1
|
Famá EAB, Pinhal MAS. Extracellular matrix components in preeclampsia. Clin Chim Acta 2025; 568:120132. [PMID: 39798685 DOI: 10.1016/j.cca.2025.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Preeclampsia (PE) is a gestational complication affecting 5% to 10% of all pregnancies. PE is characterized by hypertension and endothelial dysfunction, whose etiology involves, among other factors, alterations in the extracellular matrix (ECM) that can compromise vascular remodeling and trophoblast invasion, ie, processes essential for placental development. Endothelial dysfunction is caused by release of antiangiogenic factors, mainly a soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes two endothelial angiogenic factors, the vascular endothelial growth factor (VEGF) and placental growth factor (PLGF). This angiogenic imbalance contributes to clinical symptoms including hypertension and multisystem dysfunction. This review aims to summarize recent advances in understanding PE, particularly with altered ECM components such as heparan sulfate proteoglycans, the glycosidase heparanase, fibronectin, collagen XVIII (endostatin), and metalloproteases. This comprehensive narrative review was conducted on PubMed from 1994 to 2024, focusing on articles on the pathophysiology of PE, particularly endothelial dysfunction caused by ECM modifications. The data shows a reduced expression of matrix metalloproteinases, increased collagen fragment XVIII, and significant changes in fibronectin associated with PE. Furthermore, endothelial dysfunction was associated with increased degradation of heparan sulfate chains from proteoglycans and increased sFlt-1. Understanding these ECM modifications is crucial for developing potential new therapeutic interventions that improve maternal and fetal outcome in PE.
Collapse
Affiliation(s)
- Eduardo Augusto Brosco Famá
- Obstetrics/Gynecology Department, Centro Universitário Faculdade de Medicina ABC (FMABC), Santo André, São Paulo, Brazil.
| | | |
Collapse
|
2
|
Oğuz Y, Ağaoğlu RT, Ulusoy CO, Kurt D, Özgürlük İ, Soysal Ç, Yılmaz Vural Z, Yakut Yücel K. The significance of Syndecan 1, a new marker for endothelial dysfunction, in cases of fetal growth retardation. Am J Reprod Immunol 2024; 91:e13858. [PMID: 38762781 DOI: 10.1111/aji.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 05/20/2024] Open
Abstract
PROBLEM In the current study we aimed to investigate Syndecan 1 (SDC1) levels in pregnant women diagnosed with fetal growth restriction (FGR) and the relationship between SDC1 levels and clinical and doppler parameters in FGR cases associated with endothelial dysfunction, angiogenesis and uteroplacental insufficiency METHOD OF STUDY: A total of 90 pregnant women included in the study, (45 with FGR, 45 healthy control) matched by week of gestation and maternal age. Venous blood samples were collected and plasma concentrations of SDC1 were determined by a specific immunoassay. Doppler examination was performed to evaluate the relationship between the SDC1 levels and placental blood supply. RESULTS Doppler parameters; mean UtA-PI (p < .001), CPR (p = .002) and CPUR (p < .001) were different between the groups, however MCA PI, umbilical artery PI and umbilical artery S/D were not (p > .05). While gestational age at delivery, birth weight, APGAR score at 1 and 5 min were significantly lower (all, p < .001) in the study group, non-reassure fetal heart rate tracing (p = .09) and NICU admission (p = .02) were significantly higher. SDC 1 level was 2,00 ± 1,47 ng/mL and 2,34 ± 1,12 ng/mL in the FGR and control groups, respectively (p = .008). In the study group SDC 1 level was 1,69 ± 2,00 in those with gestational age below 32 weeks and 2,13 ± 1,18 in those with gestational age above 32 weeks and there was a statistically significant difference between the groups (p = .015). Plasma SDC 1 concentration of 2,1850 ng/mL or less had a sensitivity of 70%, a specificity of 72%, area under the ROC curve .65 (p < .005). CONCLUSIONS Low maternal plasma SDC1 level may be associated with placental insufficiency and FGR. Low levels of SDC1 may be helpful as a predictor for the development of FGR during gestation.
Collapse
Affiliation(s)
- Yüksel Oğuz
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - Recep Taha Ağaoğlu
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - Can Ozan Ulusoy
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - Dilara Kurt
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - İzzet Özgürlük
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - Çağanay Soysal
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - Zehra Yılmaz Vural
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - Kadriye Yakut Yücel
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| |
Collapse
|
3
|
Antia IU, Hills FA, Shah AJ. Disaccharide compositional analysis of chondroitin sulphate using WAX HILIC-MS with pre-column procainamide labelling; application to the placenta in pre-eclampsia. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:566-575. [PMID: 38189556 DOI: 10.1039/d3ay01578e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Chondroitin sulphate (CS) and dermatan sulphate are negatively charged linear heteropolysaccharides. These glycosaminoglycans (GAG) are involved in cellular signalling via binding to growth factors. CS is expressed in a range of tissue and biological fluids and is highly expressed in the placenta. There is evidence that decorin; a CS proteoglycan is significantly decreased in pre-eclampsia and fetal growth restriction. It is considered that GAG chain composition may influence cellular processes that are altered in pre-eclampsia. The goal of the present study was to develop an LC-MS method with precolumn procainamide labelling for the disaccharide compositional analysis of CS. The method was used to investigate whether the disaccharide composition of placenta-extracted CS is altered in pre-eclampsia. The study revealed differential disaccharide compositions of placental chondroitin sulphate between pre-eclampsia and other pregnancy conditions. This suggests that the method may have diagnostic potential for pregnancy disorders. Furthermore, the findings suggest that CS sulphation might play a significant role in maternal labour.
Collapse
Affiliation(s)
- Imeobong U Antia
- Glycan Research Group, Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK.
| | - Frank A Hills
- Glycan Research Group, Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK.
| | - Ajit J Shah
- Glycan Research Group, Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK.
| |
Collapse
|
4
|
Juusela A, Jung E, Gallo DM, Bosco M, Suksai M, Diaz-Primera R, Tarca AL, Than NG, Gotsch F, Romero R, Tinnakorn Chaiworapongsa. Maternal plasma syndecan-1: a biomarker for fetal growth restriction. J Matern Fetal Neonatal Med 2023; 36:2150074. [PMID: 36597808 PMCID: PMC10291740 DOI: 10.1080/14767058.2022.2150074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The identification of fetal growth disorders is an important clinical priority given that they increase the risk of perinatal morbidity and mortality as well as long-term diseases. A subset of small-for-gestational-age (SGA) infants are growth-restricted, and this condition is often attributed to placental insufficiency. Syndecan-1, a product of the degradation of the endothelial glycocalyx, has been proposed as a biomarker of endothelial damage in different pathologies. During pregnancy, a "specialized" form of the glycocalyx-the "syncytiotrophoblast glycocalyx"-covers the placental villi. The purpose of this study was to determine whether the concentration of maternal plasma syndecan-1 can be proposed as a biomarker for fetal growth restriction. STUDY DESIGN A cross-sectional study was designed to include women with normal pregnancy (n = 130) and pregnant women who delivered an SGA neonate (n = 50). Doppler velocimetry of the uterine and umbilical arteries was performed in women with an SGA fetus at the time of diagnosis. Venipuncture was performed within 48 h of Doppler velocimetry and plasma concentrations of syndecan-1 were determined by a specific and sensitive immunoassay. RESULTS (1) Plasma syndecan-1 concentration followed a nonlinear increase with gestational age in uncomplicated pregnancies (R2 = 0.27, p < .001); (2) women with a pregnancy complicated with an SGA fetus had a significantly lower mean plasma concentration of syndecan-1 than those with an appropriate-for-gestational-age fetus (p = .0001); (3) this difference can be attributed to fetal growth restriction, as the mean plasma syndecan-1 concentration was significantly lower only in the group of women with an SGA fetus who had abnormal umbilical and uterine artery Doppler velocimetry compared to controls (p = .00071; adjusted p = .0028). A trend toward lower syndecan-1 concentrations was also noted for SGA with abnormal uterine but normal umbilical artery Doppler velocimetry (p = .0505; adjusted p = .067); 4) among women with an SGA fetus, those with abnormal umbilical and uterine artery Doppler findings had a lower mean plasma syndecan-1 concentration than women with normal Doppler velocimetry (p = .02; adjusted p = .04); 5) an inverse relationship was found between the maternal plasma syndecan-1 concentration and the umbilical artery pulsatility index (r = -0.5; p = .003); and 6) a plasma syndecan-1 concentration ≤ 850 ng/mL had a positive likelihood ratio of 4.4 and a negative likelihood ratio of 0.24 for the identification of a mother with an SGA fetus who had abnormal umbilical artery Doppler velocimetry (area under the ROC curve 0.83; p < .001). CONCLUSION Low maternal plasma syndecan-1 may reflect placental diseases and this protein could be a biomarker for fetal growth restriction. However, as a sole biomarker for this condition, its accuracy is low.
Collapse
Affiliation(s)
- Alexander Juusela
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Maternity Private Clinic, Budapest, Hungary
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
5
|
Immonen T, Jung E, Gallo DM, Diaz-Primera R, Gotsch F, Whittaker P, Than NG, Bosco M, Tarca AL, Suksai M, Romero R, Chaiworapongsa T. Acute pyelonephritis in pregnancy and plasma syndecan-1: evidence of glycocalyx involvement. J Matern Fetal Neonatal Med 2023; 36:2155041. [PMID: 36642424 PMCID: PMC10352999 DOI: 10.1080/14767058.2022.2155041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/30/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Acute pyelonephritis, a risk factor for maternal sepsis, adult respiratory distress syndrome, and preterm labor, is a frequent cause of hospitalization. This condition is characterized by excessive intravascular inflammation and endothelial cell activation and dysfunction. Syndecan-1, a major component of the glycocalyx, is a gel-like layer that covers the luminal surface of healthy endothelial cells, preserving and mediating many endothelial functions. During pregnancy, there is an additional potential source of syndecan-1, the "syncytiotrophoblast glycocalyx," which lines the intervillous space. Insults that damage the glycocalyx lead to a shedding of syndecan-1 into the circulation. Hence, syndecan-1 has been proposed as a marker of endothelial injury in conditions such as sepsis, trauma, cardiovascular disease, and diabetes mellitus. OBJECTIVE The objective of this study was to determine whether the plasma syndecan-1 concentration changes in women with acute pyelonephritis in the presence or absence of bacteremia. STUDY DESIGN This cross-sectional study included three groups: (1) non-pregnant women (n = 25); (2) women with an uncomplicated pregnancy from whom samples were collected preterm (n = 61) or at term (n = 69); and (3) pregnant women diagnosed with acute pyelonephritis from whom samples were collected at the time of diagnosis during the second and third trimesters (n = 33). The diagnosis of acute pyelonephritis was based on clinical findings and a positive urine culture for bacteria. Blood culture results were available in 85% (28/33) of women with acute pyelonephritis. Plasma concentrations of syndecan-1 were determined by a validated immunoassay. RESULTS (1) Women with an uncomplicated pregnancy had a higher plasma concentration of syndecan-1 than non-pregnant women. The geometric mean (95% confidence interval [CI]) of syndecan-1 concentration was 51.0 (12.1-216.1) ng/mL in non-pregnant controls; 1280 (365-4487) ng/mL in normal preterm gestations; and 1786 (546-5834) ng/mL in normal term gestations (adjusted p < .005 for all three between group comparisons); (2) plasma syndecan-1 concentrations increased with gestational age among women with a normal pregnancy (p < .001, R2 = 0.27); (3) syndecan-1 multiple of the mean (MoM) values in pregnant patients with acute pyelonephritis were higher than those in normal pregnant women based on second- and third-trimester samples (p = .048, 1.26-fold change). The increase was driven primarily by cases with a positive blood culture (p = .009, 1.74-fold change); (4) when data from third-trimester samples were compared, overall differences in syndecan-1 MoM values between cases and controls were slightly larger (p = .03, 1.36- fold change), which were especially contributed to by cases with a positive blood culture (p = .023, fold change 1.79-fold change). CONCLUSIONS Plasma syndecan-1 concentration is higher in pregnant women and increases as a function of gestational age. Patients with acute pyelonephritis have a higher plasma concentration of syndecan-1, and this is particularly the case in the presence of bacteremia.
Collapse
Affiliation(s)
- Timothy Immonen
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Peter Whittaker
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Maternity Private Clinic, Budapest, Hungary
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
6
|
Nishio A, Kamidani R, Okada H, Suzuki K, Suzuki K, Miyake T, Okamoto H, Doi T, Suzuki A, Yoshida S, Ogura S. Serum syndecan-1 concentration in hemolysis, elevated liver enzymes, and low platelets syndrome: A case report. Front Med (Lausanne) 2023; 10:1111139. [PMID: 36999071 PMCID: PMC10043163 DOI: 10.3389/fmed.2023.1111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundHemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome occurs in pregnant and postpartum individuals. We observed serum syndecan-1 (SDC-1) levels, which is a component of the glycocalyx, in a patient with HELLP syndrome from admission to the postpartum period and examined their association as reflecting the pathophysiology related to endothelial injury.Case presentationA 31-year-old primiparous female patient without a previous medical history at a gestational age of 37 weeks and 6 days was transferred to our hospital the morning after a visit to a previous hospital with headache and nausea. Elevated transaminase, platelet count, and proteinuria were noted. Head magnetic resonance imaging revealed a caudate nucleus hemorrhage and posterior reversible encephalopathy syndrome. After she delivered her newborn through an emergency cesarean section, she was admitted to the intensive care unit. On day 4 post-delivery, the patient’s D-dimer concentration was elevated, and contrast-enhanced computed tomography was performed. The results indicated pulmonary embolism, and heparin administration was initiated. The serum SDC-1 level was highest on day 1 post-delivery and quickly decreased subsequently; however, it remained elevated during the postpartum period. Her condition gradually improved, and she was extubated on day 6 and discharged from the ICU on day 7 post-delivery.ConclusionWe measured SDC-1 concentration in a patient with HELLP syndrome and found that the clinical course correlated with SDC-1 levels, indicating that SDC-1 is elevated immediately before and after pregnancy termination in patients with HELLP syndrome. Therefore, SDC-1 fluctuations, combined with the elevation of the D-dimer level, may be a potential marker for the early detection of HELLP syndrome and estimation of the syndrome’s severity in the future.
Collapse
Affiliation(s)
- Ayane Nishio
- Advanced Critical Care Center, Gifu University Hospital, Gifu, Japan
| | - Ryo Kamidani
- Advanced Critical Care Center, Gifu University Hospital, Gifu, Japan
- Abuse Prevention Center, Gifu University Graduate School of Medicine, Gifu, Japan
- *Correspondence: Ryo Kamidani,
| | - Hideshi Okada
- Advanced Critical Care Center, Gifu University Hospital, Gifu, Japan
| | - Keiko Suzuki
- Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Kodai Suzuki
- Advanced Critical Care Center, Gifu University Hospital, Gifu, Japan
| | - Takahito Miyake
- Advanced Critical Care Center, Gifu University Hospital, Gifu, Japan
| | - Haruka Okamoto
- Advanced Critical Care Center, Gifu University Hospital, Gifu, Japan
| | - Tomoaki Doi
- Advanced Critical Care Center, Gifu University Hospital, Gifu, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Shozo Yoshida
- Advanced Critical Care Center, Gifu University Hospital, Gifu, Japan
- Abuse Prevention Center, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinji Ogura
- Advanced Critical Care Center, Gifu University Hospital, Gifu, Japan
| |
Collapse
|
7
|
Marletta S, Pantanowitz L, Santonicco N, Caputo A, Bragantini E, Brunelli M, Girolami I, Eccher A. Application of Digital Imaging and Artificial Intelligence to Pathology of the Placenta. Pediatr Dev Pathol 2023; 26:5-12. [PMID: 36448447 DOI: 10.1177/10935266221137953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Digital imaging, including the use of artificial intelligence, has been increasingly applied to investigate the placenta and its related pathology. However, there has been no comprehensive review of this body of work to date. The aim of this study was to therefore review the literature regarding digital pathology of the placenta. A systematic literature search was conducted in several electronic databases. Studies involving the application of digital imaging and artificial intelligence techniques to human placental samples were retrieved and analyzed. Relevant articles were categorized by digital image technique and their relevance to studying normal and diseased placenta. Of 2008 retrieved articles, 279 were included. Digital imaging research related to the placenta was often coupled with immunohistochemistry, confocal microscopy, 3D reconstruction, and/or deep learning algorithms. By significantly increasing pathologists' ability to recognize potentially prognostic relevant features and by lessening inter-observer variability, published data overall indicate that the application of digital pathology to placental and perinatal diseases, along with clinical and radiology correlation, has great potential to improve fetal and maternal health care including the selection of targeted therapy in high-risk pregnancy.
Collapse
Affiliation(s)
- Stefano Marletta
- Department of Pathology and Diagnostics, Section of Pathology, University Hospital of Verona, Verona, Italy
| | | | - Nicola Santonicco
- Department of Pathology and Diagnostics, Section of Pathology, University Hospital of Verona, Verona, Italy
| | - Alessandro Caputo
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Emma Bragantini
- Department of Pathology, Santa Chiara Hospital, Trento, Italy
| | - Matteo Brunelli
- Department of Pathology and Diagnostics, Section of Pathology, University Hospital of Verona, Verona, Italy
| | - Ilaria Girolami
- Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor, MI, USA
| | - Albino Eccher
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
8
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
9
|
George K, Poudel P, Chalasani R, Goonathilake MR, Waqar S, George S, Jean-Baptiste W, Yusuf Ali A, Inyang B, Koshy FS, Mohammed L. A Systematic Review of Maternal Serum Syndecan-1 and Preeclampsia. Cureus 2022; 14:e25794. [PMID: 35836437 PMCID: PMC9273188 DOI: 10.7759/cureus.25794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Exploration of novel biomarkers has been gaining popularity in preeclampsia, which is currently being diagnosed based on clinical criteria alone. Soluble syndecan-1, released from one of the proteoglycans associated with the syncytiotrophoblastic layer of the placenta, is affected in patients with abnormal placentation. This article is the first systematic literature review that evaluates the relationship between the antepartum serum levels of the syndecan-1 and preeclampsia. Eight studies were selected after screening and quality appraisal, and data were analyzed. The serum concentration of syndecan-1 was found to correlate positively with the gestational age in all pregnancies and negatively with the systolic blood pressure in patients with preeclampsia. Extremely low levels of soluble syndecan-1 may be helpful as a predictor for the development of preeclampsia during gestation.
Collapse
Affiliation(s)
- Kitty George
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Prakar Poudel
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Roopa Chalasani
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Sara Waqar
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sheeba George
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Wilford Jean-Baptiste
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Amina Yusuf Ali
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bithaiah Inyang
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Feeba Sam Koshy
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
10
|
Oravecz O, Balogh A, Romero R, Xu Y, Juhasz K, Gelencser Z, Xu Z, Bhatti G, Pique-Regi R, Peterfia B, Hupuczi P, Kovalszky I, Murthi P, Tarca AL, Papp Z, Matko J, Than NG. Proteoglycans: Systems-Level Insight into Their Expression in Healthy and Diseased Placentas. Int J Mol Sci 2022; 23:5798. [PMID: 35628608 PMCID: PMC9147780 DOI: 10.3390/ijms23105798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023] Open
Abstract
Proteoglycan macromolecules play key roles in several physiological processes (e.g., adhesion, proliferation, migration, invasion, angiogenesis, and apoptosis), all of which are important for placentation and healthy pregnancy. However, their precise roles in human reproduction have not been clarified. To fill this gap, herein, we provide an overview of the proteoglycans' expression and role in the placenta, in trophoblast development, and in pregnancy complications (pre-eclampsia, fetal growth restriction), highlighting one of the most important members of this family, syndecan-1 (SDC1). Microarray data analysis showed that of 34 placentally expressed proteoglycans, SDC1 production is markedly the highest in the placenta and that SDC1 is the most upregulated gene during trophoblast differentiation into the syncytiotrophoblast. Furthermore, placental transcriptomic data identified dysregulated proteoglycan genes in pre-eclampsia and in fetal growth restriction, including SDC1, which is supported by the lower concentration of syndecan-1 in maternal blood in these syndromes. Overall, our clinical and in vitro studies, data analyses, and literature search pointed out that proteoglycans, as important components of the placenta, may regulate various stages of placental development and participate in the maintenance of a healthy pregnancy. Moreover, syndecan-1 may serve as a useful marker of syncytialization and a prognostic marker of adverse pregnancy outcomes. Further studies are warranted to explore the role of proteoglycans in healthy and complicated pregnancies, which may help in diagnostic or therapeutic developments.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Kata Juhasz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Zsolt Gelencser
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Zhonghui Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Balint Peterfia
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | | | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia;
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women’s Hospital, Parkville, VIC 3502, Australia
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA
| | - Zoltan Papp
- Maternity Private Clinic, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
| | - Janos Matko
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
- Maternity Private Clinic, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| |
Collapse
|
11
|
Kornacki J, Gutaj P, Kalantarova A, Sibiak R, Jankowski M, Wender-Ozegowska E. Endothelial Dysfunction in Pregnancy Complications. Biomedicines 2021; 9:1756. [PMID: 34944571 PMCID: PMC8698592 DOI: 10.3390/biomedicines9121756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/29/2022] Open
Abstract
The endothelium, which constitutes the inner layer of blood vessels and lymphatic structures, plays an important role in various physiological functions. Alterations in structure, integrity and function of the endothelial layer during pregnancy have been associated with numerous gestational complications, including clinically significant disorders, such as preeclampsia, fetal growth restriction, and diabetes. While numerous experimental studies have focused on establishing the role of endothelial dysfunction in pathophysiology of these gestational complications, their mechanisms remain unknown. Numerous biomarkers of endothelial dysfunction have been proposed, together with the mechanisms by which they relate to individual gestational complications. However, more studies are required to determine clinically relevant markers specific to a gestational complication of interest, as currently most of them present a significant overlap. Although the independent diagnostic value of such markers remains to be insufficient for implementation in standard clinical practice at the moment, inclusion of certain markers in predictive multifactorial models can improve their prognostic value. The future of the research in this field lies in the fine tuning of the clinical markers to be used, as well as identifying possible therapeutic techniques to prevent or reverse endothelial damage.
Collapse
Affiliation(s)
- Jakub Kornacki
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| | - Paweł Gutaj
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| | - Anastasia Kalantarova
- Medicine Program, Poznan University of Medical Sciences, 41 Jackowskiego Street, 60-512 Poznan, Poland;
| | - Rafał Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland;
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland;
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| |
Collapse
|
12
|
Moore KH, Murphy HA, Chapman H, George EM. Syncytialization alters the extracellular matrix and barrier function of placental trophoblasts. Am J Physiol Cell Physiol 2021; 321:C694-C703. [PMID: 34406903 DOI: 10.1152/ajpcell.00177.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The human placenta is of vital importance for proper nutrient and waste exchange, immune regulation, and overall fetal health and growth. Specifically, the extracellular matrix (ECM) of placental syncytiotrophoblasts, which extends outward from the placental chorionic villi into maternal blood, acts on a molecular level to regulate and maintain this barrier. Importantly, placental barrier dysfunction has been linked to diseases of pregnancy such as preeclampsia and intrauterine growth restriction. To help facilitate our understanding of the interface and develop therapeutics to repair or prevent dysfunction of the placental barrier, in vitro models of the placental ECM would be of great value. In this study, we aimed to characterize the ECM of an in vitro model of the placental barrier using syncytialized BeWo choriocarcinoma cells. Syncytialization caused a marked change in syndecans, integral proteoglycans of the ECM, which matched observations of in vivo placental ECM. Syndecan-1 expression increased greatly and predominated the other variants. Barrier function of the ECM, as measured by electric cell-substrate impedance sensing (ECIS), increased significantly during and after syncytialization, whereas the ability of THP-1 monocytes to adhere to syncytialized BeWos was greatly reduced compared with nonsyncytialized controls. Furthermore, ECIS measurements indicated that ECM degradation with matrix metalloproteinase-9 (MMP-9), but not heparanase, decreased barrier function. This decrease in ECIS-measured barrier function was not associated with any changes in THP-1 adherence to syncytialized BeWos treated with heparanase or MMP-9. Thus, syncytialization of BeWos provides a physiologically accurate placental ECM with a barrier function matching that seen in vivo.
Collapse
Affiliation(s)
- Kyle H Moore
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Haley A Murphy
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Heather Chapman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Eric M George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
13
|
Circulating syndecan-1 is reduced in pregnancies with poor fetal growth and its secretion regulated by matrix metalloproteinases and the mitochondria. Sci Rep 2021; 11:16595. [PMID: 34400721 PMCID: PMC8367987 DOI: 10.1038/s41598-021-96077-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Fetal growth restriction is a leading cause of stillbirth that often remains undetected during pregnancy. Identifying novel biomarkers may improve detection of pregnancies at risk. This study aimed to assess syndecan-1 as a biomarker for small for gestational age (SGA) or fetal growth restricted (FGR) pregnancies and determine its molecular regulation. Circulating maternal syndecan-1 was measured in several cohorts; a large prospective cohort collected around 36 weeks’ gestation (n = 1206), a case control study from the Manchester Antenatal Vascular service (285 women sampled at 24–34 weeks’ gestation); two prospective cohorts collected on the day of delivery (36 + 3–41 + 3 weeks’ gestation, n = 562 and n = 405 respectively) and a cohort who delivered for preterm FGR (< 34 weeks). Circulating syndecan-1 was consistently reduced in women destined to deliver growth restricted infants and those delivering for preterm disease. Syndecan-1 secretion was reduced by hypoxia, and its loss impaired proliferation. Matrix metalloproteinases and mitochondrial electron transport chain inhibitors significantly reduced syndecan-1 secretion, an effect that was rescued by coadministration of succinate, a mitochondrial electron transport chain activator. In conclusion, circulating syndecan-1 is reduced among cases of term and preterm growth restriction and has potential for inclusion in multi-marker algorithms to improve detection of poorly grown fetuses.
Collapse
|
14
|
Kornacki J, Wirstlein P, Wender-Ozegowska E. Serum levels of soluble FMS-like tyrosine kinase 1 and endothelial glycocalyx components in early- and late-onset preeclampsia. J Matern Fetal Neonatal Med 2021; 35:7466-7470. [PMID: 34238103 DOI: 10.1080/14767058.2021.1949704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The most popular model of preeclampsia (PE) is a two-stage one in which the first stage involves a decreased perfusion of the placenta and the second stage is characterized by maternal endothelial injury and dysfunction. This model seems to be more appropriate for early-onset PE, than for the late-onset disease, as in the case of the latter the event of reduced placental perfusion seems is less obvious.The aim of the study was to assess the possible correlations between the serum levels of soluble FMS-like tyrosine kinase 1 (sFlt-1) and the components of endothelial glycocalyx (EG), namely syndecan -1 (SDC-1) and hyaluronan (HA), as the markers of endothelial damage, in patients with early- and late-onset PE. MATERIALS AND METHODS The study was conducted among 60 women in their late second and third trimester of the singleton pregnancy, including 20 patients with early-onset PE, 20 with late-onset PE, and 20 women with normal pregnancy, who served as the control group. All patients were hospitalized between 2015 and 2018 at the Division of Reproduction of Poznan University of Medical Sciences. The women in the control group were matched by gestational age with the patients in the study groups. RESULTS The median serum level of sFlt-1 was the highest in the patients with early-onset PE (3.53 (2.73-4.5) pg/ml) but it was not statistically different from the level in the patients with late-onset PE (3.14 (2.2-3.4) pg/ml). The mean serum level of SDC-1 also did not differ significantly between the two groups of patients with PE (6.17 ± 2.2 ng/ml in early-onset PE; 6.42 ± 2.2 ng/ml in late-onset PE). Both values of SDC-1 were significantly lower than that in the healthy pregnant women (11 ± 2.62 ng/ml, p < .001). The median concentrations of HA did not differ between patients with early- (236.6 (101.1-351.9) ng/ml) and late-onset PE (234.7 (46.8-324.2) ng/ml). However, the levels in these study groups were significantly higher than in the control group (113.9 (30.9-379.8) ng/ml, p < .001). There was no significant correlation found between the serum concentrations of sFlt-1 and both HA and SDC-1; however, such trend was noticed between the serum concentrations of sFlt-1 and HA in patients with early-onset PE, but not in those with the late-onset disease. CONCLUSIONS Evaluation of serum concentrations of HA in patients with PE was found to be more useful in the assessment of endothelial injury, compared to the assessment of SDC-1.The degree of EG damage was comparable in patients with early- and late-onset PE. The pathomechanism of the damage seems to be more sFlt-1 dependent in patients withearly- onset PE than in the case of late-onset disease. The two-stage model of PE is more appropriate for early - onset PE, whereas the pathophysiology of the late-onset disease is rather more complex and heterogenous.
Collapse
Affiliation(s)
- Jakub Kornacki
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Przemysław Wirstlein
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Wender-Ozegowska
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
15
|
Soluble syndecan-1 and glycosaminoglycans in preeclamptic and normotensive pregnancies. Sci Rep 2021; 11:4387. [PMID: 33623064 PMCID: PMC7902809 DOI: 10.1038/s41598-021-82972-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
Preeclampsia, an important cause of maternal and fetal morbidity and mortality, is associated with increased sFLT1 levels and with structural and functional damage to the glycocalyx contributing to endothelial dysfunction. We investigated glycocalyx components in relation to preeclampsia in human samples. While soluble syndecan-1 and heparan sulphate were similar in plasma of preeclamptic and normotensive pregnant women, dermatan sulphate was increased and keratan sulphate decreased in preeclamptic women. Dermatan sulphate was correlated with soluble syndecan-1, and inversely correlated with blood pressure and activated partial thromboplastin time. To determine if syndecan-1 was a prerequisite for the sFlt1 induced increase in blood pressure in mice we studied the effect of sFlt1 on blood pressure and vascular contractile responses in syndecan-1 deficient and wild type male mice. The classical sFlt1 induced rise in blood pressure was absent in syndecan-1 deficient mice indicating that syndecan-1 is a prerequisite for sFlt1 induced increase in blood pressure central to preeclampsia. The results show that an interplay between syndecan-1 and dermatan sulphate contributes to sFlt1 induced blood pressure elevation in pre-eclampsia.
Collapse
|
16
|
Tezuka K, Fuchi N, Okuma K, Tsukiyama T, Miura S, Hasegawa Y, Nagata A, Komatsu N, Hasegawa H, Sasaki D, Sasaki E, Mizukami T, Kuramitsu M, Matsuoka S, Yanagihara K, Miura K, Hamaguchi I. HTLV-1 targets human placental trophoblasts in seropositive pregnant women. J Clin Invest 2021; 130:6171-6186. [PMID: 33074247 DOI: 10.1172/jci135525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is mainly transmitted vertically through breast milk. The rate of mother-to-child transmission (MTCT) through formula feeding, although significantly lower than through breastfeeding, is approximately 2.4%-3.6%, suggesting the possibility of alternative transmission routes. MTCT of HTLV-1 might occur through the uterus, birth canal, or placental tissues; the latter is known as transplacental transmission. Here, we found that HTLV-1 proviral DNA was present in the placental villous tissues of the fetuses of nearly half of pregnant carriers and in a small number of cord blood samples. An RNA ISH assay showed that HTLV-1-expressing cells were present in nearly all subjects with HTLV-1-positive placental villous tissues, and their frequency was significantly higher in subjects with HTLV-1-positive cord blood samples. Furthermore, placental villous trophoblasts expressed HTLV-1 receptors and showed increased susceptibility to HTLV-1 infection. In addition, HTLV-1-infected trophoblasts expressed high levels of viral antigens and promoted the de novo infection of target T cells in a humanized mouse model. In summary, during pregnancy of HTLV-1 carriers, HTLV-1 was highly expressed in placental villous tissues, and villous trophoblasts showed high HTLV-1 sensitivity, suggesting that MTCT of HTLV-1 occurs through the placenta.
Collapse
Affiliation(s)
- Kenta Tezuka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Fuchi
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazu Okuma
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Tsukiyama
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shoko Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuri Hasegawa
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ai Nagata
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Nahoko Komatsu
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sahoko Matsuoka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
17
|
Szabo S, Karaszi K, Romero R, Toth E, Szilagyi A, Gelencser Z, Xu Y, Balogh A, Szalai G, Hupuczi P, Hargitai B, Krenacs T, Hunyadi-Gulyas E, Darula Z, Kekesi KA, Tarca AL, Erez O, Juhasz G, Kovalszky I, Papp Z, Than NG. Proteomic identification of Placental Protein 1 (PP1), PP8, and PP22 and characterization of their placental expression in healthy pregnancies and in preeclampsia. Placenta 2020; 99:197-207. [PMID: 32747003 PMCID: PMC8314955 DOI: 10.1016/j.placenta.2020.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Placental Protein 1 (PP1), PP8, and PP22 were isolated from the placenta. Herein, we aimed to identify PP1, PP8, and PP22 proteins and their placental and trophoblastic expression patterns to reveal potential involvement in pregnancy complications. METHODS We analyzed PP1, PP8, and PP22 proteins with LC-MS. We compared the placental behaviors of PP1, PP8, and PP22 to the predominantly placenta-expressed PP5/TFPI-2. Placenta-specificity scores were generated from microarray data. Trophoblasts were isolated from healthy placentas and differentiated; total RNA was isolated and subjected to microarray analysis. We assigned the placentas to the following groups: preterm controls, early-onset preeclampsia, early-onset preeclampsia with HELLP syndrome, term controls, and late-onset preeclampsia. After histopathologic examination, placentas were used for tissue microarray construction, immunostaining with anti-PP1, anti-PP5, anti-PP8, or anti-PP22 antibodies, and immunoscoring. RESULTS PP1, PP8, and PP22 were identified as 'nicotinate-nucleotide pyrophosphorylase', 'serpin B6', and 'protein disulfide-isomerase', respectively. Genes encoding PP1, PP8, and PP22 are not predominantly placenta-expressed, in contrast with PP5. PP1, PP8, and PP22 mRNA expression levels did not increase during trophoblast differentiation, in contrast with PP5. PP1, PP8, and PP22 immunostaining were detected primarily in trophoblasts, while PP5 expression was restricted to the syncytiotrophoblast. The PP1 immunoscore was higher in late-onset preeclampsia, while the PP5 immunoscore was higher in early-onset preeclampsia. DISCUSSION PP1, PP8, and PP22 are expressed primarily in trophoblasts but do not have trophoblast-specific regulation or functions. The distinct dysregulation of PP1 and PP5 expression in either late-onset or early-onset preeclampsia reflects different pathophysiological pathways in these preeclampsia subsets.
Collapse
Affiliation(s)
- Szilvia Szabo
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary.
| | - Katalin Karaszi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Detroit Medical Center, Detroit, MI, USA; Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Eszter Toth
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Andras Szilagyi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Andrea Balogh
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gabor Szalai
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Beata Hargitai
- West Midlands Perinatal Pathology Centre, Cellular Pathology Department, Birmingham Women's and Children's NHS FT, Birmingham, United Kingdom
| | - Tibor Krenacs
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Zsuzsanna Darula
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Katalin A Kekesi
- Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary; Laboratory of Proteomics, Institute of Biology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Maternity Department "D," Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Gabor Juhasz
- Laboratory of Proteomics, Institute of Biology, ELTE Eotvos Lorand University, Budapest, Hungary; CRU Hungary Ltd., God, Hungary
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.
| |
Collapse
|
18
|
Xu Y, Mei J, Diao L, Li Y, Ding L. Chronic endometritis and reproductive failure: Role of syndecan-1. Am J Reprod Immunol 2020; 84:e13255. [PMID: 32329146 DOI: 10.1111/aji.13255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic endometritis (CE) is an unusual inflammatory condition characterized by endometrial plasmacyte infiltration. It has a high prevalence in women with reproductive failure. Because of its characteristic localization patterns and molecular functions, syndecan-1 has been identified as a biomarker of plasmacyte, and syndecan-1 immunohistochemistry (IHC) becomes the most dependable diagnostic method for CE. In this review, we discuss the association between CE and reproductive failure, the clinicopathological characterization of CE, the function and expression of syndecan-1, the progress of syndecan-1 IHC in the diagnosis of CE, and the prediction of reproductive outcome.
Collapse
Affiliation(s)
- Yanhong Xu
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China.,Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lijun Ding
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China.,Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Clinical Center for Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
19
|
Gümüş Güler B, Özler S. Increased syndecan-1 and glypican-3 predict poor perinatal outcome and treatment resistance in intrahepatic cholestasis. Hepatobiliary Pancreat Dis Int 2020; 19:271-276. [PMID: 31919038 DOI: 10.1016/j.hbpd.2019.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 12/10/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intrahepatic cholestasis of pregnancy (ICP) increases the risk of adverse pregnancy outcomes. This study aimed to explore the association between serum syndecan-1 and glypican-3 levels and the adverse perinatal outcome as well as the responses to the treatment of ursodeoxycholic acid (UDCA). METHODS This prospective, case control study included 88 pregnant women (44 women with ICP and 44 healthy controls). The primary end points were the perinatal outcome and the response to UDCA therapy. A logistic regression model was used to identify the independent risk factors of adverse pregnancy outcomes and reduced response to UDCA therapy. RESULTS Women with ICP had significantly higher serum syndecan-1 (1.27 ± 0.36 ng/mL vs. 0.98 ± 0.50 ng/mL; P = 0.003), glypican-3 (1.78 ± 0.13 ng/mL vs.1.69 ± 0.16 ng/mL; P = 0.004), AST (128.59 ± 1.44 vs. 13.29 ± 1.32 U/L; P < 0.001), and ALT (129.84 ± 1.53 vs. 8.00 ± 3.67 U/L; P < 0.001) levels compared with the controls. The increased levels of syndecan-1 (OR = 4.715, 95% CI: 1.554-14.310; P = 0.006), glypican-3 (OR = 8.465, 95% CI: 3.372-21.248; P = 0.007), ALT (OR = 1.382, 95% CI: 1.131-1.690; P = 0.002), and postprandial bile acid (PBA) (OR = 3.392, 95% CI: 1.003-12.869; P = 0.026) were correlated to ICP. The adverse neonatal outcome was related to increased glypican-3 (OR = 4.275, 95% CI: 2.726-5.635; P = 0.039), and PBA (OR = 3.026, 95% CI: 1.069-13.569; P = 0.037). Increases of syndecan-1 (OR = 7.464, 95% CI: 2.130-26.153, P = 0.017) and glypican-3 (OR = 6.194, 95% CI: 2.951-13.002; P = 0.025) were the risk factors of decreased response to UDCA treatment. CONCLUSION Syndecan-1 and glypican-3 might be powerful determinants in predicting adverse perinatal outcome in patients with ICP, and they can be used to predict the response to the UDCA treatment.
Collapse
Affiliation(s)
- Başak Gümüş Güler
- Department of Health Sciences, Istinye University, Istanbul 34010, Turkey
| | - Sibel Özler
- Department of Perinatology, Selcuk University Faculty of Medicine, Konya 42130, Turkey.
| |
Collapse
|
20
|
Karászi K, Vigh R, Máthé M, Fullár A, Oláh L, Füle T, Papp Z, Kovalszky I. Aberrant Expression of Syndecan-1 in Cervical Cancers. Pathol Oncol Res 2020; 26:2255-2264. [PMID: 32388727 PMCID: PMC7471205 DOI: 10.1007/s12253-020-00816-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023]
Abstract
Syndecan-1, is a transmembrane heparan/chondroitin sulfate proteoglycan necessary for cell-cell and cell-matrix interactions. Its decreased level on the cell surface correlates with poor prognosis in several tumor types. Aberrant stromal localization of syndecan-1 is also considered an unfavorable prognostic factor in various human malignancies. In the presented work the question was addressed if changes in syndecan-1 expression are related to the prognosis of cervical cancer. Immunohistochemistry for syndecan-1 extracellular domain was performed on surgical specimens of primary cervical cancer. To follow the communication between tumor cells and stromal fibroblasts, their mono-and co-cultures were studied, detecting the expression of syndecan-1, smooth muscle actin, vimentin, and desmin. Immunohistochemistry of tumorous specimens revealed that while cell surface syndecan-1 expression was reduced on cancer cells, it appeared on the surface of tumor-associated fibroblasts. Until year 7, the cohort with high cell surface syndecan-1 expression had significantly longer survival. No difference in the same time-period could be detected when stromal syndecan-1 expression was analyzed. In vitro analysis revealed, that tumor cells can induce syndecan-1 expression on fibroblast, and fibroblasts showed that fibroblast-like cells are built by two cell types: (a) syndecan-1 positive, cytokeratin negative real fibroblasts, and (b) syndecan-1 and cytokeratin positive epithelial-mesenchymal transformed tumor cells. Syndecan-1 on the surface of cancer cells appears to be a positive prognostic marker. Although syndecan-1 positive fibroblasts promote tumor cell proliferation in vitro, we failed to detect their cancer promoting effect in vivo.
Collapse
Affiliation(s)
- Katalin Karászi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Renáta Vigh
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Miklós Máthé
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Alexandra Fullár
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Lászlóné Oláh
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Tibor Füle
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Zoltán Papp
- 1st Department of Obstetrics and Gynecology, Semmelweis University, H-1082, Budapest, Hungary.,Maternity Obstetrics and Gynecology Private Clinic, H-1126, Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary.
| |
Collapse
|
21
|
Szilagyi A, Gelencser Z, Romero R, Xu Y, Kiraly P, Demeter A, Palhalmi J, Gyorffy BA, Juhasz K, Hupuczi P, Kekesi KA, Meinhardt G, Papp Z, Draghici S, Erez O, Tarca AL, Knöfler M, Than NG. Placenta-Specific Genes, Their Regulation During Villous Trophoblast Differentiation and Dysregulation in Preterm Preeclampsia. Int J Mol Sci 2020; 21:ijms21020628. [PMID: 31963593 PMCID: PMC7013556 DOI: 10.3390/ijms21020628] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
The human placenta maintains pregnancy and supports the developing fetus by providing nutrition, gas-waste exchange, hormonal regulation, and an immunological barrier from the maternal immune system. The villous syncytiotrophoblast carries most of these functions and provides the interface between the maternal and fetal circulatory systems. The syncytiotrophoblast is generated by the biochemical and morphological differentiation of underlying cytotrophoblast progenitor cells. The dysfunction of the villous trophoblast development is implicated in placenta-mediated pregnancy complications. Herein, we describe gene modules and clusters involved in the dynamic differentiation of villous cytotrophoblasts into the syncytiotrophoblast. During this process, the immune defense functions are first established, followed by structural and metabolic changes, and then by peptide hormone synthesis. We describe key transcription regulatory molecules that regulate gene modules involved in placental functions. Based on transcriptomic evidence, we infer how villous trophoblast differentiation and functions are dysregulated in preterm preeclampsia, a life-threatening placenta-mediated obstetrical syndrome for the mother and fetus. In the conclusion, we uncover the blueprint for villous trophoblast development and its impairment in preterm preeclampsia, which may aid in the future development of non-invasive biomarkers for placental functions and early identification of women at risk for preterm preeclampsia as well as other placenta-mediated pregnancy complications.
Collapse
Affiliation(s)
- Andras Szilagyi
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199, USA
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Peter Kiraly
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Amanda Demeter
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Janos Palhalmi
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Balazs A. Gyorffy
- Laboratory of Proteomics, Institute of Biology, Eotvos Lorand University, H-1117 Budapest, Hungary; (B.A.G.); (K.A.K.)
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
| | - Katalin Adrienna Kekesi
- Laboratory of Proteomics, Institute of Biology, Eotvos Lorand University, H-1117 Budapest, Hungary; (B.A.G.); (K.A.K.)
- Department of Physiology and Neurobiology, Eotvos Lorand University, H-1117 Budapest, Hungary
| | - Gudrun Meinhardt
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna A-1090, Austria; (G.M.); (M.K.)
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- Department of Obstetrics and Gynecology, Semmelweis University, H-1088 Budapest, Hungary
| | - Sorin Draghici
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA;
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna A-1090, Austria; (G.M.); (M.K.)
| | - Nandor Gabor Than
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-382-6788
| |
Collapse
|
22
|
Greeley ET, Rochelson B, Krantz DA, Xue X, Carmichael JB, Ashour S, Woo S, Augustine S, Metz CN. Evaluation of Syndecan-1 as a Novel Biomarker for Adverse Pregnancy Outcomes. Reprod Sci 2020; 27:355-363. [DOI: 10.1007/s43032-019-00032-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 10/25/2022]
|
23
|
Kuessel L, Husslein H, Montanari E, Kundi M, Himmler G, Binder J, Schiefer J, Zeisler H. Dynamics of soluble syndecan-1 in maternal serum during and after pregnancies complicated by preeclampsia: a nested case control study. ACTA ACUST UNITED AC 2019; 58:50-58. [DOI: 10.1515/cclm-2019-0686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
Abstract
Background
We investigated the dynamics and the predictive value of soluble syndecan-1 (Sdc-1), a biomarker of endothelial dysfunction, in uneventful pregnancies and pregnancies complicated by preeclampsia (PE).
Methods
Serum levels of Sdc-1 were measured at sequential time points during and after uneventful pregnancies (control, n = 95) and pregnancies developing PE (PE_long, n = 12). Levels were further measured in women with symptomatic PE (PE_state, n = 46) at a single time point.
Results
Sdc-1 levels increased consistently throughout pregnancy. In the PE_long group Sdc-1 levels were lower at all visits throughout pregnancy, and reached significance in weeks 18–22 (p = 0.019), 23–27 (p = 0.009), 28–32 (p = 0.006) and 33–36 (p = 0.008). After delivery, Sdc-1 levels dropped sharply in all pregnancies but were significantly elevated in the PE_long group. The predictive power of Sdc-1 was evaluated analyzing receiver operating characteristic (ROC) curves. A significant power was reached at weeks 14–17 (area under the curve [AUC] 0.65, p = 0.025), 23–27 (AUC 0.73, p = 0.004) and 33–36 (AUC 0.75, p = 0.013).
Conclusions
In summary, Sdc-1 levels were lower in women developing PE compared to uneventful pregnancies and Sdc-1 might be useful to predict PE. After delivery, Sdc-1 levels remained higher in women with PE. Additional studies investigating the link between glycocalyx degradation, Sdc-1 levels and placental and endothelial dysfunction in pregnancies affected by PE are warranted.
Collapse
|
24
|
King JR, Wilson ML, Hetey S, Kiraly P, Matsuo K, Castaneda AV, Toth E, Krenacs T, Hupuczi P, Mhawech-Fauceglia P, Balogh A, Szilagyi A, Matko J, Papp Z, Roman LD, Cortessis VK, Than NG. Dysregulation of Placental Functions and Immune Pathways in Complete Hydatidiform Moles. Int J Mol Sci 2019; 20:E4999. [PMID: 31658584 PMCID: PMC6829352 DOI: 10.3390/ijms20204999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Gene expression studies of molar pregnancy have been limited to a small number of candidate loci. We analyzed high-dimensional RNA and protein data to characterize molecular features of complete hydatidiform moles (CHMs) and corresponding pathologic pathways. CHMs and first trimester placentas were collected, histopathologically examined, then flash-frozen or paraffin-embedded. Frozen CHMs and control placentas were subjected to RNA-Seq, with resulting data and published placental RNA-Seq data subjected to bioinformatics analyses. Paraffin-embedded tissues from CHMs and control placentas were used for tissue microarray (TMA) construction, immunohistochemistry, and immunoscoring for galectin-14. Of the 14,022 protein-coding genes expressed in all samples, 3,729 were differentially expressed (DE) in CHMs, of which 72% were up-regulated. DE genes were enriched in placenta-specific genes (OR = 1.88, p = 0.0001), of which 79% were down-regulated, imprinted genes (OR = 2.38, p = 1.54 × 10-6), and immune genes (OR = 1.82, p = 7.34 × 10-18), of which 73% were up-regulated. DNA methylation-related enzymes and histone demethylases were dysregulated. "Cytokine-cytokine receptor interaction" was the most impacted of 38 dysregulated pathways, among which 17 were immune-related pathways. TMA-based immunoscoring validated the lower expression of galectin-14 in CHM. In conclusion, placental functions were down-regulated, imprinted gene expression was altered, and immune pathways were activated, indicating complex dysregulation of placental developmental and immune processes in CHMs.
Collapse
Affiliation(s)
- Jennifer R King
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Melissa L Wilson
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Szabolcs Hetey
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| | - Peter Kiraly
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| | - Koji Matsuo
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Antonio V Castaneda
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Eszter Toth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| | - Tibor Krenacs
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary.
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary.
| | - Paulette Mhawech-Fauceglia
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| | - Andras Szilagyi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| | - Janos Matko
- Department of Immunology, Institute of Biology, Eotvos Lorand University, H-1117 Budapest, Hungary.
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary.
- Department of Obstetrics and Gynecology, Semmelweis University, H-1088 Budapest, Hungary.
| | - Lynda D Roman
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Victoria K Cortessis
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Nandor Gabor Than
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary.
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary.
| |
Collapse
|
25
|
Kornacki J, Wirstlein P, Wender-Ozegowska E. Levels of syndecan-1 and hyaluronan in early- and late-onset preeclampsia. Pregnancy Hypertens 2019; 18:108-111. [DOI: 10.1016/j.preghy.2019.08.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/28/2019] [Accepted: 08/23/2019] [Indexed: 01/31/2023]
|
26
|
Jeyarajah MJ, Jaju Bhattad G, Kops BF, Renaud SJ. Syndecan-4 regulates extravillous trophoblast migration by coordinating protein kinase C activation. Sci Rep 2019; 9:10175. [PMID: 31308409 PMCID: PMC6629623 DOI: 10.1038/s41598-019-46599-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Extravillous trophoblast (EVT) invasion is an essential component of human placentation. Poor EVT invasion is associated with obstetrical complications including preeclampsia. Integration of cues from the extracellular environment is required for directional EVT invasion, but how EVTs coordinate responses to these cues is not well understood. Syndecan-4 (SDC4) is a transmembrane heparan sulfate proteoglycan that binds to, and modulates the activity of, many extracellular proteins implicated in placental development. Therefore, we determined the functional importance of SDC4 for EVT invasion. We found that SDC4 is expressed by a first trimester EVT line (HTR8), and in EVTs in placenta throughout pregnancy, with higher expression during early pregnancy than at term. Higher expression was also observed in placentas from preeclampsia compared to normotensive pregnancies. SDC4-deficient HTR8 EVTs exhibited reduced migration and Matrigel-based invasion, both under basal conditions and following exposure to basic fibroblast growth factor and heparin-binding epidermal growth factor. SDC4-deficient HTR8 EVTs also showed reduced protein kinase C-alpha (PKCα) and AKT phosphorylation. SDC4 directly bound to activated PKCα in EVTs, and inhibition of PKCα decreased EVT invasion and migration. Our findings reveal an essential role of SDC4 as a regulator of EVT motility, in part through coordination of PKCα activation.
Collapse
Affiliation(s)
- Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brianna F Kops
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
- Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
27
|
Szenasi NL, Toth E, Balogh A, Juhasz K, Karaszi K, Ozohanics O, Gelencser Z, Kiraly P, Hargitai B, Drahos L, Hupuczi P, Kovalszky I, Papp Z, Than NG. Proteomic identification of membrane-associated placental protein 4 (MP4) as perlecan and characterization of its placental expression in normal and pathologic pregnancies. PeerJ 2019; 7:e6982. [PMID: 31259093 PMCID: PMC6589330 DOI: 10.7717/peerj.6982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
Background More than 50 human placental proteins were isolated and physico-chemically characterized in the 70–80s by Hans Bohn and co-workers. Many of these proteins turned to have important role in placental functions and diagnostic significance in pregnancy complications. Among these proteins was membrane-associated placental protein 4 (MP4), for which identity or function has not been identified yet. Our aim was to analyze the sequence and placental expression of this protein in normal and complicated pregnancies including miscarriage, preeclampsia and HELLP syndrome. Methods Lyophilized MP4 protein and frozen healthy placental tissue were analyzed using HPLC-MS/MS. Placental tissue samples were obtained from women with elective termination of pregnancy (first trimester controls, n = 31), early pregnancy loss (EPL) (n = 13), early preeclampsia without HELLP syndrome (n = 7) and with HELLP syndrome (n = 8), late preeclampsia (n = 8), third trimester early controls (n = 5) and third trimester late controls (n = 9). Tissue microarrays were constructed from paraffin-embedded placentas (n = 81). Slides were immunostained with monoclonal perlecan antibody and evaluated using light microscopy and virtual microscopy. Perlecan was also analyzed for its expression in placentas from normal pregnancies using microarray data. Results Mass spectrometry-based proteomics of MP4 resulted in the identification of basement membrane-specific heparan sulfate proteoglycan core protein also known as perlecan. Immunohistochemistry showed cytoplasmic perlecan localization in syncytiotrophoblast and cytotrophoblasts of the villi. Perlecan immunoscore decreased with gestational age in the placenta. Perlecan immunoscores were higher in EPL compared to controls. Perlecan immunoscores were higher in early preeclampsia without and with HELLP syndrome and lower in late preeclampsia than in respective controls. Among patients with preeclampsia, placental perlecan expression positively correlated with maternal vascular malperfusion and negatively correlated with placental weight. Conclusion Our findings suggest that an increased placental perlecan expression may be associated with hypoxic ischaemic injury of the placenta in miscarriages and in early preeclampsia with or without HELLP syndrome.
Collapse
Affiliation(s)
- Nikolett Lilla Szenasi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Eszter Toth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Karaszi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Medical Biochemistry, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt Gelencser
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Kiraly
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beata Hargitai
- West Midlands Perinatal Pathology, Birmingham Women's Hospital, Birmingham, UK
| | - Laszlo Drahos
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| |
Collapse
|
28
|
Balogh A, Toth E, Romero R, Parej K, Csala D, Szenasi NL, Hajdu I, Juhasz K, Kovacs AF, Meiri H, Hupuczi P, Tarca AL, Hassan SS, Erez O, Zavodszky P, Matko J, Papp Z, Rossi SW, Hahn S, Pallinger E, Than NG. Placental Galectins Are Key Players in Regulating the Maternal Adaptive Immune Response. Front Immunol 2019; 10:1240. [PMID: 31275299 PMCID: PMC6593412 DOI: 10.3389/fimmu.2019.01240] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14 is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13 and Gal-14 on T cell functions and comparing the expression of these galectins in placentas from healthy pregnancies and miscarriages. First-trimester placentas were collected from miscarriages and elective termination of pregnancies, tissue microarrays were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were expressed and purified, and their effects were investigated on primary peripheral blood T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine (IL-1β, IL-6, IL-8, IL-10, IFNγ) production of T cells were examined by flow cytometry. Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the maternal-fetal interface in the first trimester, and their placental expression is decreased in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14 bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14 induce apoptosis of Th and Tc cell populations, regardless of their activation status. Out of the investigated activation markers, Gal-14 decreases the cell surface expression of CD71, Gal-13 increases the expression of CD25, and both galectins increase the expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8 in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages.
Collapse
Affiliation(s)
- Andrea Balogh
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eszter Toth
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Katalin Parej
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Diana Csala
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nikolett L Szenasi
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Istvan Hajdu
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arpad F Kovacs
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| | - Sonia S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Offer Erez
- Division of Obstetrics and Gynecology, Maternity Department "D", Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Peter Zavodszky
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Matko
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Eva Pallinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
29
|
Tarca AL, Romero R, Benshalom-Tirosh N, Than NG, Gudicha DW, Done B, Pacora P, Chaiworapongsa T, Panaitescu B, Tirosh D, Gomez-Lopez N, Draghici S, Hassan SS, Erez O. The prediction of early preeclampsia: Results from a longitudinal proteomics study. PLoS One 2019; 14:e0217273. [PMID: 31163045 PMCID: PMC6548389 DOI: 10.1371/journal.pone.0217273] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To identify maternal plasma protein markers for early preeclampsia (delivery <34 weeks of gestation) and to determine whether the prediction performance is affected by disease severity and presence of placental lesions consistent with maternal vascular malperfusion (MVM) among cases. STUDY DESIGN This longitudinal case-control study included 90 patients with a normal pregnancy and 33 patients with early preeclampsia. Two to six maternal plasma samples were collected throughout gestation from each woman. The abundance of 1,125 proteins was measured using high-affinity aptamer-based proteomic assays, and data were modeled using linear mixed-effects models. After data transformation into multiples of the mean values for gestational age, parsimonious linear discriminant analysis risk models were fit for each gestational-age interval (8-16, 16.1-22, 22.1-28, 28.1-32 weeks). Proteomic profiles of early preeclampsia cases were also compared to those of a combined set of controls and late preeclampsia cases (n = 76) reported previously. Prediction performance was estimated via bootstrap. RESULTS We found that 1) multi-protein models at 16.1-22 weeks of gestation predicted early preeclampsia with a sensitivity of 71% at a false-positive rate (FPR) of 10%. High abundance of matrix metalloproteinase-7 and glycoprotein IIbIIIa complex were the most reliable predictors at this gestational age; 2) at 22.1-28 weeks of gestation, lower abundance of placental growth factor (PlGF) and vascular endothelial growth factor A, isoform 121 (VEGF-121), as well as elevated sialic acid binding immunoglobulin-like lectin 6 (siglec-6) and activin-A, were the best predictors of the subsequent development of early preeclampsia (81% sensitivity, FPR = 10%); 3) at 28.1-32 weeks of gestation, the sensitivity of multi-protein models was 85% (FPR = 10%) with the best predictors being activated leukocyte cell adhesion molecule, siglec-6, and VEGF-121; 4) the increase in siglec-6, activin-A, and VEGF-121 at 22.1-28 weeks of gestation differentiated women who subsequently developed early preeclampsia from those who had a normal pregnancy or developed late preeclampsia (sensitivity 77%, FPR = 10%); 5) the sensitivity of risk models was higher for early preeclampsia with placental MVM lesions than for the entire early preeclampsia group (90% versus 71% at 16.1-22 weeks; 87% versus 81% at 22.1-28 weeks; and 90% versus 85% at 28.1-32 weeks, all FPR = 10%); and 6) the sensitivity of prediction models was higher for severe early preeclampsia than for the entire early preeclampsia group (84% versus 71% at 16.1-22 weeks). CONCLUSION We have presented herein a catalogue of proteome changes in maternal plasma proteome that precede the diagnosis of preeclampsia and can distinguish among early and late phenotypes. The sensitivity of maternal plasma protein models for early preeclampsia is higher in women with underlying vascular placental disease and in those with a severe phenotype.
Collapse
Affiliation(s)
- Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Neta Benshalom-Tirosh
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Maternity Clinic, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Dereje W. Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dan Tirosh
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, United States of America
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sorin Draghici
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Maternity Department "D," Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
30
|
Clark RL. Genesis of placental sequestration in malaria and possible targets for drugs for placental malaria. Birth Defects Res 2019; 111:569-583. [PMID: 30919596 PMCID: PMC7432169 DOI: 10.1002/bdr2.1496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/11/2023]
Abstract
Malaria during pregnancy results in intrauterine growth restriction, fetal anemia, and infant mortality. Women are more susceptible to malaria during pregnancy due to malaria‐induced inflammation and the sequestration of infected red blood cells in the placenta, which bind to the chondroitin sulfate portion of syndecan‐1 on the syncytiotrophoblast and in the intervillous space. Syndecan‐1 is a dimeric proteoglycan with an extracellular ectodomain that is cleaved from the transmembrane domain (referred to as “shedding”) by matrix metalloproteinases (MMPs), likely the secreted MMP‐9. The ectodomain includes four binding sites for chondroitin sulfate, which are proximal to the transmembrane domain, and six distal binding sites primarily for heparan sulfate. This “shedding” of syndecan‐1 is inhibited by the presence of the heparan sulfate chains, which can be removed by heparanase. The intervillous space contains fibrin strands and syndecan‐1 ectodomains free of heparan sulfate. The following is proposed as the sequence of events that leads to and is primarily responsible for sequestration in the intervillous space of the placenta. Inflammation associated with malaria triggers increased heparanase activity that degrades the heparan sulfate on the membrane‐bound syndecan‐1. Inflammation also upregulates MMP‐9 and the removal of heparan sulfate gives MMP‐9 access to cleave syndecan‐1, thereby releasing dimeric syndecan‐1 ectodomains with at least four chondroitin sulfate chains attached. These multivalent ectodomains bind infected RBCs together leading to their aggregation and entrapment in intervillous fibrin. This mechanism suggests possible new targets for anti‐placental malaria drugs such as the inhibition of MMP‐9. Doxycycline is an antimalarial drug which inhibits MMP‐9.
Collapse
|
31
|
Karaszi K, Szabo S, Juhasz K, Kiraly P, Kocsis-Deak B, Hargitai B, Krenacs T, Hupuczi P, Erez O, Papp Z, Kovalszky I, Than NG. Increased placental expression of Placental Protein 5 (PP5) / Tissue Factor Pathway Inhibitor-2 (TFPI-2) in women with preeclampsia and HELLP syndrome: Relevance to impaired trophoblast invasion? Placenta 2019; 76:30-39. [PMID: 30803712 DOI: 10.1016/j.placenta.2019.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Placental Protein 5 (PP5)/Tissue Factor Pathway Inhibitor-2 (TFPI-2) is an extracellular matrix-associated protein mainly expressed by the syncytiotrophoblast that may regulate trophoblast invasion. Our aim was to study placental PP5/TFPI-2 expression and its relation to placental pathology in various forms of preeclampsia and HELLP syndrome. METHODS Placental and maternal blood specimens were collected at the time of delivery from the same women in the following groups: 1) early controls; 2) early preeclampsia; 3) early preeclampsia with HELLP syndrome; 4) late controls; and 5) late preeclampsia. After histopathological examination, placental specimens were immunostained with polyclonal anti-PP5/TFPI-2 antibody on Western blot and tissue microarray immunohistochemistry. Placental PP5/TFPI-2 immunoscores were assessed manually and with a semi-automated method. Maternal sera were immunoassayed for PP5/TFPI-2. RESULTS PP5/TFPI-2 was localized to the cytoplasm of syncytiotrophoblast. Manual and semi-automated PP5/TFPI-2 immunoscores were higher in early preeclampsia with or without HELLP syndrome but not in late preeclampsia than in respective controls. In patients with preeclampsia, the correlation of placental PP5/TFPI-2 expression with maternal vascular malperfusion score of the placenta was positive while it was negative with birthweight and placental weight. Maternal serum PP5/TFPI-2 concentration was higher in early preeclampsia and it tended to be higher in early preeclampsia with HELLP syndrome than in early controls. DISCUSSION Our findings suggest that an increased placental PP5/TFPI-2 expression may be associated with abnormal placentation in early preeclampsia, with or without HELLP syndrome.
Collapse
Affiliation(s)
- Katalin Karaszi
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilvia Szabo
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Kiraly
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Barbara Kocsis-Deak
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beata Hargitai
- West Midlands Perinatal Pathology Centre, Cellular Pathology Department, Birmingham Women's and Children's NHS FT, Birmingham, United Kingdom
| | - Tibor Krenacs
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Petronella Hupuczi
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Offer Erez
- Maternity Department "D" Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Nandor Gabor Than
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
32
|
Diabetes in Pregnancy and MicroRNAs: Promises and Limitations in Their Clinical Application. Noncoding RNA 2018; 4:ncrna4040032. [PMID: 30424584 PMCID: PMC6316501 DOI: 10.3390/ncrna4040032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Maternal diabetes is associated with an increased risk of complications for the mother and her offspring. The latter have an increased risk of foetal macrosomia, hypoglycaemia, respiratory distress syndrome, preterm delivery, malformations and mortality but also of life-long development of obesity and diabetes. Epigenetics have been proposed as an explanation for this long-term risk, and microRNAs (miRNAs) may play a role, both in short- and long-term outcomes. Gestation is associated with increasing maternal insulin resistance, as well as β-cell expansion, to account for the increased insulin needs and studies performed in pregnant rats support a role of miRNAs in this expansion. Furthermore, several miRNAs are involved in pancreatic embryonic development. On the other hand, maternal diabetes is associated with changes in miRNA both in maternal and in foetal tissues. This review aims to summarise the existing knowledge on miRNAs in gestational and pre-gestational diabetes, both as diagnostic biomarkers and as mechanistic players, in the development of gestational diabetes itself and also of short- and long-term complications for the mother and her offspring.
Collapse
|
33
|
Romero R, Kim YM, Pacora P, Kim CJ, Benshalom-Tirosh N, Jaiman S, Bhatti G, Kim JS, Qureshi F, Jacques SM, Jung EJ, Yeo L, Panaitescu B, Maymon E, Hassan SS, Hsu CD, Erez O. The frequency and type of placental histologic lesions in term pregnancies with normal outcome. J Perinat Med 2018; 46:613-630. [PMID: 30044764 PMCID: PMC6174692 DOI: 10.1515/jpm-2018-0055] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/31/2018] [Indexed: 12/22/2022]
Abstract
Objective To determine the frequency and type of histopathologic lesions in placentas delivered by women with a normal pregnancy outcome. Methods This retrospective cohort study included placental samples from 944 women with a singleton gestation who delivered at term without obstetrical complications. Placental lesions were classified into the following four categories as defined by the Society for Pediatric Pathology and by our unit: (1) acute placental inflammation, (2) chronic placental inflammation, (3) maternal vascular malperfusion and (4) fetal vascular malperfusion. Results (1) Seventy-eight percent of the placentas had lesions consistent with inflammatory or vascular lesions; (2) acute inflammatory lesions were the most prevalent, observed in 42.3% of the placentas, but only 1.0% of the lesions were severe; (3) acute inflammatory lesions were more common in the placentas of women with labor than in those without labor; (4) chronic inflammatory lesions of the placenta were present in 29.9%; and (5) maternal and fetal vascular lesions of malperfusion were detected in 35.7% and 19.7%, respectively. Two or more lesions with maternal or fetal vascular features consistent with malperfusion (high-burden lesions) were present in 7.4% and 0.7%, respectively. Conclusion Most placentas had lesions consistent with inflammatory or vascular lesions, but severe and/or high-burden lesions were infrequent. Mild placental lesions may be interpreted either as acute changes associated with parturition or as representative of a subclinical pathological process (intra-amniotic infection or sterile intra-amniotic inflammation) that did not affect the clinical course of pregnancy.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan USA
| | - Yeon Mee Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Neta Benshalom-Tirosh
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan USA
| | - Sunil Jaiman
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Pathology, Hutzel Women’s Hospital, Wayne State University School of Medicine, Detroit, Michigan USA
| | - Gaurav Bhatti
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
| | - Jung-Sun Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Pathology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Faisal Qureshi
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Pathology, Hutzel Women’s Hospital, Wayne State University School of Medicine, Detroit, Michigan USA
| | - Suzanne M. Jacques
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Pathology, Hutzel Women’s Hospital, Wayne State University School of Medicine, Detroit, Michigan USA
| | - Eun Jung Jung
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan USA
| | - Lami Yeo
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan USA
| | - Eli Maymon
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
34
|
Docheva N, Romero R, Chaemsaithong P, Tarca AL, Bhatti G, Pacora P, Panaitescu B, Chaiyasit N, Chaiworapongsa T, Maymon E, Hassan SS, Erez O. The profiles of soluble adhesion molecules in the "great obstetrical syndromes" . J Matern Fetal Neonatal Med 2018; 32:2113-2136. [PMID: 29320948 DOI: 10.1080/14767058.2018.1427058] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The objective of this study was to determine the profiles of maternal plasma soluble adhesion molecules in patients with preeclampsia, small-for-gestational-age (SGA) fetuses, acute pyelonephritis, preterm labor with intact membranes (PTL), preterm prelabor rupture of the membranes (preterm PROM), and fetal death. MATERIALS AND METHODS A cross-sectional study was conducted to determine maternal plasma concentrations of sE-selectin, sL-selectin, and sP-selectin as well as sICAM-1, sVCAM-1, and sPECAM-1 in patients with (1) an uncomplicated pregnancy (control, n = 100); (2) preeclampsia (n = 94); (3) SGA fetuses (in women without preeclampsia/hypertension, n = 45); (4) acute pyelonephritis (n = 25); (5) PTL (n = 53); (6) preterm PROM (n = 24); and (7) fetal death (n = 34). Concentrations of soluble adhesion molecules and inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-8) were determined with sensitive and specific enzyme-linked immunoassays. RESULTS In comparison to women with a normal pregnancy, (1) women with preeclampsia had higher median concentrations of sE-selectin, sP-selectin, and sVCAM-1, and a lower concentration of sL-selectin (all p values < .001); (2) patients with SGA fetuses had higher median concentrations of sE-selectin, sP-selectin, and sVCAM-1 (all p values < .05); (3) patients with a fetal death had higher median concentrations of sE-selectin and sP-selectin (all p values < .05); (4) patients with acute pyelonephritis had higher median plasma concentrations of sE-selectin, sICAM-1, and sVCAM-1 (all p values < .001); (5) patients with preeclampsia and acute pyelonephritis, plasma concentrations of sVCAM-1, sE-selectin, and sP-selectin correlated with those of the proinflammatory cytokines TNF-α and interleukin (IL)-8 (all p values < .05); (6) patients with PTL had a higher median concentration of sP-selectin and a lower median concentration of VCAM-1 (all p values < .05); and (7) women with preterm PROM had lower median concentrations of sL-selectin and sVCAM-1 (all p values < .05). CONCLUSIONS The results of this study show that endothelial cell activation/dysfunction reflected by the plasma concentration of sE-selectin is not specific to preeclampsia but is present in pregnancies complicated by SGA fetuses, acute pyelonephritis, and fetal death. Collectively, we report that each obstetrical syndrome appears to have a stereotypical profile of soluble adhesion molecules in the peripheral circulation.
Collapse
Affiliation(s)
- Nikolina Docheva
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Roberto Romero
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,c Department of Obstetrics and Gynecology , University of Michigan , Ann Arbor , MI , USA.,d Department of Epidemiology and Biostatistics , Michigan State University , East Lansing , MI , USA.,e Center for Molecular Medicine and Genetics , Wayne State University , Detroit , MI , USA
| | - Piya Chaemsaithong
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Adi L Tarca
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Gaurav Bhatti
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Percy Pacora
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Bogdan Panaitescu
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Noppadol Chaiyasit
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Tinnakorn Chaiworapongsa
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Eli Maymon
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,f Department of Obstetrics and Gynecology , Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beersheba , Israel
| | - Sonia S Hassan
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,g Department of Physiology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Offer Erez
- a Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,f Department of Obstetrics and Gynecology , Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beersheba , Israel
| |
Collapse
|
35
|
Bovine placentomal heparanase and syndecan expression is related to placental maturation. Placenta 2017; 57:42-51. [DOI: 10.1016/j.placenta.2017.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022]
|
36
|
Ayres Pereira M, Mandel Clausen T, Pehrson C, Mao Y, Resende M, Daugaard M, Riis Kristensen A, Spliid C, Mathiesen L, E. Knudsen L, Damm P, G. Theander T, R. Hansson S, A. Nielsen M, Salanti A. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1. PLoS Pathog 2016; 12:e1005831. [PMID: 27556547 PMCID: PMC4996535 DOI: 10.1371/journal.ppat.1005831] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023] Open
Abstract
During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. Plasmodium falciparum is the most deadly malaria parasite, causing more than 500,000 deaths each year. The parasite infects the host’s red blood cells. In placental malaria infected red blood cells accumulate in placenta. The parasite protein VAR2CSA mediates this adherence, which causes complications for both mother and child. VAR2CSA binds a carbohydrate chain termed chondroitin sulfate (CS). CS is not a well-defined biochemical entity but constitute a family of oligosaccharides which each have unique sulfation patterns. The CS binding VAR2CSA is attached to proteoglycans expressed on the surface of placental cells. While much work has gone into understanding the nature of VAR2CSA and its interaction with placental CS, the protein to which the placental CS is attached is not known. To further the understanding of the molecular pathology of PM we characterized the CSPG receptor that the parasites adhere to by defining the exact proteoglycan that carries the placental CS. We further investigated the molecular and cellular consequences of VAR2CSA binding to the receptor. This work provides novel insights into the pathology of placental malaria and the nature of the parasite receptor. This may aid development of strategies to treat or prevent placental malaria.
Collapse
Affiliation(s)
- Marina Ayres Pereira
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Thomas Mandel Clausen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
- Vancouver Prostate Centre, Vancouver, BC, Canada
- * E-mail: (TMC); (AS)
| | - Caroline Pehrson
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Yang Mao
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Mafalda Resende
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | | | | | - Charlotte Spliid
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Line Mathiesen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth E. Knudsen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Peter Damm
- Department of Obstetrics, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thor G. Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Stefan R. Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Lund University Hospital, Lund University, Lund, Sweden
| | - Morten A. Nielsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
- * E-mail: (TMC); (AS)
| |
Collapse
|
37
|
Gandley RE, Althouse A, Jeyabalan A, Bregand-White JM, McGonigal S, Myerski AC, Gallaher M, Powers RW, Hubel CA. Low Soluble Syndecan-1 Precedes Preeclampsia. PLoS One 2016; 11:e0157608. [PMID: 27299886 PMCID: PMC4907460 DOI: 10.1371/journal.pone.0157608] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Syndecan-1 (Sdc1; CD138) is a major transmembrane heparan sulfate proteoglycan expressed on the extracellular, luminal surface of epithelial cells and syncytiotrophoblast, thus comprising a major component of the glycocalyx of these cells. The "soluble" (shed) form of Sdc1 has paracrine and autocrine functions and is normally produced in a regulated fashion. We compared plasma soluble Sdc1 concentrations, in relation to placental Sdc1 expression, in uncomplicated (control) and preeclamptic pregnancies. METHODS We evaluated soluble Sdc1 across uncomplicated pregnancy, and between preeclamptic, gestational hypertensive and control patients at mid-pregnancy (20 weeks) and 3rd trimester by ELISA. Placental expression level of Sdc1 was compared between groups in relation to pre-delivery plasma soluble Sdc1. Participants were recruited from Magee-Womens Hospital. RESULTS In uncomplicated pregnancy, plasma soluble Sdc1 rose significantly in the 1st trimester, and reached an approximate 50-fold increase at term compared to post pregnancy levels. Soluble Sdc1 was lower at mid-pregnancy in women who later developed preeclampsia (P<0.05), but not gestational hypertension, compared to controls, and remained lower at late pregnancy in preeclampsia (P<0.01) compared to controls. Sdc1 was prominently expressed on syncytiotrophoblast of microvilli. Syncytiotrophoblast Sdc1 immunostaining intensities, and mRNA content in villous homogenates, were lower in preeclampsia vs. controls (P<0.05). Soluble Sdc1 and Sdc1 immunostaining scores were inversely associated with systolic blood pressures, and positively correlated with infant birth weight percentile. CONCLUSION Soluble Sdc1 is significantly lower before the clinical onset of preeclampsia, with reduced expression of Sdc1 in the delivered placenta, suggesting a role for glycocalyx disturbance in preeclampsia pathophysiology.
Collapse
Affiliation(s)
- Robin E Gandley
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal Fetal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andrew Althouse
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Arundhathi Jeyabalan
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal Fetal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Clinical and Translational Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Julia M Bregand-White
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal Fetal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stacy McGonigal
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ashley C Myerski
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marcia Gallaher
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert W Powers
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal Fetal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carl A Hubel
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal Fetal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
38
|
ZHANG JITAI, CAI QIANYING, JI SISI, ZHANG HENGXIN, WANG YUHUAN, YAN HONGTAO, YANG XINJUN. Decreased miR-143 and increased miR-21 placental expression levels are associated with macrosomia. Mol Med Rep 2016; 13:3273-80. [PMID: 26934915 DOI: 10.3892/mmr.2016.4892] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 01/08/2016] [Indexed: 11/05/2022] Open
|
39
|
Costa MA. Scrutinising the regulators of syncytialization and their expression in pregnancy-related conditions. Mol Cell Endocrinol 2016; 420:180-93. [PMID: 26586208 DOI: 10.1016/j.mce.2015.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022]
Abstract
The placenta is important for the success of gestation and foetal development. In fact, this specialized pregnancy organ is essential for foetal nourishment, support, and protection. In the placenta, there are different cell populations, including four subtypes of trophoblasts. Cytotrophoblasts fuse and differentiate into the multinucleated syncytiotrophoblast (syncytialization). Syncytialization is a hallmark of placentation and is highly regulated by numerous molecules with distinct roles. Placentas from pregnancies complicated by preeclampsia, intrauterine growth restriction or trisomy 21 have been associated with a defective syncytialization and an altered expression of its modulators. This work proposes to review the molecules that promote or inhibit both fusion and biochemical differentiation of cytotrophoblasts. Moreover, it will also analyse the syncytialization modulators abnormally expressed in pathological placentas, highlighting the molecules that may contribute to the aetiology of these diseases.
Collapse
Affiliation(s)
- M A Costa
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
40
|
Boeddeker SJ, Baston-Buest DM, Fehm T, Kruessel J, Hess A. Decidualization and syndecan-1 knock down sensitize endometrial stromal cells to apoptosis induced by embryonic stimuli. PLoS One 2015; 10:e0121103. [PMID: 25830352 PMCID: PMC4382340 DOI: 10.1371/journal.pone.0121103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/09/2015] [Indexed: 01/06/2023] Open
Abstract
Human embryo invasion and implantation into the inner wall of the maternal uterus, the endometrium, is the pivotal process for a successful pregnancy. Whereas disruption of the endometrial epithelial layer was already correlated with the programmed cell death, the role of apoptosis of the subjacent endometrial stromal cells during implantation is indistinct. The aim was to clarify whether apoptosis plays a role in the stromal invasion and to characterize if the apoptotic susceptibility of endometrial stromal cells to embryonic stimuli is influenced by decidualization and Syndecan-1. Therefore, the immortalized human endometrial stromal cell line St-T1 was used to first generate a new cell line with a stable Syndecan-1 knock down (KdS1), and second to further decidualize the cells with progesterone. As a replacement for the ethically inapplicable embryo all cells were treated with the embryonic factors and secretion products interleukin-1β, interferon-γ, tumor necrosis factor-α, transforming growth factor-β1 and anti-Fas antibody to mimic the embryo contact. Detection of apoptosis was verified via Caspase ELISAs, PARP cleavage and Annexin V staining. Apoptosis-related proteins were investigated via antibody arrays and underlying signaling pathways were analyzed by Western blot. Non-decidualized endometrial stromal cells showed a resistance towards apoptosis which was rescinded by decidualization and Syndecan-1 knock down independent of decidualization. This was correlated with an altered expression of several pro- and anti-apoptotic proteins and connected to a higher activation of pro-survival Akt in non-differentiated St-T1 as an upstream mediator of apoptotis-related proteins. This study provides insight into the largely elusive process of implantation, proposing an important role for stromal cell apoptosis to successfully establish a pregnancy. The impact of Syndecan-1 in attenuating the apoptotic signal is particularly interesting in the light of an already described influence on pregnancy disorders and therefore might provide a useful clinical tool in the future to prevent pregnancy complications provoked by inadequate implantation.
Collapse
Affiliation(s)
- Sarah Jean Boeddeker
- Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility (UniKiD), Medical Center University of Duesseldorf, Duesseldorf, Germany
- * E-mail:
| | - Dunja Maria Baston-Buest
- Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility (UniKiD), Medical Center University of Duesseldorf, Duesseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Medical Center University of Duesseldorf, Duesseldorf, Germany
| | - Jan Kruessel
- Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility (UniKiD), Medical Center University of Duesseldorf, Duesseldorf, Germany
| | - Alexandra Hess
- Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility (UniKiD), Medical Center University of Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
41
|
Boeddeker SJ, Hess AP. The role of apoptosis in human embryo implantation. J Reprod Immunol 2015; 108:114-22. [PMID: 25779030 DOI: 10.1016/j.jri.2015.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 01/11/2023]
Abstract
The process of embryo attachment and invasion through the endometrial epithelial cells and subsequent implantation into the decidualized endometrial stroma is the groundbreaking step for the establishment of a successful pregnancy. Necessary prerequisites are a receptive endometrium, a good-quality embryo and a well-orchestrated molecular dialog between embryo and maternal endometrium. The embryo-maternal dialog is conducted via a wide scope of factors, including secreted cytokines, chemokines, and growth factors in addition to the expression of corresponding receptors and co-receptors. Several embryonic proteins, including the aforementioned, are involved in the process of apoptosis, which necessarily needs to take place at the maternal endometrium to allow the embryo to invade. The endometrial epithelium is thereby disintegrated completely within a particular area, whereas the endometrial stroma seems to require a more depth-limited apoptosis. As of today, the exact mechanisms and factors mediating the apoptotic process involved in those apparently differently regulated incidents are not fully understood, particularly with regard to stromal cell apoptosis. There is evidence though, that cytokines and their respective receptors play a major role. A suggested important co-receptor for cytokines, which is highly upregulated in the receptive human endometrium, is the heparan sulfate proteoglycan syndecan-1. It is present on the cell surface and involved in the regulation of cell-cell-interaction, cell binding, cell signaling and cytoskeletal organization and therefore represents a possible mediator of apoptosis regulation in human endometrium. Herein, the literature on endometrial epithelial and stromal apoptosis in general, and in light of the influence of syndecan-1, is reviewed.
Collapse
Affiliation(s)
- Sarah J Boeddeker
- Department of Obstetrics, Gynecology and REI (UniKiD), Medical Faculty, Medical Center University of Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Alexandra P Hess
- Department of Obstetrics, Gynecology and REI (UniKiD), Medical Faculty, Medical Center University of Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|