1
|
Pinilla-Fernández I, Ríos-León M, Deelchand DK, Garrido L, Torres-Llacsa M, García-García F, Vidorreta M, Ip IB, Bridge H, Taylor J, Barriga-Martín A. Chronic neuropathic pain components in whiplash-associated disorders correlate with metabolite concentrations in the anterior cingulate and dorsolateral prefrontal cortex: a consensus-driven MRS re-examination. Front Med (Lausanne) 2024; 11:1404939. [PMID: 39156690 PMCID: PMC11328873 DOI: 10.3389/fmed.2024.1404939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Whiplash injury (WHI) is characterised by a forced neck flexion/extension, which frequently occurs after motor vehicle collisions. Previous studies characterising differences in brain metabolite concentrations and correlations with neuropathic pain (NP) components with chronic whiplash-associated disorders (WAD) have been demonstrated in affective pain-processing areas such as the anterior cingulate cortex (ACC). However, the detection of a difference in metabolite concentrations within these cortical areas with chronic WAD pain has been elusive. In this study, single-voxel magnetic resonance spectroscopy (MRS), following the latest MRSinMRS consensus group guidelines, was performed in the anterior cingulate cortex (ACC), left dorsolateral prefrontal cortex (DLPFC), and occipital cortex (OCC) to quantify differences in metabolite concentrations in individuals with chronic WAD with or without neuropathic pain (NP) components. Materials and methods Healthy individuals (n = 29) and participants with chronic WAD (n = 29) were screened with the Douleur Neuropathique 4 Questionnaire (DN4) and divided into groups without (WAD-noNP, n = 15) or with NP components (WAD-NP, n = 14). Metabolites were quantified with LCModel following a single session in a 3 T MRI scanner within the ACC, DLPFC, and OCC. Results Participants with WAD-NP presented moderate pain intensity and interference compared with the WAD-noNP group. Single-voxel MRS analysis demonstrated a higher glutamate concentration in the ACC and lower total choline (tCho) in the DLPFC in the WAD-NP versus WAD-noNP group, with no intergroup metabolite difference detected in the OCC. Best fit and stepwise multiple regression revealed that the normalised ACC glutamate/total creatine (tCr) (p = 0.01), DLPFC n-acetyl-aspartate (NAA)/tCr (p = 0.001), and DLPFC tCho/tCr levels (p = 0.02) predicted NP components in the WAD-NP group (ACC r 2 = 0.26, α = 0.81; DLPFC r 2 = 0.62, α = 0.98). The normalised Glu/tCr concentration was higher in the healthy than the WAD-noNP group within the ACC (p < 0.05), but not in the DLPFC or OCC. Neither sex nor age affected key normalised metabolite concentrations related to WAD-NP components when compared to the WAD-noNP group. Discussion This study demonstrates that elevated glutamate concentrations within the ACC are related to chronic WAD-NP components, while higher NAA and lower tCho metabolite levels suggest a role for increased neuronal-glial signalling and cell membrane dysfunction in individuals with chronic WAD-NP components.
Collapse
Affiliation(s)
- Irene Pinilla-Fernández
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marta Ríos-León
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
| | - Dinesh Kumar Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Leoncio Garrido
- Departamento de Química-Física, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), CSIC, Madrid, Spain
| | - Mabel Torres-Llacsa
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Servicio de Radiodiagnóstico, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Fernando García-García
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Servicio de Radiodiagnóstico, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | - I. Betina Ip
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Harris Manchester College, University of Oxford, Oxford, United Kingdom
| | - Andrés Barriga-Martín
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
- Research Group in Spine Pathology, Orthopedic Surgery and Traumatology Unit, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Faculty of Medicine, University of Castilla La Mancha, Toledo, Spain
| |
Collapse
|
2
|
Madsen MA, Považan M, Wiggermann V, Lundell H, Blinkenberg M, Romme Christensen J, Sellebjerg F, Siebner HR. Association of Cortical Lesions With Regional Glutamate, GABA, N-Acetylaspartate, and Myoinositol Levels in Patients With Multiple Sclerosis. Neurology 2024; 103:e209543. [PMID: 38870443 PMCID: PMC11244746 DOI: 10.1212/wnl.0000000000209543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cortical lesions contribute to disability in multiple sclerosis (MS), but their impact on regional neurotransmitter levels remains to be clarified. We tested the hypothesis that cortical lesions are associated with regional glutamate and gamma-aminobutyric acid (GABA) concentrations within the affected cortical region. METHODS In this cross-sectional study, we used structural 7T MRI to segment cortical lesions and 7T proton MR-spectroscopy of the bilateral sensorimotor hand areas to quantify regional GABA, glutamate, N-acetylaspartate, and myoinositol concentrations in patients with MS (inclusion criteria: diagnosis of relapsing-remitting [RR] or secondary progressive MS [SPMS]; age 18-80 years) and age and sex-matched healthy controls. Data were collected at a single center between August 2018 and September 2020. Linear mixed-effects models were used to test for associations between metabolite concentrations and cortical lesion volumes within the same MR-spectroscopy voxel. RESULTS Forty-seven patients with MS (34 RRMS, 13 SPMS; 45.1 ± 12.5 years; 31 women) and 23 healthy controls (44.4 ± 13 years, 15 women) were studied. In patients, higher regional glutamate and lower regional GABA concentrations were associated with larger cortical lesion volume within the MR-spectroscopy voxel [glutamate: 0.61 (95% CI 0.19-1.03) log(mm3), p = 0.005, GABA: -0.71 (-1.24 to -0.18) log(mm3), p = 0.01]. In addition, lower N-acetylaspartate levels [-0.37 (-0.67 to -0.07) log(mm3), p = 0.016] and higher myoinositol levels [0.48 (0.03-0.93) log(mm3), p = 0.037] were associated with a larger regional cortical lesion volume. Furthermore, glutamate concentrations were reduced in patients with SPMS compared with healthy participants [-0.75 (-1.3 to -0.19) mM, p = 0.005] and patients with RRMS [-0.55 (-1.07 to -0.02) mM, p = 0.04]. N-acetylaspartate levels were lower in both patients with RRMS [-0.81 (-1.39 to -0.24) mM, p = 0.003] and SPMS [-1.31 (-2.07 to -0.54) mM, p < 0.001] when compared with healthy controls. Creatine-normalized N-acetylaspartate levels were associated with performance in the 9-hole peg test of the contralateral hand [-0.004 (-0.007 to -0.002) log(s), p = 0.002], and reduced mean creatine-normalized glutamate was associated with increased Expanded Disability Status Scale (R = -0.39, p = 0.02). DISCUSSION Cortical lesions are associated with local increases in glutamate and a reduction in GABA concentration within the lesional or perilesional tissue. Further studies are needed to investigate the causal relationship between cortical lesions and changes in neurotransmitter concentrations.
Collapse
Affiliation(s)
- Mads A Madsen
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michal Považan
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Vanessa Wiggermann
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Lundell
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Morten Blinkenberg
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jeppe Romme Christensen
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Finn Sellebjerg
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hartwig R Siebner
- From the Danish Research Centre for Magnetic Resonance (M.A.M., M.P., V.W., H.L., H.R.S.), Copenhagen University Hospital - Amager and Hvidovre; Department of Health Technology (H.L.), Technical University of Denmark, Kgs. Lyngby; Danish Multiple Sclerosis Center (M.B., J.R.C., F.S.), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup; Department of Neurology (H.R.S.), Copenhagen University Hospital - Bispebjerg and Frederiksberg; and Department of Clinical Medicine (F.S., H.R.S.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
3
|
Knudsen MH, Vestergaard MB, Lindberg U, Simonsen HJ, Frederiksen JL, Cramer SP, Larsson HBW. Age-related decline in cerebral oxygen consumption in multiple sclerosis. J Cereb Blood Flow Metab 2024; 44:1039-1052. [PMID: 38190981 PMCID: PMC11318400 DOI: 10.1177/0271678x231224502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Cerebral oxygen metabolism is altered in relapsing-remitting multiple sclerosis (RRMS), possibly a result of disease related cerebral atrophy with subsequent decreased oxygen demand. However, MS inflammation can also inhibit brain metabolism. Therefore, we measured cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) using MRI phase contrast mapping and susceptibility-based oximetry in 44 patients with early RRMS and 36 healthy controls. Cerebral atrophy and white matter lesion load were assessed from high-resolution structural MRI. Expanded Disability Status Scale (EDSS) scores were collected from medical records. The CMRO2 was significantly lower in patients (-15%, p = 0.002) and decreased significantly with age in patients relative to the controls (-1.35 µmol/100 g/min/year, p = 0.036). The lower CMRO2 in RRMS was primarily driven by a higher venous oxygen saturation in the sagittal sinus (p = 0.007) and not a reduction in CBF (p = 0.69). There was no difference in cerebral atrophy between the groups, and no correlation between CMRO2 and MS lesion volume or EDSS score. Therefore, the progressive CMRO2 decline observed before the occurrence of significant cerebral atrophy and despite adequate CBF supports emerging evidence of dysfunctional cellular respiration as a potential pathogenic mechanism and therapeutic target in RRMS.
Collapse
Affiliation(s)
- Maria H Knudsen
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Dept. of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Helle J Simonsen
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Jette L Frederiksen
- Dept. of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N, Denmark
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Stig P Cramer
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Henrik BW Larsson
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Dept. of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
4
|
Aceves-Serrano L, Neva JL, Munro J, Vavasour IM, Parent M, Boyd LA, Doudet DJ. Evaluation of microglia activation related markers following a clinical course of TBS: A non-human primate study. PLoS One 2024; 19:e0301118. [PMID: 38753646 PMCID: PMC11098425 DOI: 10.1371/journal.pone.0301118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/11/2024] [Indexed: 05/18/2024] Open
Abstract
While the applicability and popularity of theta burst stimulation (TBS) paradigms remain, current knowledge of their neurobiological effects is still limited, especially with respect to their impact on glial cells and neuroinflammatory processes. We used a multimodal imaging approach to assess the effects of a clinical course of TBS on markers for microglia activation and tissue injury as an indirect assessment of neuroinflammatory processes. Healthy non-human primates received continuous TBS (cTBS), intermittent TBS (iTBS), or sham stimulation over the motor cortex at 90% of resting motor threshold. Stimulation was delivered to the awake subjects 5 times a week for 3-4 weeks. Translocator protein (TSPO) expression was evaluated using Positron Emission Tomography and [11C]PBR28, and myo-inositol (mI) and N-acetyl-aspartate (NAA) concentrations were assessed with Magnetic Resonance Spectroscopy. Animals were then euthanized, and immunofluorescence staining was performed using antibodies against TSPO. Paired t-tests showed no significant changes in [11C]PBR28 measurements after stimulation. Similarly, no significant changes in mI and NAA concentrations were found. Post-mortem TSPO evaluation showed comparable mean immunofluorescence intensity after active TBS and sham delivery. The current study suggests that in healthy brains a clinical course of TBS, as evaluated with in-vivo imaging techniques (PET and MRS), did not measurably modulate the expression of glia related markers and metabolite associated with neural viability.
Collapse
Affiliation(s)
- Lucero Aceves-Serrano
- Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason L. Neva
- Faculté de Médecine, École de Kinésiologie et des Sciences de l’activité Physique, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Jonathan Munro
- CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Irene M. Vavasour
- Faculty of Medicine, UBC MRI Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Parent
- CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Lara A. Boyd
- Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, Graduate Program of Rehabilitation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Doris J. Doudet
- Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Fenzl M, Backens M, Bodea S, Wittemann M, Werler F, Brielmaier J, Wolf RC, Reith W. Impact of cannabis use on brain metabolism using 31P and 1H magnetic resonance spectroscopy. Neuroradiology 2023; 65:1631-1648. [PMID: 37735222 PMCID: PMC10567915 DOI: 10.1007/s00234-023-03220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE This prospective cross-sectional study investigated the influence of regular cannabis use on brain metabolism in young cannabis users by using combined proton and phosphorus magnetic resonance spectroscopy. METHODS The study was performed in 45 young cannabis users aged 18-30, who had been using cannabis on a regular basis over a period of at least 2 years and in 47 age-matched controls. We acquired 31P MRS data in different brain regions at 3T with a double-resonant 1H/31P head coil, anatomic images, and 1H MRS data with a standard 20-channel 1H head coil. Absolute concentration values of proton metabolites were obtained via calibration from tissue water as an internal reference, whereas a standard solution of 75 mmol/l KH2PO4 was used as an external reference for the calibration of phosphorus signals. RESULTS We found an overall but not statistically significant lower concentration level of several proton and phosphorus metabolites in cannabis users compared to non-users. In particular, energy-related phosphates such as adenosine triphosphate (ATP) and inorganic phosphate (Pi) were reduced in all regions under investigation. Phosphocreatine (PCr) showed lowered values mainly in the left basal ganglia and the left frontal white matter. CONCLUSION The results suggest that the increased risk of functional brain disorders observed in long-term cannabis users could be caused by an impairment of the energy metabolism of the brain, but this needs to be verified in future studies.
Collapse
Affiliation(s)
- Maximilian Fenzl
- Institute of Neuroradiology, Saarland University, 66421, Homburg, Germany.
| | - Martin Backens
- Institute of Neuroradiology, Saarland University, 66421, Homburg, Germany.
| | - Silviu Bodea
- Helmholtz Zentrum Munich, German Research Center for Environmental Health Institute of Biological and Medical Imaging, 85748, Munich, Germany
| | - Miriam Wittemann
- Department of Psychiatry and Psychotherapy, Saarland University, 66421, Homburg, Germany
| | - Florian Werler
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, 69115, Heidelberg, Germany
| | - Jule Brielmaier
- Department of Psychiatry and Psychotherapy, Saarland University, 66421, Homburg, Germany
- Department of Obstetrics and Gynecology, RKH Clinic Ludwigsburg, 71640, Ludwigsburg, Germany
| | - Robert Christian Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, 69115, Heidelberg, Germany
| | - Wolfgang Reith
- Institute of Neuroradiology, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
6
|
Tzanetakos D, Kyrozis A, Karavasilis E, Velonakis G, Tzartos JS, Toulas P, Sotirli SA, Evdokimidis I, Tsivgoulis G, Potagas C, Kilidireas C, Andreadou E. Early metabolic alterations in the normal‑appearing grey and white matter of patients with clinically isolated syndrome suggestive of multiple sclerosis: A proton MR spectroscopic study. Exp Ther Med 2023; 26:349. [PMID: 37324507 PMCID: PMC10265702 DOI: 10.3892/etm.2023.12048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) is an advanced method of examining metabolic profiles. The present study aimed to assess in vivo metabolite levels in areas of normal-appearing grey (thalamus) and white matter (centrum semiovale) using 1H-MRS in patients with clinically isolated syndrome (CIS) suggestive of multiple sclerosis and compare them to healthy controls (HCs). Data from 35 patients with CIS (CIS group), of which 23 were untreated (CIS-untreated group) and 12 were treated (CIS-treated group) with disease-modifying-therapies (DMTs) at the time of 1H-MRS, and from 28 age- and sex-matched HCs were collected using a 3.0 T MRI and single-voxel 1H-MRS (point resolved spectroscopy sequence; repetition time, 2,000 msec; time to echo, 35 msec). Concentrations and ratios of total N-acetyl aspartate (tNAA), total creatine (tCr), total choline (tCho), myoinositol, glutamate (Glu), glutamine (Gln), Glu + Gln (Glx) and glutathione (Glth) were estimated in the thalamic-voxel (th) and centrum semiovale-voxel (cs). For the CIS group, the median duration from the first clinical attack to 1H-MRS was 102 days (interquartile range, 89.5.-131.5). Compared with HCs, significantly lower Glx(cs) (P=0.014) and ratios of tCho/tCr(th) (P=0.026), Glu/tCr(cs) (P=0.040), Glx/tCr(cs) (P=0.004), Glx/tNAA(th) (P=0.043) and Glx/tNAA(cs) (P=0.015) were observed in the CIS group. No differences in tNAA levels were observed between the CIS and the HC groups; however, tNAA(cs) was higher in the CIS-treated than in the CIS-untreated group (P=0.028). Compared with those in HC group, decreased Glu(cs) (P=0.019) and Glx(cs) levels (P=0.014) and lower ratios for tCho/tCr(th) (P=0.015), Gln/tCr(th) (P=0.004), Glu/tCr(cs) (P=0.021), Glx/tCr(th) (P=0.041), Glx/tCr(cs) (P=0.003), Glx/tNAA(th) (P=0.030) and Glx/tNAA(cs) (P=0.015) were found in the CIS-untreated group. The present findings showed alterations in the normal-appearing grey and white matter of patients with CIS; moreover, the present results suggested an early indirect treatment effect of DMTs on the brain metabolic profile of these patients.
Collapse
Affiliation(s)
- Dimitrios Tzanetakos
- Second Department of Neurology, ‘Attikon’ University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Andreas Kyrozis
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Efstratios Karavasilis
- Research Unit of Radiology, Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Medical Physics Laboratory, School of Medicine, Democritus University of Thrace, 68100 Alexandroupoli, Greece
| | - Georgios Velonakis
- Research Unit of Radiology, Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - John S. Tzartos
- Second Department of Neurology, ‘Attikon’ University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Panagiotis Toulas
- Research Unit of Radiology, Second Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Stefania Alexia Sotirli
- MS Center and Other Neurodegenerative diseases, Metropolitan General Hospital, 15562 Holargos, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, ‘Attikon’ University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Constantin Potagas
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Costantinos Kilidireas
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Elisabeth Andreadou
- First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
7
|
Perdue MV, DeMayo MM, Bell TK, Boudes E, Bagshawe M, Harris AD, Lebel C. Changes in brain metabolite levels across childhood. Neuroimage 2023; 274:120087. [PMID: 37080345 DOI: 10.1016/j.neuroimage.2023.120087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Metabolites play important roles in brain development and their levels change rapidly in the prenatal period and during infancy. Metabolite levels are thought to stabilize during childhood, but the development of neurochemistry across early-middle childhood remains understudied. We examined the developmental changes of key metabolites (total N-acetylaspartate, tNAA; total choline, tCho; total creatine, tCr; glutamate+glutamine, Glx; and myo-inositol, mI) using short echo-time magnetic resonance spectroscopy (MRS) in the anterior cingulate cortex (ACC) and the left temporo-parietal cortex (LTP) using a mixed cross-sectional/longitudinal design in children aged 2-11 years (ACC: N=101 children, 112 observations; LTP: N=95 children, 318 observations). We found age-related effects for all metabolites. tNAA increased with age in both regions, while tCho decreased with age in both regions. tCr increased with age in the LTP only, and mI decreased with age in the ACC only. Glx did not show linear age effects in either region, but a follow-up analysis in only participants with ≥3 datapoints in the LTP revealed a quadratic effect of age following an inverted U-shape. These substantial changes in neurochemistry throughout childhood likely underlie various processes of structural and functional brain development.
Collapse
Affiliation(s)
- Meaghan V Perdue
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary
| | - Marilena M DeMayo
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary; Mathison Centre for Mental Health Research and Education; Department of Psychiatry, University of Calgary
| | - Tiffany K Bell
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary
| | | | - Mercedes Bagshawe
- Alberta Children's Hospital Research Institute; Werklund School of Education, University of Calgary
| | - Ashley D Harris
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary
| | - Catherine Lebel
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary.
| |
Collapse
|
8
|
Becker I, Eckhardt M. An enzymatic fluorimetric assay for determination of N-acetylaspartate. Anal Biochem 2023; 667:115083. [PMID: 36804395 DOI: 10.1016/j.ab.2023.115083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
N-acetylaspartate (NAA) is an abundant metabolite in the mammalian brain and a precursor of the neuropeptide N-acetylaspartylglutamate (NAAG). The physiological role of NAA is not fully understood and requires further studies. We here describe the development of a coupled enzymatic fluorimetric assay for the determination of NAA in biological samples. Deproteinized tissue extracts are first passed through a strong cation exchange column to remove aspartate. NAA in the sample is hydrolysed by aspartoacylase and released aspartate oxidized using l-aspartate oxidase. Generated H2O2 is measured with peroxidase in a fluorimetric assay using Ampliflu Red. The limit of detection and the lower limit of quantification are 1.0 μM (10 pmol/well) and 3.3 μM (33 pmol/well), respectively, with a linear range to 100 μM. Specificity of the assay was confirmed using samples from mice deficient in NAA synthase Nat8l that were spiked with NAA. Analysis of samples from aspartoacylase-deficient mice showed a 2 to 3-fold increase in brain NAA concentration, in line with previous reports. Mice lacking NAAG synthetases had a slightly reduced (-10%) brain NAA level. Thus, the new fluorimetric enzymatic assay is useful to perform sensitive and large scale quantification of NAA in biological samples without the need for expensive equipment.
Collapse
Affiliation(s)
- Ivonne Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
9
|
Feldmann J, Martin P, Bender B, Laugwitz L, Zizmare L, Trautwein C, Krägeloh-Mann I, Klose U, Groeschel S. MR-spectroscopy in metachromatic leukodystrophy: A model free approach and clinical correlation. Neuroimage Clin 2023; 37:103296. [PMID: 36563646 PMCID: PMC9800432 DOI: 10.1016/j.nicl.2022.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Metachromatic leukodystrophy (MLD) is a lysosomal enzyme deficiency disorder leading to demyelination and subsequently to a progressive decline in cognitive and motor function. It affects mainly white matter where changes during the course of the disease can be visualized on T2-weighted MRI as hyperintense areas. Associated changes in brain metabolism can be quantified by MR spectroscopy (MRS) and may give complementary information as biomarkers for disease characterisation and progression. Our study aimed to further investigate the correlation of MRS with clinical parameters for motor and cognitive function by using a model free MRS analysis approach that would be precise and straightforward to implement. MATERIALS AND METHODS 53 MRS datasets derived from 29 patients (10 late-infantile, 19 juvenile) and 12 controls were acquired using a semi-LASER CSI sequence covering a slice through the centrum semiovale above the corpus callosum. We defined four regions of interest in the white matter (frontal white matter [FWM] and the cortico-spinal tract [CST] area, each left and right) and one in cortical grey matter. Spectra were analysed using a model and fitting free approach by calculating the definite integral of 10 intervals which were distributed along the whole spectrum. These 10 intervals were orientated towards the main peaks of the metabolites N-acetylaspartate (NAA), creatine, myo-inositol, choline, glutamine/glutamate and aspartate to approximately attribute changes in the intervals to corresponding metabolites. Their ratios to the main creatine peak integral were correlated with clinical parameters assessing motor and cognitive abilities. Furthermore, in a post-hoc analysis, NAA levels of a subset of 21 MR datasets were correlated to NAA levels in urine measured by 1H (proton) nuclear magnetic resonance (NMR) spectroscopy. The applied interval integration method was validated in the control cohort against the standard approach, using spectral profile templates of known metabolites (LCModel). Both methods showed good agreement, with coefficients of variance being slightly lower for our approach compared to the related LCModel results. Moreover, the new approach was able to extract information out of the frequency range around the main peaks of aspartate and glutamine where LCModel showed only few usable values for the respective metabolites. RESULTS MLD spectra clearly differed from controls. The most pronounced differences were found in white matter (much less in grey matter), with larger values corresponding to main peaks of myo-inositol, choline and aspartate, and smaller values associated with NAA and glutamine. Late-infantile patients had more severe changes compared to later-onset patients, especially in intervals corresponding to NAA, aspartate, myo-inositol, choline and glutamine. There was a high correlation of several intervals in the corticospinal tract region with motor function (with the most relevant interval corresponding to NAA peak with a correlation coefficient of -0.75; p < 0.001), while cognitive function, by means of IQ, was found to be most correlating in frontal white matter corresponding to the NAA peak (r = 0.84, p < 0.001). The post-hoc analysis showed that the main NAA peak interval correlated negatively with the NAA in urine (r = -0.584, p < 0.001). CONCLUSION The applied model and fitting free interval integration approach to analyse MRS data of a semi-LASER sequence at 3T suits well to detect and quantify pathological changes in MLD patients through the different courses of the disease and correlates well with clinical symptoms while showing smaller dimensions of variation compared to the more sophisticated single metabolite analysis using LCModel. NAA seems the most clinically meaningful biomarker to use in this context. Its correlation with urine measurements further underlines its potential as a clinically and biologically useful parameter of disease progression in MLD.
Collapse
Affiliation(s)
- Joana Feldmann
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Lucia Laugwitz
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, University of Tübingen, 72076 Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, University of Tübingen, 72076 Tübingen, Germany
| | - Ingeborg Krägeloh-Mann
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Samuel Groeschel
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Metabolic and Cellular Compartments of Acetyl-CoA in the Healthy and Diseased Brain. Int J Mol Sci 2022; 23:ijms231710073. [PMID: 36077475 PMCID: PMC9456256 DOI: 10.3390/ijms231710073] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
The human brain is characterised by the most diverse morphological, metabolic and functional structure among all body tissues. This is due to the existence of diverse neurons secreting various neurotransmitters and mutually modulating their own activity through thousands of pre- and postsynaptic interconnections in each neuron. Astroglial, microglial and oligodendroglial cells and neurons reciprocally regulate the metabolism of key energy substrates, thereby exerting several neuroprotective, neurotoxic and regulatory effects on neuronal viability and neurotransmitter functions. Maintenance of the pool of mitochondrial acetyl-CoA derived from glycolytic glucose metabolism is a key factor for neuronal survival. Thus, acetyl-CoA is regarded as a direct energy precursor through the TCA cycle and respiratory chain, thereby affecting brain cell viability. It is also used for hundreds of acetylation reactions, including N-acetyl aspartate synthesis in neuronal mitochondria, acetylcholine synthesis in cholinergic neurons, as well as divergent acetylations of several proteins, peptides, histones and low-molecular-weight species in all cellular compartments. Therefore, acetyl-CoA should be considered as the central point of metabolism maintaining equilibrium between anabolic and catabolic pathways in the brain. This review presents data supporting this thesis.
Collapse
|
11
|
Gozdas E, Hinkley L, Fingerhut H, Dacorro L, Gu M, Sacchet MD, Hurd R, Hosseini SMH. 1H-MRS neurometabolites and associations with neurite microstructures and cognitive functions in amnestic mild cognitive impairment. Neuroimage Clin 2022; 36:103159. [PMID: 36063758 PMCID: PMC9450331 DOI: 10.1016/j.nicl.2022.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) pathogenesis is associated with alterations in neurometabolites and cortical microstructure. However, our understanding of alterations in neurochemicals in the prefrontal cortex and their relationship with changes in cortical microstructure in AD remains unclear. Here, we studied the levels of neurometabolites in the left dorsolateral prefrontal cortex (DLPFC) in healthy older adults and patients with amnestic Mild Cognitive Impairments (aMCI) using single-voxel proton-magnetic resonance spectroscopy (1H-MRS). N-acetyl aspartate (NAA), glutamate+glutamate (Glx), Myo-inositol (mI), and γ-aminobutyric acid (GABA) brain metabolite levels were quantified relative to total creatine (tCr = Cr + PCr). aMCI had significantly decreased NAA/tCr, Glx/tCr, NAA/mI, and increased mI/tCr levels compared with healthy controls. Further, we leveraged advanced diffusion MRI to extract neurite properties in the left DLPFC and found a significant positive correlation between NAA/tCr, related to neuronal intracellular compartment, and neurite density (ICVF, intracellular volume fraction), and a negative correlation between mI/tCr and neurite orientation (ODI) only in healthy older adults. These data suggest a potential decoupling in the relationship between neurite microstructures and NAA and mI concentrations in DLPFC in the early stage of AD. Together, our results confirm altered DLPFC neurometabolites in prodromal phase of AD and provide unique evidence regarding the imbalance in the association between neurometabolites and neurite microstructure in early stage of AD.
Collapse
Affiliation(s)
- Elveda Gozdas
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Lauren Hinkley
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah Fingerhut
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren Dacorro
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng Gu
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Ralph Hurd
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
12
|
van Vliet EA, Immonen R, Prager O, Friedman A, Bankstahl JP, Wright DK, O'Brien TJ, Potschka H, Gröhn O, Harris NG. A companion to the preclinical common data elements and case report forms for in vivo rodent neuroimaging: A report of the TASK3-WG3 Neuroimaging Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35962745 DOI: 10.1002/epi4.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. In this article, we discuss CDEs for neuroimaging data that are collected in rodent models of epilepsy, with a focus on adult rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the methodologies for several imaging modalities and the parameters that can be collected.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Riikka Immonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- The Royal Melbourne Hospital, The University of Melbourne, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Olli Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Neil G Harris
- Department of Neurosurgery UCLA, UCLA Brain Injury Research Center, Los Angeles, California, USA
- Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
13
|
Smith S, Normahani P, Lane T, Hohenschurz-Schmidt D, Oliver N, Davies AH. Pathogenesis of Distal Symmetrical Polyneuropathy in Diabetes. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071074. [PMID: 35888162 PMCID: PMC9319251 DOI: 10.3390/life12071074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Distal symmetrical polyneuropathy (DSPN) is a serious complication of diabetes associated with significant disability and mortality. Although more than 50% of people with diabetes develop DSPN, its pathogenesis is still relatively unknown. This lack of understanding has limited the development of novel disease-modifying therapies and left the reasons for failed therapies uncertain, which is critical given that current management strategies often fail to achieve long-term efficacy. In this article, the pathogenesis of DSPN is reviewed, covering pathogenic changes in the peripheral nervous system, microvasculature and central nervous system (CNS). Furthermore, the successes and limitations of current therapies are discussed, and potential therapeutic targets are proposed. Recent findings on its pathogenesis have called the definition of DSPN into question and transformed the disease model, paving the way for new research prospects.
Collapse
Affiliation(s)
- Sasha Smith
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK; (S.S.); (P.N.); (T.L.)
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Pasha Normahani
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK; (S.S.); (P.N.); (T.L.)
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Tristan Lane
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK; (S.S.); (P.N.); (T.L.)
- Department of Vascular Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - David Hohenschurz-Schmidt
- Pain Research Group, Department of Surgery and Cancer, Imperial College London, London SW10 9NH, UK;
| | - Nick Oliver
- Section of Metabolic Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1PG, UK;
- Division of Medicine and Integrated Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Alun Huw Davies
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK; (S.S.); (P.N.); (T.L.)
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London W6 8RF, UK
- Correspondence:
| |
Collapse
|
14
|
Wei H, Moffett JR, Amanat M, Fatemi A, Tsukamoto T, Namboodiri AM, Slusher BS. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov Today 2022; 27:2467-2483. [DOI: 10.1016/j.drudis.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
|
15
|
Elsaid S, Rubin-Kahana DS, Kloiber S, Kennedy SH, Chavez S, Le Foll B. Neurochemical Alterations in Social Anxiety Disorder (SAD): A Systematic Review of Proton Magnetic Resonance Spectroscopic Studies. Int J Mol Sci 2022; 23:ijms23094754. [PMID: 35563145 PMCID: PMC9105768 DOI: 10.3390/ijms23094754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Objective: Considering that current knowledge of mechanisms involved in the molecular pathogenesis of Social Anxiety Disorder (SAD) is limited, we conducted a systematic review to evaluate cumulative data obtained by Proton Magnetic Resonance Spectroscopic (1H MRS) studies. (2) Methods: A computer-based literature search of Medline, EMBASE, PsycInfo, and ProQuest was performed. Only cross-sectional studies using 1H MRS techniques in participants with SAD and healthy controls (HCs) were selected. (3) Results: The search generated eight studies. The results indicated regional abnormalities in the ‘fear neurocircuitry’ in patients with SAD. The implicated regions included the anterior cingulate cortex (ACC), dorsomedial prefrontal cortex (dmPFC), dorsolateral prefrontal cortex (dlPFC), insula, occipital cortex (OC), as well as the subcortical regions, including the thalamus, caudate, and the putamen. (4) Conclusions: The evidence derived from eight studies suggests that possible pathophysiological mechanisms of SAD include impairments in the integrity and function of neurons and glial cells, including disturbances in energy metabolism, maintenance of phospholipid membranes, dysregulations of second messenger systems, and excitatory/inhibitory neurocircuitry. Conducting more cross-sectional studies with larger sample sizes is warranted given the limited evidence in this area of research.
Collapse
Affiliation(s)
- Sonja Elsaid
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada; (S.E.); (D.S.R.-K.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.K.); (S.H.K.); (S.C.)
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Dafna S. Rubin-Kahana
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada; (S.E.); (D.S.R.-K.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Stefan Kloiber
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.K.); (S.H.K.); (S.C.)
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sidney H. Kennedy
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.K.); (S.H.K.); (S.C.)
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON M5B 1M4, Canada
- Li Ka Shing Knowledge Institute, Toronto, ON M5B 1T8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Homewood Research Institute, Guelph, ON N1E 6K9, Canada
| | - Sofia Chavez
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.K.); (S.H.K.); (S.C.)
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada; (S.E.); (D.S.R.-K.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.K.); (S.H.K.); (S.C.)
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Departments of Family and Community Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, ON L9M 1G3, Canada
- Correspondence: ; Tel.: +1-416-535-8501 (ext. 33111)
| |
Collapse
|
16
|
Characterizing cerebral metabolite profiles in anorexia and bulimia nervosa and their associations with habitual behavior. Transl Psychiatry 2022; 12:103. [PMID: 35292626 PMCID: PMC8924163 DOI: 10.1038/s41398-022-01872-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Anorexia nervosa (AN) and bulimia nervosa (BN) are associated with altered brain structure and function, as well as increased habitual behavior. This neurobehavioral profile may implicate neurochemical changes in the pathogenesis of these illnesses. Altered glutamate, myo-inositol and N-acetyl aspartate (NAA) concentrations are reported in restrictive AN, yet whether these extend to binge-eating disorders, or relate to habitual traits in affected individuals, remains unknown. We therefore used single-voxel proton magnetic resonance spectroscopy to measure glutamate, myo-inositol, and NAA in the right inferior lateral prefrontal cortex and the right occipital cortex of 85 women [n = 22 AN (binge-eating/purging subtype; AN-BP), n = 33 BN, n = 30 controls]. To index habitual behavior, participants performed an instrumental learning task and completed the Creature of Habit Scale. Women with AN-BP, but not BN, had reduced myo-inositol and NAA concentrations relative to controls in both regions. Although patient groups had intact instrumental learning task performance, both groups reported increased routine behaviors compared to controls, and automaticity was related to reduced prefrontal glutamate and NAA participants with AN-BP. Our findings extend previous reports of reduced myo-inositol and NAA levels in restrictive AN to AN-BP, which may reflect disrupted axonal-glial signaling. Although we found inconsistent support for increased habitual behavior in AN-BP and BN, we identified preliminary associations between prefrontal metabolites and automaticity in AN-BP. These results provide further evidence of unique neurobiological profiles across binge-eating disorders.
Collapse
|
17
|
Kärkkäinen O, Kokla M, Lehtonen M, Auriola S, Martiskainen M, Tiihonen J, Karhunen PJ, Hanhineva K, Kok E. Changes in the metabolic profile of human male postmortem frontal cortex and cerebrospinal fluid samples associated with heavy alcohol use. Addict Biol 2021; 26:e13035. [PMID: 33745230 DOI: 10.1111/adb.13035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
Heavy alcohol use is one of the top causes of disease and death in the world. The brain is a key organ affected by heavy alcohol use. Here, our aim was to measure changes caused by heavy alcohol use in the human brain metabolic profile. We analyzed human postmortem frontal cortex and cerebrospinal fluid (CSF) samples from males with a history of heavy alcohol use (n = 74) and controls (n = 74) of the Tampere Sudden Death Series cohort. We used a nontargeted liquid chromatography mass spectrometry-based metabolomics method. We observed differences between the study groups in the metabolite levels of both frontal cortex and CSF samples, for example, in amino acids and derivatives, and acylcarnitines. There were more significant alterations in the metabolites of frontal cortex than in CSF. In the frontal cortex, significant alterations were seen in the levels of neurotransmitters (e.g., decreased levels of GABA and acetylcholine), acylcarnitines (e.g., increased levels of acylcarnitine 4:0), and in some metabolites associated with alcohol metabolizing enzymes (e.g., increased levels of 2-piperidone). Some of these changes were also significant in the CSF samples (e.g., elevated 2-piperidone levels). Overall, these results show the metabolites associated with neurotransmitters, energy metabolism and alcohol metabolism, were altered in human postmortem frontal cortex and CSF samples of persons with a history of heavy alcohol use.
Collapse
Affiliation(s)
- Olli Kärkkäinen
- School of Pharmacy University of Eastern Finland Kuopio Finland
| | - Marietta Kokla
- Institute of Public Health and Clinical Nutrition University of Eastern Finland Kuopio Finland
| | - Marko Lehtonen
- School of Pharmacy University of Eastern Finland Kuopio Finland
| | - Seppo Auriola
- School of Pharmacy University of Eastern Finland Kuopio Finland
| | - Mika Martiskainen
- Faculty of Medicine and Health Technology Tampere University and Fimlab Laboratories Ltd, Tampere University Hospital Region Kuopio Finland
- Finnish Institute for Health and Welfare Finland
| | - Jari Tiihonen
- Department of Forensic Psychiatry University of Eastern Finland, Niuvanniemi Hospital Helsinki Finland
- Department of Clinical Neuroscience Karolinska Institutet and Center for Psychiatry Research, Stockholm City Council Stockholm Sweden
| | - Pekka J. Karhunen
- Faculty of Medicine and Health Technology Tampere University and Fimlab Laboratories Ltd, Tampere University Hospital Region Kuopio Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition University of Eastern Finland Kuopio Finland
- Department of Biochemistry, Food chemistry and food development unit University of Turku Turku Finland
| | - Eloise Kok
- Faculty of Medicine and Health Technology Tampere University and Fimlab Laboratories Ltd, Tampere University Hospital Region Kuopio Finland
| |
Collapse
|
18
|
Weerasekera A, Morrissey E, Kim M, Saha A, Lin Y, Alshelh Z, Torrado-Carvajal A, Albrecht D, Akeju O, Kwon YM, Bedair H, Chen AF, Napadow V, Schreiber K, Ratai EM, Edwards RR, Loggia ML. Thalamic neurometabolite alterations in patients with knee osteoarthritis before and after total knee replacement. Pain 2021; 162:2014-2023. [PMID: 33470749 PMCID: PMC8205967 DOI: 10.1097/j.pain.0000000000002198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022]
Abstract
ABSTRACT The weak association between disability levels and "peripheral" (ie, knee) findings suggests that central nervous system alterations may contribute to the pathophysiology of knee osteoarthritis (KOA). Here, we evaluated brain metabolite alterations in patients with KOA, before and after total knee arthroplasty (TKA), using 1H-magnetic resonance spectroscopy (MRS). Thirty-four presurgical patients with KOA and 13 healthy controls were scanned using a PRESS sequence (TE = 30 ms, TR = 1.7 seconds, voxel size = 15 × 15 × 15 mm). In addition, 13 patients were rescanned 4.1 ± 1.6 (mean ± SD) weeks post-TKA. When using creatine (Cr)-normalized levels, presurgical KOA patients demonstrated lower N-acetylaspartate (NAA) (P < 0.001), higher myoinositol (mIns) (P < 0.001), and lower Choline (Cho) (P < 0.05) than healthy controls. The mIns levels were positively correlated with pain severity scores (r = 0.37, P < 0.05). These effects reached statistical significance also using water-referenced concentrations, except for the Cho group differences (P ≥ 0.067). Post-TKA patients demonstrated an increase in NAA (P < 0.01), which returned to the levels of healthy controls (P > 0.05), irrespective of metric. In addition, patients demonstrated postsurgical increases in Cr-normalized (P < 0.001), but not water-referenced mIns, which were proportional to the NAA/Cr increases (r = 0.61, P < 0.05). Because mIns is commonly regarded as a glial marker, our results are suggestive of a possible dual role for neuroinflammation in KOA pain and post-TKA recovery. Moreover, the apparent postsurgical normalization of NAA, a putative marker of neuronal integrity, might implicate mitochondrial dysfunction, rather than neurodegenerative processes, as a plausible pathophysiological mechanism in KOA. More broadly, our results add to a growing body of literature suggesting that some pain-related brain alterations can be reversed after peripheral surgical treatment.
Collapse
Affiliation(s)
- Akila Weerasekera
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Erin Morrissey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Atreyi Saha
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yang Lin
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zeynab Alshelh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Daniel Albrecht
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Young-Min Kwon
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hany Bedair
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Antonia F Chen
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kristin Schreiber
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Eva-Maria Ratai
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert R Edwards
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Lee J, Andronesi OC, Torrado-Carvajal A, Ratai EM, Loggia ML, Weerasekera A, Berry MP, Ellingsen DM, Isaro L, Lazaridou A, Paschali M, Grahl A, Wasan AD, Edwards RR, Napadow V. 3D magnetic resonance spectroscopic imaging reveals links between brain metabolites and multidimensional pain features in fibromyalgia. Eur J Pain 2021; 25:2050-2064. [PMID: 34102707 DOI: 10.1002/ejp.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Fibromyalgia is a centralized multidimensional chronic pain syndrome, but its pathophysiology is not fully understood. METHODS We applied 3D magnetic resonance spectroscopic imaging (MRSI), covering multiple cortical and subcortical brain regions, to investigate the association between neuro-metabolite (e.g. combined glutamate and glutamine, Glx; myo-inositol, mIno; and combined (total) N-acetylaspartate and N-acetylaspartylglutamate, tNAA) levels and multidimensional clinical/behavioural variables (e.g. pain catastrophizing, clinical pain severity and evoked pain sensitivity) in women with fibromyalgia (N = 87). RESULTS Pain catastrophizing scores were positively correlated with Glx and tNAA levels in insular cortex, and negatively correlated with mIno levels in posterior cingulate cortex (PCC). Clinical pain severity was positively correlated with Glx levels in insula and PCC, and with tNAA levels in anterior midcingulate cortex (aMCC), but negatively correlated with mIno levels in aMCC and thalamus. Evoked pain sensitivity was negatively correlated with levels of tNAA in insular cortex, MCC, PCC and thalamus. CONCLUSIONS These findings support single voxel placement targeting nociceptive processing areas in prior 1 H-MRS studies, but also highlight other areas not as commonly targeted, such as PCC, as important for chronic pain pathophysiology. Identifying target brain regions linked to multidimensional symptoms of fibromyalgia (e.g. negative cognitive/affective response to pain, clinical pain, evoked pain sensitivity) may aid the development of neuromodulatory and individualized therapies. Furthermore, efficient multi-region sampling with 3D MRSI could reduce the burden of lengthy scan time for clinical research applications of molecular brain-based mechanisms supporting multidimensional aspects of fibromyalgia. SIGNIFICANCE This large N study linked brain metabolites and pain features in fibromyalgia patients, with a better spatial resolution and brain coverage, to understand a molecular mechanism underlying pain catastrophizing and other aspects of pain transmission. Metabolite levels in self-referential cognitive processing area as well as pain-processing regions were associated with pain outcomes. These results could help the understanding of its pathophysiology and treatment strategies for clinicians.
Collapse
Affiliation(s)
- Jeungchan Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ovidiu C Andronesi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Eva-Maria Ratai
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Akila Weerasekera
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Michael P Berry
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Dan-Mikael Ellingsen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Laura Isaro
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Asimina Lazaridou
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Myrella Paschali
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arvina Grahl
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ajay D Wasan
- Department of Anesthesiology and Perioperative Medicine, Center for Innovation in Pain Care, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Ferris JK, Neva JL, Vavasour IM, Attard KJ, Greeley B, Hayward KS, Wadden KP, MacKay AL, Boyd LA. Cortical N-acetylaspartate concentrations are impacted in chronic stroke but do not relate to motor impairment: A magnetic resonance spectroscopy study. Hum Brain Mapp 2021; 42:3119-3130. [PMID: 33939206 PMCID: PMC8193507 DOI: 10.1002/hbm.25421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) measures cerebral metabolite concentrations, which can inform our understanding of the neurobiological processes associated with stroke recovery. Here, we investigated whether metabolite concentrations in primary motor and somatosensory cortices (sensorimotor cortex) are impacted by stroke and relate to upper‐extremity motor impairment in 45 individuals with chronic stroke. Cerebral metabolite estimates were adjusted for cerebrospinal fluid and brain tissue composition in the MRS voxel. Upper‐extremity motor impairment was indexed with the Fugl‐Meyer (FM) scale. N‐acetylaspartate (NAA) concentration was reduced bilaterally in stroke participants with right hemisphere lesions (n = 23), relative to right‐handed healthy older adults (n = 15; p = .006). Within the entire stroke sample (n = 45) NAA and glutamate/glutamine (GLX) were lower in the ipsilesional sensorimotor cortex, relative to the contralesional cortex (NAA: p < .001; GLX: p = .003). Lower ipsilesional NAA was related to greater extent of corticospinal tract (CST) injury, quantified by a weighted CST lesion load (p = .006). Cortical NAA and GLX concentrations did not relate to the severity of chronic upper‐extremity impairment (p > .05), including after a sensitivity analysis imputing missing metabolite data for individuals with large cortical lesions (n = 5). Our results suggest that NAA, a marker of neuronal integrity, is sensitive to stroke‐related cortical damage and may provide mechanistic insights into cellular processes of cortical adaptation to stroke. However, cortical MRS metabolites may have limited clinical utility as prospective biomarkers of upper‐extremity outcomes in chronic stroke.
Collapse
Affiliation(s)
- Jennifer K Ferris
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason L Neva
- École de Kinésiologie et des Sciences de l'activité Physique, Université of Montréal, Montreal, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-sud-de-I'île de Montréal, Montreal, Quebec, Canada
| | - Irene M Vavasour
- Faculty of Medicine, UBC MRI Research Center, University of British Columbia, Vancouver, BC, Canada
| | - Kaitlin J Attard
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Greeley
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn S Hayward
- School of Health Sciences, Florey Institute of Neuroscience and Mental Health, NHMRC CRE in Stroke Rehabilitation and Brain Recovery, The University of Melbourne, Parkville, Victoria, Australia
| | - Katie P Wadden
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Alex L MacKay
- Faculty of Medicine, UBC MRI Research Center, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Chen MX, Cheng S, Lei L, Zhang XF, Liu Q, Lin A, Wallis CU, Lukowicz MJ, Sham PC, Li Q, Ao LJ. The effects of maternal SSRI exposure on the serotonin system, prefrontal protein expression and behavioral development in male and female offspring rats. Neurochem Int 2021; 146:105041. [PMID: 33836218 DOI: 10.1016/j.neuint.2021.105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/21/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022]
Abstract
Fluoxetine (FLX), a commonly used selective serotonin reuptake inhibitor, is often used to treat depression during pregnancy. However, prenatal exposure to FLX has been associated with a series of neuropsychiatric illnesses. The use of a rodent model can provide a clear indication as to whether prenatal exposure to SSRIs, independent of maternal psychiatric disorders or genetic syndromes, can cause long-term behavioral abnormalities in offspring. Thus, the present study aimed to explore whether prenatal FLX exposure causes long-term neurobehavioral effects, and identify the underlying mechanism between FLX and abnormal behaviors. In our study, 12/mg/kg/day of FLX or equal normal saline (NS) was administered to pregnant Sprague-Dawley (SD) rats (FLX = 30, NS = 27) on gestation day 11 till birth. We assessed the physical development and behavior of offspring, and in vivo magnetic resonance spectroscopy (MRS) was conducted to quantify biochemical alterations in the prefrontal cortex (PFC). Ex vivo measurements of brain serotonin level and a proteomic analysis were also undertaken. Our results showed that the offspring (male offspring in particular) of fluoxetine exposed mothers showed delayed physical development, increased anxiety-like behavior, and impaired social interaction. Moreover, down-regulation of 5-HT and SERT expression were identified in the PFC. We also found that prenatal FLX exposure significantly decreased NAA/tCr with 1H-MRS in the PFC of offspring. Finally, a proteomic study revealed sex-dependent differential protein expression. These findings may have translational importance suggesting that using SSRI medication alone in pregnant mothers may result in developmental delay in their offspring. Our results also help guide the choice of outcome measures in identifying of molecular and developmental mechanisms.
Collapse
Affiliation(s)
- Mo Xian Chen
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Shu Cheng
- Department of Rehabilitation, China Resources & WISCO General Hospital, Wuhan, China
| | - Lei Lei
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Tai Ping Road, Luzhou, Sichuan, China
| | - Xiao Fan Zhang
- Department of Psychiatry, Tongji Hospital of Huazhong University of Science and Technology (HUST), China
| | - Qiang Liu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Aijin Lin
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | | | | | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, SAR, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China; Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Qi Li
- Department of Psychiatry, The University of Hong Kong, Hong Kong, SAR, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China.
| | - Li Juan Ao
- School of Rehabilitation, Kunming Medical University, Kunming, China.
| |
Collapse
|
22
|
Balestri S, Del Giovane A, Sposato C, Ferrarelli M, Ragnini-Wilson A. The Current Challenges for Drug Discovery in CNS Remyelination. Int J Mol Sci 2021; 22:ijms22062891. [PMID: 33809224 PMCID: PMC8001072 DOI: 10.3390/ijms22062891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
The myelin sheath wraps around axons, allowing saltatory currents to be transmitted along neurons. Several genetic, viral, or environmental factors can damage the central nervous system (CNS) myelin sheath during life. Unless the myelin sheath is repaired, these insults will lead to neurodegeneration. Remyelination occurs spontaneously upon myelin injury in healthy individuals but can fail in several demyelination pathologies or as a consequence of aging. Thus, pharmacological intervention that promotes CNS remyelination could have a major impact on patient’s lives by delaying or even preventing neurodegeneration. Drugs promoting CNS remyelination in animal models have been identified recently, mostly as a result of repurposing phenotypical screening campaigns that used novel oligodendrocyte cellular models. Although none of these have as yet arrived in the clinic, promising candidates are on the way. Many questions remain. Among the most relevant is the question if there is a time window when remyelination drugs should be administrated and why adult remyelination fails in many neurodegenerative pathologies. Moreover, a significant challenge in the field is how to reconstitute the oligodendrocyte/axon interaction environment representative of healthy as well as disease microenvironments in drug screening campaigns, so that drugs can be screened in the most appropriate disease-relevant conditions. Here we will provide an overview of how the field of in vitro models developed over recent years and recent biological findings about how oligodendrocytes mature after reactivation of their staminal niche. These data have posed novel questions and opened new views about how the adult brain is repaired after myelin injury and we will discuss how these new findings might change future drug screening campaigns for CNS regenerative drugs.
Collapse
|
23
|
Bond DJ, Silveira LE, Torres IJ, Lam RW, Yatham LN. Weight gain as a risk factor for progressive neurochemical abnormalities in first episode mania patients: a longitudinal magnetic resonance spectroscopy study. Psychol Med 2021; 52:1-9. [PMID: 33706825 DOI: 10.1017/s0033291721000544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND We previously reported that bipolar disorder (BD) patients with clinically significant weight gain (CSWG; ⩾7% of baseline weight) in the 12 months after their first manic episode experienced greater limbic brain volume loss than patients without CSWG. It is unknown whether CSWG is also a risk factor for progressive neurochemical abnormalities. METHODS We investigated whether 12-month CSWG predicted greater 12-month decreases in hippocampal N-acetylaspartate (NAA) and greater increases in glutamate + glutamine (Glx) following a first manic episode. In BD patients (n = 58) and healthy comparator subjects (HS; n = 34), we measured baseline and 12-month hippocampal NAA and Glx using bilateral 3-Tesla single-voxel proton magnetic resonance spectroscopy. We used general linear models for repeated measures to investigate whether CSWG predicted neurochemical changes. RESULTS Thirty-three percent of patients and 18% of HS experienced CSWG. After correcting for multiple comparisons, CSWG in patients predicted a greater decrease in left hippocampal NAA (effect size = -0.52, p = 0.005). CSWG also predicted a greater decrease in left hippocampal NAA in HS with a similar effect size (-0.53). A model including patients and HS found an effect of CSWG on Δleft NAA (p = 0.007), but no diagnosis effect and no diagnosis × CSWG interaction, confirming that CSWG had similar effects in patients and HS. CONCLUSION CSWG is a risk factor for decreasing hippocampal NAA in BD patients and HS. These results suggest that the well-known finding of reduced NAA in BD may result from higher body mass index in patients rather than BD diagnosis.
Collapse
Affiliation(s)
- David J Bond
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - Leonardo E Silveira
- Laboratory of Molecular Psychiatry, Centro de Pesquisas Experimentais, Hospital de Clínicas de Porto Alegre, and INCT for Translational Medicine, Porto Alegre, RS, Brazil
| | - Ivan J Torres
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - Raymond W Lam
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - Lakshmi N Yatham
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Traumatic brain injury metabolome and mitochondrial impact after early stage Ru360 treatment. Mitochondrion 2021; 57:192-204. [PMID: 33484870 DOI: 10.1016/j.mito.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 01/10/2023]
Abstract
Ru360, a mitochondrial Ca2+ uptake inhibitor, was tested in a unilateral fluid percussion TBI model in developing rats (P31). Vehicle and Ru360 treated TBI rats underwent sensorimotor behavioral monitoring between 24 and 72 h, thereafter which 185 brain metabolites were analyzed postmortem using LC/MS. Ru360 treatment after TBI improved sensorimotor behavioral recovery, upregulated glycolytic and pentose phosphate pathways, mitigated oxidative stress and prevented NAD+ depletion across both hemispheres. While neural viability improved ipsilaterally, it reduced contralaterally. Ru360 treatment, overall, had a global impact with most benefit near the strongest injury impact areas, while perturbing mitochondrial oxidative energetics in the milder TBI impact areas.
Collapse
|
25
|
Hogberg HT, de Cássia da Silveira E Sá R, Kleensang A, Bouhifd M, Cemiloglu Ulker O, Smirnova L, Behl M, Maertens A, Zhao L, Hartung T. Organophosphorus flame retardants are developmental neurotoxicants in a rat primary brainsphere in vitro model. Arch Toxicol 2021; 95:207-228. [PMID: 33078273 PMCID: PMC7811506 DOI: 10.1007/s00204-020-02903-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Abstract
Due to regulatory bans and voluntary substitutions, halogenated polybrominated diphenyl ether (PBDE) flame retardants (FR) are increasingly substituted by mainly organophosphorus FR (OPFR). Leveraging a 3D rat primary neural organotypic in vitro model (rat brainsphere), we compare developmental neurotoxic effects of BDE-47-the most abundant PBDE congener-with four OPFR (isopropylated phenyl phosphate-IPP, triphenyl phosphate-TPHP, isodecyl diphenyl phosphate-IDDP, and tricresyl phosphate (also known as trimethyl phenyl phosphate)-TMPP). Employing mass spectroscopy-based metabolomics and transcriptomics, we observe at similar human-relevant non-cytotoxic concentrations (0.1-5 µM) stronger developmental neurotoxic effects by OPFR. This includes toxicity to neurons in the low µM range; all FR decrease the neurotransmitters glutamate and GABA (except BDE-47 and TPHP). Furthermore, n-acetyl aspartate (NAA), considered a neurologic diagnostic molecule, was decreased by all OPFR. At similar concentrations, the FR currently in use decreased plasma membrane dopamine active transporter expression, while BDE-47 did not. Several findings suggest astrogliosis induced by the OPFR, but not BDE-47. At the 5 µM concentrations, the OPFR more than BDE-47 interfered with myelination. An increase of cytokine gene and receptor expressions suggests that exposure to OPFR may induce an inflammatory response. Pathway/category overrepresentation shows disruption in 1) transmission of action potentials, cell-cell signaling, synaptic transmission, receptor signaling, (2) immune response, inflammation, defense response, (3) cell cycle and (4) lipids metabolism and transportation. Taken together, this appears to be a case of regretful substitution with substances not less developmentally neurotoxic in a primary rat 3D model.
Collapse
Affiliation(s)
- Helena T Hogberg
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Rita de Cássia da Silveira E Sá
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, Brazil
| | - Andre Kleensang
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mounir Bouhifd
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ozge Cemiloglu Ulker
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Lena Smirnova
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mamta Behl
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Alexandra Maertens
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Liang Zhao
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Hartung
- Center for Alternatives To Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- CAAT-Europe, University of Konstanz, Konstanz, Germany
| |
Collapse
|
26
|
Kirov II, Sollberger M, Davitz MS, Glodzik L, Soher BJ, Babb JS, Monsch AU, Gass A, Gonen O. Global brain volume and N-acetyl-aspartate decline over seven decades of normal aging. Neurobiol Aging 2020; 98:42-51. [PMID: 33232854 DOI: 10.1016/j.neurobiolaging.2020.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/07/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
We characterize the whole-brain N-acetyl-aspartate (WBNAA) and brain tissue fractions across the adult lifespan and test the hypothesis that, despite age-related atrophy, neuronal integrity (reflected by WBNAA) is preserved in normal aging. Two-hundred-and-seven participants: 133 cognitively intact older adults (73.6 ± 7.4 mean ± standard deviation, range: 60-90 year old) and 84 young (37.9 ± 11, range: 21-59 year old) were scanned with proton magnetic resonance spectroscopy and T1-weighted MRI. Their WBNAA, fractional brain parenchyma, and gray and white matter volumes (fBPV, fGM, and fWM) were compared and modeled as functions of age and sex. Compared with young, older-adults' WBNAA was lower by ~35%, and fBPV, fGM and fWM were lower by ~10%. Linear regressions found 0.5%/year WBNAA and 0.2%/year fBPV and fGM declines, whereas fWM rose to age ~40 years, and declined thereafter. fBPV and fGM were 1.8% and 4% higher in women, with no sex decline rates difference. We conclude that contrary to our hypothesis, atrophy was accompanied by WBNAA decline. Across the entire age range, women's brains showed less atrophy than men's. Formulas to estimate WBNAA and brain tissue fractions in healthy adults are provided to help differentiate normal from abnormal aging.
Collapse
Affiliation(s)
- Ivan I Kirov
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI(2)R), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA
| | - Marc Sollberger
- University Department of Geriatric Medicine FELIX PLATTER, Memory Clinic, Basel, Switzerland; Department of Neurology, University Hospital, Basel, Switzerland
| | - Matthew S Davitz
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI(2)R), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA
| | - Lidia Glodzik
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI(2)R), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA
| | - Brian J Soher
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - James S Babb
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI(2)R), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA
| | - Andreas U Monsch
- University Department of Geriatric Medicine FELIX PLATTER, Memory Clinic, Basel, Switzerland
| | - Achim Gass
- Department of Neurology/Neuroimaging, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Oded Gonen
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI(2)R), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Barnett BR, Fathi F, Falco Cobra P, Yi SY, Anderson JM, Eghbalnia HR, Markley JL, Yu JPJ. Metabolic Changes in Synaptosomes in an Animal Model of Schizophrenia Revealed by 1H and 1H, 13C NMR Spectroscopy. Metabolites 2020; 10:E79. [PMID: 32102223 PMCID: PMC7074231 DOI: 10.3390/metabo10020079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022] Open
Abstract
Synaptosomes are isolated nerve terminals that contain synaptic components, including neurotransmitters, metabolites, adhesion/fusion proteins, and nerve terminal receptors. The essential role of synaptosomes in neurotransmission has stimulated keen interest in understanding both their proteomic and metabolic composition. Mass spectrometric (MS) quantification of synaptosomes has illuminated their proteomic composition, but the determination of the metabolic composition by MS has been met with limited success. In this study, we report a proof-of-concept application of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy for analyzing the metabolic composition of synaptosomes. We utilize this approach to compare the metabolic composition synaptosomes from a wild-type rat with that from a newly generated genetic rat model (Disc1 svΔ2), which qualitatively recapitulates clinically observed early DISC1 truncations associated with schizophrenia. This study demonstrates the feasibility of using NMR spectroscopy to identify and quantify metabolites within synaptosomal fractions.
Collapse
Affiliation(s)
- Brian R. Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin–Madison, Madison, WI 53705, USA; (B.R.B.); (S.Y.Y.)
| | - Fariba Fathi
- Biochemistry Department, University of Wisconsin–Madison, Madison, WI 53706, USA; (F.F.); (P.F.C.); (H.R.E.); (J.L.M.)
| | - Paulo Falco Cobra
- Biochemistry Department, University of Wisconsin–Madison, Madison, WI 53706, USA; (F.F.); (P.F.C.); (H.R.E.); (J.L.M.)
| | - Sue Y. Yi
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin–Madison, Madison, WI 53705, USA; (B.R.B.); (S.Y.Y.)
| | - Jacqueline M. Anderson
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Hamid R. Eghbalnia
- Biochemistry Department, University of Wisconsin–Madison, Madison, WI 53706, USA; (F.F.); (P.F.C.); (H.R.E.); (J.L.M.)
| | - John L. Markley
- Biochemistry Department, University of Wisconsin–Madison, Madison, WI 53706, USA; (F.F.); (P.F.C.); (H.R.E.); (J.L.M.)
| | - John-Paul J. Yu
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin–Madison, Madison, WI 53705, USA; (B.R.B.); (S.Y.Y.)
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
28
|
MacMillan EL, Schubert JJ, Vavasour IM, Tam R, Rauscher A, Taylor C, White R, Garren H, Clayton D, Levesque V, Li DK, Kolind SH, Traboulsee AL. Magnetic resonance spectroscopy evidence for declining gliosis in MS patients treated with ocrelizumab versus interferon beta-1a. Mult Scler J Exp Transl Clin 2019; 5:2055217319879952. [PMID: 31662881 PMCID: PMC6796216 DOI: 10.1177/2055217319879952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023] Open
Abstract
Background Magnetic resonance spectroscopy quantitatively monitors biomarkers of
neuron-myelin coupling (N-acetylaspartate (NAA)), and inflammation (total
creatine (tCr), total choline (tCho), myo-inositol (mI)) in the brain. Objective This study aims to investigate how ocrelizumab and interferon beta-1a
differentially affects imaging biomarkers of neuronal-myelin coupling and
inflammation in patients with relapsing multiple sclerosis (MS). Methods Forty patients with relapsing MS randomized to either treatment were scanned
at 3T at baseline and weeks 24, 48, and 96 follow-up. Twenty-four healthy
controls were scanned at weeks 0, 48, and 96. NAA, tCr, tCho, mI, and
NAA/tCr were measured in a single large supra-ventricular voxel. Results There was a time × treatment interaction in NAA/tCr
(p = 0.04), primarily driven by opposing tCr trends between
treatment groups after 48 weeks of treatment. Patients treated with
ocrelizumab showed a possible decline in mI after week 48 week, and stable
tCr and tCho levels. Conversely, the interferon beta-1a treated group showed
possible increases in mI, tCr, and tCho over 96 weeks. Conclusions Results from this exploratory study suggest that over 2 years, ocrelizumab
reduces gliosis compared with interferon beta-1a, demonstrated by declining
ml, and stable tCr and tCho. Ocrelizumab may improve the physiologic milieu
by decreasing neurotoxic factors that are generated by inflammatory
processes.
Collapse
Affiliation(s)
| | | | | | - Roger Tam
- Department of Medicine, University of British Columbia
| | | | | | - Rick White
- Statistics, University of British Columbia
| | | | | | | | - David Kb Li
- Department of Radiology, University of British Columbia
| | | | | |
Collapse
|
29
|
Deficient Inhibitory Endogenous Pain Modulation Correlates With Periaqueductal Gray Matter Metabolites During Chronic Whiplash Injury. Clin J Pain 2019; 35:668-677. [DOI: 10.1097/ajp.0000000000000722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Osier ND, Ziari M, Puccio AM, Poloyac S, Okonkwo DO, Minnigh MB, Beers SR, Conley YP. Elevated cerebrospinal fluid concentrations of N-acetylaspartate correlate with poor outcome in a pilot study of severe brain trauma. Brain Inj 2019; 33:1364-1371. [PMID: 31305157 PMCID: PMC6675639 DOI: 10.1080/02699052.2019.1641743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 07/06/2019] [Indexed: 10/26/2022]
Abstract
Primary objective: Examine the correlation between acute cerebrospinal fluid (CSF) levels of N-acetylaspartate (NAA) and injury severity upon admission in addition to long-term functional outcomes of severe traumatic brain injury (TBI). Design and rationale: This exploratory study assessed CSF NAA levels in the first four days after severe TBI, and correlated these findings with Glasgow Coma Scale (GCS) score and long-term outcomes at 3, 6, 12, and 24 months post-injury. Methods: CSF was collected after passive drainage via an indwelling ventriculostomy placed as standard of care in a total of 28 people with severe TBI. NAA levels were assayed using triple quadrupole mass spectrometry. Functional outcomes were assessed using the Glasgow Outcomes Scale (GOS) and Disability Rating Scale (DRS). Results: In this pilot study, better functional outcomes, assessed using the GOS and DRS, were found in individuals with lower acute CSF NAA levels after TBI. Key findings were that average NAA level was associated with GCS (p = .02), and GOS at 3 (p = .01), 6 (p = .04), 12 (p = .007), and 24 months (p = .002). Implications: The results of this study add to a growing body of neuroimaging evidence that raw NAA values are reduced and variable after TBI, potentially impacting patient outcomes, warranting additional exploration into this finding. This line of inquiry could lead to improved diagnosis and prognosis in patients with TBI.
Collapse
Affiliation(s)
- Nicole D Osier
- a School of Nursing, University of Texas at Austin , Austin , Texas , USA
- b Department of Neurology, University of Texas at Austin , Austin , Texas , USA
| | - Melody Ziari
- c College of Natural Sciences, University of Texas at Austin , Austin , Texas , USA
| | - Ava M Puccio
- d Department of Neurological Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Samuel Poloyac
- e School of Pharmacy, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - David O Okonkwo
- d Department of Neurological Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Margaret B Minnigh
- e School of Pharmacy, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Sue R Beers
- f Department of Psychiatry, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Yvette P Conley
- g School of Nursing, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
- h Department of Human Genetics, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| |
Collapse
|
31
|
Sporn L, MacMillan EL, Ge R, Greenway K, Vila-Rodriguez F, Laule C. Longer Repetition Time Proton MR Spectroscopy Shows Increasing Hippocampal and Parahippocampal Metabolite Concentrations with Aging. J Neuroimaging 2019; 29:592-597. [PMID: 31273871 DOI: 10.1111/jon.12648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous magnetic resonance spectroscopy (MRS) studies have concluded that hippocampal and parahippocampal metabolite concentrations remain stable during healthy adult aging. However, these studies used short repetition times (TR ≤ 2 seconds), which lead to incomplete longitudinal magnetization recovery, and thus, heavily T1 -weighted measurements. It is important to accurately characterize brain metabolites changes with age to enable appropriate interpretations of MRS findings in the context of neurodegenerative diseases. Our goal was to assess hippocampal brain metabolite concentrations in a large cohort of diversely aged healthy volunteers using a longer TR of 4 seconds. METHODS Left hippocampal MR spectra were collected from 38 healthy volunteers at 3T. Absolute metabolite concentrations were determined for total N-acetyl-aspartate (tNAA), total creatine (tCr), total choline (tCho), glutamate and glutamine (Glx), and myoinositol (mI). Individual partial correlations between each metabolite with age were assessed using demographic information and voxel compartmentation as confounders. RESULTS Hippocampal tNAA, tCr, tCho, and mI all increased with age (NAA: R2 = .17, P = .041; tCr: R2 = .45, P = .0002; tCho: R2 = .37, P = .001; mI: R2 = .44, P = .0003). There were no relationships between age and signal to noise ratio, linewidth, or scan date, indicating the correlations were not confounded by spectral quality. Furthermore, we did not observe a trend with age in the voxel tissue compartmentations. CONCLUSIONS We observed increases in hippocampal/parahippocampal metabolite concentrations with age, a finding that is in contrast to previous literature. Our findings illustrate the importance of using a sufficiently long TR in MRS to avoid T1 -relaxation effects influencing the measurement of absolute metabolite concentrations.
Collapse
Affiliation(s)
- Leo Sporn
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin L MacMillan
- School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Philips, Markham, Ontario, Canada
| | - Ruiyang Ge
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyle Greenway
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cornelia Laule
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.,Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Neurometabolite changes in patients with complex regional pain syndrome using magnetic resonance spectroscopy: a pilot study. Neuroreport 2019; 30:108-112. [PMID: 30507760 DOI: 10.1097/wnr.0000000000001168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate distinct neurometabolites in the right and left thalamus and insula of patients with complex regional pain syndrome (CRPS) compared with healthy controls using proton magnetic resonance spectroscopy. Levels of N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), myo-inositol (ml), glutamine (Gln), glycerophosphocholine (GPC), glutathione (GSH), and alanine (Ala) relative to total creatine (tCr) levels, including creatine and phosphocreatine, were determined in the right and left thalamus and insula in 12 patients with CRPS compared with 11 healthy controls using magnetic resonance spectroscopy. Levels of NAAG/tCr and Ala/tCr were higher in patients with CRPS than in controls in the left thalamus. NAAG/tCr, ml/tCr, and Gln/tCr levels were higher but NAA/tCr levels were lower in the right insula of patients with CRPS compared with controls. There were negative correlations between GSH/tCr and pain score (McGill Pain Questionnaire) in the left thalamus. These findings are paramount to understand and determine all aspects of the complex pathophysiological mechanisms that underlie CRPS, including involvement of the central and parasympathetic nervous systems as well as oxidative stress and antioxidants. Thus, the distinct metabolites presented herein may be essential to understand a strong diagnostic and prognostic potential for CRPS and to develop effective medical treatments.
Collapse
|
33
|
Rocca MA, Preziosa P, Filippi M. Application of advanced MRI techniques to monitor pharmacologic and rehabilitative treatment in multiple sclerosis: current status and future perspectives. Expert Rev Neurother 2018; 19:835-866. [PMID: 30500303 DOI: 10.1080/14737175.2019.1555038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Advances in magnetic resonance imaging (MRI) technology and analyses are improving our understanding of the pathophysiology of multiple sclerosis (MS). Due to their ability to grade the presence of irreversible tissue loss, microstructural tissue abnormalities, metabolic changes and functional plasticity, the application of these techniques is also expanding our knowledge on the efficacy and mechanisms of action of different pharmacological and rehabilitative treatments. Areas covered: This review discusses recent findings derived from the application of advanced MRI techniques to evaluate the structural and functional substrates underlying the effects of pharmacologic and rehabilitative treatments in patients with MS. Current applications as outcome in clinical trials and observational studies, their interpretation and possible pitfalls in their use are discussed. Finally, how these techniques could evolve in the future to improve monitoring of disease progression and treatment response is examined. Expert commentary: The number of treatments currently available for MS is increasing. The application of advanced MRI techniques is providing reliable and specific measures to better understand the targets of different treatments, including neuroprotection, tissue repair, and brain plasticity. This is a fundamental progress to move toward personalized medicine and individual treatment selection.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|
34
|
Palombo M, Shemesh N, Ronen I, Valette J. Insights into brain microstructure from in vivo DW-MRS. Neuroimage 2018; 182:97-116. [DOI: 10.1016/j.neuroimage.2017.11.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/09/2017] [Accepted: 11/15/2017] [Indexed: 12/27/2022] Open
|
35
|
Laule C, Moore GW. Myelin water imaging to detect demyelination and remyelination and its validation in pathology. Brain Pathol 2018; 28:750-764. [PMID: 30375119 PMCID: PMC8028667 DOI: 10.1111/bpa.12645] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Damage to myelin is a key feature of multiple sclerosis (MS) pathology. Magnetic resonance imaging (MRI) has revolutionized our ability to detect and monitor MS pathology in vivo. Proton density, T1 and T2 can provide qualitative contrast weightings that yield superb in vivo visualization of central nervous system tissue and have proved invaluable as diagnostic and patient management tools in MS. However, standard clinical MR methods are not specific to the types of tissue damage they visualize, and they cannot detect subtle abnormalities in tissue that appears otherwise normal on conventional MRIs. Myelin water imaging is an MR method that provides in vivo measurement of myelin. Histological validation work in both human brain and spinal cord tissue demonstrates a strong correlation between myelin water and staining for myelin, validating myelin water as a marker for myelin. Myelin water varies throughout the brain and spinal cord in healthy controls, and shows good intra- and inter-site reproducibility. MS plaques show variably decreased myelin water fraction, with older lesions demonstrating the greatest myelin loss. Longitudinal study of myelin water can provide insights into the dynamics of demyelination and remyelination in plaques. Normal appearing brain and spinal cord tissues show reduced myelin water, an abnormality which becomes progressively more evident over a timescale of years. Diffusely abnormal white matter, which is evident in 20%-25% of MS patients, also shows reduced myelin water both in vivo and postmortem, and appears to originate from a primary lipid abnormality with relative preservation of myelin proteins. Active research is ongoing in the quest to refine our ability to image myelin and its perturbations in MS and other disorders of the myelin sheath.
Collapse
Affiliation(s)
- Cornelia Laule
- RadiologyUniversity of British ColumbiaVancouverBCCanada
- Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Physics & AstronomyUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair Discoveries (ICORD)University of British ColumbiaVancouverBCCanada
| | - G.R. Wayne Moore
- Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair Discoveries (ICORD)University of British ColumbiaVancouverBCCanada
- Medicine (Neurology)University of British ColumbiaVancouverBCCanada
| |
Collapse
|
36
|
Huun MU, Garberg H, Løberg EM, Escobar J, Martinez-Orgado J, Saugstad OD, Solberg R. DHA and therapeutic hypothermia in a short-term follow-up piglet model of hypoxia-ischemia: Effects on H+MRS biomarkers. PLoS One 2018; 13:e0201895. [PMID: 30086156 PMCID: PMC6080779 DOI: 10.1371/journal.pone.0201895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Background Therapeutic hypothermia has become the standard of care for newborns with hypoxic-ischemic encephalopathy in high and middle income countries. Docosahexaenoic acid (DHA) has neuroprotective properties of reducing excitotoxicity, neuroinflammation and apoptosis in rodent models. We aim to study whether post hypoxic administration of i.v. DHA will reduce H+MRS biomarkers and gene expression of inflammation and apoptosis both with and without hypothermia in a large animal model. Methods Fifty-five piglets were randomized to severe global hypoxia (N = 48) or not (Sham, N = 7). Hypoxic piglets were further randomized by factorial design: Vehicle (VEH), DHA, VEH + Hypothermia (HT), or DHA + HT. 5 mg/kg DHA was given intravenously 210 min after end of hypoxia. Two-way ANOVA analyses were performed with DHA and hypothermia as main effects. Results Cortical lactate/N-acetylaspartate (Lac/NAA) was significantly reduced in DHA + HT compared to HT. DHA had significant main effects on increasing N-acetylaspartate and glutathione in hippocampus. Therapeutic hypothermia significantly reduced the Lac/NAA ratio and protein expression of IL-1β and TNFα in hippocampus and reduced Troponin T in serum. Neuropathology showed significant differences between sham and hypoxia, but no differences between intervention groups. Conclusion DHA and therapeutic hypothermia significantly improve specific H+MRS biomarkers in this short-term follow up model of hypoxia-ischemia. Longer recovery periods are needed to evaluate whether DHA can offer translational neuroprotection.
Collapse
Affiliation(s)
- Marianne Ullestad Huun
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- University of Oslo, Oslo, Norway
- * E-mail:
| | - Håvard Garberg
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Else Marit Løberg
- Department of Pathology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Javier Escobar
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | | | - Ola Didrik Saugstad
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Rønnaug Solberg
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| |
Collapse
|
37
|
Babikian T, Alger JR, Ellis-Blied MU, Giza CC, Dennis E, Olsen A, Mink R, Babbitt C, Johnson J, Thompson PM, Asarnow RF. Whole Brain Magnetic Resonance Spectroscopic Determinants of Functional Outcomes in Pediatric Moderate/Severe Traumatic Brain Injury. J Neurotrauma 2018; 35:1637-1645. [PMID: 29649959 DOI: 10.1089/neu.2017.5366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diffuse axonal injury contributes to the long-term functional morbidity observed after pediatric moderate/severe traumatic brain injury (msTBI). Whole-brain proton magnetic resonance echo-planar spectroscopic imaging was used to measure the neurometabolite levels in the brain to delineate the course of disruption/repair during the first year post-msTBI. The association between metabolite biomarkers and functional measures (cognitive functioning and corpus callosum [CC] function assessed by interhemispheric transfer time [IHTT] using an event related potential paradigm) was also explored. Pediatric patients with msTBI underwent assessments at two times (post-acutely at a mean of three months post-injury, n = 31, and chronically at a mean of 16 months post-injury, n = 24). Healthy controls also underwent two evaluations, approximately 12 months apart. Post-acutely, in patients with msTBI, there were elevations in choline (Cho; marker for inflammation and/or altered membrane metabolism) in all four brain lobes and the CC and decreases in N-acetylaspartate (NAA; marker for neuronal and axonal integrity) in the CC compared with controls, all of which normalized by the chronic time point. Subgroups of TBI showed variable patterns chronically. Patients with slow IHTT had lower lobar Cho chronically than those with normal IHTT; they also did not show normalization in CC NAA whereas those with normal IHTT showed significantly higher levels of CC NAA relative to controls. In the normal IHTT group only, chronic CC Cho and NAA together explained 70% of the variance in long-term cognitive functioning. MR based whole brain metabolic evaluations show different patterns of neurochemistry after msTBI in two subgroups with different outcomes. There is a dynamic relationship between prolonged inflammatory responses to brain damage, reparative processes/remyelination, and subsequent neurobehavioral outcomes. Multimodal studies allow us to test hypotheses about degenerative and reparative processes in patient groups that have divergent functional outcome, with the ultimate goal of developing targeted therapeutic agents.
Collapse
Affiliation(s)
- Talin Babikian
- 1 Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior , Mattel Children's Hospital at UCLA, and the UCLA Steve Tisch BrainSPORT Program, Los Angeles, California
| | | | - Monica U Ellis-Blied
- 3 Health Promotion and Disease Prevention Program, VA Loma Linda Healthcare System , Redlands, California
| | - Christopher C Giza
- 4 UCLA Brain Injury Research Center , Department of Neurosurgery, and Division of Pediatric Neurology, Mattel Children's Hospital, UCLA Steve Tisch BrainSPORT Program, Los Angeles, California
| | - Emily Dennis
- 5 Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California , Marina del Rey, California
| | - Alexander Olsen
- 6 Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway; Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital , Trondheim, Norway
| | - Richard Mink
- 7 Pediatric Critical Care Medicine, Harbor-UCLA Medical Center; Los Angeles BioMedical Research Institute , Department of Pediatrics, Torrance, California
| | - Christopher Babbitt
- 8 Miller Children's and Women's Hospital of Long Beach , Long Beach, California
| | - Jeff Johnson
- 9 LAC+USC Medical Center , Department of Pediatrics, Los Angeles, California
| | - Paul M Thompson
- 10 Imaging Genetics Center, Mary and Mark Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California , Marina del Rey, California; Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, California
| | - Robert F Asarnow
- 11 Departments of Psychology and Psychiatry and Brain Research Institute , David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
38
|
Abstract
Since its technical development in the early 1980s, magnetic resonance imaging (MRI) has quickly been adopted as an essential tool in supporting the diagnosis, longitudinal monitoring, evaluation of therapeutic response, and scientific investigations in multiple sclerosis (MS). The clinical usage of MRI has increased in parallel with technical innovations in the technique itself; the widespread adoption of clinically routine MRI at 1.5T has allowed sensitive qualitative and quantitative assessments of macroscopic central nervous system (CNS) inflammatory demyelinating lesions and tissue atrophy. However, conventional MRI lesion measures lack specificity for the underlying MS pathology and only weakly correlate with clinical status. Higher field strength units and newer, advanced MRI techniques offer increased sensitivity and specificity in the detection of disease activity and disease severity. This review summarizes the current status and future prospects regarding the role of MRI in the characterization of MS-related brain and spinal cord involvement.
Collapse
Affiliation(s)
- Christopher C Hemond
- Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rohit Bakshi
- Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
39
|
Döring A, Adalid V, Boesch C, Kreis R. Diffusion-weighted magnetic resonance spectroscopy boosted by simultaneously acquired water reference signals. Magn Reson Med 2018; 80:2326-2338. [DOI: 10.1002/mrm.27222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 11/08/2022]
Affiliation(s)
- André Döring
- Departments of Radiology and Biomedical Research; University of Bern; Bern Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Bern Switzerland
| | - Victor Adalid
- Departments of Radiology and Biomedical Research; University of Bern; Bern Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Bern Switzerland
| | - Chris Boesch
- Departments of Radiology and Biomedical Research; University of Bern; Bern Switzerland
| | - Roland Kreis
- Departments of Radiology and Biomedical Research; University of Bern; Bern Switzerland
| |
Collapse
|
40
|
Dennis EL, Babikian T, Giza CC, Thompson PM, Asarnow RF. Neuroimaging of the Injured Pediatric Brain: Methods and New Lessons. Neuroscientist 2018; 24:652-670. [PMID: 29488436 DOI: 10.1177/1073858418759489] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traumatic brain injury (TBI) is a significant public health problem in the United States, especially for children and adolescents. Current epidemiological data estimate over 600,000 patients younger than 20 years are treated for TBI in emergency rooms annually. While many patients experience a full recovery, for others there can be long-lasting cognitive, neurological, psychological, and behavioral disruptions. TBI in youth can disrupt ongoing brain development and create added family stress during a formative period. The neuroimaging methods used to assess brain injury improve each year, providing researchers a more detailed characterization of the injury and recovery process. In this review, we cover current imaging methods used to quantify brain disruption post-injury, including structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, resting state fMRI, and magnetic resonance spectroscopy (MRS), with brief coverage of other methods, including electroencephalography (EEG), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). We include studies focusing on pediatric moderate-severe TBI from 2 months post-injury and beyond. While the morbidity of pediatric TBI is considerable, continuing advances in imaging methods have the potential to identify new treatment targets that can lead to significant improvements in outcome.
Collapse
Affiliation(s)
- Emily L Dennis
- 1 Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University Southern California, Marina del Rey, CA, USA
| | - Talin Babikian
- 2 Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.,3 UCLA Brain Injury Research Center, Department of Neurosurgery and Division of Pediatric Neurology, Mattel Children's Hospital, Los Angeles, CA, USA.,4 UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Christopher C Giza
- 3 UCLA Brain Injury Research Center, Department of Neurosurgery and Division of Pediatric Neurology, Mattel Children's Hospital, Los Angeles, CA, USA.,4 UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA.,5 Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Paul M Thompson
- 1 Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University Southern California, Marina del Rey, CA, USA.,6 Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Robert F Asarnow
- 2 Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.,4 UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA.,5 Brain Research Institute, University of California, Los Angeles, CA, USA.,7 Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Laule C, Vavasour IM, Shahinfard E, Mädler B, Zhang J, Li DKB, MacKay AL, Sirrs SM. Hematopoietic Stem Cell Transplantation in Late‐Onset Krabbe Disease: No Evidence of Worsening Demyelination and Axonal Loss 4 Years Post‐allograft. J Neuroimaging 2018; 28:252-255. [DOI: 10.1111/jon.12502] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/16/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Cornelia Laule
- Department of RadiologyUniversity of British Columbia Vancouver Canada
- Department of Pathology & Laboratory MedicineUniversity of British Columbia Vancouver Canada
- International Collaboration on Repair Discoveries (ICORD)University of British Columbia Vancouver Canada
- Department of Physics & AstronomyUniversity of British Columbia Vancouver Canada
| | - Irene M. Vavasour
- Department of RadiologyUniversity of British Columbia Vancouver Canada
| | - Elham Shahinfard
- Department of RadiologyUniversity of British Columbia Vancouver Canada
| | | | - Jing Zhang
- Department of RadiologyUniversity of British Columbia Vancouver Canada
| | - David K. B. Li
- Department of RadiologyUniversity of British Columbia Vancouver Canada
- Department of Medicine (Neurology)University of British Columbia Vancouver Canada
| | - Alex L. MacKay
- Department of RadiologyUniversity of British Columbia Vancouver Canada
- Department of Physics & AstronomyUniversity of British Columbia Vancouver Canada
| | - Sandra M. Sirrs
- Department of Medicine (Endocrinology)University of British Columbia Vancouver Canada
| |
Collapse
|
42
|
Zyśk M, Bielarczyk H, Gul-Hinc S, Dyś A, Gapys B, Ronowska A, Sakowicz-Burkiewicz M, Szutowicz A. Phenotype-Dependent Interactions between N-acetyl-L-Aspartate and Acetyl-CoA in Septal SN56 Cholinergic Cells Exposed to an Excess of Zinc. J Alzheimers Dis 2018; 56:1145-1158. [PMID: 28106547 DOI: 10.3233/jad-160693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyruvate dehydrogenase reaction utilizing glucose-derived pyruvate is an almost exclusive source of acetyl-CoA in different cell mitochondrial compartments of the brain. In neuronal mitochondria, the largest fraction of acetyl-CoA is utilized for energy production and the much smaller one for N-acetyl-L-aspartate (NAA) synthesis. Cholinergic neurons, unlike others, require additional amounts of acetyl-CoA for acetylcholine synthesis. Therefore, several neurotoxic signals, which inhibit pyruvate dehydrogenase, generate deeper shortages of acetyl-CoA and greater mortality of cholinergic neurons than noncholinergic ones. NAA is considered to be a marker of neuronal energy status in neuropathic brains. However, there is no data on putative differential fractional distribution of the acetyl-CoA pool between energy producing and NAA or acetylcholine synthesizing pathways in noncholinergic and cholinergic neurons, respectively. Therefore, the aim of this study was to investigate whether zinc-excess, a common excitotoxic signal, may evoke differential effects on the NAA metabolism in neuronal cells with low and high expression of the cholinergic phenotype. Differentiated SN56 neuronal cells, displaying a high activity of choline acetyltransferase and rates of acetylcholine synthesis, contained lower levels of acetyl-CoA and NAA, being more susceptible to ZnCl2 exposition that the nondifferentiated SN56 or differentiated dopaminergic SHSY5Y neuronal and astroglial C6 cells. Differentiated SN56 accumulated greater amounts of Zn2 + from extracellular space than the other ones, and displayed a stronger suppression of pyruvate dehydrogenase complex activity and acetyl-CoA, NAA, ATP, acetylcholine levels, and loss of viability. These data indicate that the acetyl-CoA synthesizing system in neurons constitutes functional unity with energy generating and NAA or acetylcholine pathways of its utilization, which are uniformly affected by neurotoxic conditions.
Collapse
Affiliation(s)
- Marlena Zyśk
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hanna Bielarczyk
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Gul-Hinc
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Beata Gapys
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
43
|
Ramani B, Panwar B, Moore LR, Wang B, Huang R, Guan Y, Paulson HL. Comparison of spinocerebellar ataxia type 3 mouse models identifies early gain-of-function, cell-autonomous transcriptional changes in oligodendrocytes. Hum Mol Genet 2018; 26:3362-3374. [PMID: 28854700 DOI: 10.1093/hmg/ddx224] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/31/2017] [Indexed: 01/09/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by a polyglutamine-encoding CAG repeat expansion in the ATXN3 gene. This expansion leads to misfolding and aggregation of mutant ataxin-3 (ATXN3) and degeneration of select brain regions. A key unanswered question in SCA3 and other polyglutamine diseases is the extent to which neurodegeneration is mediated through gain-of-function versus loss-of-function. To address this question in SCA3, we performed transcriptional profiling on the brainstem, a highly vulnerable brain region in SCA3, in a series of mouse models with varying degrees of ATXN3 expression and aggregation. We include two SCA3 knock-in mouse models: our previously published model that erroneously harbors a tandem duplicate of the CAG repeat-containing exon, and a corrected model, introduced here. Both models exhibit dose-dependent neuronal accumulation and aggregation of mutant ATXN3, but do not exhibit a behavioral phenotype. We identified a molecular signature that correlates with ATXN3 neuronal aggregation yet is primarily linked to oligodendrocytes, highlighting early white matter dysfunction in SCA3. Two robustly elevated oligodendrocyte transcripts, Acy3 and Tnfrsf13c, were confirmed as elevated at the protein level in SCA3 human disease brainstem. To determine if mutant ATXN3 acts on oligodendrocytes cell-autonomously, we manipulated the repeat expansion in the variant SCA3 knock-in mouse by cell-type specific Cre/LoxP recombination. Changes in oligodendrocyte transcripts are driven cell-autonomously and occur independent of neuronal ATXN3 aggregation. Our findings support a primary toxic gain of function mechanism and highlight a previously unrecognized role for oligodendrocyte dysfunction in SCA3 disease pathogenesis.
Collapse
Affiliation(s)
| | - Bharat Panwar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
44
|
Jelescu IO, Budde MD. Design and validation of diffusion MRI models of white matter. FRONTIERS IN PHYSICS 2017; 28:61. [PMID: 29755979 PMCID: PMC5947881 DOI: 10.3389/fphy.2017.00061] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the "biological accuracy" of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus.
Collapse
Affiliation(s)
- Ileana O Jelescu
- Centre d'Imagerie Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew D Budde
- Zablocki VA Medical Center, Dept. of Neurosurgery, Medical College Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
45
|
Abstract
Myelin water imaging (MWI) provides mild traumatic brain injury (mTBI) researchers with a specific myelin biomarker and helps to further elucidate microstructural and microarchitectural changes of white matter after mTBI. Improvement of scanner hardware and software with the implementation of MWI across scanner platforms will likely result in increased research regarding the role of myelin in traumatic brain injury (TBI). Future research should include detailed investigation of myelin between 2 weeks and 2 months after injury, the use of MWI in moderate and severe TBI, and investigation of the role of myelin in chronic TBI.
Collapse
Affiliation(s)
- Alexander Mark Weber
- Department of Pediatrics, Division of Neurology, Faculty of Medicine, University of British Columbia, M10 - Purdy Pavilion, 2221 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada.
| | - Carlos Torres
- Department of Radiology, University of Ottawa, 1053 Carling Avenue, Ottawa, Ontario K1Y 4E9, Canada; Department of Medical Imaging, The Ottawa Hospital, 1053 Carling Avenue, Ottawa, Ontario K1Y 4E9, Canada
| | - Alexander Rauscher
- Department of Pediatrics, Division of Neurology, Faculty of Medicine, University of British Columbia, M10 - Purdy Pavilion, 2221 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
46
|
Cruz T, Gleizes M, Balayssac S, Mornet E, Marsal G, Millán JL, Malet-Martino M, Nowak LG, Gilard V, Fonta C. Identification of altered brain metabolites associated with TNAP activity in a mouse model of hypophosphatasia using untargeted NMR-based metabolomics analysis. J Neurochem 2017; 140:919-940. [PMID: 28072448 DOI: 10.1111/jnc.13950] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/18/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
Tissue non-specific alkaline phosphatase (TNAP) is a key player of bone mineralization and TNAP gene (ALPL) mutations in human are responsible for hypophosphatasia (HPP), a rare heritable disease affecting the mineralization of bones and teeth. Moreover, TNAP is also expressed by brain cells and the severe forms of HPP are associated with neurological disorders, including epilepsy and brain morphological anomalies. However, TNAP's role in the nervous system remains poorly understood. To investigate its neuronal functions, we aimed to identify without any a priori the metabolites regulated by TNAP in the nervous tissue. For this purpose we used 1 H- and 31 P NMR to analyze the brain metabolome of Alpl (Akp2) mice null for TNAP function, a well-described model of infantile HPP. Among 39 metabolites identified in brain extracts of 1-week-old animals, eight displayed significantly different concentration in Akp2-/- compared to Akp2+/+ and Akp2+/- mice: cystathionine, adenosine, GABA, methionine, histidine, 3-methylhistidine, N-acetylaspartate (NAA), and N-acetyl-aspartyl-glutamate, with cystathionine and adenosine levels displaying the strongest alteration. These metabolites identify several biochemical processes that directly or indirectly involve TNAP function, in particular through the regulation of ecto-nucleotide levels and of pyridoxal phosphate-dependent enzymes. Some of these metabolites are involved in neurotransmission (GABA, adenosine), in myelin synthesis (NAA, NAAG), and in the methionine cycle and transsulfuration pathway (cystathionine, methionine). Their disturbances may contribute to the neurodevelopmental and neurological phenotype of HPP.
Collapse
Affiliation(s)
- Thomas Cruz
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Marie Gleizes
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Stéphane Balayssac
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Etienne Mornet
- Unité de Génétique Constitutionnelle Prénatale et Postnatale, Service de Biologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Grégory Marsal
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Myriam Malet-Martino
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Lionel G Nowak
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Véronique Gilard
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Caroline Fonta
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| |
Collapse
|
47
|
Dubuisson N, Puentes F, Giovannoni G, Gnanapavan S. Science is 1% inspiration and 99% biomarkers. Mult Scler 2017; 23:1442-1452. [PMID: 28537780 DOI: 10.1177/1352458517709362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegeneration plays a key role in multiple sclerosis (MS) contributing to long-term disability in patients. The prognosis is, however, unpredictable coloured by complex disease mechanisms which can only be clearly appreciated using biomarkers specific to pathobiology of the underlying process. Here, we describe six promising neurodegenerative biomarkers in MS (neurofilament proteins, neurofilament antibodies, tau, N-acetylaspartate, chitinase and chitinase-like proteins and osteopontin), critically evaluating the evidence using a modified Bradford Hill criteria.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Fabiola Puentes
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Sharmilee Gnanapavan
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
48
|
Diagnosis and body mass index effects on hippocampal volumes and neurochemistry in bipolar disorder. Transl Psychiatry 2017; 7:e1071. [PMID: 28350397 PMCID: PMC5404613 DOI: 10.1038/tp.2017.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/14/2016] [Accepted: 01/15/2017] [Indexed: 12/14/2022] Open
Abstract
We previously reported that higher body mass index (BMI) was associated with greater hippocampal glutamate+glutamine in people with bipolar disorder (BD), but not in non-BD healthy comparator subjects (HSs). In the current report, we extend these findings by examining the impact of BD diagnosis and BMI on hippocampal volumes and the concentrations of several additional neurochemicals in 57 early-stage BD patients and 31 HSs. Using 3-T magnetic resonance imaging and magnetic resonance spectroscopy, we measured bilateral hippocampal volumes and the hippocampal concentrations of four neurochemicals relevant to BD: N-acetylaspartate+N-acteylaspartylglutamate (tNAA), creatine+phosphocreatine (Cre), myoinositol (Ins) and glycerophosphocholine+phosphatidylcholine (Cho). We used multivariate factorial analysis of covariance to investigate the impact of diagnosis (patient vs HS) and BMI category (normal weight vs overweight/obese) on these variables. We found a main effect of diagnosis on hippocampal volumes, with patients having smaller hippocampi than HSs. There was no association between BMI and hippocampal volumes. We found diagnosis and BMI effects on hippocampal neurochemistry, with patients having lower Cre, Ins and Cho, and overweight/obese subjects having higher levels of these chemicals. In patient-only models that controlled for clinical and treatment variables, we detected an additional association between higher BMI and lower tNAA that was absent in HSs. To our knowledge, this was the first study to investigate the relative contributions of BD diagnosis and BMI to hippocampal volumes, and only the second to investigate their contributions to hippocampal chemistry. It provides further evidence that diagnosis and elevated BMI both impact limbic brain areas relevant to BD.
Collapse
|
49
|
Cao P, Wu EX. In vivo diffusion MRS investigation of non-water molecules in biological tissues. NMR IN BIOMEDICINE 2017; 30:e3481. [PMID: 26797798 DOI: 10.1002/nbm.3481] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Diffusion MRS of non-water molecules offers great potential in directly revealing various tissue microstructures and physiology at both cellular and subcellular levels. In brain, 1 H diffusion MRS has been demonstrated as a new tool for probing normal tissue microstructures and their pathological changes. In skeletal muscle, 1 H diffusion MRS could characterize slow and restricted intramyocellular lipid diffusion, providing a sensitive marker for metabolic alterations, while 31 P diffusion MRS can measure ATP and PCr diffusion, which may reflect the capacity of cellular energy transport, complementing the information from frequently used 31 P MRS in muscle. In intervertebral disk, 1 H diffusion MRS can directly monitor extracellular matrix integrity by quantifying the mobility of macromolecules such as proteoglycans and collagens. In tumor tissue, 13 C diffusion MRS could probe intracellular glycolytic metabolism, while 1 H diffusion MRS may separate the spectrally overlapped lactate and lipid resonances. In this review, recent diffusion MRS studies of these biologically relevant non-water molecules under normal and diseased conditions will be presented. Technical considerations for diffusion MRS experiments will be discussed. With advances in MRI hardware and diffusion methodology, diffusion MRS of non-water molecules is expected to provide increasingly valuable and biologically specific information on tissue microstructures and physiology, complementing the traditional diffusion MRI of small and ubiquitous water molecules. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Peng Cao
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Xu H, Zhang H, Zhang J, Huang Q, Shen Z, Wu R. Evaluation of neuron-glia integrity by in vivo proton magnetic resonance spectroscopy: Implications for psychiatric disorders. Neurosci Biobehav Rev 2016; 71:563-577. [PMID: 27702600 DOI: 10.1016/j.neubiorev.2016.09.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/05/2023]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) has been widely applied in human studies. There is now a large literature describing findings of brain MRS studies with mental disorder patients including schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders. However, the findings are mixed and cannot be reconciled by any of the existing interpretations. Here we proposed the new theory of neuron-glia integrity to explain the findings of brain 1H-MRS stuies. It proposed the neurochemical correlates of neuron-astrocyte integrity and axon-myelin integrity on the basis of update of neurobiological knowledge about neuron-glia communication and of experimental MRS evidence for impairments in neuron-glia integrity from the authors and the other investigators. Following the neuron-glia integrity theories, this review collected evidence showing that glutamate/glutamine change is a good marker for impaired neuron-astrocyte integrity and that changes in N-acetylaspartate and lipid precursors reflect impaired myelination. Moreover, this new theory enables us to explain the differences between MRS findings in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Haiyun Xu
- The Mental Health Center, Shantou University Medical College, China.
| | - Handi Zhang
- The Mental Health Center, Shantou University Medical College, China
| | - Jie Zhang
- The Mental Health Center, Shantou University Medical College, China
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, China
| | - Zhiwei Shen
- The Department of Radiology, the second affiliated hospital, Shantou University Medical College, China
| | - Renhua Wu
- The Department of Radiology, the second affiliated hospital, Shantou University Medical College, China
| |
Collapse
|