1
|
Sun M, Qiao HX, Yang T, Zhao P, Zhao JH, Luo JM, Luan HY, Li X, Wu SC, Xiong AS. Hydrogen sulfide alleviates cadmium stress in germinating carrot seeds by promoting the accumulation of proline. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154357. [PMID: 39316927 DOI: 10.1016/j.jplph.2024.154357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Carrot (Daucus carota L.), a widely cultivated economically vegetable from the Apiaceae family, is grown globally. However, carrots can be adversely impacted by cadmium (Cd) pollution in the soil due to its propensity to accumulate in the fleshy root, thus impeding carrot growth and posing health hazards to consumers. Given the potential of hydrogen sulfide (H2S) to improve plant resistance against Cd stress, we treated germinating carrot seeds with varying concentrations of sodium hydrosulfide (NaHS), aiming to alleviate the toxic impacts of Cd stress on carrot seed germination. The results revealed that carrot seeds treated with a concentration of 0.25 mM NaHS displayed better seed germination-associated characteristics compared to seeds treated with NaHS concentrations of 0.1 mM and 0.5 mM. Further investigation revealed a rise in the expression levels of L-cysteine desulfhydrase and D-cysteine desulfhydrase, along with enhanced activity of L-cysteine desulfhydrase and D-cysteine desulfhydrase among the NaHS treatment group, thereby leading to H2S accumulation. Moreover, NaHS treatment triggered the expression of pyrroline-5-carboxylate synthase and pyrroline-5-carboxylate reductase and promoted the accumulation of endogenous proline, while the contents of soluble sugar and soluble protein increased correspondingly. Interestingly, since the application of exogenous proline did not influence the accumulation of endogenous H2S, suggesting that H2S served as the upstream regulator of proline. Histochemical staining and biochemical indices revealed that NaHS treatment led to elevated antioxidant enzyme activity, alongside a suppression of superoxide anion and hydrogen peroxide generation. Furthermore, high performance liquid chromatography analysis revealed that NaHS treatment reduced Cd2+ uptake, thereby promoting germination rate, seed vitality, and hypocotyl length of carrot seeds under Cd stress. Overall, our findings shed light on the application of NaHS to enhance carrot resistance against Cd stress and lay a foundation for exploring the regulatory role of H2S in plants responding to Cd stress.
Collapse
Affiliation(s)
- Miao Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huan-Xuan Qiao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Tao Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Peng Zhao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Jun-Hao Zhao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Jia-Ming Luo
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Hai-Ye Luan
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Xiang Li
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Sheng-Cai Wu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
2
|
Chen L. Regulation of stomatal development by epidermal, subepidermal and long-distance signals. PLANT MOLECULAR BIOLOGY 2024; 114:80. [PMID: 38940934 DOI: 10.1007/s11103-024-01456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/20/2024] [Indexed: 06/29/2024]
Abstract
Plant leaves consist of three layers, including epidermis, mesophyll and vascular tissues. Their development is meticulously orchestrated. Stomata are the specified structures on the epidermis for uptake of carbon dioxide (CO2) while release of water vapour and oxygen (O2), and thus play essential roles in regulation of plant photosynthesis and water use efficiency. To function efficiently, stomatal formation must coordinate with the development of other epidermal cell types, such as pavement cell and trichome, and tissues of other layers, such as mesophyll and leaf vein. This review summarizes the regulation of stomatal development in three dimensions (3D). In the epidermis, specific stomatal transcription factors determine cell fate transitions and also activate a ligand-receptor- MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling for ensuring proper stomatal density and patterning. This forms the core regulation network of stomatal development, which integrates various environmental cues and phytohormone signals to modulate stomatal production. Under the epidermis, mesophyll, endodermis of hypocotyl and inflorescence stem, and veins in grasses secrete mobile signals to influence stomatal formation in the epidermis. In addition, long-distance signals which may include phytohormones, RNAs, peptides and proteins originated from other plant organs modulate stomatal development, enabling plants to systematically adapt to the ever changing environment.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
3
|
Cannon AE, Horn PJ. The Molecular Frequency, Conservation and Role of Reactive Cysteines in Plant Lipid Metabolism. PLANT & CELL PHYSIOLOGY 2024; 65:826-844. [PMID: 38113384 DOI: 10.1093/pcp/pcad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Cysteines (Cys) are chemically reactive amino acids containing sulfur that play diverse roles in plant biology. Recent proteomics investigations in Arabidopsis thaliana have revealed the presence of thiol post-translational modifications (PTMs) in several Cys residues. These PTMs are presumed to impact protein structure and function, yet mechanistic data regarding the specific Cys susceptible to modification and their biochemical relevance remain limited. To help address these limitations, we have conducted a wide-ranging analysis by integrating published datasets encompassing PTM proteomics (comparing S-sulfenylation, persulfidation, S-nitrosylation and S-acylation), genomics and protein structures, with a specific focus on proteins involved in plant lipid metabolism. The prevalence and distribution of modified Cys residues across all analyzed proteins is diverse and multifaceted. Nevertheless, by combining an evaluation of sequence conservation across 100+ plant genomes with AlphaFold-generated protein structures and physicochemical predictions, we have unveiled structural propensities associated with Cys modifications. Furthermore, we have identified discernible patterns in lipid biochemical pathways enriched with Cys PTMs, notably involving beta-oxidation, jasmonic acid biosynthesis, fatty acid biosynthesis and wax biosynthesis. These collective findings provide valuable insights for future investigations targeting the mechanistic foundations of Cys modifications and the regulation of modified proteins in lipid metabolism and other metabolic pathways.
Collapse
Affiliation(s)
- Ashley E Cannon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| |
Collapse
|
4
|
Wawrzyńska A, Sirko A. Sulfate Availability and Hormonal Signaling in the Coordination of Plant Growth and Development. Int J Mol Sci 2024; 25:3978. [PMID: 38612787 PMCID: PMC11012643 DOI: 10.3390/ijms25073978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Sulfur (S), one of the crucial macronutrients, plays a pivotal role in fundamental plant processes and the regulation of diverse metabolic pathways. Additionally, it has a major function in plant protection against adverse conditions by enhancing tolerance, often interacting with other molecules to counteract stresses. Despite its significance, a thorough comprehension of how plants regulate S nutrition and particularly the involvement of phytohormones in this process remains elusive. Phytohormone signaling pathways crosstalk to modulate growth and developmental programs in a multifactorial manner. Additionally, S availability regulates the growth and development of plants through molecular mechanisms intertwined with phytohormone signaling pathways. Conversely, many phytohormones influence or alter S metabolism within interconnected pathways. S metabolism is closely associated with phytohormones such as abscisic acid (ABA), auxin (AUX), brassinosteroids (BR), cytokinins (CK), ethylene (ET), gibberellic acid (GA), jasmonic acid (JA), salicylic acid (SA), and strigolactones (SL). This review provides a summary of the research concerning the impact of phytohormones on S metabolism and, conversely, how S availability affects hormonal signaling. Although numerous molecular details are yet to be fully understood, several core signaling components have been identified at the crossroads of S and major phytohormonal pathways.
Collapse
Affiliation(s)
- Anna Wawrzyńska
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland;
| | | |
Collapse
|
5
|
Song X, Zhu L, Wang D, Liang L, Xiao J, Tang W, Xie M, Zhao Z, Lai Y, Sun B, Tang Y, Li H. Molecular Regulatory Mechanism of Exogenous Hydrogen Sulfide in Alleviating Low-Temperature Stress in Pepper Seedlings. Int J Mol Sci 2023; 24:16337. [PMID: 38003525 PMCID: PMC10671541 DOI: 10.3390/ijms242216337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Pepper (Capsicum annuum L.) is sensitive to low temperatures, with low-temperature stress affecting its plant growth, yield, and quality. In this study, we analyzed the effects of exogenous hydrogen sulfide (H2S) on pepper seedlings subjected to low-temperature stress. Exogenous H2S increased the content of endogenous H2S and its synthetase activity, enhanced the antioxidant capacity of membrane lipids, and protected the integrity of the membrane system. Exogenous H2S also promoted the Calvin cycle to protect the integrity of photosynthetic organs; enhanced the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and photosynthesis; and reduced the intercellular CO2 concentration (Ci). Moreover, the activities of superoxide dismutase, peroxidase, catalase, and anti-cyclic glutathione (ASA-GSH) oxidase were improved to decompose excess reactive oxygen species (ROS), enhance the oxidative stress and detoxification ability of pepper seedlings, and improve the resistance to low-temperature chilling injury in 'Long Yun2' pepper seedlings. In addition, the H2S scavenger hypotaurine (HT) aggravated the ROS imbalance by reducing the endogenous H2S content, partially eliminating the beneficial effects of H2S on the oxidative stress and antioxidant defense system, indicating that H2S can effectively alleviate the damage of low temperature on pepper seedlings. The results of transcriptome analysis showed that H2S could induce the MAPK-signaling pathway and plant hormone signal transduction; upregulate the expression of transcription factors WRKY22 and PTI6; induce defense genes; and activate the ethylene and gibberellin synthesis receptors ERF1, GDI2, and DELLA, enhancing the resistance to low-temperature chilling injury of pepper seedlings. The plant-pathogen interaction was also significantly enriched, suggesting that exogenous H2S also promotes the expression of genes related to plant-pathogen interaction. The results of this study provide novel insights into the molecular mechanisms and genetic modifications of H2S that mitigate the hypothermic response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (L.Z.); (D.W.)
| |
Collapse
|
6
|
Ali M, Kumar D, Tikoria R, Sharma R, Parkirti P, Vikram V, Kaushal K, Ohri P. Exploring the potential role of hydrogen sulfide and jasmonic acid in plants during heavy metal stress. Nitric Oxide 2023; 140-141:16-29. [PMID: 37696445 DOI: 10.1016/j.niox.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
In plants, hydrogen sulfide (H2S) is mainly considered as a gaseous transmitter or signaling molecule that has long been recognized as an essential component of numerous plant cellular and physiological processes. Several subcellular compartments in plants use both enzymatic and non-enzymatic mechanisms to generate H2S. Under normal and stress full conditions exogenous administration of H2S supports a variety of plant developmental processes, including growth and germination, senescence, defense, maturation and antioxidant machinery in plants. Due to their gaseous nature, they are efficiently disseminated to various areas of the cell to balance antioxidant pools and supply sulphur to the cells. Numerous studies have also been reported regarding H2S ability to reduce heavy metal toxicity when combined with other signaling molecules like nitric oxide (NO), abscisic acid (ABA), calcium ion (Ca2+), hydrogen peroxide (H2O2), salicylic acid (SA), ethylene (ETH), jasmonic acid (JA), proline (Pro), and melatonin. The current study focuses on multiple pathways for JA and H2S production as well as their signaling functions in plant cells under varied circumstances, more specifically under heavy metal, which also covers role of H2S and Jasmonic acid during heavy metal stress and interaction of hydrogen sulfide with Jasmonic acid.
Collapse
Affiliation(s)
- Mohd Ali
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Raman Tikoria
- Department of Zoology, School of Bioengineering and Bioscience, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Roohi Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Parkirti Parkirti
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Vikram Vikram
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kritika Kaushal
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
7
|
Matkowski H, Daszkowska-Golec A. Update on stomata development and action under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1270180. [PMID: 37849845 PMCID: PMC10577295 DOI: 10.3389/fpls.2023.1270180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Stomata, key gatekeepers of plant hydration, have long been known to play a pivotal role in mitigating the impacts of abiotic stressors. However, the complex molecular mechanisms underscoring this role remain unresolved fully and continue to be the subject of research. In the context of water-use efficiency (WUE), a key indicator of a plant's ability to conserve water, this aspect links intrinsically with stomatal behavior. Given the pivotal role of stomata in modulating water loss, it can be argued that the complex mechanisms governing stomatal development and function will significantly influence a plant's WUE under different abiotic stress conditions. Addressing these calls for a concerted effort to strengthen plant adaptability through advanced, targeted research. In this vein, recent studies have illuminated how specific stressors trigger alterations in gene expression, orchestrating changes in stomatal pattern, structure, and opening. This reveals a complex interplay between stress stimuli and regulatory sequences of essential genes implicated in stomatal development, such as MUTE, SPCH, and FAMA. This review synthesizes current discoveries on the molecular foundations of stomatal development and behavior in various stress conditions and their implications for WUE. It highlights the imperative for continued exploration, as understanding and leveraging these mechanisms guarantee enhanced plant resilience amid an ever-changing climatic landscape.
Collapse
Affiliation(s)
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
8
|
Zboińska M, Romero LC, Gotor C, Kabała K. Regulation of V-ATPase by Jasmonic Acid: Possible Role of Persulfidation. Int J Mol Sci 2023; 24:13896. [PMID: 37762199 PMCID: PMC10531226 DOI: 10.3390/ijms241813896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Vacuolar H+-translocating ATPase (V-ATPase) is a proton pump crucial for plant growth and survival. For this reason, its activity is tightly regulated, and various factors, such as signaling molecules and phytohormones, may be involved in this process. The aim of this study was to explain the role of jasmonic acid (JA) in the signaling pathways responsible for the regulation of V-ATPase in cucumber roots and its relationship with other regulators of this pump, i.e., H2S and H2O2. We analyzed several aspects of the JA action on the enzyme, including transcriptional regulation, modulation of protein levels, and persulfidation of selected V-ATPase subunits as an oxidative posttranslational modification induced by H2S. Our results indicated that JA functions as a repressor of V-ATPase, and its action is related to a decrease in the protein amount of the A and B subunits, the induction of oxidative stress, and the downregulation of the E subunit persulfidation. We suggest that both H2S and H2O2 may be downstream components of JA-dependent negative proton pump regulation. The comparison of signaling pathways induced by two negative regulators of the pump, JA and cadmium, revealed that multiple pathways are involved in the V-ATPase downregulation in cucumber roots.
Collapse
Affiliation(s)
- Magdalena Zboińska
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Katarzyna Kabała
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| |
Collapse
|
9
|
Abstract
SIGNIFICANCE Hydrogen sulfide (H2S) is a multitasking potent regulator that facilitates plant growth, development, and responses to environmental stimuli. RECENT ADVANCES The important beneficial effects of H2S in various aspects of plant physiology aroused the interest of this chemical for agriculture. Protein cysteine persulfidation has been recognized as the main redox regulatory mechanism of H2S signaling. An increasing number of studies, including large-scale proteomic analyses and function characterizations, have revealed that H2S-mediated persulfidations directly regulate protein functions, altering downstream signaling in plants. To date, the importance of H2S-mediated persufidation in several abscisic acid signaling-controlling key proteins has been assessed as well as their role in stomatal movements, largely contributing to the understanding of the plant H2S-regulatory mechanism. CRITICAL ISSUES The molecular mechanisms of the H2S sensing and transduction in plants remain elusive. The correlation between H2S-mediated persulfidation with other oxidative posttranslational modifications of cysteines are still to be explored. FUTURE DIRECTIONS Implementation of advanced detection approaches for the spatiotemporal monitoring of H2S levels in cells and the current proteomic profiling strategies for the identification and quantification of the cysteine site-specific persulfidation will provide insight into the H2S signaling in plants.
Collapse
Affiliation(s)
- Jingjing Huang
- Ghent University, 26656, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium;
| | - Yanjie Xie
- Nanjing Agricultural University College of Life Sciences, 98430, No.1 Weigang, Nanjing, Jiangsu, China, 210095;
| |
Collapse
|
10
|
Hilal B, Khan TA, Fariduddin Q. Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1065-1083. [PMID: 36921557 DOI: 10.1016/j.plaphy.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Adverse environmental constraints such as drought, heat, cold, salinity, and heavy metal toxicity are the primary concerns of the agricultural industry across the globe, as these stresses negatively affect yield and quality of crop production and therefore can be a major threat to world food security. Recently, it has been demonstrated that hydrogen sulfide (H2S), which is well-known as a gasotransmitter in animals, also plays a potent role in various growth and developmental processes in plants. H2S, as a potent signaling molecule, is involved in several plant processes such as in the regulation of stomatal pore movements, seed germination, photosynthesis and plant adaptation to environmental stress through gene regulation, post-translation modification of proteins and redox homeostasis. Moreover, a number of experimental studies have revealed that H2S could improve the adaptation capabilities of plants against diverse environmental constraints by mitigating the toxic and damaging effects triggered by stressful environments. An attempt has been made to uncover recent development in the biosynthetic and metabolic pathways of H2S and various physiological functions modulated in plants, H2S donors, their functional mechanism, and application in plants. Specifically, our focus has been on how H2S is involved in combating the destructive effects of abiotic stresses and its role in persulfidation. Furthermore, we have comprehensively elucidated the crosstalk of H2S with plant growth regulators.
Collapse
Affiliation(s)
- Bisma Hilal
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Tanveer Ahmad Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
11
|
Cui Y, He M, Liu D, Liu J, Liu J, Yan D. Intercellular Communication during Stomatal Development with a Focus on the Role of Symplastic Connection. Int J Mol Sci 2023; 24:ijms24032593. [PMID: 36768915 PMCID: PMC9917297 DOI: 10.3390/ijms24032593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Stomata are microscopic pores on the plant epidermis that serve as a major passage for the gas and water exchange between a plant and the atmosphere. The formation of stomata requires a series of cell division and cell-fate transitions and some key regulators including transcription factors and peptides. Monocots have different stomatal patterning and a specific subsidiary cell formation process compared with dicots. Cell-to-cell symplastic trafficking mediated by plasmodesmata (PD) allows molecules including proteins, RNAs and hormones to function in neighboring cells by moving through the channels. During stomatal developmental process, the intercellular communication between stomata complex and adjacent epidermal cells are finely controlled at different stages. Thus, the stomata cells are isolated or connected with others to facilitate their formation or movement. In the review, we summarize the main regulation mechanism underlying stomata development in both dicots and monocots and especially the specific regulation of subsidiary cell formation in monocots. We aim to highlight the important role of symplastic connection modulation during stomata development, including the status of PD presence at different cell-cell interfaces and the function of relevant mobile factors in both dicots and monocots.
Collapse
Affiliation(s)
- Yongqi Cui
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Meiqing He
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Datong Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs/Lixiahe Institute of Agricultural Sciences of Jiangsu, Yangzhou 225007, China
| | - Jinxin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475001, China
- Correspondence:
| |
Collapse
|
12
|
Yang Z, Wang X, Feng J, Zhu S. Biological Functions of Hydrogen Sulfide in Plants. Int J Mol Sci 2022; 23:ijms232315107. [PMID: 36499443 PMCID: PMC9736554 DOI: 10.3390/ijms232315107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Hydrogen sulfide (H2S), which is a gasotransmitter, can be biosynthesized and participates in various physiological and biochemical processes in plants. H2S also positively affects plants' adaptation to abiotic stresses. Here, we summarize the specific ways in which H2S is endogenously synthesized and metabolized in plants, along with the agents and methods used for H2S research, and outline the progress of research on the regulation of H2S on plant metabolism and morphogenesis, abiotic stress tolerance, and the series of different post-translational modifications (PTMs) in which H2S is involved, to provide a reference for future research on the mechanism of H2S action.
Collapse
Affiliation(s)
- Zhifeng Yang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Xiaoyu Wang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Jianrong Feng
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
13
|
Weng X, Zhu L, Yu S, Liu Y, Ru Y, Zhang Z, He Z, Zhou L, Chen X. Carbon monoxide promotes stomatal initiation by regulating the expression of two EPF genes in Arabidopsis cotyledons. FRONTIERS IN PLANT SCIENCE 2022; 13:1029703. [PMID: 36438138 PMCID: PMC9691970 DOI: 10.3389/fpls.2022.1029703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The gaseous molecule carbon monoxide (CO) can freely pass through the cell membrane and participate in signal transduction in the cell to regulate physiological activities in plants. Here, we report that CO has a positive regulatory role in stomatal development. Exogenous CO donor CORM-2 [Tricarbonyldichlororuthenium (II) dimer] treatment resulted in an increase of stomatal index (SI) on the abaxial epidermis of cotyledons in wild-type, which can be reversed by the addition of the CO biosynthesis inhibitor ZnPPIX [Protoporphyrin IX zinc (II)]. Consistent with this result, mutation of the CO biosynthesis gene HY1 resulted in a decrease of SI in hy1-100 plants, while overexpression of HY1 led to an increase of SI. Further investigation revealed that CO acts upstream of SPCH and YDA in the stomatal development pathway, since the loss of function mutants spch-1 and yda-2 were insensitive to CORM-2. The expression of EPF2 was inhibited by CORM-2 treatment in wild type and is lower in hy1 than in wild-type plants. In contrast, the expression of STOMAGEN was promoted by CORM-2 treatment and is higher in HY1-overexpression lines. Loss of function mutants of both epf2 and stomagen are insensitive to CORM-2 treatment. These results indicated that CO positively regulates stomatal initiation and distribution by modulating the expression of EPF2 and STOMAGEN.
Collapse
Affiliation(s)
- Xianjie Weng
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Lingyan Zhu
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Shuangshuang Yu
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yue Liu
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yanyu Ru
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zijing Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zhaorong He
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Lijuan Zhou
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- School of Agriculture and Life Sciences, Kunming University, Yunnan, China
| | - Xiaolan Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
14
|
Wang Z, He F, Mu Y, Zhang L, Liu Z, Liu D, Yang J, Jin Z, Pei Y. Identification and functional characterization of a cystathionine β-lyase (CBL) enzyme for H 2S production in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:76-89. [PMID: 35472754 DOI: 10.1016/j.plaphy.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Sulfide or sulfur metabolism plays an important role in the growth and development of plants. Cystathionine β-lyase (CBL) is an important enzyme in methionine synthesis, but a comprehensive understanding of CBL functions is limited. As the third gasotransmitter, hydrogen sulfide (H2S) plays important physiological roles in plants. In this study, we found that the endogenous H2S content in Arabidopsis thaliana cbl mutants was lower than that in the wild type. Under PEG-based osmotic stress conditions, the H2S contents of CBL-overexpression (OE-CBL) plants increased significantly compared with the wild type. Additionally, the OE-CBL plants increased their tolerance to osmotic stress by increasing the transcription levels of drought-related genes and their relative water-loss rates. Compared with cbl and wild type, OE-CBL plants resisted drought stress by significantly closing their stomata, resulting in improved survival rates. Root tip-bending experiments showed that CBL overexpression relieved osmotic, heavy metal and cold stresses in Arabidopsis. The recombinant CBL activity in vitro revealed that CBL produced H2S using L-cysteine as a substrate. Thus, CBL had a very strong cysteine desulfhydrase activity that could produce endogenous H2S using L-cysteine as a substrate, and it played an important role in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Zhiqing Wang
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Feng He
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China; The Affiliated High School of Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Yao Mu
- Institute of Space Information, Space Engineering University, Beijing, 101416, China
| | - Liping Zhang
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Zhiqiang Liu
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Danmei Liu
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Jinbao Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhuping Jin
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China.
| | - Yanxi Pei
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China.
| |
Collapse
|
15
|
Tayal R, Kumar V, Irfan M. Harnessing the power of hydrogen sulphide (H 2 S) for improving fruit quality traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:594-601. [PMID: 34866296 DOI: 10.1111/plb.13372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulphide (H2 S) is a gaseous molecule and originates endogenously in plants. It is considered a potential signalling agent in various physiological processes of plants. Numerous reports have examined the role of H2 S in fruit ripening and in enhancing fruit quality traits. H2 S coordinates the fruit antioxidant system, fruit ripening phytohormones, such as ethylene and abscisic acid, together with other ripening-related signalling molecules, including nitric oxide and hydrogen peroxide. Although many studies have increased understanding of various aspects of this complex network, there is a gap in understanding crosstalk of H2 S with key players of fruit ripening, postharvest senescence and fruit metabolism. This review focused on deciphering fruit H2 S metabolism, signalling and its interaction with other ripening-related signalling molecules during fruit ripening and postharvest storage. Moreover, we also discuss how H2 S can be used as a tool for improving fruit quality and productivity and reducing postharvest loss of perishable fruits.
Collapse
Affiliation(s)
- R Tayal
- National Institute of Plant Genome Research, New Delhi, India
| | - V Kumar
- Department of Physiology and Cell Biology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - M Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
16
|
Raza A, Tabassum J, Mubarik MS, Anwar S, Zahra N, Sharif Y, Hafeez MB, Zhang C, Corpas FJ, Chen H. Hydrogen sulfide: an emerging component against abiotic stress in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:540-558. [PMID: 34870354 DOI: 10.1111/plb.13368] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 05/05/2023]
Abstract
As a result of climate change, abiotic stresses are the most common cause of crop losses worldwide. Abiotic stresses significantly impair plants' physiological, biochemical, molecular and cellular mechanisms, limiting crop productivity under adverse climate conditions. However, plants can implement essential mechanisms against abiotic stressors to maintain their growth and persistence under such stressful environments. In nature, plants have developed several adaptations and defence mechanisms to mitigate abiotic stress. Moreover, recent research has revealed that signalling molecules like hydrogen sulfide (H2 S) play a crucial role in mitigating the adverse effects of environmental stresses in plants by implementing several physiological and biochemical mechanisms. Mainly, H2 S helps to implement antioxidant defence systems, and interacts with other molecules like nitric oxide (NO), reactive oxygen species (ROS), phytohormones, etc. These molecules are well-known as the key players that moderate the adverse effects of abiotic stresses. Currently, little progress has been made in understanding the molecular basis of the protective role of H2 S; however, it is imperative to understand the molecular basis using the state-of-the-art CRISPR-Cas gene-editing tool. Subsequently, genetic engineering could provide a promising approach to unravelling the molecular basis of stress tolerance mediated by exogenous/endogenous H2 S. Here, we review recent advances in understanding the beneficial roles of H2 S in conferring multiple abiotic stress tolerance in plants. Further, we also discuss the interaction and crosstalk between H2 S and other signal molecules; as well as highlighting some genetic engineering-based current and future directions.
Collapse
Affiliation(s)
- A Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - J Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - M S Mubarik
- Department of Biotechnology, University of Narowal (UON), Narowal, 51600, Pakistan
| | - S Anwar
- Department of Agronomy, University of Florida, Gainesville, USA
| | - N Zahra
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Y Sharif
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - M B Hafeez
- College of Agronomy, Northwest A&F University, Yangling, China
| | - C Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - F J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, CSIC, Granada, Spain
| | - H Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| |
Collapse
|
17
|
Putrescine: A Key Metabolite Involved in Plant Development, Tolerance and Resistance Responses to Stress. Int J Mol Sci 2022; 23:ijms23062971. [PMID: 35328394 PMCID: PMC8955586 DOI: 10.3390/ijms23062971] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Putrescine (Put) is the starting point of the polyamines (PAs) pathway and the most common PA in higher plants. It is synthesized by two main pathways (from ornithine and arginine), but recently a third pathway from citrulline was reported in sesame plants. There is strong evidence that Put may play a crucial role not only in plant growth and development but also in the tolerance responses to the major stresses affecting crop production. The main strategies to investigate the involvement of PA in plant systems are based on the application of competitive inhibitors, exogenous PAs treatments, and the most efficient approaches based on mutant and transgenic plants. Thus, in this article, the recent advances in understanding the role of this metabolite in plant growth promotion and protection against abiotic and biotic stresses will be discussed to provide an overview for future research.
Collapse
|
18
|
de Bont L, Mu X, Wei B, Han Y. Abiotic stress-triggered oxidative challenges: Where does H 2S act? J Genet Genomics 2022; 49:748-755. [PMID: 35276389 DOI: 10.1016/j.jgg.2022.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/08/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide (H2S) was once principally considered the perpetrator of plant growth cessation and cell death. However, this has become an antiquated view, with cumulative evidence showing that the H2S serves as a biological signaling molecule notably involved in abiotic stress response and adaptation, such as defense by phytohormone activation, stomatal movement, gene reprogramming, and plant growth modulation. Reactive oxygen species (ROS)-dependent oxidative stress is involved in these responses. Remarkably, an ever-growing body of evidence indicates that H2S can directly interact with ROS processing systems in a redox-dependent manner, while it has been gradually recognized that H2S-based posttranslational modifications of key protein cysteine residues determine stress responses. Furthermore, the reciprocal interplay between H2S and nitric oxide (NO) in regulating oxidative stress has significant importance. The interaction of H2S with NO and ROS during acclimation to abiotic stress may vary from synergism to antagonism. However, the molecular pathways and factors involved remain to be identified. This review not only aims to provide updated information on H2S action in regulating ROS-dependent redox homeostasis and signaling, but also discusses the mechanisms of H2S-dependent regulation in the context of oxidative stress elicited by environmental cues.
Collapse
Affiliation(s)
- Linda de Bont
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China; Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Xiujie Mu
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Bo Wei
- School of Biology, Food and Environment, Hefei University, 230601, Hefei, China
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China; School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China.
| |
Collapse
|
19
|
Ren Z, Wang RY, Huang XY, Wang Y. Sulfur Compounds in Regulation of Stomatal Movement. FRONTIERS IN PLANT SCIENCE 2022; 13:846518. [PMID: 35360293 PMCID: PMC8963490 DOI: 10.3389/fpls.2022.846518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 05/06/2023]
Abstract
Sulfur, widely present in the soil and atmosphere, is one of the essential elements for plants. Sulfate is a dominant form of sulfur in soils taken up by plant roots. In addition to the assimilation into sulfur compounds essential for plant growth and development, it has been reported recently that sulfate as well as other sulfur containing compounds can also induce stomatal movement. Here, we first summarized the uptake and transport of sulfate and atmospheric sulfur, including H2O and SO2, and then, focused on the effects of inorganic and organic sulfur on stomatal movement. We concluded all the transporters for different sulfur compounds, and compared the expression level of those transporters in guard cells and mesophyll cells. The relationship between abscisic acid and sulfur compounds in regulation of stomatal movement were also discussed.
Collapse
Affiliation(s)
- Zirong Ren
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| | - Ru-Yuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Xin-Yuan Huang,
| | - Yin Wang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
- Yin Wang,
| |
Collapse
|
20
|
Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP. Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. TRENDS IN PLANT SCIENCE 2021; 26:1270-1285. [PMID: 34417078 DOI: 10.1016/j.tplants.2021.07.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitters, which are involved in almost all plant physiological and stress-related processes. With its antioxidant regulatory properties, NO on its own ameliorates plant stress, while H2S, a foul-smelling gas, has differential effects. Recent studies have shown that these signaling molecules are involved in intertwined pathway networks. This is due to the contrasting effects of NO and H2S depending on cell type, subcellular compartment, and redox status, as well as the flux and dosage of NO and H2S in different plant species and cellular contexts. Here, we provide a comprehensive review of the complex networks of these molecules, with particular emphasis on root development, stomatal movement, and plant cell death.
Collapse
Affiliation(s)
- Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India
| | - Pooja Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida-201313, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India.
| |
Collapse
|
21
|
Hu D, Wei L, Liao W. Brassinosteroids in Plants: Crosstalk with Small-Molecule Compounds. Biomolecules 2021; 11:biom11121800. [PMID: 34944444 PMCID: PMC8698649 DOI: 10.3390/biom11121800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Brassinosteroids (BRs) are known as the sixth type of plant hormone participating in various physiological and biochemical activities and play an irreplaceable role in plants. Small-molecule compounds (SMCs) such as nitric oxide (NO), ethylene, hydrogen peroxide (H2O2), and hydrogen sulfide (H2S) are involved in plant growth and development as signaling messengers. Recently, the involvement of SMCs in BR-mediated growth and stress responses is gradually being discovered in plants, including seed germination, adventitious rooting, stem elongation, fruit ripening, and stress responses. The crosstalk between BRs and SMCs promotes plant development and alleviates stress damage by modulating the antioxidant system, photosynthetic capacity, and carbohydrate metabolism, as well as osmotic adjustment. In the present review, we try to explain the function of BRs and SMCs and their crosstalk in the growth, development, and stress resistance of plants.
Collapse
Affiliation(s)
| | | | - Weibiao Liao
- Correspondence: ; Tel.: +86-931-763-2155; Fax: +86-931-763-2155
| |
Collapse
|
22
|
Hydrogen Sulfide in Plants: Crosstalk with Other Signal Molecules in Response to Abiotic Stresses. Int J Mol Sci 2021; 22:ijms222112068. [PMID: 34769505 PMCID: PMC8585011 DOI: 10.3390/ijms222112068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) has recently been considered as a crucial gaseous transmitter occupying extensive roles in physiological and biochemical processes throughout the life of plant species. Furthermore, plenty of achievements have been announced regarding H2S working in combination with other signal molecules to mitigate environmental damage, such as nitric oxide (NO), abscisic acid (ABA), calcium ion (Ca2+), hydrogen peroxide (H2O2), salicylic acid (SA), ethylene (ETH), jasmonic acid (JA), proline (Pro), and melatonin (MT). This review summarizes the current knowledge within the mechanism of H2S and the above signal compounds in response to abiotic stresses in plants, including maintaining cellular redox homeostasis, exchanging metal ion transport, regulating stomatal aperture, and altering gene expression and enzyme activities. The potential relationship between H2S and other signal transmitters is also proposed and discussed.
Collapse
|
23
|
Wang P, Fang H, Gao R, Liao W. Protein Persulfidation in Plants: Function and Mechanism. Antioxidants (Basel) 2021; 10:1631. [PMID: 34679765 PMCID: PMC8533255 DOI: 10.3390/antiox10101631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
As an endogenous gaseous transmitter, the function of hydrogen sulfide (H2S) has been extensively studied in plants. Once synthesized, H2S may be involved in almost all life processes of plants. Among them, a key route for H2S bioactivity occurs via protein persulfidation, in which process oxidizes cysteine thiol (R-SH) groups into persulfide (R-SSH) groups. This process is thought to underpin a myriad of cellular processes in plants linked to growth, development, stress responses, and phytohormone signaling. Multiple lines of emerging evidence suggest that this redox-based reversible post-translational modification can not only serve as a protective mechanism for H2S in oxidative stress, but also control a variety of biochemical processes through the allosteric effect of proteins. Here, we collate emerging evidence showing that H2S-mediated persulfidation modification involves some important biochemical processes such as growth and development, oxidative stress, phytohormone and autophagy. Additionally, the interaction between persulfidation and S-nitrosylation is also discussed. In this work, we provide beneficial clues for further exploration of the molecular mechanism and function of protein persulfidation in plants in the future.
Collapse
Affiliation(s)
| | | | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China; (P.W.); (H.F.); (R.G.)
| |
Collapse
|
24
|
Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, Lenka D, Chand S, Kumar V, Dey P, Indu, Pandey S, Vachova P, Gupta A, Brestic M, El Sabagh A. Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:670369. [PMID: 34484254 PMCID: PMC8414894 DOI: 10.3389/fpls.2021.670369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/28/2021] [Indexed: 10/29/2023]
Abstract
In the era of rapid climate change, abiotic stresses are the primary cause for yield gap in major agricultural crops. Among them, salinity is considered a calamitous stress due to its global distribution and consequences. Salinity affects plant processes and growth by imposing osmotic stress and destroys ionic and redox signaling. It also affects phytohormone homeostasis, which leads to oxidative stress and eventually imbalances metabolic activity. In this situation, signaling compound crosstalk such as gasotransmitters [nitric oxide (NO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), calcium (Ca), reactive oxygen species (ROS)] and plant growth regulators (auxin, ethylene, abscisic acid, and salicylic acid) have a decisive role in regulating plant stress signaling and administer unfavorable circumstances including salinity stress. Moreover, recent significant progress in omics techniques (transcriptomics, genomics, proteomics, and metabolomics) have helped to reinforce the deep understanding of molecular insight in multiple stress tolerance. Currently, there is very little information on gasotransmitters and plant growth regulator crosstalk and inadequacy of information regarding the integration of multi-omics technology during salinity stress. Therefore, there is an urgent need to understand the crucial cell signaling crosstalk mechanisms and integrative multi-omics techniques to provide a more direct approach for salinity stress tolerance. To address the above-mentioned words, this review covers the common mechanisms of signaling compounds and role of different signaling crosstalk under salinity stress tolerance. Thereafter, we mention the integration of different omics technology and compile recent information with respect to salinity stress tolerance.
Collapse
Affiliation(s)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Udit N. Mishra
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Jyoti Chauhan
- Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Jamuhar, India
| | - Laxmi P. Behera
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Devidutta Lenka
- Department of Plant Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Subhash Chand
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Kumar
- Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, India
| | - Prajjal Dey
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Indu
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
25
|
Aroca A, Zhang J, Xie Y, Romero LC, Gotor C. Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5893-5904. [PMID: 34077530 PMCID: PMC8355753 DOI: 10.1093/jxb/erab239] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/24/2021] [Indexed: 05/16/2023]
Abstract
Hydrogen sulfide (H2S) is a signaling molecule that regulates critical processes and allows plants to adapt to adverse conditions. The molecular mechanism underlying H2S action relies on its chemical reactivity, and the most-well characterized mechanism is persulfidation, which involves the modification of protein thiol groups, resulting in the formation of persulfide groups. This modification causes a change of protein function, altering catalytic activity or intracellular location and inducing important physiological effects. H2S cannot react directly with thiols but instead can react with oxidized cysteine residues; therefore, H2O2 signaling through sulfenylation is required for persulfidation. A comparative study performed in this review reveals 82% identity between sulfenylome and persulfidome. With regard to abscisic acid (ABA) signaling, widespread evidence shows an interconnection between H2S and ABA in the plant response to environmental stress. Proteomic analyses have revealed persulfidation of several proteins involved in the ABA signaling network and have shown that persulfidation is triggered in response to ABA. In guard cells, a complex interaction of H2S and ABA signaling has also been described, and the persulfidation of specific signaling components seems to be the underlying mechanism.
Collapse
Affiliation(s)
- Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Jing Zhang
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| |
Collapse
|
26
|
Liu H, Xue S. Interplay between hydrogen sulfide and other signaling molecules in the regulation of guard cell signaling and abiotic/biotic stress response. PLANT COMMUNICATIONS 2021; 2:100179. [PMID: 34027393 PMCID: PMC8132131 DOI: 10.1016/j.xplc.2021.100179] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Stomatal aperture controls the balance between transpirational water loss and photosynthetic carbon dioxide (CO2) uptake. Stomata are surrounded by pairs of guard cells that sense and transduce environmental or stress signals to induce diverse endogenous responses for adaptation to environmental changes. In a recent decade, hydrogen sulfide (H2S) has been recognized as a signaling molecule that regulates stomatal movement. In this review, we summarize recent progress in research on the regulatory role of H2S in stomatal movement, including the dynamic regulation of phytohormones, ion homeostasis, and cell structural components. We focus especially on the cross talk among H2S, nitric oxide (NO), and hydrogen peroxide (H2O2) in guard cells, as well as on H2S-mediated post-translational protein modification (cysteine thiol persulfidation). Finally, we summarize the mechanisms by which H2S interacts with other signaling molecules in plants under abiotic or biotic stress. Based on evidence and clues from existing research, we propose some issues that need to be addressed in the future.
Collapse
Affiliation(s)
- Hai Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Wei H, Jing Y, Zhang L, Kong D. Phytohormones and their crosstalk in regulating stomatal development and patterning. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2356-2370. [PMID: 33512461 DOI: 10.1093/jxb/erab034] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Phytohormones play important roles in regulating various aspects of plant growth and development as well as in biotic and abiotic stress responses. Stomata are openings on the surface of land plants that control gas exchange with the environment. Accumulating evidence shows that various phytohormones, including abscisic acid, jasmonic acid, brassinosteroids, auxin, cytokinin, ethylene, and gibberellic acid, play many roles in the regulation of stomatal development and patterning, and that the cotyledons/leaves and hypocotyls/stems of Arabidopsis exhibit differential responsiveness to phytohormones. In this review, we first discuss the shared regulatory mechanisms controlling stomatal development and patterning in Arabidopsis cotyledons and hypocotyls and those that are distinct. We then summarize current knowledge of how distinct hormonal signaling circuits are integrated into the core stomatal development pathways and how different phytohormones crosstalk to tailor stomatal density and spacing patterns. Knowledge obtained from Arabidopsis may pave the way for future research to elucidate the effects of phytohormones in regulating stomatal development and patterning in cereal grasses for the purpose of increasing crop adaptive responses.
Collapse
Affiliation(s)
- Hongbin Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yifeng Jing
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lei Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dexin Kong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
28
|
Huang D, Huo J, Liao W. Hydrogen sulfide: Roles in plant abiotic stress response and crosstalk with other signals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110733. [PMID: 33288031 DOI: 10.1016/j.plantsci.2020.110733] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 05/27/2023]
Abstract
Hydrogen sulfide (H2S) has been recently recognized as an endogenous gas transmitter alongside nitric oxide and carbon monoxide. Exposure of plants to H2S, for example through applicating H2S donors, reveals that H2S play important roles in plant response to abiotic stresses such as heavy metals, salinity, drought and extreme temperatures. Sodium hydrosulfide is the most widely used donor in plants due to its direct and instantaneous release of H2S, followed by GYY4137. H2S can enhance plant tolerance to salt and heavy metal stresses through regulating Na+/K+ homeostasis and the uptake and transport of metal ions. H2S also promotes the H2S-Cys cycle balance under abiotic stress and enhances its roles in regulation of the antioxidant system, alternative respiratory pathway, and heavy metal chelators synthesis. H2S coordinates with gaseous signal molecules, reactive oxygen species and nitric oxide to respond to stress directly through influencing their generation or competing for the regulation of the downstream signaling. Moreover, H2S interacts with phytohormones including abscisic acid, ethylene, salicylic acid and melatonin as well as polyamines to regulate plant response to abiotic stresses. In this review, the application of H2S donors and their functional mechanism are summarized. We propose promising new research directions, which can lead to new insights on the role of this gastrasmitter during plant growth and development.
Collapse
Affiliation(s)
- Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianqiang Huo
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
29
|
Hu KD, Zhang XY, Yao GF, Rong YL, Ding C, Tang J, Yang F, Huang ZQ, Xu ZM, Chen XY, Li YH, Hu LY, Zhang H. A nuclear-localized cysteine desulfhydrase plays a role in fruit ripening in tomato. HORTICULTURE RESEARCH 2020; 7:211. [PMID: 33328464 PMCID: PMC7736880 DOI: 10.1038/s41438-020-00439-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/07/2020] [Accepted: 10/17/2020] [Indexed: 05/06/2023]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that plays multiple roles in plant development. However, whether endogenous H2S plays a role in fruit ripening in tomato is still unknown. In this study, we show that the H2S-producing enzyme L-cysteine desulfhydrase SlLCD1 localizes to the nucleus. By constructing mutated forms of SlLCD1, we show that the amino acid residue K24 of SlLCD1 is the key amino acid that determines nuclear localization. Silencing of SlLCD1 by TRV-SlLCD1 accelerated fruit ripening and reduced H2S production compared with the control. A SlLCD1 gene-edited mutant obtained through CRISPR/Cas9 modification displayed a slightly dwarfed phenotype and accelerated fruit ripening. This mutant also showed increased cysteine content and produced less H2S, suggesting a role of SlLCD1 in H2S generation. Chlorophyll degradation and carotenoid accumulation were enhanced in the SlLCD1 mutant. Other ripening-related genes that play roles in chlorophyll degradation, carotenoid biosynthesis, cell wall degradation, ethylene biosynthesis, and the ethylene signaling pathway were enhanced at the transcriptional level in the lcd1 mutant. Total RNA was sequenced from unripe tomato fruit treated with exogenous H2S, and transcriptome analysis showed that ripening-related gene expression was suppressed. Based on the results for a SlLCD1 gene-edited mutant and exogenous H2S application, we propose that the nuclear-localized cysteine desulfhydrase SlLCD1 is required for endogenous H2S generation and participates in the regulation of tomato fruit ripening.
Collapse
Affiliation(s)
- Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Xiao-Yue Zhang
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Yu-Lei Rong
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Chen Ding
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, 221131, Xuzhou, China
| | - Feng Yang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, 221131, Xuzhou, China
| | - Zhong-Qin Huang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, 221131, Xuzhou, China
| | - Zi-Mu Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Xiao-Yan Chen
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Yan-Hong Li
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Lan-Ying Hu
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China.
| |
Collapse
|
30
|
González-Gordo S, Palma JM, Corpas FJ. Appraisal of H 2S metabolism in Arabidopsis thaliana: In silico analysis at the subcellular level. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:579-588. [PMID: 32846393 DOI: 10.1016/j.plaphy.2020.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 05/15/2023]
Abstract
Hydrogen sulfide (H2S) has become a new signal molecule in higher plants which seems to be involved in almost all physiological processes from seed germination, root and plant growth until flowering and fruit ripening. Moreover, H2S also participates in the mechanism of response against adverse environmental stresses. However, its basic biochemistry in plant cells can be considered in a nascent stage. Using the available information of the model plant Arabidopsis thaliana, the goal of the present study is to provide a broad overview of H2S metabolism and to display an in silico analysis of the 26 enzymatic components involved in the metabolism of H2S and their subcellular compartmentation (cytosol, chloroplast and mitochondrion) thus providing a wide picture of the cross-talk inside the organelles and amongst them and, consequently, to get a better understanding of the cellular and tissue implications of H2S. This information will be also relevant for other crop species, especially those whose whole genome is not yet available.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - José M Palma
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Francisco J Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.
| |
Collapse
|
31
|
Crosstalk between Hydrogen Sulfide and Other Signal Molecules Regulates Plant Growth and Development. Int J Mol Sci 2020; 21:ijms21134593. [PMID: 32605208 PMCID: PMC7370202 DOI: 10.3390/ijms21134593] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S), once recognized only as a poisonous gas, is now considered the third endogenous gaseous transmitter, along with nitric oxide (NO) and carbon monoxide (CO). Multiple lines of emerging evidence suggest that H2S plays positive roles in plant growth and development when at appropriate concentrations, including seed germination, root development, photosynthesis, stomatal movement, and organ abscission under both normal and stress conditions. H2S influences these processes by altering gene expression and enzyme activities, as well as regulating the contents of some secondary metabolites. In its regulatory roles, H2S always interacts with either plant hormones, other gasotransmitters, or ionic signals, such as abscisic acid (ABA), ethylene, auxin, CO, NO, and Ca2+. Remarkably, H2S also contributes to the post-translational modification of proteins to affect protein activities, structures, and sub-cellular localization. Here, we review the functions of H2S at different stages of plant development, focusing on the S-sulfhydration of proteins mediated by H2S and the crosstalk between H2S and other signaling molecules.
Collapse
|