PMCID: PMC9967548 DOI: 10.3390/ijms24043675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
MicroRNAs play key regulatory roles in plant development. The changed pattern of miRNA expression is involved in the production of viral symptoms. Here, we showed that a small RNA, Seq119, a putative novel microRNA, is associated with the low seed setting rate, a viral symptom of rice stripe virus (RSV)-infected rice. The expression of Seq 119 was downregulated in RSV-infected rice. The overexpression of Seq119 in transgenic rice plants did not cause any obvious phenotypic changes in plant development. When the expression of Seq119 was suppressed in rice plants either by expressing a mimic target or by CRISPR/Cas editing, seed setting rates were extremely low, similar to the effects of RSV infection. The putative targets of Seq119 were then predicted. The overexpression of the target of Seq119 in rice caused a low seed setting rate, similar to that in Seq119-suppressed or edited rice plants. Consistently, the expression of the target was upregulated in Seq119-suppressed and edited rice plants. These results suggest that downregulated Seq119 is associated with the low seed setting rate symptom of the RSV in rice.
Collapse
|
13
|
Zhang G, Zhang X, Yu S, Sun H. Novel insights on genes and pathways involved in Pinus elliottii response to resinosis. TREE PHYSIOLOGY 2023; 43:351-362. [PMID: 36209440 DOI: 10.1093/treephys/tpac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Pinus elliottii, an important coniferous timber species, has recently become one of the most popular sources of resin in China. Resinosis is a common disease that may negatively affect pine tree growth and production. In this study, we used single-molecule real-time sequencing and Illumina RNA sequencing to generate an accurate transcriptome for P. elliottii. The transcriptome included 90,026 transcripts, 5160 long non-coding RNAs and 7710 transcription factors. We then analyzed RNA-sequencing, small RNA-sequencing and degradome data to identify genes, miRNAs and key miRNA-target pairs involved in response to resinosis in P. elliottii. We identified 1305 genes and 1151 miRNAs exhibiting significant differential expression in response to resinosis. According to the degradome sequencing analysis, 318 differentially expressed transcripts were targets of 14 differentially expressed miRNAs. Our study has provided resources for further functional characterization of genes and miRNAs involved in resinosis in P. elliottii, which should aid the future disease-resistance breeding of this species.
Collapse
Affiliation(s)
- Guoyun Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Haidian, Beijing 100091, China
| | - Xu Zhang
- Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Sujun Yu
- Fengshushan Forestry Farm, Jingdezhen, Jiangxi 333000, China
| | - Honggang Sun
- Research Institute of Subtropical Forestry of Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
14
|
Ding N, Zhang B. microRNA production in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1096772. [PMID: 36743500 PMCID: PMC9893293 DOI: 10.3389/fpls.2023.1096772] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
In plants, microRNAs (miRNAs) associate with ARGONAUTE (AGO) proteins and act as sequence-specific repressors of target gene expression, at the post-transcriptional level through target transcript cleavage and/or translational inhibition. MiRNAs are mainly transcribed by DNA-dependent RNA polymerase II (POL II) and processed by DICER LIKE1 (DCL1) complex into 21∼22 nucleotide (nt) long. Although the main molecular framework of miRNA biogenesis and modes of action have been established, there are still new requirements continually emerging in the recent years. The studies on the involvement factors in miRNA biogenesis indicate that miRNA biogenesis is not accomplished separately step by step, but is closely linked and dynamically regulated with each other. In this article, we will summarize the current knowledge on miRNA biogenesis, including MIR gene transcription, primary miRNA (pri-miRNA) processing, miRNA AGO1 loading and nuclear export; and miRNA metabolism including methylation, uridylation and turnover. We will describe how miRNAs are produced and how the different steps are regulated. We hope to raise awareness that the linkage between different steps and the subcellular regulation are becoming important for the understanding of plant miRNA biogenesis and modes of action.
Collapse
|
15
|
Identification of microRNA and analysis of target genes in Panax ginseng. CHINESE HERBAL MEDICINES 2023; 15:69-75. [PMID: 36875435 PMCID: PMC9975625 DOI: 10.1016/j.chmed.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Objective Ginsenosides, polysaccharides and phenols, the main active ingredients in Panax ginseng, are not different significantly in content between 3 and 5 years old of ginsengs called Yuan ginseng and more than ten years old ones called Shizhu ginseng. The responsible chemical compounds cannot fully explain difference in efficacy between them. According to reports in Lonicerae Japonicae Flos (Jinyinhua in Chinese) and Glycyrrhizae Radix et Rhizoma (Gancao in Chinese), microRNA may play a role in efficacy, so we identified microRNAs in P. ginseng at the different growth years and analyzed their target genes. Methods Using high-throughput sequencing, the RNA-Seq, small RNA-Seq and degradome databases of P. ginseng were constructed. The differentially expressed microRNAs was identified by qRT-PCR. Results A total of 63,875 unigenes and 24,154,579 small RNA clean reads were obtained from the roots of P. ginseng. From these small RNAs, 71 miRNA families were identified by bioinformatics target prediction software, including 34 conserved miRNAs, 37 non-conserved miRNA families, as well as 179 target genes of 17 known miRNAs. Through degradome sequencing and computation, we finally verified 13 targets of eight miRNAs involved in transcription, energy metabolism, biological stress and disease resistance, suggesting the significance of miRNAs in the development of P. ginseng. Consistently, major miRNA targets exhibited tissue specificity and complexity in expression patterns. Conclusion Differential expression microRNAs were found in different growth years of ginsengs (Shizhu ginseng and Yuan ginseng), and the regulatory roles and functional annotations of miRNA targets in P. ginseng need further investigation.
Collapse
|
16
|
Jiang L, Fu Y, Sun P, Tian X, Wang G. Identification of microRNA158 from Anthurium andraeanum and Its Function in Cold Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:3371. [PMID: 36501408 PMCID: PMC9735552 DOI: 10.3390/plants11233371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Anthurium andraeanum is a tropical flower with high ornamental and economic value. Cold stress is one of the major abiotic stresses affecting the quality and value of A. andraeanum; thus, improving the cold tolerance of this species is an important breeding objective. MicroRNAs (miRNAs) have a critical role in plant abiotic stress responses, but their specific molecular regulatory mechanisms are largely unknown, including those related to the cold stress response in A. andraeanum. Here, we identified and cloned the precursor of miR158 from A. andraeanum (Aa-miR158). Both Aa-miR158 and its target gene (c48247) had higher expression levels in strong leaves than in other tissues or organs. Further study revealed that the transcript level of Aa-miR158 was increased by cold stress. Heterologous overexpression of Aa-miR158 improved cold stress tolerance in Arabidopsis, which was associated with decreases in the malondialdehyde (MDA) concentration and relative electrical conductivity (REC) as well as increases in peroxidase (POD) and catalase (CAT) activity. Moreover, overexpressing Aa-miR158 significantly increased the expression of endogenous genes related to cold stress tolerance and reactive oxygen species (ROS) levels in transgenic Arabidopsis under cold stress. Overall, our results demonstrate that Aa-miR158 is significantly involved in the cold stress response and provide a new strategy for cold tolerance breeding of A. andraeanum.
Collapse
|
17
|
Islam W, Idrees A, Waheed A, Zeng F. Plant responses to drought stress: microRNAs in action. ENVIRONMENTAL RESEARCH 2022; 215:114282. [PMID: 36122702 DOI: 10.1016/j.envres.2022.114282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Drought is common in most regions of the world, and it has a significant impact on plant growth and development. Plants, on the other hand, have evolved their own defense systems to deal with the extreme weather. The reprogramming of gene expression by microRNAs (miRNAs) is one of these defense mechanisms. miRNAs are short noncoding RNAs that have emerged as key post-transcriptional gene regulators in a variety of species. Drought stress modulates the expression of certain miRNAs that are functionally conserved across plant species. These characteristics imply that miRNA-based genetic changes might improve drought resistance in plants. This study highlights current knowledge of plant miRNA biogenesis, regulatory mechanisms and their role in drought stress responses. miRNAs functions and their adaptations by plants during drought stress has also been explained that can be exploited to promote drought-resistance among economically important crops.
Collapse
Affiliation(s)
- Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Atif Idrees
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Abdul Waheed
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Regmi R, Penton CR, Anderson J, Gupta VVSR. Do small RNAs unlock the below ground microbiome-plant interaction mystery? Front Mol Biosci 2022; 9:1017392. [PMID: 36406267 PMCID: PMC9670543 DOI: 10.3389/fmolb.2022.1017392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2023] Open
Abstract
Over the past few decades, regulatory RNAs, such as small RNAs (sRNAs), have received increasing attention in the context of host-microbe interactions due to their diverse roles in controlling various biological processes in eukaryotes. In addition, studies have identified an increasing number of sRNAs with novel functions across a wide range of bacteria. What is not well understood is why cells regulate gene expression through post-transcriptional mechanisms rather than at the initiation of transcription. The finding of a multitude of sRNAs and their identified associated targets has allowed further investigation into the role of sRNAs in mediating gene regulation. These foundational data allow for further development of hypotheses concerning how a precise control of gene activity is accomplished through the combination of transcriptional and post-transcriptional regulation. Recently, sRNAs have been reported to participate in interkingdom communication and signalling where sRNAs originating from one kingdom are able to target or control gene expression in another kingdom. For example, small RNAs of fungal pathogens that silence plant genes and vice-versa plant sRNAs that mediate bacterial gene expression. However, there is currently a lack of evidence regarding sRNA-based inter-kingdom signalling across more than two interacting organisms. A habitat that provides an excellent opportunity to investigate interconnectivity is the plant rhizosphere, a multifaceted ecosystem where plants and associated soil microbes are known to interact. In this paper, we discuss how the interconnectivity of bacteria, fungi, and plants within the rhizosphere may be mediated by bacterial sRNAs with a particular focus on disease suppressive and non-suppressive soils. We discuss the potential roles sRNAs may play in the below-ground world and identify potential areas of future research, particularly in reference to the regulation of plant immunity genes by bacterial and fungal communities in disease-suppressive and non-disease-suppressive soils.
Collapse
Affiliation(s)
- Roshan Regmi
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| | - C. Ryan Penton
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Jonathan Anderson
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Canberra, SA, Australia
| | - Vadakattu V. S. R. Gupta
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| |
Collapse
|
19
|
Loreti E, Perata P. Mobile plant microRNAs allow communication within and between organisms. THE NEW PHYTOLOGIST 2022; 235:2176-2182. [PMID: 35794849 PMCID: PMC10114960 DOI: 10.1111/nph.18360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 05/06/2023]
Abstract
Plant microRNAs (miRNAs) are small regulatory RNAs that are encoded by endogenous miRNA genes and regulate gene expression through gene silencing, by inducing degradation of their target messenger RNA or by inhibiting its translation. Some miRNAs are mobile molecules inside the plant, and increasing experimental evidence has demonstrated that miRNAs represent molecules that are exchanged between plants, their pathogens, and parasitic plants. It has also been shown that miRNAs are secreted into the external growing medium and that these miRNAs regulate gene expression and the phenotype of nearby receiving plants, thus defining a new concept in plant communication. However, the mechanism of miRNA secretion and uptake by plant cells still needs to be elucidated.
Collapse
Affiliation(s)
- Elena Loreti
- Institute of Agricultural Biology and Biotechnology, CNRNational Research CouncilVia Moruzzi56124PisaItaly
| | - Pierdomenico Perata
- PlantLab, Center of Plant SciencesSant'Anna School of Advanced StudiesVia Giudiccioni 1056010San Giuliano TermePisaItaly
| |
Collapse
|
20
|
Comparative phylogeny and evolutionary analysis of Dicer-like protein family in two plant monophyletic lineages. J Genet Eng Biotechnol 2022; 20:103. [PMID: 35821291 PMCID: PMC9276914 DOI: 10.1186/s43141-022-00380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Small RNAs (sRNAs) that do not get untranslated into proteins exhibit a pivotal role in the expression regulation of their cognate gene(s) in almost all eukaryotic lineages, including plants. Hitherto, numerous protein families such as Dicer, a unique class of Ribonuclease III, have been reported to be involved in sRNAs processing pathways and silencing. In this study, we aimed to investigate the phylogenetic relationship and evolutionary history of the DCL protein family. RESULTS Our results illustrated the DCL family of proteins grouped into four main subfamilies (DCLs 1-4) presented in either Eudicotyledons or Liliopsids. The accurate observation of the phylogenetic trees supports the independent expansion of DCL proteins among the Eudicotyledons and Liliopsids species. They share the common origin, and the main duplication events for the formation of the DCL subfamilies occurred before the Eudicotyledons/Liliopsids split from their ancestral DCL. In addition, shreds of evidence revealed that the divergence happened when multicellularization started and since the need for complex gene regulation considered being a necessity by organisms. At that time, they have evolved independently among the monophyletic lineages. The other finding was that the combination of DCL protein subfamilies bears several highly conserved functional domains in plant species that originated from their ancestor architecture. The conservation of these domains happens to be both lineage-specific and inter lineage-specific. CONCLUSIONS DCL subfamilies (i.e., DCL1-DCL4) distribute in their single clades after diverging from their common ancestor and before emerging into higher plants. Therefore, it seems that the main duplication events for the formation of the DCL subfamilies occurred before the Eudicotyledons/Liliopsida split and before the appearance of moss, and after the single-cell green algae. We also observed the same trends among the main DCL subfamilies from functional unit composition and architecture. Despite the long evolutionary course from the divergence of Liliopsida lineage from the Eudicotyledons, a significant diversifying force to domain composition and orientation was absent. The results of this study provide a deeper insight into DCL protein evolutionary history and possible sequence and structural relationships between DCL protein subfamilies in the main higher plant monophyletic lineages; i.e., Eudicotyledons and Liliopsida.
Collapse
|
21
|
Yan Y, Ham BK. The Mobile Small RNAs: Important Messengers for Long-Distance Communication in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:928729. [PMID: 35783973 PMCID: PMC9247610 DOI: 10.3389/fpls.2022.928729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 06/06/2023]
Abstract
Various species of small RNAs (sRNAs), notably microRNAs and small interfering RNAs (siRNAs), have been characterized as the major effectors of RNA interference in plants. Growing evidence supports a model in which sRNAs move, intercellularly, systemically, and between cross-species. These non-coding sRNAs can traffic cell-to-cell through plasmodesmata (PD), in a symplasmic manner, as well as from source to sink tissues, via the phloem, to trigger gene silencing in their target cells. Such mobile sRNAs function in non-cell-autonomous communication pathways, to regulate various biological processes, such as plant development, reproduction, and plant defense. In this review, we summarize recent progress supporting the roles of mobile sRNA in plants, and discuss mechanisms of sRNA transport, signal amplification, and the plant's response, in terms of RNAi activity, within the recipient tissues. We also discuss potential research directions and their likely impact on engineering of crops with traits for achieving food security.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Byung-Kook Ham
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
22
|
RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications. Int J Mol Sci 2022; 23:ijms23126639. [PMID: 35743077 PMCID: PMC9224206 DOI: 10.3390/ijms23126639] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
RNA interference (RNAi) is a powerful tool that is being increasingly utilized for crop protection against viruses, fungal pathogens, and insect pests. The non-transgenic approach of spray-induced gene silencing (SIGS), which relies on spray application of double-stranded RNA (dsRNA) to induce RNAi, has come to prominence due to its safety and environmental benefits in addition to its wide host range and high target specificity. However, along with promising results in recent studies, several factors limiting SIGS RNAi efficiency have been recognized in insects and plants. While sprayed dsRNA on the plant surface can produce a robust RNAi response in some chewing insects, plant uptake and systemic movement of dsRNA is required for delivery to many other target organisms. For example, pests such as sucking insects require the presence of dsRNA in vascular tissues, while many fungal pathogens are predominately located in internal plant tissues. Investigating the mechanisms by which sprayed dsRNA enters and moves through plant tissues and understanding the barriers that may hinder this process are essential for developing efficient ways to deliver dsRNA into plant systems. In this review, we assess current knowledge of the plant foliar and cellular uptake of dsRNA molecules. We will also identify major barriers to uptake, including leaf morphological features as well as environmental factors, and address methods to overcome these barriers.
Collapse
|
23
|
Panigrahy M, Panigrahi KCS, Poli Y, Ranga A, Majeed N. Integrated Expression Analysis of Small RNA, Degradome and Microarray Reveals Complex Regulatory Action of miRNA during Prolonged Shade in Swarnaprabha Rice. BIOLOGY 2022; 11:biology11050798. [PMID: 35625525 PMCID: PMC9138629 DOI: 10.3390/biology11050798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/22/2022]
Abstract
Prolonged shade during the reproductive stage can result in significant yield losses in rice. For this study, we elucidated the role of microRNAs in prolonged-shade tolerance (~20 days of shade) in a shade-tolerant rice variety, Swarnaprabha (SP), in its reproductive stage using small RNA and degradome sequencing with expression analysis using microarray and qRT-PCR. This study demonstrates that miRNA (miR) regulation for shade-tolerance predominately comprises the deactivation of the miR itself, leading to the upregulation of their targets. Up- and downregulated differentially expressed miRs (DEms) presented drastic differences in the category of targets based on the function and pathway in which they are involved. Moreover, neutrally regulated and uniquely expressed miRs also contributed to the shade-tolerance response by altering the differential expression of their targets, probably due to their differential binding affinities. The upregulated DEms mostly targeted the cell wall, membrane, cytoskeleton, and cellulose synthesis-related transcripts, and the downregulated DEms targeted the transcripts of photosynthesis, carbon and sugar metabolism, energy metabolism, and amino acid and protein metabolism. We identified 16 miRNAs with 21 target pairs, whose actions may significantly contribute to the shade-tolerance phenotype and sustainable yield of SP. The most notable among these were found to be miR5493-OsSLAC and miR5144-OsLOG1 for enhanced panicle size, miR5493-OsBRITTLE1-1 for grain formation, miR6245-OsCsIF9 for decreased stem mechanical strength, miR5487-OsGns9 and miR168b-OsCP1 for better pollen development, and miR172b-OsbHLH153 for hyponasty under shade.
Collapse
Affiliation(s)
- Madhusmita Panigrahy
- Biofuel & Bioprocessing Research Centre, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan University, Bhubaneswar 751002, India
- National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, India; (A.R.); (N.M.)
- Correspondence: (M.P.); (K.C.S.P.); Tel.: +91-8762086581 (M.P.); +91-6742494139 (K.C.S.P.)
| | - Kishore Chandra Sekhar Panigrahi
- National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, India; (A.R.); (N.M.)
- Correspondence: (M.P.); (K.C.S.P.); Tel.: +91-8762086581 (M.P.); +91-6742494139 (K.C.S.P.)
| | - Yugandhar Poli
- ICAR-Indian Institute of Rice Research, Rajendra Nagar, Hyderabad 500030, India;
| | - Aman Ranga
- National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, India; (A.R.); (N.M.)
| | - Neelofar Majeed
- National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, India; (A.R.); (N.M.)
| |
Collapse
|
24
|
Nityagovsky NN, Kiselev KV, Suprun AR, Dubrovina AS. Exogenous dsRNA Induces RNA Interference of a Chalcone Synthase Gene in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23105325. [PMID: 35628133 PMCID: PMC9142100 DOI: 10.3390/ijms23105325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Recent investigations have shown the possibility of artificial induction of RNA interference (RNAi) via plant foliar treatments with naked double-stranded RNA (dsRNA) to silence essential genes in plant fungal pathogens or to target viral RNAs. Furthermore, several studies have documented the downregulation of plant endogenous genes via external application of naked gene-specific dsRNAs and siRNAs to the plant surfaces. However, there are limited studies on the dsRNA processing and gene silencing mechanisms after external dsRNA application. Such studies would assist in the development of innovative tools for crop improvement and plant functional studies. In this study, we used exogenous gene-specific dsRNA to downregulate the gene of chalcone synthase (CHS), the key enzyme in the flavonoid/anthocyanin biosynthesis pathway, in Arabidopsis. The nonspecific NPTII-dsRNA encoding the nonrelated neomycin phosphotransferase II bacterial gene was used to treat plants in order to verify that any observed effects and processing of AtCHS mRNA were sequence specific. Using high-throughput small RNA (sRNA) sequencing, we obtained six sRNA-seq libraries for plants treated with water, AtCHS-dsRNA, or NPTII-dsRNA. After plant foliar treatments, we detected the emergence of a large number of AtCHS- and NPTII-encoding sRNAs, while there were no such sRNAs after control water treatment. Thus, the exogenous AtCHS-dsRNAs were processed into siRNAs and induced RNAi-mediated AtCHS gene silencing. The analysis showed that gene-specific sRNAs mapped to the AtCHS and NPTII genes unevenly with peak read counts at particular positions, involving primarily the sense strand, and documented a gradual decrease in read counts from 17-nt to 30-nt sRNAs. Results of the present study highlight a significant potential of exogenous dsRNAs as a promising strategy to induce RNAi-based downregulation of plant gene targets for plant management and gene functional studies.
Collapse
|
25
|
Begum Y. Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants. Gene 2022; 821:146283. [PMID: 35143944 DOI: 10.1016/j.gene.2022.146283] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.
Collapse
Affiliation(s)
- Yasmin Begum
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India; Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, JD-2, Sector III, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|
26
|
Verma S, Negi NP, Pareek S, Mudgal G, Kumar D. Auxin response factors in plant adaptation to drought and salinity stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13714. [PMID: 35560231 DOI: 10.1111/ppl.13714] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Salinity and drought stresses affect plant growth worldwide and limit crop production. Auxin is crucial in regulating plants' salinity and drought stress adaptative response. As a chemical messenger, auxin influences gene expression through a family of functionally distinct transcription factors, the DNA-binding AUXIN RESPONSE FACTORS (ARFs). Various studies have revealed the important roles of ARFs in regulating drought and salinity stress responses in plants. Different ARFs regulate soluble sugar content, promote root development, and maintain chlorophyll content under drought and saline stress conditions to help plants adapt to these stresses. The functional characterization of ARFs pertaining to the regulation of drought and salinity stress responses is still in its infancy. Interestingly, the small RNA-mediated post-transcriptional regulation of ARF expression has been shown to influence plant responses to both stresses. The current knowledge on the diverse roles of ARFs in conferring specificity to auxin-mediated drought and salinity stress responses has not been reviewed to date. In this review, we summarize the recent research concerning the role of ARFs in response to drought and salinity stresses: gene expression patterns, functional characterization, and post-transcriptional regulation under drought and salinity stresses. We have also reviewed the modulation of ARF expression by other molecular regulators in the context of drought and salt stress signaling.
Collapse
Affiliation(s)
- Swati Verma
- College of Horticulture and Forestry Thunag, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, India
| | - Neelam Prabha Negi
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Shalini Pareek
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
27
|
Pawełkowicz ME, Skarzyńska A, Koter MD, Turek S, Pląder W. miRNA Profiling and Its Role in Multi-Omics Regulatory Networks Connected with Somaclonal Variation in Cucumber ( Cucumis sativus L.). Int J Mol Sci 2022; 23:ijms23084317. [PMID: 35457133 PMCID: PMC9031375 DOI: 10.3390/ijms23084317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
The role of miRNAs in connection with the phenomenon of somaclonal variation, which occurs during plant in vitro culture, remains uncertain. This study aims to investigate the possible role of miRNAs in multi-omics regulatory pathways in cucumber somaclonal lines. For this purpose, we performed sRNA sequencing (sRNA-seq) from cucumber fruit samples identified 8, 10 and 44 miRNAs that are differentially expressed between somaclones (S1, S2, S3 lines) and the reference B10 line of Cucumis sativus. For miRNA identification, we use ShortStack software designed to filter miRNAs from sRNAs according to specific program criteria. The identification of predicted in-silico targets revealed 2,886 mRNAs encoded by 644 genes. The functional annotation of miRNA's target genes and gene ontology classification revealed their association with metabolic processes, response to stress, multicellular organism development, biosynthetic process and catalytic activity. We checked with bioinformatic analyses for possible interactions at the level of target proteins, differentially expressed genes (DEGs) and genes affected by genomic polymorphisms. We assume that miRNAs can indirectly influence molecular networks and play a role in many different regulatory pathways, leading to somaclonal variation. This regulation is supposed to occur through the process of the target gene cleavage or translation inhibition, which in turn affects the proteome, as we have shown in the example of molecular networks. This is a new approach combining levels from DNA-seq through mRNA-seq, sRNA-seq and in silico PPI in the area of plants' somaclonal variation.
Collapse
|
28
|
Ma X, Zhao F, Zhou B. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23084124. [PMID: 35456943 PMCID: PMC9032736 DOI: 10.3390/ijms23084124] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Plant growth and development are greatly affected by the environment. Many genes have been identified to be involved in regulating plant development and adaption of abiotic stress. Apart from protein-coding genes, more and more evidence indicates that non-coding RNAs (ncRNAs), including small RNAs and long ncRNAs (lncRNAs), can target plant developmental and stress-responsive mRNAs, regulatory genes, DNA regulatory regions, and proteins to regulate the transcription of various genes at the transcriptional, posttranscriptional, and epigenetic level. Currently, the molecular regulatory mechanisms of sRNAs and lncRNAs controlling plant development and abiotic response are being deeply explored. In this review, we summarize the recent research progress of small RNAs and lncRNAs in plants, focusing on the signal factors, expression characters, targets functions, and interplay network of ncRNAs and their targets in plant development and abiotic stress responses. The complex molecular regulatory pathways among small RNAs, lncRNAs, and targets in plants are also discussed. Understanding molecular mechanisms and functional implications of ncRNAs in various abiotic stress responses and development will benefit us in regard to the use of ncRNAs as potential character-determining factors in molecular plant breeding.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fei Zhao
- Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|
29
|
Singh RK, Prasad A, Maurya J, Prasad M. Regulation of small RNA-mediated high temperature stress responses in crop plants. PLANT CELL REPORTS 2022; 41:765-773. [PMID: 34228188 DOI: 10.1007/s00299-021-02745-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/24/2021] [Indexed: 05/20/2023]
Abstract
Small RNAs have emerged as key players of gene expression regulation. Several lines of evidences highlight their role in modulating high temperature stress responsiveness in plants. Throughout their life cycle, plants have to regulate their gene expression at various developmental phases, physiological changes, and in response to biotic or environmental stress. High temperature is one the most common abiotic stress for crop plants, that results in impaired morphology, physiology, and yield. However, plants have certain mechanisms that enable them to withstand such conditions by modulating the expression of stress-related genes. Small RNA (sRNA)-regulated gene expression is one such mechanism which is ubiquitous in all eukaryotes. The sRNAs mainly include micro RNAs (miRNAs) and small interfering RNAs (siRNAs). They are primarily associated with the gene silencing either through translation inhibition, mRNA degradation, or DNA methylation. During high temperature stress the increased or decreased level of miRNAs altered the protein accumulation of target transcripts and, therefore, regulate stress responses. Several reports are available in plants which are genetically engineered through expressing artificial miRNAs resulted in thermotolerance. sRNAs have also been reported to bring the epigenetic changes on chromatin region through RNA-dependent DNA methylation (RdDM). The present article draws a brief illustration of sRNA origin, their functional mechanisms, role in high temperature stress, and possible application for developing stress tolerant crop plants.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jyoti Maurya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
30
|
Rubio B, Stammitti L, Cookson SJ, Teyssier E, Gallusci P. Small RNA populations reflect the complex dialogue established between heterograft partners in grapevine. HORTICULTURE RESEARCH 2022; 9:uhab067. [PMID: 35048109 PMCID: PMC8935936 DOI: 10.1093/hr/uhab067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/24/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Grafting is an ancient method that has been intensively used for the clonal propagation of vegetables and woody trees. Despite its importance in agriculture the physiological and molecular mechanisms underlying phenotypic changes of plants following grafting are still poorly understood. In the present study, we analyse the populations of small RNAs in homo and heterografts and take advantage of the sequence differences in the genomes of heterograft partners to analyse the possible exchange of small RNAs. We demonstrate that the type of grafting per se dramatically influences the small RNA populations independently of genotypes but also show genotype specific effects. In addition, we demonstrate that bilateral exchanges of small RNAs, mainly short interfering RNAs, may occur in heterograft with the preferential transfer of small RNAs from the scion to the rootstock. Altogether, the results suggest that small RNAs may have an important role in the phenotype modifications observed in heterografts.
Collapse
Affiliation(s)
- Bernadette Rubio
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| | - Linda Stammitti
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| | - Sarah Jane Cookson
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| | - Emeline Teyssier
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| | - Philippe Gallusci
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| |
Collapse
|
31
|
Prasad A, Sharma N, Chirom O, Prasad M. The sly-miR166-SlyHB module acts as a susceptibility factor during ToLCNDV infection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:233-242. [PMID: 34636959 DOI: 10.1007/s00122-021-03962-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The role of miRNAs during viral pathogenesis is poorly understood in plants. Here, we demonstrate a miRNA/target module that acts as a susceptibility factor during ToLCNDV infection. Tomato leaf curl New Delhi virus (ToLCNDV) is a devastating pathogen that causes huge crop loss. It is spreading to new geographical locations at a very rapid rate-raising serious concerns. Evolution of insecticidal resistance in Bemisia tabaci which acts as the carrier for ToLCNDV has made insect control very difficult in the recent years. Thus, it is important that the host molecular mechanisms associated with ToLCNDV resistance/susceptibility are investigated to develop management strategies. In our study, we have identified that sly-miR166/SlyHB module acts as a susceptibility factor to ToLCNDV in Solanum lycopersicum. Sly-miR166 is differentially regulated upon ToLCNDV infection in two contrasting tomato cultivars; H-88-78-1 (tolerant to ToLCNDV) and Punjab Chhuhara (susceptible to ToLCNDV). Expression analysis of predicted sly-miR166 targets revealed that the expression of SlyHB is negatively correlated with its corresponding miRNA. Virus-induced gene silencing of SlyHB in the susceptible tomato cultivar resulted in the decrease in disease severity suggesting that SlyHB is a negative regulator of plant defence. In summary, our study highlights a miRNA/target module that acts as a susceptibility factor during ToLCNDV infection. To the best of our knowledge, this is the first report that highlights the role of sly-miR166/SlyHB module in ToLCNDV pathogenesis.
Collapse
Affiliation(s)
- Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Oceania Chirom
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
32
|
Wang C, Tian M, Zhang Y. Characterization of microRNAs involved in asymbiotic germination of Bletilla striata (Orchidaceae) seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:163-173. [PMID: 34358730 DOI: 10.1016/j.plaphy.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Orchids are distributed worldwide, and some species have considerable economic value. Orchid seeds are minute in size, simple in structure, and deficient in nutrient reserves. Asymbiotic seed germination is an important propagation strategy for orchids. MicroRNAs (miRNAs) play an essential role in seed germination. However, few studies have examined miRNAs involved in seed germination in orchids. Here, we conducted comparative small RNA sequencing at five stages to characterize the miRNAs involved in asymbiotic seed germination in Bletilla striata. A total of 253 known and 125 novel miRNAs were identified. Of them, 71 known and 29 novel miRNAs showed distinct expression among the five stages. Quantitative PCR revealed negative correlations of expression between differentially expressed miRNAs (DE miRNAs) and their targets. Function annotation and enrichment analyses of the targets of DE miRNAs between adjacent stages indicate that miRNA-target regulations are involved in many important processes during germination, such as signaling, biosynthesis, and transport of plant hormones. Twenty-two miRNAs were inferred to participate in plant hormone-related processes. The contents of abscisic acid, gibberellin A3, indole-3-acetic acid, jasmonic acid, trans zeatin riboside, and N6-(Δ2-isopentenyl) adenine varied significantly among the five stages. Nine tested plant hormone-related miRNAs and their targets exhibited significant correlations with at least one plant hormone. 5'-RLM-RACE validated that a transcript encoding auxin response factor was cleaved by Bst-miR160e as predicted. For the first time, we characterized miRNAs associated with the asymbiotic seed germination of an orchid species, which will help understand the miRNA-mediated regulatory mechanism of seed germination in orchids.
Collapse
Affiliation(s)
- Caixia Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| | - Min Tian
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Ying Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| |
Collapse
|
33
|
Kruglova NN, Titova GE, Seldimirova OA, Zinatullina AE. Cytophysiological Features of the Cereal-Based Experimental System “Embryo In Vivo–Callus In Vitro”. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Liu Y, Yan J, Wang K, Li D, Yang R, Luo H, Zhang W. MiR396-GRF module associates with switchgrass biomass yield and feedstock quality. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1523-1536. [PMID: 33567151 PMCID: PMC8384596 DOI: 10.1111/pbi.13567] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 05/10/2023]
Abstract
Improving plant biomass yield and/or feedstock quality for highly efficient lignocellulose conversion has been the main research focus in genetic modification of switchgrass (Panicum virgatum L.), a dedicated model plant for biofuel production. Here, we proved that overexpression of miR396 (OE-miR396) leads to reduced plant height and lignin content mainly by reducing G-lignin monomer content. We identified nineteen PvGRFs in switchgrass and proved thirteen of them were cleaved by miR396. MiR396-targeted PvGRF1, PvGRF9 and PvGRF3 showed significantly higher expression in stem. By separately overexpressing rPvGRF1, 3 and 9, in which synonymous mutations abolished the miR396 target sites, and suppression of PvGRF1/3/9 activity via PvGRF1/3/9-SRDX overexpression in switchgrass, we confirmed PvGRF1 and PvGRF9 played positive roles in improving plant height and G-lignin content. Overexpression of PvGRF9 was sufficient to complement the defective phenotype of OE-miR396 plants. MiR396-PvGRF9 modulates these traits partly by interfering GA and auxin biosynthesis and signalling transduction and cell wall lignin, glucose and xylan biosynthesis pathways. Moreover, by enzymatic hydrolysis analyses, we found that overexpression of rPvGRF9 significantly enhanced per plant sugar yield. Our results suggest that PvGRF9 can be utilized as a candidate molecular tool in modifying plant biomass yield and feedstock quality.
Collapse
Affiliation(s)
- Yanrong Liu
- College of Grassland Science and technologyChina Agricultural UniversityBeijingChina
| | - Jianping Yan
- College of Grassland Science and technologyChina Agricultural UniversityBeijingChina
| | - Kexin Wang
- College of Grassland Science and technologyChina Agricultural UniversityBeijingChina
| | - Dayong Li
- College of Life SciencesShandong Normal UniversityJinanShandongChina
| | - Rui Yang
- Beijing Key Laboratory of New Technology in Agricultural ApplicationCollege of Plant Science and TechnologyBeijing University of AgricultureBeijingChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Wanjun Zhang
- College of Grassland Science and technologyChina Agricultural UniversityBeijingChina
- Key Lab of Grassland Science in BeijingChina Agricultural UniversityBeijingChina
| |
Collapse
|
35
|
Qu H, Liu Y, Jiang H, Liu Y, Song W, Chen L. Identification and characterization of miRNAs associated with sterile flower buds in the tea plant based on small RNA sequencing. Hereditas 2021; 158:26. [PMID: 34271985 PMCID: PMC8285856 DOI: 10.1186/s41065-021-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Background miRNAs are a type of conserved, small RNA molecule that regulate gene expression and play an important role in the growth and development of plants. miRNAs are involved in seed germination, root development, shoot apical meristem maintenance, leaf development, and flower development by regulating various target genes. However, the role of miRNAs in the mechanism of tea plant flower sterility remains unclear. Therefore, we performed miRNA sequencing on the flowers of fertile male parents, female parents, and sterile offspring. Results A total of 55 known miRNAs and 90 unknown miRNAs were identified. In the infertile progeny, 37 miRNAs were differentially expressed; 18 were up-regulated and 19 were down-regulated. miR156, miR157, miR164, miR167, miR169, miR2111 and miR396 family members were down-regulated, and miR160, miR172 and miR319 family members were up-regulated. Moreover, we predicted that the 37 differentially expressed miRNAs target a total of 363 genes, which were enriched in 31 biological functions. We predicted that miR156 targets 142 genes, including ATD1A, SPL, ACA1, ACA2, CKB22 and MADS2. Conclusion We detected a large number of differentially expressed miRNAs in the sterile tea plant flowers, and their target genes were involved in complex biological processes. Among these miRNAs, the down-regulation of miR156 may be one of the factor in the formation of sterile floral buds in tea plants. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00188-8.
Collapse
Affiliation(s)
- Hao Qu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Yue Liu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Huibing Jiang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Yufei Liu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Weixi Song
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China.,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China
| | - Linbo Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai, Xishuangbanna, 666201, China. .,Yunnan Provincial Key Laboratory of Tea Science, Menghai, Xishuangbanna, 666201, China.
| |
Collapse
|
36
|
External dsRNA Downregulates Anthocyanin Biosynthesis-Related Genes and Affects Anthocyanin Accumulation in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22136749. [PMID: 34201713 PMCID: PMC8269191 DOI: 10.3390/ijms22136749] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023] Open
Abstract
Exogenous application of double-stranded RNAs (dsRNAs) and small-interfering RNAs (siRNAs) to plant surfaces has emerged as a promising method for regulation of essential genes in plant pathogens and for plant disease protection. Yet, regulation of plant endogenous genes via external RNA treatments has not been sufficiently investigated. In this study, we targeted the genes of chalcone synthase (CHS), the key enzyme in the flavonoid/anthocyanin biosynthesis pathway, and two transcriptional factors, MYBL2 and ANAC032, negatively regulating anthocyanin biosynthesis in Arabidopsis. Direct foliar application of AtCHS-specific dsRNAs and siRNAs resulted in an efficient downregulation of the AtCHS gene and suppressed anthocyanin accumulation in A. thaliana under anthocyanin biosynthesis-modulating conditions. Targeting the AtMYBL2 and AtANAC032 genes by foliar dsRNA treatments markedly reduced their mRNA levels and led to a pronounced upregulation of the AtCHS gene. The content of anthocyanins was increased after treatment with AtMYBL2-dsRNA. Laser scanning microscopy showed a passage of Cy3-labeled AtCHS-dsRNA into the A. thaliana leaf vessels, leaf parenchyma cells, and stomata, indicating the dsRNA uptake and spreading into leaf tissues and plant individual cells. Together, these data show that exogenous dsRNAs were capable of downregulating Arabidopsis genes and induced relevant biochemical changes, which may have applications in plant biotechnology and gene functional studies.
Collapse
|
37
|
Liu H, Wang X, Wang G, Cui P, Wu S, Ai C, Hu N, Li A, He B, Shao X, Wu Z, Feng H, Chang Y, Mu D, Hou J, Dai X, Yin T, Ruan J, Cao F. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. NATURE PLANTS 2021; 7:748-756. [PMID: 34135482 DOI: 10.1038/s41477-021-00933-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/29/2021] [Indexed: 05/19/2023]
Abstract
Gymnosperms are a unique lineage of plants that currently lack a high-quality reference genome due to their large genome size and high repetitive sequence content. Here, we report a nearly complete genome assembly for Ginkgo biloba with a genome size of 9.87 Gb, an N50 contig size of 1.58 Mb and an N50 scaffold size of 775 Mb. We were able to accurately annotate 27,832 protein-coding genes in total, superseding the inaccurate annotation of 41,840 genes in a previous draft genome assembly. We found that expansion of the G. biloba genome, accompanied by the notable extension of introns, was mainly caused by the insertion of long terminal repeats rather than the recent occurrence of whole-genome duplication events, in contrast to the findings of a previous report. We also identified candidate genes in the central pair, intraflagellar transport and dynein protein families that are associated with the formation of the spermatophore flagellum, which has been lost in all seed plants except ginkgo and cycads. The newly obtained Ginkgo genome provides new insights into the evolution of the gymnosperm genome.
Collapse
Affiliation(s)
- Hailin Liu
- The Southern Modern Forestry Collaborative Innovation Center, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaobo Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Guibin Wang
- The Southern Modern Forestry Collaborative Innovation Center, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Peng Cui
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shigang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Cheng Ai
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nan Hu
- The Southern Modern Forestry Collaborative Innovation Center, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Alun Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bing He
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiujuan Shao
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhichao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuxiao Chang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Desheng Mu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jing Hou
- The Southern Modern Forestry Collaborative Innovation Center, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Xiaogang Dai
- The Southern Modern Forestry Collaborative Innovation Center, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- The Southern Modern Forestry Collaborative Innovation Center, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, China.
| | - Jue Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Fuliang Cao
- The Southern Modern Forestry Collaborative Innovation Center, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
38
|
Alshehri B. Plant-derived xenomiRs and cancer: Cross-kingdom gene regulation. Saudi J Biol Sci 2021; 28:2408-2422. [PMID: 33911956 PMCID: PMC8071896 DOI: 10.1016/j.sjbs.2021.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomal microRNAs (miRNAs) critically regulate several major intracellular and metabolic activities, including cancer evolution. Currently, increasing evidence indicates that exosome harbor and transport these miRNAs from donor cells to neighboring and distantly related recipient cells, often in a cross-species manner. Several studies have reported that plant-based miRNAs can be absorbed into the serum of humans, where they hinder the expression of human disease-related genes. Moreover, few recent studies have demonstrated the role of these xenomiRs in cancer development and progression. However, the cross-kingdom gene regulation hypothesis remains highly debatable, and many follow up studies fail to reproduce the same. There are reports that show no effect of plant-derived miRNAs on mammalian cancers. The foremost cause of this controversy remains the lack of reproducibility of the results. Here, we reassess the latest developments in the field of cross-kingdom transference of miRNAs, emphasizing on the role of the diet-based xenomiRs on cancer progression.
Collapse
Affiliation(s)
- Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| |
Collapse
|
39
|
Wang S, Liang H, Xu Y, Li L, Wang H, Sahu DN, Petersen M, Melkonian M, Sahu SK, Liu H. Genome-wide analyses across Viridiplantae reveal the origin and diversification of small RNA pathway-related genes. Commun Biol 2021; 4:412. [PMID: 33767367 PMCID: PMC7994812 DOI: 10.1038/s42003-021-01933-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/24/2021] [Indexed: 11/09/2022] Open
Abstract
Small RNAs play a major role in the post-transcriptional regulation of gene expression in eukaryotes. Despite the evolutionary importance of streptophyte algae, knowledge on small RNAs in this group of green algae is almost non-existent. We used genome and transcriptome data of 34 algal and plant species, and performed genome-wide analyses of small RNA (miRNA & siRNA) biosynthetic and degradation pathways. The results suggest that Viridiplantae started to evolve plant-like miRNA biogenesis and degradation after the divergence of the Mesostigmatophyceae in the streptophyte algae. We identified two major evolutionary transitions in small RNA metabolism in streptophyte algae; during the first transition, the origin of DCL-New, DCL1, AGO1/5/10 and AGO4/6/9 in the last common ancestor of Klebsormidiophyceae and all other streptophytes could be linked to abiotic stress responses and evolution of multicellularity in streptophytes. During the second transition, the evolution of DCL 2,3,4, and AGO 2,3,7 as well as DRB1 in the last common ancestor of Zygnematophyceae and embryophytes, suggests their possible contribution to pathogen defense and antibacterial immunity. Overall, the origin and diversification of DICER and AGO along with several other small RNA pathway-related genes among streptophyte algae suggested progressive adaptations of streptophyte algae during evolution to a subaerial environment. Wang, Liang et al. conduct a genome-wide investigation into the origin of small RNA pathway-related genes in Viridiplantae. Their findings suggest that streptophyte algae progressively adapted to a subaerial environment through generation of these pathways.
Collapse
Affiliation(s)
- Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yan Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | | | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Melkonian
- Integrative Bioinformatics, Department Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China. .,Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Dhaka N, Sharma R. MicroRNA-mediated regulation of agronomically important seed traits: a treasure trove with shades of grey! Crit Rev Biotechnol 2021; 41:594-608. [PMID: 33682533 DOI: 10.1080/07388551.2021.1873238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Seed development is an intricate process with multiple levels of regulation. MicroRNAs (miRNAs) have emerged as one of the crucial components of molecular networks underlying agronomically important seed traits in diverse plant species. In fact, loss of function of the genes regulating miRNA biogenesis also exhibits defects in seed development. A total of 21 different miRNAs have experimentally been shown to regulate seed size, nutritional content, vigor, and shattering, and have been reviewed here. The mechanism details of the associated regulatory cascades mediated through transcriptional regulators, phytohormones, basic metabolic machinery, and secondary siRNAs are elaborated. Co-localization of miRNAs and their target regions with seed-related QTLs provides new avenues for engineering these traits using conventional breeding programs or biotechnological interventions. While global analysis of miRNAs using small RNA sequencing studies are expanding the repertoire of candidate miRNAs, recent revelations on their inheritance, transport, and mechanism of action would be instrumental in designing better strategies for optimizing agronomically relevant seed traits.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Haryana, India.,Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
41
|
Degradome sequencing-based identification of phasiRNAs biogenesis pathways in Oryza sativa. BMC Genomics 2021; 22:93. [PMID: 33516199 PMCID: PMC7847607 DOI: 10.1186/s12864-021-07406-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The microRNAs(miRNA)-derived secondary phased small interfering RNAs (phasiRNAs) participate in post-transcriptional gene silencing and play important roles in various bio-processes in plants. In rice, two miRNAs, miR2118 and miR2275, were mainly responsible for triggering of 21-nt and 24-nt phasiRNAs biogenesis, respectively. However, relative fewer phasiRNA biogenesis pathways have been discovered in rice compared to other plant species, which limits the comprehensive understanding of phasiRNA biogenesis and the miRNA-derived regulatory network. RESULTS In this study, we performed a systematical searching for phasiRNA biogenesis pathways in rice. As a result, five novel 21-nt phasiRNA biogenesis pathways and five novel 24-nt phasiRNA biogenesis pathways were identified. Further investigation of their regulatory function revealed that eleven novel phasiRNAs in 21-nt length recognized forty-one target genes. Most of these genes were involved in the growth and development of rice. In addition, five novel 24-nt phasiRNAs targeted to the promoter of an OsCKI1 gene and thereafter resulted in higher level of methylation in panicle, which implied their regulatory function in transcription of OsCKI1,which acted as a regulator of rice development. CONCLUSIONS These results substantially extended the information of phasiRNA biogenesis pathways and their regulatory function in rice.
Collapse
|
42
|
Luján-Soto E, Dinkova TD. Time to Wake Up: Epigenetic and Small-RNA-Mediated Regulation during Seed Germination. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020236. [PMID: 33530470 PMCID: PMC7911344 DOI: 10.3390/plants10020236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 05/03/2023]
Abstract
Plants make decisions throughout their lifetime based on complex networks. Phase transitions during seed growth are not an exception. From embryo development through seedling growth, several molecular pathways control genome stability, environmental signal transduction and the transcriptional landscape. Particularly, epigenetic modifications and small non-coding RNAs (sRNAs) have been extensively studied as significant handlers of these processes in plants. Here, we review key epigenetic (histone modifications and methylation patterns) and sRNA-mediated regulatory networks involved in the progression from seed maturation to germination, their relationship with seed traits and crosstalk with environmental inputs.
Collapse
|
43
|
Anand A, Pandi G. Noncoding RNA: An Insight into Chloroplast and Mitochondrial Gene Expressions. Life (Basel) 2021; 11:life11010049. [PMID: 33450961 PMCID: PMC7828403 DOI: 10.3390/life11010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of gene expression in any biological system is a complex process with many checkpoints at the transcriptional, post-transcriptional and translational levels. The control mechanism is mediated by various protein factors, secondary metabolites and a newly included regulatory member, i.e., noncoding RNAs (ncRNAs). It is known that ncRNAs modulate the mRNA or protein profiles of the cell depending on the degree of complementary and context of the microenvironment. In plants, ncRNAs are essential for growth and development in normal conditions by controlling various gene expressions and have emerged as a key player to guard plants during adverse conditions. In order to have smooth functioning of the plants under any environmental pressure, two very important DNA-harboring semi-autonomous organelles, namely, chloroplasts and mitochondria, are considered as main players. These organelles conduct the most crucial metabolic pathways that are required to maintain cell homeostasis. Thus, it is imperative to explore and envisage the molecular machineries responsible for gene regulation within the organelles and their coordination with nuclear transcripts. Therefore, the present review mainly focuses on ncRNAs origination and their gene regulation in chloroplasts and plant mitochondria.
Collapse
Affiliation(s)
- Asha Anand
- Correspondence: (A.A.); (G.P.); Tel.: +91-452-245-8230 (G.P.)
| | - Gopal Pandi
- Correspondence: (A.A.); (G.P.); Tel.: +91-452-245-8230 (G.P.)
| |
Collapse
|
44
|
Gautam V, Singh A, Yadav S, Singh S, Kumar P, Sarkar Das S, Sarkar AK. Conserved LBL1-ta-siRNA and miR165/166 -RLD1/2 modules regulate root development in maize. Development 2021; 148:dev.190033. [PMID: 33168582 DOI: 10.1242/dev.190033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/02/2020] [Indexed: 01/25/2023]
Abstract
Root system architecture and anatomy of monocotyledonous maize is significantly different from dicotyledonous model Arabidopsis The molecular role of non-coding RNA (ncRNA) is poorly understood in maize root development. Here, we address the role of LEAFBLADELESS1 (LBL1), a component of maize trans-acting short-interfering RNA (ta-siRNA), in maize root development. We report that root growth, anatomical patterning, and the number of lateral roots (LRs), monocot-specific crown roots (CRs) and seminal roots (SRs) are significantly affected in lbl1-rgd1 mutant, which is defective in production of ta-siRNA, including tasiR-ARF that targets AUXIN RESPONSE FACTOR3 (ARF3) in maize. Altered accumulation and distribution of auxin, due to differential expression of auxin biosynthesis and transporter genes, created an imbalance in auxin signalling. Altered expression of microRNA165/166 (miR165/166) and its targets, ROLLED1 and ROLLED2 (RLD1/2), contributed to the changes in lbl1-rgd1 root growth and vascular patterning, as was evident by the altered root phenotype of Rld1-O semi-dominant mutant. Thus, LBL1/ta-siRNA module regulates root development, possibly by affecting auxin distribution and signalling, in crosstalk with miR165/166-RLD1/2 module. We further show that ZmLBL1 and its Arabidopsis homologue AtSGS3 proteins are functionally conserved.
Collapse
Affiliation(s)
- Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.,Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sharmila Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pramod Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shabari Sarkar Das
- Department of Botany and Forestry, Vidyasagar University, Midnapore, WB 721104, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
45
|
Dijkhuizen LW, Tabatabaei BES, Brouwer P, Rijken N, Buijs VA, Güngör E, Schluepmann H. Far-Red Light-Induced Azolla filiculoides Symbiosis Sexual Reproduction: Responsive Transcripts of Symbiont Nostoc azollae Encode Transporters Whilst Those of the Fern Relate to the Angiosperm Floral Transition. FRONTIERS IN PLANT SCIENCE 2021; 12:693039. [PMID: 34456937 PMCID: PMC8386757 DOI: 10.3389/fpls.2021.693039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/22/2021] [Indexed: 05/02/2023]
Abstract
Water ferns of the genus Azolla and the filamentous cyanobacteria Nostoc azollae constitute a model symbiosis that enabled the colonization of the water surface with traits highly desirable for the development of more sustainable crops: their floating mats capture CO2 and fix N2 at high rates using light energy. Their mode of sexual reproduction is heterosporous. The regulation of the transition from the vegetative phase to the spore forming phase in ferns is largely unknown, yet a prerequisite for Azolla domestication, and of particular interest as ferns represent the sister lineage of seed plants. Sporocarps induced with far red light could be crossed so as to verify species attribution of strains from the Netherlands but not of the strain from the Anzali lagoon in Iran; the latter strain was assigned to a novel species cluster from South America. Red-dominated light suppresses the formation of dissemination stages in both gametophyte- and sporophyte-dominated lineages of plants, the response likely is a convergent ecological strategy to open fields. FR-responsive transcripts included those from MIKCC homologues of CMADS1 and miR319-controlled GAMYB transcription factors in the fern, transporters in N. azollae, and ycf2 in chloroplasts. Loci of conserved microRNA (miRNA) in the fern lineage included miR172, yet FR only induced miR529 and miR535, and reduced miR319 and miR159. Phylogenomic analyses of MIKCC TFs suggested that the control of flowering and flower organ specification may have originated from the diploid to haploid phase transition in the homosporous common ancestor of ferns and seed plants.
Collapse
Affiliation(s)
- Laura W. Dijkhuizen
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Paul Brouwer
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Niels Rijken
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Valerie A. Buijs
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Erbil Güngör
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Henriette Schluepmann
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
- *Correspondence: Henriette Schluepmann
| |
Collapse
|
46
|
Cao H, Zhang X, Ruan Y, Zhang L, Cui Z, Li X, Jia B. miRNA expression profiling and zeatin dynamic changes in a new model system of in vivo indirect regeneration of tomato. PLoS One 2020; 15:e0237690. [PMID: 33332392 PMCID: PMC7745965 DOI: 10.1371/journal.pone.0237690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/27/2020] [Indexed: 01/15/2023] Open
Abstract
Callus formation and adventitious shoot differentiation could be observed on the cut surface of completely decapitated tomato plants. We propose that this process can be used as a model system to investigate the mechanisms that regulate indirect regeneration of higher plants without the addition of exogenous hormones. This study analyzed the patterns of trans-zeatin and miRNA expression during in vivo regeneration of tomato. Analysis of trans-zeatin revealed that the hormone cytokinin played an important role in in vivo regeneration of tomato. Among 183 miRNAs and 1168 predicted target genes sequences identified, 93 miRNAs and 505 potential targets were selected based on differential expression levels for further characterization. Expression patterns of six miRNAs, including sly-miR166, sly-miR167, sly-miR396, sly-miR397, novel 156, and novel 128, were further validated by qRT-PCR. We speculate that sly-miR156, sly-miR160, sly-miR166, and sly-miR397 play major roles in callus formation of tomato during in vivo regeneration by regulating cytokinin, IAA, and laccase levels. Overall, our microRNA sequence and target analyses of callus formation during in vivo regeneration of tomato provide novel insights into the regulation of regeneration in higher plants.
Collapse
Affiliation(s)
- Huiying Cao
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Zhang
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Yanye Ruan
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
- * E-mail: (YR); (LZ)
| | - Lijun Zhang
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
- * E-mail: (YR); (LZ)
| | - Zhenhai Cui
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Xuxiao Li
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Bing Jia
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
47
|
Marzano F, Caratozzolo MF, Consiglio A, Licciulli F, Liuni S, Sbisà E, D'Elia D, Tullo A, Catalano D. Plant miRNAs Reduce Cancer Cell Proliferation by Targeting MALAT1 and NEAT1: A Beneficial Cross-Kingdom Interaction. Front Genet 2020; 11:552490. [PMID: 33193626 PMCID: PMC7531330 DOI: 10.3389/fgene.2020.552490] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are ubiquitous regulators of gene expression, evolutionarily conserved in plants and mammals. In recent years, although a growing number of papers debate the role of plant miRNAs on human gene expression, the molecular mechanisms through which this effect is achieved are still not completely elucidated. Some evidence suggest that this interaction might be sequence specific, and in this work, we investigated this possibility by transcriptomic and bioinformatics approaches. Plant and human miRNA sequences from primary databases were collected and compared for their similarities (global or local alignments). Out of 2,588 human miRNAs, 1,606 showed a perfect match of their seed sequence with the 5′ end of 3,172 plant miRNAs. Further selections were applied based on the role of the human target genes or of the miRNA in cell cycle regulation (as an oncogene, tumor suppressor, or a biomarker for prognosis, or diagnosis in cancer). Based on these criteria, 20 human miRNAs were selected as potential functional analogous of 7 plant miRNAs, which were in turn transfected in different cell lines to evaluate their effect on cell proliferation. A significant decrease was observed in colorectal carcinoma HCT116 cell line. RNA-Seq demonstrated that 446 genes were differentially expressed 72 h after transfection. Noteworthy, we demonstrated that the plant mtr-miR-5754 and gma-miR4995 directly target the tumor-associated long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and nuclear paraspeckle assembly transcript 1 (NEAT1) in a sequence-specific manner. In conclusion, according to other recent discoveries, our study strengthens and expands the hypothesis that plant miRNAs can have a regulatory effect in mammals by targeting both protein-coding and non-coding RNA, thus suggesting new biotechnological applications.
Collapse
Affiliation(s)
- Flaviana Marzano
- Department of Biomedical Sciences, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Mariano Francesco Caratozzolo
- Department of Biomedical Sciences, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Arianna Consiglio
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Flavio Licciulli
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Sabino Liuni
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Elisabetta Sbisà
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Domenica D'Elia
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Apollonia Tullo
- Department of Biomedical Sciences, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Domenico Catalano
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| |
Collapse
|
48
|
|
49
|
Xia Z, Wang Z, Kav NNV, Ding C, Liang Y. Characterization of microRNA-like RNAs associated with sclerotial development in Sclerotinia sclerotiorum. Fungal Genet Biol 2020; 144:103471. [PMID: 32971275 DOI: 10.1016/j.fgb.2020.103471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Abstract
Sclerotinia sclerotiorum is a model necrotrophic pathogen causing great economic losses worldwide. Sclerotia are dormant structures that play significant biological and ecological roles in the life and disease cycles of S. sclerotiorum and other species of sclerotia-forming fungi. microRNA-like RNAs (milRNAs) as non-coding small RNAs play regulatory roles in fungal development and pathogenicity. Therefore, milRNAs associated with sclerotial development in S. sclerotiorum were investigated in this study. A total of 275 milRNAs with induced expression during sclerotia development were identified, in which 51 were differentially expressed. The target genes of all milRNAs were predicted. The putative functions of the targets regulated by milRNAs were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The expression levels of six selected milRNAs that coordinated with their corresponding targets were validated by qRT-PCR. Among these six milRNAs, Ssc-milR-240 was potentially associated with sclerotial development by epigenetic regulation of its target histone acetyltransferase. This study will facilitate the better understanding of the milRNA regulation associated with sclerotial development in S. sclerotiorum and even other sclerotia-forming fungi. This work will provide novel insights into the molecular regulations of fungal morphogenesis and the candidate targets of milRNAs used for the sustainable management of plant diseases caused by S. sclerotiorum.
Collapse
Affiliation(s)
- Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China
| | - Zehao Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Chengsong Ding
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
50
|
Li T, Gonzalez N, Inzé D, Dubois M. Emerging Connections between Small RNAs and Phytohormones. TRENDS IN PLANT SCIENCE 2020; 25:912-929. [PMID: 32381482 DOI: 10.1016/j.tplants.2020.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 05/20/2023]
Abstract
Small RNAs (sRNAs), mainly including miRNAs and siRNAs, are ubiquitous in eukaryotes. sRNAs mostly negatively regulate gene expression via (post-)transcriptional gene silencing through DNA methylation, mRNA cleavage, or translation inhibition. The mechanisms of sRNA biogenesis and function in diverse biological processes, as well as the interactions between sRNAs and environmental factors, like (a)biotic stress, have been deeply explored. Phytohormones are central in the plant's response to stress, and multiple recent studies highlight an emerging role for sRNAs in the direct response to, or the regulation of, plant hormonal pathways. In this review, we discuss recent progress on the unraveling of crossregulation between sRNAs and nine plant hormones.
Collapse
Affiliation(s)
- Ting Li
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- INRAE, Université de Bordeaux, UMR1332 Biologie du fruit et Pathologie, F-33882 Villenave d'Ornon cedex, France
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| | - Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|