1
|
Sheng Y, Wang Y, Wang X, Zhang Z, Zhu D, Zheng W. No sex difference in maturation of brain morphology during the perinatal period. Brain Struct Funct 2024; 229:1979-1994. [PMID: 39020216 DOI: 10.1007/s00429-024-02828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Accumulating evidence have documented sex differences in brain anatomy from early childhood to late adulthood. However, whether sex difference of brain structure emerges in the neonatal brain and how sex modulates the development of cortical morphology during the perinatal stage remains unclear. Here, we utilized T2-weighted MRI from the Developing Human Connectome Project (dHCP) database, consisting of 41 male and 40 female neonates born between 35 and 43 postmenstrual weeks (PMW). Neonates of each sex were arranged in a continuous ascending order of age to capture the progressive changes in cortical thickness and curvature throughout the developmental continuum. The maturational covariance network (MCN) was defined as the coupled developmental fluctuations of morphology measures between cortical regions. We constructed MCNs based on the two features, respectively, to illustrate their developmental interdependencies, and then compared the network topology between sexes. Our results showed that cortical structural development exhibited a localized pattern in both males and females, with no significant sex differences in the developmental trajectory of cortical morphology, overall organization, nodal importance, and modular structure of the MCN. Furthermore, by merging male and female neonates into a unified cohort, we identified evident dependencies influences in structural development between different brain modules using the Granger causality analysis (GCA), emanating from high-order regions toward primary cortices. Our findings demonstrate that the maturational pattern of cortical morphology may not differ between sexes during the perinatal period, and provide evidence for the developmental causality among cortical structures in perinatal brains.
Collapse
Affiliation(s)
- Yucen Sheng
- School of Foreign Languages, Lanzhou Jiaotong University, Lanzhou, People's Republic of China
| | - Ying Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiaomin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China
| | - Zhe Zhang
- Institute of Brain Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Dalin Zhu
- Department of Medical Imaging Center, Gansu Provincial Maternity and Child-Care Hospital Lanzhou, Lanzhou, People's Republic of China.
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, People's Republic of China.
| |
Collapse
|
2
|
Schuurman T, Bruner E. An inclusive anatomical network analysis of human craniocerebral topology. J Anat 2024; 245:686-698. [PMID: 38822698 PMCID: PMC11470797 DOI: 10.1111/joa.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
The human brain's complex morphology is spatially constrained by numerous intrinsic and extrinsic physical interactions. Spatial constraints help to identify the source of morphological variability and can be investigated by employing anatomical network analysis. Here, a model of human craniocerebral topology is presented, based on the bony elements of the skull at birth and a previously designed model of the brain. The goal was to investigate the topological components fundamental to the craniocerebral geometric balance, to identify underlying phenotypic patterns of spatial arrangement, and to understand how these patterns might have influenced the evolution of human brain morphology. Analysis of the craniocerebral network model revealed that the combined structure of the body and lesser wings of the sphenoid bone, the parahippocampal gyrus, and the parietal and ethmoid bones are susceptible to sustain and apply major spatial constraints that are likely to limit or channel their morphological evolution. The results also showcase a high level of global integration and efficient diffusion of biomechanical forces across the craniocerebral system, a fundamental aspect of morphological variability in terms of plasticity. Finally, community detection in the craniocerebral system highlights the concurrence of a longitudinal and a vertical modular partition. The former reflects the distinct morphogenetic environments of the three endocranial fossae, while the latter corresponds to those of the basicranium and calvaria.
Collapse
Affiliation(s)
- Tim Schuurman
- Centro Nacional de Investigación Sobre la Evolución Humana, Burgos, Spain
| | - Emiliano Bruner
- Centro Nacional de Investigación Sobre la Evolución Humana, Burgos, Spain
- Alzheimer's Centre Reina Sofía-CIEN Foundation-ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Núñez C, Stephan-Otto C, Roldán A, Grasa EM, Escartí MJ, Aguilar García-Iturrospe EJ, García-Martí G, de la Iglesia-Vaya M, Nacher J, Portella MJ, Corripio I. Orbitofrontal cortex hypergyrification in hallucinating schizophrenia patients: Surface ratio as a promising brain biomarker. Eur Neuropsychopharmacol 2024; 89:47-55. [PMID: 39341083 DOI: 10.1016/j.euroneuro.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The study of brain gyrification may provide useful information on the cytoarchitecture and connectivity of the brain. One of the methods that have been developed to estimate brain gyrification, known as surface ratio (SR), has not yet been studied in schizophrenia. Here we aimed to assess whether SR could provide new insights on the brain structure of schizophrenia patients and the severity of symptoms. We also computed a more established brain gyrification measure, namely absolute mean curvature (AMC). We analyzed 63 magnetic resonance images, 25 from schizophrenia patients with treatment-resistant auditory verbal hallucinations (SCH-H), 18 from schizophrenia patients without hallucinations (SCH-NH), and 20 from healthy controls (HC). The SR measure revealed that SCH-H patients had a more folded orbitofrontal cortex than SCH-NH patients and HC. Gyrification in this region was also negatively associated with positive symptoms, specifically with the delusions and conceptual disorganization items, only in the SCH-H group. Regarding the AMC measure, we identified two areas where HC showed more gyrification than SCH-H patients, but no relationships arose with symptoms. The hypergyrification of the orbitofrontal cortex displayed by SCH-H patients, as captured by the SR measure, suggests aberrant and/or excessive wiring in these patients, which in turn could give rise to auditory verbal hallucinations. Alternatively, we comment on potential compensatory mechanisms that may better explain the negative association between orbitofrontal gyrification and positive symptomatology. The SR measure captured the most relevant differences and associations, making it a promising biomarker in schizophrenia.
Collapse
Affiliation(s)
- Christian Núñez
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Christian Stephan-Otto
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Pediatric Computational Imaging Group (PeCIC), Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alexandra Roldán
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Eva Mª Grasa
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain
| | - Mª José Escartí
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Hospital Clínico Universitario de Valencia, Valencia, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Department of Medicine, University CEU-UCH, Valencia, Spain
| | - Eduardo J Aguilar García-Iturrospe
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Hospital Clínico Universitario de Valencia, Valencia, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Department of Medicine, University CEU-UCH, Valencia, Spain
| | - Gracián García-Martí
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Biomedical Engineering Unit / Radiology Department, Quirónsalud Hospital, Valencia, Spain
| | - Maria de la Iglesia-Vaya
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Joint unit in Biomedical Imaging FISABIO-CIPF, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Valencia, Spain
| | - Juan Nacher
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Neuroplasticity Unit, Institute of Biotechnology and Biomedicine, Universitat de València, Valencia, Spain
| | - Maria J Portella
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iluminada Corripio
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Psychiatry Department, Hospital Consortium of Vic, Barcelona, Spain; Institute of Health Research and Innovation at Central Catalonia (IRIS-CC). Central University of Catalonia (UVic-UCC), Barcelona, Spain
| |
Collapse
|
4
|
Levman J, McCann B, Baumer N, Lam MY, Shiohama T, Cogger L, MacDonald A, Takahashi E. Structural Magnetic Resonance Imaging-Based Surface Morphometry Analysis of Pediatric Down Syndrome. BIOLOGY 2024; 13:575. [PMID: 39194513 DOI: 10.3390/biology13080575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Down syndrome (DS) is a genetic disorder characterized by intellectual disability whose etiology includes an additional partial or full copy of chromosome 21. Brain surface morphometry analyses can potentially assist in providing a better understanding of structural brain differences, and may help characterize DS-specific neurodevelopment. We performed a retrospective surface morphometry study of 73 magnetic resonance imaging (MRI) examinations of DS patients (aged 1 day to 22 years) and compared them to a large cohort of 993 brain MRI examinations of neurotypical participants, aged 1 day to 32 years. Surface curvature measurements, absolute surface area measurements, and surface areas as a percentage of total brain surface area (%TBSA) were extracted from each brain region in each examination. Results demonstrate broad reductions in surface area and abnormalities of surface curvature measurements across the brain in DS. After adjusting our regional surface area measurements as %TBSA, abnormally increased presentation in DS relative to neurotypical controls was observed in the left precentral, bilateral entorhinal, left parahippocampal, and bilateral perirhinal cortices, as well as Brodmann's area 44 (left), and the right temporal pole. Findings suggest the presence of developmental abnormalities of regional %TBSA in DS that can be characterized from clinical MRI examinations.
Collapse
Affiliation(s)
- Jacob Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA
- Nova Scotia Health Authority, Halifax, NS B3H 1V8, Canada
| | - Bernadette McCann
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Melanie Y Lam
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Liam Cogger
- Department of Education, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Allissa MacDonald
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Emi Takahashi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA 02215, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Qiu X, Yang J, Hu X, Li J, Zhao M, Ren F, Weng X, Edden RAE, Gao F, Wang J. Association between hearing ability and cortical morphology in the elderly: multiparametric mapping, cognitive relevance, and neurobiological underpinnings. EBioMedicine 2024; 104:105160. [PMID: 38788630 PMCID: PMC11140565 DOI: 10.1016/j.ebiom.2024.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Hearing impairment is a common condition in the elderly. However, a comprehensive understanding of its neural correlates is still lacking. METHODS We recruited 284 elderly adults who underwent structural MRI, magnetic resonance spectroscopy, audiometry, and cognitive assessments. Individual hearing abilities indexed by pure tone average (PTA) were correlated with multiple structural MRI-derived cortical morphological indices. For regions showing significant correlations, mediation analyses were performed to examine their role in the relationship between hearing ability and cognitive function. Finally, the correlation maps between hearing ability and cortical morphology were linked with publicly available connectomic gradient, transcriptomic, and neurotransmitter maps. FINDINGS Poorer hearing was related to cortical thickness (CT) reductions in widespread regions and gyrification index (GI) reductions in the right Area 52 and Insular Granular Complex. The GI in the right Area 52 mediated the relationship between hearing ability and executive function. This mediating effect was further modulated by glutamate and N-acetylaspartate levels in the right auditory region. The PTA-CT correlation map followed microstructural connectomic hierarchy, were related to genes involved in certain biological processes (e.g., glutamate metabolic process), cell types (e.g., excitatory neurons and astrocytes), and developmental stages (i.e., childhood to young adulthood), and covaried with dopamine receptor 1, dopamine transporter, and fluorodopa. The PTA-GI correlation map was related to 5-hydroxytryptamine receptor 2a. INTERPRETATION Poorer hearing is associated with cortical thinning and folding reductions, which may be engaged in the relationship between hearing impairment and cognitive decline in the elderly and have different neurobiological substrates. FUNDING See the Acknowledgements section.
Collapse
Affiliation(s)
- Xiaofan Qiu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jing Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Min Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou, China
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou, China.
| |
Collapse
|
6
|
Goltermann O, Alagöz G, Molz B, Fisher SE. Neuroimaging genomics as a window into the evolution of human sulcal organization. Cereb Cortex 2024; 34:bhae078. [PMID: 38466113 PMCID: PMC10926775 DOI: 10.1093/cercor/bhae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 03/12/2024] Open
Abstract
Primate brain evolution has involved prominent expansions of the cerebral cortex, with largest effects observed in the human lineage. Such expansions were accompanied by fine-grained anatomical alterations, including increased cortical folding. However, the molecular bases of evolutionary alterations in human sulcal organization are not yet well understood. Here, we integrated data from recently completed large-scale neuroimaging genetic analyses with annotations of the human genome relevant to various periods and events in our evolutionary history. These analyses identified single-nucleotide polymorphism (SNP) heritability enrichments in fetal brain human-gained enhancer (HGE) elements for a number of sulcal structures, including the central sulcus, which is implicated in human hand dexterity. We zeroed in on a genomic region that harbors DNA variants associated with left central sulcus shape, an HGE element, and genetic loci involved in neurogenesis including ZIC4, to illustrate the value of this approach for probing the complex factors contributing to human sulcal evolution.
Collapse
Affiliation(s)
- Ole Goltermann
- Max Planck School of Cognition, Stephanstrasse 1a, 04103 Leipzig, Germany
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Gökberk Alagöz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
| | - Barbara Molz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands
| |
Collapse
|
7
|
Wagstyl K, Adler S, Seidlitz J, Vandekar S, Mallard TT, Dear R, DeCasien AR, Satterthwaite TD, Liu S, Vértes PE, Shinohara RT, Alexander-Bloch A, Geschwind DH, Raznahan A. Transcriptional cartography integrates multiscale biology of the human cortex. eLife 2024; 12:RP86933. [PMID: 38324465 PMCID: PMC10945526 DOI: 10.7554/elife.86933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
The cerebral cortex underlies many of our unique strengths and vulnerabilities, but efforts to understand human cortical organization are challenged by reliance on incompatible measurement methods at different spatial scales. Macroscale features such as cortical folding and functional activation are accessed through spatially dense neuroimaging maps, whereas microscale cellular and molecular features are typically measured with sparse postmortem sampling. Here, we integrate these distinct windows on brain organization by building upon existing postmortem data to impute, validate, and analyze a library of spatially dense neuroimaging-like maps of human cortical gene expression. These maps allow spatially unbiased discovery of cortical zones with extreme transcriptional profiles or unusually rapid transcriptional change which index distinct microstructure and predict neuroimaging measures of cortical folding and functional activation. Modules of spatially coexpressed genes define a family of canonical expression maps that integrate diverse spatial scales and temporal epochs of human brain organization - ranging from protein-protein interactions to large-scale systems for cognitive processing. These module maps also parse neuropsychiatric risk genes into subsets which tag distinct cyto-laminar features and differentially predict the location of altered cortical anatomy and gene expression in patients. Taken together, the methods, resources, and findings described here advance our understanding of human cortical organization and offer flexible bridges to connect scientific fields operating at different spatial scales of human brain research.
Collapse
Affiliation(s)
- Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College LondonLondonUnited Kingdom
| | - Sophie Adler
- UCL Great Ormond Street Institute for Child HealthHolbornUnited Kingdom
| | - Jakob Seidlitz
- Department of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt UniversityNashvilleUnited States
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Psychiatry, Harvard Medical SchoolBostonUnited States
| | - Richard Dear
- Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Alex R DeCasien
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Theodore D Satterthwaite
- Department of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania School of MedicinePhiladelphiaUnited States
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Petra E Vértes
- Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Aaron Alexander-Bloch
- Department of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Daniel H Geschwind
- Center for Autism Research and Treatment, Semel Institute, Program in Neurogenetics, Department of Neurology and Department of Human Genetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| |
Collapse
|
8
|
Barresi M, Hickmott RA, Bosakhar A, Quezada S, Quigley A, Kawasaki H, Walker D, Tolcos M. Toward a better understanding of how a gyrified brain develops. Cereb Cortex 2024; 34:bhae055. [PMID: 38425213 DOI: 10.1093/cercor/bhae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
The size and shape of the cerebral cortex have changed dramatically across evolution. For some species, the cortex remains smooth (lissencephalic) throughout their lifetime, while for other species, including humans and other primates, the cortex increases substantially in size and becomes folded (gyrencephalic). A folded cortex boasts substantially increased surface area, cortical thickness, and neuronal density, and it is therefore associated with higher-order cognitive abilities. The mechanisms that drive gyrification in some species, while others remain lissencephalic despite many shared neurodevelopmental features, have been a topic of investigation for many decades, giving rise to multiple perspectives of how the gyrified cerebral cortex acquires its unique shape. Recently, a structurally unique germinal layer, known as the outer subventricular zone, and the specialized cell type that populates it, called basal radial glial cells, were identified, and these have been shown to be indispensable for cortical expansion and folding. Transcriptional analyses and gene manipulation models have provided an invaluable insight into many of the key cellular and genetic drivers of gyrification. However, the degree to which certain biomechanical, genetic, and cellular processes drive gyrification remains under investigation. This review considers the key aspects of cerebral expansion and folding that have been identified to date and how theories of gyrification have evolved to incorporate this new knowledge.
Collapse
Affiliation(s)
- Mikaela Barresi
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
| | - Ryan Alexander Hickmott
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
| | - Abdulhameed Bosakhar
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Sebastian Quezada
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Anita Quigley
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
- School of Engineering, RMIT University, La Trobe Street, Melbourne, VIC 3000, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Regent Street, Fitzroy, VIC 3065, Australia
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8640, Japan
| | - David Walker
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
9
|
Crisóstomo J, Duarte JV, Canário N, Moreno C, Gomes L, Castelo-Branco M. The longitudinal impact of type 2 diabetes on brain gyrification. Eur J Neurosci 2023; 58:4384-4392. [PMID: 37927099 DOI: 10.1111/ejn.16177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Type 2 diabetes has an effect on brain structure, including cortical gyrification. The significance of these changes is better understood if assessed over time. However, there is a lack of studies assessing longitudinally the effect of this disease with complex aethology in gyrification. While changes in this feature have been associated mainly with genetic legacy, our study allowed to shed light on the effect of the variation of glycaemic profile over time in gyrification in this metabolic disease. In this longitudinal study, we analysed brain anatomical magnetic resonance images of 15 participants with type 2 diabetes and 13 healthy control participants to investigate the impact of this metabolic disease on the gyrification index over a 7-year period. We observed a significant interaction between time and group in six regions, four of which (left precentral gyrus, left gyrus rectus, left subcentral gyrus and sulci and right inferior temporal gyrus) showed an increase in gyrification in type 2 diabetes and a decrease in the control group and the two others (left pericallosal sulcus and right inferior frontal sulcus) the opposite pattern. The variation of the gyrification was correlated with the variation of the glycaemic profile. Following the interaction, the simple main effect of time in each group separately has shown that in the group with diabetes, there were more regions susceptible to alterations of gyrification. In sum, our results raise credit for the possibility that glycaemic control also might influence gyrification in type 2 diabetes.
Collapse
Affiliation(s)
- Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - João V Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Carolina Moreno
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Department of Endocrinology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Leonor Gomes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Department of Endocrinology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Ribeiro JH, Altinisik N, Rajan N, Verslegers M, Baatout S, Gopalakrishnan J, Quintens R. DNA damage and repair: underlying mechanisms leading to microcephaly. Front Cell Dev Biol 2023; 11:1268565. [PMID: 37881689 PMCID: PMC10597653 DOI: 10.3389/fcell.2023.1268565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
DNA-damaging agents and endogenous DNA damage constantly harm genome integrity. Under genotoxic stress conditions, the DNA damage response (DDR) machinery is crucial in repairing lesions and preventing mutations in the basic structure of the DNA. Different repair pathways are implicated in the resolution of such lesions. For instance, the non-homologous DNA end joining and homologous recombination pathways are central cellular mechanisms by which eukaryotic cells maintain genome integrity. However, defects in these pathways are often associated with neurological disorders, indicating the pivotal role of DDR in normal brain development. Moreover, the brain is the most sensitive organ affected by DNA-damaging agents compared to other tissues during the prenatal period. The accumulation of lesions is believed to induce cell death, reduce proliferation and premature differentiation of neural stem and progenitor cells, and reduce brain size (microcephaly). Microcephaly is mainly caused by genetic mutations, especially genes encoding proteins involved in centrosomes and DNA repair pathways. However, it can also be induced by exposure to ionizing radiation and intrauterine infections such as the Zika virus. This review explains mammalian cortical development and the major DNA repair pathways that may lead to microcephaly when impaired. Next, we discuss the mechanisms and possible exposures leading to DNA damage and p53 hyperactivation culminating in microcephaly.
Collapse
Affiliation(s)
- Jessica Honorato Ribeiro
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nazlican Altinisik
- Laboratory for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Nicholas Rajan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jay Gopalakrishnan
- Laboratory for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
11
|
Demirci N, Hoffman ME, Holland MA. Systematic cortical thickness and curvature patterns in primates. Neuroimage 2023; 278:120283. [PMID: 37516374 PMCID: PMC10443624 DOI: 10.1016/j.neuroimage.2023.120283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023] Open
Abstract
Humans are known to have significant and consistent differences in thickness throughout the cortex, with thick outer gyral folds and thin inner sulcal folds. Our previous work has suggested a mechanical basis for this thickness pattern, with the forces generated during cortical folding leading to thick gyri and thin sulci, and shown that cortical thickness varies along a gyral-sulcal spectrum in humans. While other primate species are expected to exhibit similar patterns of cortical thickness, it is currently unknown how these patterns scale across different sizes, forms, and foldedness. Among primates, brains vary enormously from roughly the size of a grape to the size of a grapefruit, and from nearly smooth to dramatically folded; of these, human brains are the largest and most folded. These variations in size and form make comparative neuroanatomy a rich resource for investigating common trends that transcend differences between species. In this study, we examine 12 primate species in order to cover a wide range of sizes and forms, and investigate the scaling of their cortical thickness relative to the surface geometry. The 12 species were selected due to the public availability of either reconstructed surfaces and/or population templates. After obtaining or reconstructing 3D surfaces from publicly available neuroimaging data, we used our surface-based computational pipeline (https://github.com/mholla/curveball) to analyze patterns of cortical thickness and folding with respect to size (total surface area), geometry (i.e. curvature, shape, and sulcal depth), and foldedness (gyrification). In all 12 species, we found consistent cortical thickness variations along a gyral-sulcal spectrum, with convex shapes thicker than concave shapes and saddle shapes in between. Furthermore, we saw an increasing thickness difference between gyri and sulci as brain size increases. Our results suggest a systematic folding mechanism relating local cortical thickness to geometry. Finally, all of our reconstructed surfaces and morphometry data are available for future research in comparative neuroanatomy.
Collapse
Affiliation(s)
- Nagehan Demirci
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mia E Hoffman
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maria A Holland
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
12
|
de Matos K, Cury C, Chougar L, Strike LT, Rolland T, Riche M, Hemforth L, Martin A, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Paillère Martinot ML, Artiges E, Nees F, Papadopoulos Orfanos D, Lemaitre H, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Frouin V, Bach Cuadra M, Colliot O, Couvy-Duchesne B. Temporo-basal sulcal connections: a manual annotation protocol and an investigation of sexual dimorphism and heritability. Brain Struct Funct 2023; 228:1459-1478. [PMID: 37358662 DOI: 10.1007/s00429-023-02663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
The temporo-basal region of the human brain is composed of the collateral, the occipito-temporal, and the rhinal sulci. We manually rated (using a novel protocol) the connections between rhinal/collateral (RS-CS), collateral/occipito-temporal (CS-OTS) and rhinal/occipito-temporal (RS-OTS) sulci, using the MRI of nearly 3400 individuals including around 1000 twins. We reported both the associations between sulcal polymorphisms as well with a wide range of demographics (e.g. age, sex, handedness). Finally, we also estimated the heritability, and the genetic correlation between sulcal connections. We reported the frequency of the sulcal connections in the general population, which were hemisphere dependent. We found a sexual dimorphism of the connections, especially marked in the right hemisphere, with a CS-OTS connection more frequent in females (approximately 35-40% versus 20-25% in males) and an RS-CS connection more common in males (approximately 40-45% versus 25-30% in females). We confirmed associations between sulcal connections and characteristics of incomplete hippocampal inversion (IHI). We estimated the broad sense heritability to be 0.28-0.45 for RS-CS and CS-OTS connections, with hints of dominant contribution for the RS-CS connection. The connections appeared to share some of their genetic causing factors as indicated by strong genetic correlations. Heritability appeared much smaller for the (rarer) RS-OTS connection.
Collapse
Affiliation(s)
- Kevin de Matos
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
- CIBM Center for Biomedical Imaging, Vaud, Switzerland
- Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Claire Cury
- CNRS, Inria, Inserm, IRISA UMR 6074, Empenn ERL U-1228, University of Rennes, 35000, Rennes, France
| | - Lydia Chougar
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
- Service de neuroradiologie, AP-HP, Pitié-Salpêtrière, Paris, France
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Thibault Rolland
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Maximilien Riche
- Department of Neurosurgery, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne University, 75013, Paris, France
| | - Lisa Hemforth
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Alexandre Martin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
- Inria Sophia Antipolis, Morpheme Project, Paris, France
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Brunswick, Berlin, Germany
| | - Jean-Luc Martinot
- INSERM U 1299 "Trajectoires développementales & psychiatrie", CNRS, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, University Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- INSERM U 1299 "Trajectoires développementales & psychiatrie", CNRS, AP-HP, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, University Paris-Saclay, Gif-sur-Yvette, France
- Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Eric Artiges
- INSERM U 1299 "Trajectoires développementales & psychiatrie", CNRS, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, University Paris-Saclay, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Herve Lemaitre
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
- UMR 5293, CNRS, CEA, Institut des Maladies Neurodégénératives, Université de Bordeaux, 33076, Bordeaux, France
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Université de Montréal and Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Department of Psychiatry and Neuroscience, Centre for Population Neuroscience and Stratified Medicine (PONS), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Department of Psychiatry and Neuroscience, Centre for Population Neuroscience and Stratified Medicine (PONS), Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Vaud, Switzerland
- Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Olivier Colliot
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Baptiste Couvy-Duchesne
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France.
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4062, Australia.
- ARAMIS Team, Pitié-Salpêtrière Hospital, Institut du Cerveau, 75013, Paris, France.
| |
Collapse
|
13
|
Mallela AN, Deng H, Gholipour A, Warfield SK, Goldschmidt E. Heterogeneous growth of the insula shapes the human brain. Proc Natl Acad Sci U S A 2023; 120:e2220200120. [PMID: 37279278 PMCID: PMC10268209 DOI: 10.1073/pnas.2220200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/13/2023] [Indexed: 06/08/2023] Open
Abstract
The human cerebrum consists of a precise and stereotyped arrangement of lobes, primary gyri, and connectivity that underlies human cognition [P. Rakic, Nat. Rev. Neurosci. 10, 724-735 (2009)]. The development of this arrangement is less clear. Current models explain individual primary gyrification but largely do not account for the global configuration of the cerebral lobes [T. Tallinen, J. Y. Chung, J. S. Biggins, L. Mahadevan, Proc. Natl. Acad. Sci. U.S.A. 111, 12667-12672 (2014) and D. C. Van Essen, Nature 385, 313-318 (1997)]. The insula, buried in the depths of the Sylvian fissure, is unique in terms of gyral anatomy and size. Here, we quantitatively show that the insula has unique morphology and location in the cerebrum and that these key differences emerge during fetal development. Finally, we identify quantitative differences in developmental migration patterns to the insula that may underlie these differences. We calculated morphologic data in the insula and other lobes in adults (N = 107) and in an in utero fetal brain atlas (N = 81 healthy fetuses). In utero, the insula grows an order of magnitude slower than the other lobes and demonstrates shallower sulci, less curvature, and less surface complexity both in adults and progressively throughout fetal development. Spherical projection analysis demonstrates that the lenticular nuclei obstruct 60 to 70% of radial pathways from the ventricular zone (VZ) to the insula, forcing a curved migration to the insula in contrast to a direct radial pathway. Using fetal diffusion tractography, we identify radial glial fascicles that originate from the VZ and curve around the lenticular nuclei to form the insula. These results confirm existing models of radial migration to the cortex and illustrate findings that suggest differential insular and cerebral development, laying the groundwork to understand cerebral malformations and insular function and pathologies.
Collapse
Affiliation(s)
- Arka N. Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA15213
| | - Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA15213
| | - Ali Gholipour
- Department of Radiology, Harvard Medical School, Boston, MA02115
- Department of Radiology, Boston Children’s Hospital, Boston, MA02115
| | - Simon K. Warfield
- Department of Radiology, Harvard Medical School, Boston, MA02115
- Department of Radiology, Boston Children’s Hospital, Boston, MA02115
| | - Ezequiel Goldschmidt
- Department of Radiology, Harvard Medical School, Boston, MA02115
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA94143
| |
Collapse
|
14
|
de Vareilles H, Rivière D, Mangin JF, Dubois J. Development of cortical folds in the human brain: An attempt to review biological hypotheses, early neuroimaging investigations and functional correlates. Dev Cogn Neurosci 2023; 61:101249. [PMID: 37141790 PMCID: PMC10311195 DOI: 10.1016/j.dcn.2023.101249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
The folding of the human brain mostly takes place in utero, making it challenging to study. After a few pioneer studies looking into it in post-mortem foetal specimen, modern approaches based on neuroimaging have allowed the community to investigate the folding process in vivo, its normal progression, its early disturbances, and its relationship to later functional outcomes. In this review article, we aimed to first give an overview of the current hypotheses on the mechanisms governing cortical folding. After describing the methodological difficulties raised by its study in fetuses, neonates and infants with magnetic resonance imaging (MRI), we reported our current understanding of sulcal pattern emergence in the developing brain. We then highlighted the functional relevance of early sulcal development, through recent insights about hemispheric asymmetries and early factors influencing this dynamic such as prematurity. Finally, we outlined how longitudinal studies have started to relate early folding markers and the child's sensorimotor and cognitive outcome. Through this review, we hope to raise awareness on the potential of studying early sulcal patterns both from a fundamental and clinical perspective, as a window into early neurodevelopment and plasticity in relation to growth in utero and postnatal environment of the child.
Collapse
Affiliation(s)
- H de Vareilles
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, CNRS, Gif-sur-Yvette, France.
| | - D Rivière
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, CNRS, Gif-sur-Yvette, France
| | - J F Mangin
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, CNRS, Gif-sur-Yvette, France
| | - J Dubois
- Université Paris Cité, NeuroDiderot, Inserm, Paris, France; Université Paris-Saclay, NeuroSpin-UNIACT, CEA, Gif-sur-Yvette, France
| |
Collapse
|
15
|
Van Essen DC. Biomechanical models and mechanisms of cellular morphogenesis and cerebral cortical expansion and folding. Semin Cell Dev Biol 2023; 140:90-104. [PMID: 35840524 PMCID: PMC9942585 DOI: 10.1016/j.semcdb.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Morphogenesis of the nervous system involves a highly complex spatio-temporal pattern of physical forces (mainly tension and pressure) acting on cells and tissues that are pliable but have an intricately organized cytoskeletal infrastructure. This review begins by covering basic principles of biomechanics and the core cytoskeletal toolkit used to regulate the shapes of cells and tissues during embryogenesis and neural development. It illustrates how the principle of 'tensegrity' provides a useful conceptual framework for understanding how cells dynamically respond to forces that are generated internally or applied externally. The latter part of the review builds on this foundation in considering the development of mammalian cerebral cortex. The main focus is on cortical expansion and folding - processes that take place over an extended period of prenatal and postnatal development. Cortical expansion and folding are likely to involve many complementary mechanisms, some related to regulating cell proliferation and migration and others related to specific types and patterns of mechanical tension and pressure. Three distinct multi-mechanism models are evaluated in relation to a set of 18 key experimental observations and findings. The Composite Tension Plus (CT+) model is introduced as an updated version of a previous multi-component Differential Expansion Sandwich Plus (DES+) model (Van Essen, 2020); the new CT+ model includes 10 distinct mechanisms and has the greatest explanatory power among published models to date. Much needs to be done in order to validate specific mechanistic components and to assess their relative importance in different species, and important directions for future research are suggested.
Collapse
|
16
|
Zhang C, Liu S, Yu YC, Han Q. Mechanical Force Remodeling the Adult Brain. Neurosci Bull 2023; 39:877-879. [PMID: 36656429 PMCID: PMC10169952 DOI: 10.1007/s12264-023-01019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/27/2022] [Indexed: 01/20/2023] Open
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuai Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yong-Chun Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qingjian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Basavaraju R, France J, Sigmon HC, Girgis RR, Brucato G, Lieberman JA, Small SA, Provenzano FA. Increased parietal and occipital lobe gyrification predicts conversion to syndromal psychosis in a clinical high-risk cohort. Schizophr Res 2023; 255:246-255. [PMID: 37043842 DOI: 10.1016/j.schres.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/15/2023] [Accepted: 03/12/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Local gyrification index (lGI), indicative of the degree of cortical folding is a proxy marker for early cortical neurodevelopmental abnormalities. We studied the difference in lGI between those who do and do not convert to psychosis (non-converters) in a clinical high-risk (CHR) cohort, and whether lGI predicts conversion to psychosis. METHODS Seventy-two CHR participants with attenuated positive symptom syndrome were followed up for two years. The difference in baseline whole-brain lGI was examined on the T1-weighted MRIs between, i)CHR (N = 72) and healthy controls (N = 19), ii)Converters to psychosis (N = 24) and non-converters (N = 48), adjusting for age and sex, on Freesurfer-6.0. The significant cluster obtained in the converters versus non-converters comparison was registered as a region of interest to individual images of all 72 participants and lGI values were extracted from this region. A cox proportional hazards model was applied with these values to study whether lGI predicts conversion to psychosis. RESULTS lGI was not different between CHR and healthy controls. lGI was increased in converters in the right-sided inferior parietal and lateral occipital areas (corrected cluster-wise-p-value = 0.009, cohen's f = 0.42) compared to non-converters, which significantly increased the risk of onset of psychosis (p = 0.029, hazard ratio = 1.471). CONCLUSIONS Increased gyrification in the right-sided inferior parietal and lateral occipital area differentiates converters to psychosis in CHR, significantly increasing the risk of conversion to psychosis. This measure may reflect underlying traits in parts of the brain that develop earliest in-utero (parietal and occipital), conferring a heightened vulnerability to convert to syndromal psychosis subsequently.
Collapse
Affiliation(s)
- Rakshathi Basavaraju
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA
| | - Jeanelle France
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA
| | - Hannah C Sigmon
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA
| | - Ragy R Girgis
- Department of Psychiatry, College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University Medical Center, USA
| | - Gary Brucato
- Department of Psychiatry, College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University Medical Center, USA
| | - Jeffrey A Lieberman
- Department of Psychiatry, College of Physicians and Surgeons, New York State Psychiatric Institute, Columbia University Medical Center, USA
| | - Scott A Small
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA
| | - Frank A Provenzano
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, USA.
| |
Collapse
|
18
|
Olié E, Le Bars E, Deverdun J, Oppenheim C, Courtet P, Cachia A. The effect of early trauma on suicidal vulnerability depends on fronto-insular sulcation. Cereb Cortex 2023; 33:823-830. [PMID: 35292795 DOI: 10.1093/cercor/bhac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/03/2023] Open
Abstract
Improving our understanding of pathophysiology of suicidal behavior (SB) is an important step for prevention. Assessment of suicide risk is based on socio-demographic and clinical risk factors with a poor predictivity. Current understanding of SB is based on a stress-vulnerability model, whereby early-life adversities are predominant. SB may thus result from a cascade of developmental processes stemming from early-life abuse and/or neglect. Some cerebral abnormalities, particularly in fronto-limbic regions, might also provide vulnerability to develop maladaptive responses to stress, leading to SB. We hypothesized that SB is associated with interactions between early trauma and neurodevelopmental deviations of the frontal and insular cortices. We recruited 86 euthymic women, including 44 suicide attempters (history of depression and SB) and 42 affective controls (history of depression without SB). The early development of prefrontal cortex (PFC) and insula was inferred using 3D magnetic resonance imaging-derived regional sulcation indices, which are indirect markers of early neurodevelopment. The insula sulcation index was higher in emotional abused subjects; among those patients, PFC sulcation index was reduced in suicide attempters, but not in affective controls. Such findings provide evidence that SB likely traced back to early stages of brain development in interaction with later environmental factors experienced early in life.
Collapse
Affiliation(s)
- Emilie Olié
- IGF, University of Montpellier, INSERM, Montpellier, France.,Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, 34295 Montpellier cedex 5, France.,FondaMental Foundation, Créteil, France
| | - Emmanuelle Le Bars
- Department of Neuroradiology, Academic Hospital of Montpellier & U1051, Institute of Neurosciences of Montpellier, 34295 Montpellier cedex 5, France.,I2FH, Institut d'Imagerie Fonctionnelle Humaine, Montpellier University Hospital, Gui de Chauliac Hospital, 34295 Montpellier cedex 5, France
| | - Jérémy Deverdun
- I2FH, Institut d'Imagerie Fonctionnelle Humaine, Montpellier University Hospital, Gui de Chauliac Hospital, 34295 Montpellier cedex 5, France
| | | | - Philippe Courtet
- IGF, University of Montpellier, INSERM, Montpellier, France.,Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, 34295 Montpellier cedex 5, France.,FondaMental Foundation, Créteil, France
| | - Arnaud Cachia
- Université de Paris, LaPsyDÉ, CNRS, F-75005 Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, ``IMA-Brain'', F-75014 Paris, France
| |
Collapse
|
19
|
Role of intracortical neuropil growth in the gyrification of the primate cerebral cortex. Proc Natl Acad Sci U S A 2023; 120:e2210967120. [PMID: 36574666 PMCID: PMC9910595 DOI: 10.1073/pnas.2210967120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The convolutions of the mammalian cerebral cortex allow the enlargement of its surface and addition of novel functional areas during evolution while minimizing expansion of the cranium. Cognitive neurodevelopmental disorders in humans, including microcephaly and lissencephaly, are often associated with impaired gyrification. In the classical model of gyrification, surface area is initially set by the number of radial units, and the forces driving cortical folding include neuronal growth, formation of neuropil, glial cell intercalation, and the patterned growth of subcortical white matter. An alternative model proposes that specified neurogenic hotspots in the outer subventricular zone (oSVZ) produce larger numbers of neurons that generate convexities in the cortex. This directly contradicts reports showing that cortical neurogenesis and settling of neurons into the cortical plate in primates, including humans, are completed well prior to the formation of secondary and tertiary gyri and indeed most primary gyri. In addition, during the main period of gyrification, the oSVZ produces mainly astrocytes and oligodendrocytes. Here we describe how rapid growth of intracortical neuropil, addition of glial cells, and enlargement of subcortical white matter in primates are the primary forces responsible for the post-neurogenic expansion of the cortical surface and formation of gyri during fetal development. Using immunohistochemistry for markers of proliferation and glial and neuronal progenitors combined with transcriptomic analysis, we show that neurogenesis in the ventricular zone and oSVZ is phased out and transitions to gliogenesis prior to gyral development. In summary, our data support the classical model of gyrification and provide insight into the pathogenesis of congenital cortical malformations.
Collapse
|
20
|
Almgren H, Hanganu A, Camacho M, Kibreab M, Camicioli R, Ismail Z, Forkert ND, Monchi O. Motor symptoms in Parkinson's disease are related to the interplay between cortical curvature and thickness. Neuroimage Clin 2023; 37:103300. [PMID: 36580712 PMCID: PMC9827056 DOI: 10.1016/j.nicl.2022.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Brain atrophy in Parkinson's disease occurs to varying degrees in different brain regions, even at the early stage of the disease. While cortical morphological features are often considered independently in structural brain imaging studies, research on the co-progression of different cortical morphological measurements could provide new insights regarding the progression of PD. This study's aim was to examine the interplay between cortical curvature and thickness as a function of PD diagnosis, motor symptoms, and cognitive performance. METHODS A total of 359 de novo PD patients and 159 healthy controls (HC) from the Parkinson's Progression Markers Initiative (PPMI) database were included in this study. Additionally, an independent cohort from four databases (182 PD, 132 HC) with longer disease durations was included to assess the effects of PD diagnosis in more advanced cases. Pearson correlation was used to determine subject-specific associations between cortical curvature and thickness estimated from T1-weighted MRI images. General linear modeling (GLM) was then used to assess the effect of PD diagnosis, motor symptoms, and cognitive performance on the curvature-thickness association. Next, longitudinal changes in the curvature-thickness correlation as well as the predictive effect of the cortical curvature-thickness association on changes in motor symptoms and cognitive performance across four years were investigated. Finally, Akaike information criterion (AIC) was used to build a GLM to model PD motor symptom severity cross-sectionally. RESULTS A significant interaction effect between PD motor symptoms and age on the curvature-thickness correlation was found (βstandardized = 0.11; t(350) = 2.12; p = 0.03). This interaction effect showed that motor symptoms in older patients were related to an attenuated curvature-thickness association. No significant effect of PD diagnosis was observed for the PPMI database (β = 0.03; t(510) = 0.35; p = 0.72). However, in patients with a longer disease duration, a significant effect of diagnosis on the curvature-thickness association was found (βstandardized = 0.31; t(306.7) = 3.49; p = 0.0006). Moreover, rigidity, but not tremor, in PD was significantly related to the curvature-thickness correlation (βstandardized = 0.11, t(350) = 2.24, p = 0.03; βstandardized = -0.03, t(350) = -0.58, p = 0.56, respectively). The curvature-thickness association was attenuated over time in both PD and HC, but the two groups did not show a significantly different effect (βstandardized = 0.03, t(184.7) = 0.78, p = 0.44). No predictive effects of the CC-CT correlation on longitudinal changes in cognitive performance or motor symptoms were observed (all p-values > 0.05). The best cross-sectional model for PD motor symptoms included the curvature-thickness correlation, cognitive performance, and putamen dopamine transporter (DAT) binding, which together explained 14 % of variance. CONCLUSION The association between cortical curvature and thickness is related to PD motor symptoms and age. This research shows the potential of modeling the curvature-thickness interplay in PD.
Collapse
Affiliation(s)
- Hannes Almgren
- Department of Clinical Neurosciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Alexandru Hanganu
- Département de Psychologie, Université de Montréal, Pavillon Marie-Victorin, 90 Vincent d'Indy Ave, Montréal, QC H2V 2S9, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal, 4565 Chemin Queen Mary, Montréal, QC H3W 1W5, Canada
| | - Milton Camacho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Mekale Kibreab
- Department of Clinical Neurosciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada
| | - Richard Camicioli
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, 7-112 Clinical Sciences Building 11350 83(rd) Avenue, Edmonton, Alberta, AB T6G 2G3, Canada
| | - Zahinoor Ismail
- Department of Clinical Neurosciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; Department of Psychiatry, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| | - Nils D Forkert
- Department of Clinical Neurosciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal, 4565 Chemin Queen Mary, Montréal, QC H3W 1W5, Canada; Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Département de radiologie, radio-oncologie et médecine nucléaire, Faculté de médecine, Université de Montréal, Pavillon Roger-Gaudry, 2900 boulevard, Édouard-Montpetit, Montréal, QC H3T 1A4, Canada.
| |
Collapse
|
21
|
Lemaitre H, Le Guen Y, Tilot AK, Stein JL, Philippe C, Mangin JF, Fisher SE, Frouin V. Genetic variations within human gained enhancer elements affect human brain sulcal morphology. Neuroimage 2023; 265:119773. [PMID: 36442731 DOI: 10.1016/j.neuroimage.2022.119773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/07/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022] Open
Abstract
The expansion of the cerebral cortex is one of the most distinctive changes in the evolution of the human brain. Cortical expansion and related increases in cortical folding may have contributed to emergence of our capacities for high-order cognitive abilities. Molecular analysis of humans, archaic hominins, and non-human primates has allowed identification of chromosomal regions showing evolutionary changes at different points of our phylogenetic history. In this study, we assessed the contributions of genomic annotations spanning 30 million years to human sulcal morphology measured via MRI in more than 18,000 participants from the UK Biobank. We found that variation within brain-expressed human gained enhancers, regulatory genetic elements that emerged since our last common ancestor with Old World monkeys, explained more trait heritability than expected for the left and right calloso-marginal posterior fissures and the right central sulcus. Intriguingly, these are sulci that have been previously linked to the evolution of locomotion in primates and later on bipedalism in our hominin ancestors.
Collapse
Affiliation(s)
- Herve Lemaitre
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France.
| | - Yann Le Guen
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, France
| | - Amanda K Tilot
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Jason L Stein
- Department of Genetics and the UNC Neuroscience Center, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Cathy Philippe
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, France
| | - Jean-François Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Vincent Frouin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab UMR 9027, Gif-sur-Yvette, France
| |
Collapse
|
22
|
Del Mauro G, Del Maschio N, Abutalebi J. The relationship between reading abilities and the left occipitotemporal sulcus: A dual perspective study. BRAIN AND LANGUAGE 2022; 235:105189. [PMID: 36260960 DOI: 10.1016/j.bandl.2022.105189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Reading activates a region within the left lateral occipitotemporal sulcus (OTS) known as the 'visual word form area' (VWFA). While several studies have investigated the impact of reading on brain structure through neuroplastic mechanisms, it has been recently suggested that individual differences in the pattern of the posterior OTS may predict reading skills in adults. In the present study, we first examined whether the structure and morphology and the anatomical connectivity of the left OTS are associated to reading ability. Second, we explored whether reading skills are predicted by the pattern of the left OTS. We found that reading skills were positively associated with increased connectivity between the left OTS and a network of reading-related regions in the left hemisphere. On the other hand, we did not observe an association between the pattern of the left OTS and reading skills. Finally, we found evidence that the morphology and the connectivity of the left OTS are correlated to its sulcal pattern.
Collapse
Affiliation(s)
- Gianpaolo Del Mauro
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Facultyof Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Facultyof Psychology, Vita-Salute San Raffaele University, Milan, Italy; TheArctic University of Norway, Tromsø, Norway.
| |
Collapse
|
23
|
Bok’s equi-volume principle: Translation, historical context, and a modern perspective. BRAIN MULTIPHYSICS 2022. [DOI: 10.1016/j.brain.2022.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
24
|
Sun BB, Loomis SJ, Pizzagalli F, Shatokhina N, Painter JN, Foley CN, Jensen ME, McLaren DG, Chintapalli SS, Zhu AH, Dixon D, Islam T, Ba Gari I, Runz H, Medland SE, Thompson PM, Jahanshad N, Whelan CD. Genetic map of regional sulcal morphology in the human brain from UK biobank data. Nat Commun 2022; 13:6071. [PMID: 36241887 PMCID: PMC9568560 DOI: 10.1038/s41467-022-33829-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Genetic associations with macroscopic brain structure can provide insights into brain function and disease. However, specific associations with measures of local brain folding are largely under-explored. Here, we conducted large-scale genome- and exome-wide associations of regional cortical sulcal measures derived from magnetic resonance imaging scans of 40,169 individuals in UK Biobank. We discovered 388 regional brain folding associations across 77 genetic loci, with genes in associated loci enriched for expression in the cerebral cortex, neuronal development processes, and differential regulation during early brain development. We integrated brain eQTLs to refine genes for various loci, implicated several genes involved in neurodevelopmental disorders, and highlighted global genetic correlations with neuropsychiatric phenotypes. We provide an interactive 3D visualisation of our summary associations, emphasising added resolution of regional analyses. Our results offer new insights into the genetic architecture of brain folding and provide a resource for future studies of sulcal morphology in health and disease.
Collapse
Affiliation(s)
- Benjamin B Sun
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US.
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Stephanie J Loomis
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Fabrizio Pizzagalli
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Natalia Shatokhina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Jodie N Painter
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christopher N Foley
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Optima Partners, Edinburgh, UK
| | - Megan E Jensen
- Clinical Sciences, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Donald G McLaren
- Clinical Sciences, Research & Development, Biogen Inc., Cambridge, MA, US
| | | | - Alyssa H Zhu
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Daniel Dixon
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Tasfiya Islam
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Iyad Ba Gari
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Heiko Runz
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US.
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US.
| | | |
Collapse
|
25
|
Massimo M, Long KR. Orchestrating human neocortex development across the scales; from micro to macro. Semin Cell Dev Biol 2022; 130:24-36. [PMID: 34583893 DOI: 10.1016/j.semcdb.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
How our brains have developed to perform the many complex functions that make us human has long remained a question of great interest. Over the last few decades, many scientists from a wide range of fields have tried to answer this question by aiming to uncover the mechanisms that regulate the development of the human neocortex. They have approached this on different scales, focusing microscopically on individual cells all the way up to macroscopically imaging entire brains within living patients. In this review we will summarise these key findings and how they fit together.
Collapse
Affiliation(s)
- Marco Massimo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
26
|
Yun HJ, Lee HJ, Lee JY, Tarui T, Rollins CK, Ortinau CM, Feldman HA, Grant PE, Im K. Quantification of sulcal emergence timing and its variability in early fetal life: Hemispheric asymmetry and sex difference. Neuroimage 2022; 263:119629. [PMID: 36115591 PMCID: PMC10011016 DOI: 10.1016/j.neuroimage.2022.119629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 12/25/2022] Open
Abstract
Human fetal brains show regionally different temporal patterns of sulcal emergence following a regular timeline, which may be associated with spatiotemporal patterns of gene expression among cortical regions. This study aims to quantify the timing of sulcal emergence and its temporal variability across typically developing fetuses by fitting a logistic curve to presence or absence of sulcus. We found that the sulcal emergence started from the central to the temporo-parieto-occipital lobes and frontal lobe, and the temporal variability of emergence in most of the sulci was similar between 1 and 2 weeks. Small variability (< 1 week) was found in the left central and postcentral sulci and larger variability (>2 weeks) was shown in the bilateral occipitotemporal and left superior temporal sulci. The temporal variability showed a positive correlation with the emergence timing that may be associated with differential contributions between genetic and environmental factors. Our statistical analysis revealed that the right superior temporal sulcus emerged earlier than the left. Female fetuses showed a trend of earlier sulcal emergence in the right superior temporal sulcus, lower temporal variability in the right intraparietal sulcus, and higher variability in the right precentral sulcus compared to male fetuses. Our quantitative and statistical approach quantified the temporal patterns of sulcal emergence in detail that can be a reference for assessing the normality of developing fetal gyrification.
Collapse
Affiliation(s)
- Hyuk Jin Yun
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, United States; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul 04763, Korea (the Republic of)
| | - Joo Young Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul 04763, Korea (the Republic of)
| | - Tomo Tarui
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02115, United States
| | - Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Cynthia M Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Henry A Feldman
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States; Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, United States; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States; Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, United States; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
27
|
Bruner E. A network approach to the topological organization of the Brodmann map. Anat Rec (Hoboken) 2022; 305:3504-3515. [PMID: 35485307 DOI: 10.1002/ar.24941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/07/2022]
Abstract
Brain morphology is the result of functional factors associated with cortical areas, but it is also influenced by structural aspects due to physical and spatial constraints. Despite the noticeable advances in brain mapping, Brodmann's map is still used in many research fields that rely on macroscopic cortical features for practical or theoretical issues. Here, the topological relationships among the Brodmann areas were modelled according to the principles of network analysis, in order to provide a synthetic view of their spatial properties following a criterion of contiguity. The model evidences the importance of the parieto-temporal region in terms of biological burden and topological complexity. The retrosplenial region is particularly influenced by spatial constraints, and the cingulate cortex occupies a position that bridges the anterior and posterior topological blocks. Such spatial framework should be taken into account when dealing with brain morphology in both ontogeny and phylogeny. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
28
|
Abstract
The establishment of a functioning neuronal network is a crucial step in neural development. During this process, neurons extend neurites-axons and dendrites-to meet other neurons and interconnect. Therefore, these neurites need to migrate, grow, branch and find the correct path to their target by processing sensory cues from their environment. These processes rely on many coupled biophysical effects including elasticity, viscosity, growth, active forces, chemical signaling, adhesion and cellular transport. Mathematical models offer a direct way to test hypotheses and understand the underlying mechanisms responsible for neuron development. Here, we critically review the main models of neurite growth and morphogenesis from a mathematical viewpoint. We present different models for growth, guidance and morphogenesis, with a particular emphasis on mechanics and mechanisms, and on simple mathematical models that can be partially treated analytically.
Collapse
Affiliation(s)
- Hadrien Oliveri
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
29
|
Fehlbaum LV, Peters L, Dimanova P, Roell M, Borbás R, Ansari D, Raschle NM. Mother-child similarity in brain morphology: A comparison of structural characteristics of the brain's reading network. Dev Cogn Neurosci 2022; 53:101058. [PMID: 34999505 PMCID: PMC8749220 DOI: 10.1016/j.dcn.2022.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Substantial evidence acknowledges the complex gene-environment interplay impacting brain development and learning. Intergenerational neuroimaging allows the assessment of familial transfer effects on brain structure, function and behavior by investigating neural similarity in caregiver-child dyads. METHODS Neural similarity in the human reading network was assessed through well-used measures of brain structure (i.e., surface area (SA), gyrification (lG), sulcal morphology, gray matter volume (GMV) and cortical thickness (CT)) in 69 mother-child dyads (children's age~11 y). Regions of interest for the reading network included left-hemispheric inferior frontal gyrus, inferior parietal lobe and fusiform gyrus. Mother-child similarity was quantified by correlation coefficients and familial specificity was tested by comparison to random adult-child dyads. Sulcal morphology analyses focused on occipitotemporal sulcus interruptions and similarity was assessed by chi-square goodness of fit. RESULTS Significant structural brain similarity was observed for mother-child dyads in the reading network for lG, SA and GMV (r = 0.349/0.534/0.542, respectively), but not CT. Sulcal morphology associations were non-significant. Structural brain similarity in lG, SA and GMV were specific to mother-child pairs. Furthermore, structural brain similarity for SA and GMV was higher compared to CT. CONCLUSION Intergenerational neuroimaging techniques promise to enhance our knowledge of familial transfer effects on brain development and disorders.
Collapse
Affiliation(s)
- Lynn V Fehlbaum
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland
| | - Lien Peters
- Numerical Cognition Laboratory, Department of Psychology and Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Plamina Dimanova
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Margot Roell
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Réka Borbás
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland
| | - Daniel Ansari
- Numerical Cognition Laboratory, Department of Psychology and Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Nora M Raschle
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland.
| |
Collapse
|
30
|
Chen YC, Arnatkevičiūtė A, McTavish E, Pang JC, Chopra S, Suo C, Fornito A, Aquino KM. The individuality of shape asymmetries of the human cerebral cortex. eLife 2022; 11:75056. [PMID: 36197720 PMCID: PMC9668337 DOI: 10.7554/elife.75056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/04/2022] [Indexed: 01/05/2023] Open
Abstract
Asymmetries of the cerebral cortex are found across diverse phyla and are particularly pronounced in humans, with important implications for brain function and disease. However, many prior studies have confounded asymmetries due to size with those due to shape. Here, we introduce a novel approach to characterize asymmetries of the whole cortical shape, independent of size, across different spatial frequencies using magnetic resonance imaging data in three independent datasets. We find that cortical shape asymmetry is highly individualized and robust, akin to a cortical fingerprint, and identifies individuals more accurately than size-based descriptors, such as cortical thickness and surface area, or measures of inter-regional functional coupling of brain activity. Individual identifiability is optimal at coarse spatial scales (~37 mm wavelength), and shape asymmetries show scale-specific associations with sex and cognition, but not handedness. While unihemispheric cortical shape shows significant heritability at coarse scales (~65 mm wavelength), shape asymmetries are determined primarily by subject-specific environmental effects. Thus, coarse-scale shape asymmetries are highly personalized, sexually dimorphic, linked to individual differences in cognition, and are primarily driven by stochastic environmental influences.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Monash Data Futures Institute, Monash UniversityMelbourneAustralia
| | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Eugene McTavish
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Healthy Brain and Mind Research Centre, Faculty of Health Sciences, Australian Catholic UniversityFitzroyAustralia
| | - James C Pang
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia
| | - Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Department of Psychology, Yale UniversityNew HavenUnited States
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia
| | - Kevin M Aquino
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,School of Physics, University of SydneySydneyAustralia,Center of Excellence for Integrative Brain Function, University of SydneySydneyAustralia,BrainKey IncSan FranciscoUnited States
| | | |
Collapse
|
31
|
Blinkouskaya Y, Caçoilo A, Gollamudi T, Jalalian S, Weickenmeier J. Brain aging mechanisms with mechanical manifestations. Mech Ageing Dev 2021; 200:111575. [PMID: 34600936 PMCID: PMC8627478 DOI: 10.1016/j.mad.2021.111575] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
Brain aging is a complex process that affects everything from the subcellular to the organ level, begins early in life, and accelerates with age. Morphologically, brain aging is primarily characterized by brain volume loss, cortical thinning, white matter degradation, loss of gyrification, and ventricular enlargement. Pathophysiologically, brain aging is associated with neuron cell shrinking, dendritic degeneration, demyelination, small vessel disease, metabolic slowing, microglial activation, and the formation of white matter lesions. In recent years, the mechanics community has demonstrated increasing interest in modeling the brain's (bio)mechanical behavior and uses constitutive modeling to predict shape changes of anatomically accurate finite element brain models in health and disease. Here, we pursue two objectives. First, we review existing imaging-based data on white and gray matter atrophy rates and organ-level aging patterns. This data is required to calibrate and validate constitutive brain models. Second, we review the most critical cell- and tissue-level aging mechanisms that drive white and gray matter changes. We focuse on aging mechanisms that ultimately manifest as organ-level shape changes based on the idea that the integration of imaging and mechanical modeling may help identify the tipping point when normal aging ends and pathological neurodegeneration begins.
Collapse
Affiliation(s)
- Yana Blinkouskaya
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Andreia Caçoilo
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Trisha Gollamudi
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Shima Jalalian
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Johannes Weickenmeier
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States.
| |
Collapse
|
32
|
Garcia KE, Wang X, Kroenke CD. A model of tension-induced fiber growth predicts white matter organization during brain folding. Nat Commun 2021; 12:6681. [PMID: 34795256 PMCID: PMC8602459 DOI: 10.1038/s41467-021-26971-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 10/27/2021] [Indexed: 12/22/2022] Open
Abstract
The past decade has experienced renewed interest in the physical processes that fold the developing cerebral cortex. Biomechanical models and experiments suggest that growth of the cortex, outpacing growth of underlying subcortical tissue (prospective white matter), is sufficient to induce folding. However, current models do not explain the well-established links between white matter organization and fold morphology, nor do they consider subcortical remodeling that occurs during the period of folding. Here we propose a framework by which cortical folding may induce subcortical fiber growth and organization. Simulations incorporating stress-induced fiber elongation indicate that subcortical stresses resulting from folding are sufficient to induce stereotyped fiber organization beneath gyri and sulci. Model predictions are supported by high-resolution ex vivo diffusion tensor imaging of the developing rhesus macaque brain. Together, results provide support for the theory of cortical growth-induced folding and indicate that mechanical feedback plays a significant role in brain connectivity.
Collapse
Affiliation(s)
- Kara E Garcia
- Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Evansville, IN, 47715, USA.
- Washington University in St. Louis, Department of Mechanical Engineering and Materials Science, St. Louis, MO, 63130, USA.
| | - Xiaojie Wang
- Oregon Health and Science University, Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Christopher D Kroenke
- Oregon Health and Science University, Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
33
|
Darayi M, Hoffman ME, Sayut J, Wang S, Demirci N, Consolini J, Holland MA. Computational models of cortical folding: A review of common approaches. J Biomech 2021; 139:110851. [PMID: 34802706 DOI: 10.1016/j.jbiomech.2021.110851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
The process of gyrification, by which the brain develops the intricate pattern of gyral hills and sulcal valleys, is the result of interactions between biological and mechanical processes during brain development. Researchers have developed a vast array of computational models in order to investigate cortical folding. This review aims to summarize these studies, focusing on five essential elements of the brain that affect development and gyrification and how they are represented in computational models: (i) the constraints of skull, meninges, and cerebrospinal fluid; (ii) heterogeneity of cortical layers and regions; (iii) anisotropic behavior of subcortical fiber tracts; (iv) material properties of brain tissue; and (v) the complex geometry of the brain. Finally, we highlight areas of need for future simulations of brain development.
Collapse
Affiliation(s)
- Mohsen Darayi
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mia E Hoffman
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - John Sayut
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shuolun Wang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nagehan Demirci
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jack Consolini
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maria A Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
34
|
Cortical surface abnormalities are different depending on the stage of schizophrenia: A cross-sectional vertexwise mega-analysis of thickness, area and gyrification. Schizophr Res 2021; 236:104-114. [PMID: 34481405 DOI: 10.1016/j.schres.2021.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/28/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Brain magnetic resonance imaging studies have not investigated the cortical surface comprehensively in schizophrenia subjects by assessing thickness, surface area and gyrification separately during the first-episode of psychosis (FEP) or chronic schizophrenia (ChSch). METHODS We investigated cortical surface abnormalities in 137 FEP patients and 240 ChSch subjects compared to 297 Healthy Controls (HC) contributed by five cohorts. Maps showing results of vertexwise between-group comparisons of cortical thickness, area, and gyrification were produced using T1-weighted datasets processed using FreeSurfer 5.3, followed by validated quality control protocols. RESULTS FEP subjects showed large clusters of increased area and gyrification relative to HC in prefrontal and insuli cortices (Cohen's d: 0.049 to 0.28). These between-group differences occurred partially beyond the effect of sample. ChSch subjects displayed reduced cortical thickness relative to HC in smaller fronto-temporal foci (d: -0.73 to -0.35), but not beyond the effect of sample. Differences between FEP and HC subjects were associated with male gender, younger age, and earlier illness onset, while differences between ChSch and HC were associated with treatment-resistance and first-generation antipsychotic (FGA) intake independently of sample effect. CONCLUSIONS Separate assessments of FEP and ChSch revealed abnormalities that differed in regional distribution, phenotypes affected and effect size. In FEP, associations of greater cortical area and gyrification abnormalities with earlier age of onset suggest an origin on anomalous neurodevelopment, while thickness reductions in ChSch are at least partially explained by treatment-resistance and FGA intake. Associations of between-group differences with clinical variables retained statistical significance beyond the effect of sample.
Collapse
|
35
|
Ohtsuka T, Kageyama R. Dual activation of Shh and Notch signaling induces dramatic enlargement of neocortical surface area. Neurosci Res 2021; 176:18-30. [PMID: 34600946 DOI: 10.1016/j.neures.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
The expansion of the neocortex represents a characteristic event over the course of mammalian evolution. Gyrencephalic mammals that have the larger brains with many folds (gyri and sulci) seem to have acquired higher intelligence, reflective of the enlargement of the neocortical surface area. In this process, germinal layers containing neural stem cells (NSCs) and neural progenitors expanded in number, leading to an increase in the total number of cortical neurons. In this study, we sought to expand neural stem/progenitor cells and enlarge the neocortical surface area by the dual activation of Shh and Notch signaling in transgenic (Tg) mice, promoting the proliferation of neural stem/progenitor cells by the Shh signaling effector while maintaining the undifferentiated state of NSCs by the Notch signaling effector. In the neocortical region of the Tg embryos, NSCs increased in number, and the ventricles, ventricular zone, and neocortical surface area were dramatically expanded. Furthermore, we observed that folds/wrinkles on the neocortical surface were progressively formed, accompanied by the vascular formation. These findings suggest that Shh and Notch signaling may be key regulators of mammalian brain evolution.
Collapse
Affiliation(s)
- Toshiyuki Ohtsuka
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
36
|
Cachia A, Borst G, Jardri R, Raznahan A, Murray GK, Mangin JF, Plaze M. Towards Deciphering the Fetal Foundation of Normal Cognition and Cognitive Symptoms From Sulcation of the Cortex. Front Neuroanat 2021; 15:712862. [PMID: 34650408 PMCID: PMC8505772 DOI: 10.3389/fnana.2021.712862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 01/16/2023] Open
Abstract
Growing evidence supports that prenatal processes play an important role for cognitive ability in normal and clinical conditions. In this context, several neuroimaging studies searched for features in postnatal life that could serve as a proxy for earlier developmental events. A very interesting candidate is the sulcal, or sulco-gyral, patterns, macroscopic features of the cortex anatomy related to the fold topology-e.g., continuous vs. interrupted/broken fold, present vs. absent fold-or their spatial organization. Indeed, as opposed to quantitative features of the cortical sheet (e.g., thickness, surface area or curvature) taking decades to reach the levels measured in adult, the qualitative sulcal patterns are mainly determined before birth and stable across the lifespan. The sulcal patterns therefore offer a window on the fetal constraints on specific brain areas on cognitive abilities and clinical symptoms that manifest later in life. After a global review of the cerebral cortex sulcation, its mechanisms, its ontogenesis along with methodological issues on how to measure the sulcal patterns, we present a selection of studies illustrating that analysis of the sulcal patterns can provide information on prenatal dispositions to cognition (with a focus on cognitive control and academic abilities) and cognitive symptoms (with a focus on schizophrenia and bipolar disorders). Finally, perspectives of sulcal studies are discussed.
Collapse
Affiliation(s)
- Arnaud Cachia
- Université de Paris, LaPsyDÉ, CNRS, Paris, France
- Université de Paris, IPNP, INSERM, Paris, France
| | - Grégoire Borst
- Université de Paris, LaPsyDÉ, CNRS, Paris, France
- Institut Universitaire de France, Paris, France
| | - Renaud Jardri
- Univ Lille, INSERM U-1172, CHU Lille, Lille Neuroscience & Cognition Centre, Plasticity & SubjectivitY (PSY) team, Lille, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Graham K. Murray
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Marion Plaze
- Université de Paris, IPNP, INSERM, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris, Paris, France
| |
Collapse
|
37
|
Crisóstomo J, Duarte JV, Moreno C, Gomes L, Castelo‐Branco M. A novel morphometric signature of brain alterations in type 2 diabetes: Patterns of changed cortical gyrification. Eur J Neurosci 2021; 54:6322-6333. [PMID: 34390585 PMCID: PMC9291170 DOI: 10.1111/ejn.15424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/11/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
Type 2 diabetes is a chronic disease that creates atrophic signatures in the brain, including decreases of total and regional volume of grey matter, white matter and cortical thickness. However, there is a lack of studies assessing cortical gyrification in type 2 diabetes. Changes in this emerging feature have been associated mainly with genetic legacy, but environmental factors may also play a role. Here, we investigated alterations of the gyrification index and classical morphometric measures in type 2 diabetes, a late acquired disease with complex aetiology with both underlying genetic and more preponderant environmental factors. In this cross-sectional study, we analysed brain anatomical magnetic resonance images of 86 participants with type 2 diabetes and 40 healthy control participants, to investigate structural alterations in type 2 diabetes, including whole-brain volumetric measures, local alterations of grey matter volume, cortical thickness and the gyrification index. We found concordant significant decrements in total and regional grey matter volume, and cortical thickness. Surprisingly, the cortical gyrification index was found to be mainly increased and mainly located in cortical sensory areas in type 2 diabetes. Moreover, alterations in gyrification correlated with clinical data, suggesting an influence of metabolic profile in alterations of gyrification in type 2 diabetes. Further studies should address causal influences of genetic and/or environmental factors in patterns of cortical gyrification in type 2 diabetes.
Collapse
Affiliation(s)
- Joana Crisóstomo
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Faculty of Medicine (FMUC)University of CoimbraCoimbraPortugal
| | - João V. Duarte
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Faculty of Medicine (FMUC)University of CoimbraCoimbraPortugal
| | - Carolina Moreno
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Department of EndocrinologyCentro Hospitalar e Universitário de Coimbra (CHUC)CoimbraPortugal
| | - Leonor Gomes
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Department of EndocrinologyCentro Hospitalar e Universitário de Coimbra (CHUC)CoimbraPortugal
| | - Miguel Castelo‐Branco
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Faculty of Medicine (FMUC)University of CoimbraCoimbraPortugal
| |
Collapse
|
38
|
Zoltowski AR, Lyu I, Failla M, Mash LE, Dunham K, Feldman JI, Woynaroski TG, Wallace MT, Barquero LA, Nguyen TQ, Cutting LE, Kang H, Landman BA, Cascio CJ. Cortical Morphology in Autism: Findings from a Cortical Shape-Adaptive Approach to Local Gyrification Indexing. Cereb Cortex 2021; 31:5188-5205. [PMID: 34195789 DOI: 10.1093/cercor/bhab151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 11/14/2022] Open
Abstract
It has been challenging to elucidate the differences in brain structure that underlie behavioral features of autism. Prior studies have begun to identify patterns of changes in autism across multiple structural indices, including cortical thickness, local gyrification, and sulcal depth. However, common approaches to local gyrification indexing used in prior studies have been limited by low spatial resolution relative to functional brain topography. In this study, we analyze the aforementioned structural indices, utilizing a new method of local gyrification indexing that quantifies this index adaptively in relation to specific sulci/gyri, improving interpretation with respect to functional organization. Our sample included n = 115 autistic and n = 254 neurotypical participants aged 5-54, and we investigated structural patterns by group, age, and autism-related behaviors. Differing structural patterns by group emerged in many regions, with age moderating group differences particularly in frontal and limbic regions. There were also several regions, particularly in sensory areas, in which one or more of the structural indices of interest either positively or negatively covaried with autism-related behaviors. Given the advantages of this approach, future studies may benefit from its application in hypothesis-driven examinations of specific brain regions and/or longitudinal studies to assess brain development in autism.
Collapse
Affiliation(s)
- Alisa R Zoltowski
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ilwoo Lyu
- Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Michelle Failla
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,College of Nursing, Ohio State University, Columbus, OH 43210, USA
| | - Lisa E Mash
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA 92120, USA
| | - Kacie Dunham
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacob I Feldman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN 37212, USA
| | - Tiffany G Woynaroski
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN 37212, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN 37212, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA
| | - Laura A Barquero
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA
| | - Tin Q Nguyen
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Special Education, Vanderbilt University, Nashville, TN 37203, USA
| | - Laurie E Cutting
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA.,Department of Special Education, Vanderbilt University, Nashville, TN 37203, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Bennett A Landman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
| | - Carissa J Cascio
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN 37212, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA
| |
Collapse
|
39
|
Hickmott RA, Bosakhar A, Quezada S, Barresi M, Walker DW, Ryan AL, Quigley A, Tolcos M. The One-Stop Gyrification Station - Challenges and New Technologies. Prog Neurobiol 2021; 204:102111. [PMID: 34166774 DOI: 10.1016/j.pneurobio.2021.102111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022]
Abstract
The evolution of the folded cortical surface is an iconic feature of the human brain shared by a subset of mammals and considered pivotal for the emergence of higher-order cognitive functions. While our understanding of the neurodevelopmental processes involved in corticogenesis has greatly advanced over the past 70 years of brain research, the fundamental mechanisms that result in gyrification, along with its originating cytoarchitectural location, remain largely unknown. This review brings together numerous approaches to this basic neurodevelopmental problem, constructing a narrative of how various models, techniques and tools have been applied to the study of gyrification thus far. After a brief discussion of core concepts and challenges within the field, we provide an analysis of the significant discoveries derived from the parallel use of model organisms such as the mouse, ferret, sheep and non-human primates, particularly with regard to how they have shaped our understanding of cortical folding. We then focus on the latest developments in the field and the complementary application of newly emerging technologies, such as cerebral organoids, advanced neuroimaging techniques, and atomic force microscopy. Particular emphasis is placed upon the use of novel computational and physical models in regard to the interplay of biological and physical forces in cortical folding.
Collapse
Affiliation(s)
- Ryan A Hickmott
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia; BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, 3065, Australia
| | - Abdulhameed Bosakhar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Sebastian Quezada
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Mikaela Barresi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Amy L Ryan
- Hastings Centre for Pulmonary Research, Department of Pulmonary, Critical Care and Sleep Medicine, USC Keck School of Medicine, University of Southern California, CA, USA and Department of Stem Cell and Regenerative Medicine, University of Southern California, CA, 90033, USA
| | - Anita Quigley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia; BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, VIC, 3065, Australia; School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, VIC, 3065, Australia; ARC Centre of Excellence in Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
40
|
Davis NJ. Quantifying the trajectory of gyrification changes in the aging brain (Commentary on Madan, 2021). Eur J Neurosci 2021; 53:3634-3636. [PMID: 33817886 DOI: 10.1111/ejn.15220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Nick J Davis
- Department of Psychology, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
41
|
Gharehgazlou A, Freitas C, Ameis SH, Taylor MJ, Lerch JP, Radua J, Anagnostou E. Cortical Gyrification Morphology in Individuals with ASD and ADHD across the Lifespan: A Systematic Review and Meta-Analysis. Cereb Cortex 2021; 31:2653-2669. [PMID: 33386405 PMCID: PMC8023842 DOI: 10.1093/cercor/bhaa381] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
Autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) are common neurodevelopmental disorders (NDDs) that may impact brain maturation. A number of studies have examined cortical gyrification morphology in both NDDs. Here we review and when possible pool their results to better understand the shared and potentially disorder-specific gyrification features. We searched MEDLINE, PsycINFO, and EMBASE databases, and 24 and 10 studies met the criteria to be included in the systematic review and meta-analysis portions, respectively. Meta-analysis of local Gyrification Index (lGI) findings across ASD studies was conducted with SDM software adapted for surface-based morphometry studies. Meta-regressions were used to explore effects of age, sex, and sample size on gyrification differences. There were no significant differences in gyrification across groups. Qualitative synthesis of remaining ASD studies highlighted heterogeneity in findings. Large-scale ADHD studies reported no differences in gyrification between cases and controls suggesting that, similar to ASD, there is currently no evidence of differences in gyrification morphology compared with controls. Larger, longitudinal studies are needed to further clarify the effects of age, sex, and IQ on cortical gyrification in these NDDs.
Collapse
Affiliation(s)
- Avideh Gharehgazlou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Carina Freitas
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Stephanie H Ameis
- Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,The Margaret and Wallace McCain Centre for Child, Youth, & Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Jason P Lerch
- Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Joaquim Radua
- Imaging Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain.,Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Boys with autism spectrum disorder have distinct cortical folding patterns underpinning impaired self-regulation: a surface-based morphometry study. Brain Imaging Behav 2021; 14:2464-2476. [PMID: 31512098 DOI: 10.1007/s11682-019-00199-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although impaired self-regulation (dysregulation) in autism spectrum disorder (ASD) garnered increasing awareness, the neural mechanism of dysregulation in ASD are far from conclusive. To complement our previous voxel-based morphometry findings, we estimated the cortical thickness, surface area, and local gyrification index based on the surface-based morphometry from structural MRI images in 85 ASD and 65 typically developing control (TDC) boys, aged 7-17 years. Levels of dysregulation were measured by the sum of T-scores of Attention, Aggression, and Anxiety/Depression subscales on the Child Behavior Checklist. We found both ASD and TDC shared similar relationships between dysregulation and cortical folding patterns in the left superior and inferior temporal gyri and the left premotor cortex. Significant diagnosis by dysregulation interactions in cortical folding patterns were identified over the right middle frontal and right lateral orbitofrontal regions. The statistical significance of greater local gyrification index in ASD than TDC in several brain regions disappeared when the level of dysregulation was considered. The findings of shared and distinct neural correlates underpinning dysregulation between ASD and TDC may facilitate the development of targeted interventions in the future. The present work also demonstrates that inter-subject variations in self-regulation may explain some extents of ASD-associated brain morphometric differences, likely suggesting that dysregulation is one of the yardsticks for dissecting the heterogeneity of ASD.
Collapse
|
43
|
Lin HY, Huang CC, Chou KH, Yang AC, Lo CYZ, Tsai SJ, Lin CP. Differential Patterns of Gyral and Sulcal Morphological Changes During Normal Aging Process. Front Aging Neurosci 2021; 13:625931. [PMID: 33613271 PMCID: PMC7886979 DOI: 10.3389/fnagi.2021.625931] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022] Open
Abstract
The cerebral cortex is a highly convoluted structure with distinct morphologic features, namely the gyri and sulci, which are associated with the functional segregation or integration in the human brain. During the lifespan, the brain atrophy that is accompanied by cognitive decline is a well-accepted aging phenotype. However, the detailed patterns of cortical folding change during aging, especially the changing age-dependencies of gyri and sulci, which is essential to brain functioning, remain unclear. In this study, we investigated the morphology of the gyral and sulcal regions from pial and white matter surfaces using MR imaging data of 417 healthy participants across adulthood to old age (21–92 years). To elucidate the age-related changes in the cortical pattern, we fitted cortical thickness and intrinsic curvature of gyri and sulci using the quadratic model to evaluate their age-dependencies during normal aging. Our findings show that comparing to gyri, the sulcal thinning is the most prominent pattern during the aging process, and the gyrification of pial and white matter surfaces were also affected differently, which implies the vulnerability of functional segregation during aging. Taken together, we propose a morphological model of aging that may provide a framework for understanding the mechanisms underlying gray matter degeneration.
Collapse
Affiliation(s)
- Hsin-Yu Lin
- Centre for Research and Development in Learning, Nanyang Technological University, Singapore, Singapore.,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Chu-Chung Huang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,School of Psychology and Cognitive Science, East China Normal University, Institute of Cognitive Neuroscience, Shanghai, China
| | - Kun-Hsien Chou
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
44
|
Busatto G, Rosa PG, Serpa MH, Squarzoni P, Duran FL. Psychiatric neuroimaging research in Brazil: historical overview, current challenges, and future opportunities. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2021; 43:83-101. [PMID: 32520165 PMCID: PMC7861184 DOI: 10.1590/1516-4446-2019-0757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/03/2020] [Indexed: 11/23/2022]
Abstract
The last four decades have witnessed tremendous growth in research studies applying neuroimaging methods to evaluate pathophysiological and treatment aspects of psychiatric disorders around the world. This article provides a brief history of psychiatric neuroimaging research in Brazil, including quantitative information about the growth of this field in the country over the past 20 years. Also described are the various methodologies used, the wealth of scientific questions investigated, and the strength of international collaborations established. Finally, examples of the many methodological advances that have emerged in the field of in vivo neuroimaging are provided, with discussion of the challenges faced by psychiatric research groups in Brazil, a country of limited resources, to continue incorporating such innovations to generate novel scientific data of local and global relevance.
Collapse
Affiliation(s)
- Geraldo Busatto
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pedro G. Rosa
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mauricio H. Serpa
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paula Squarzoni
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fabio L. Duran
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
45
|
Yun HJ, Perez JDR, Sosa P, Valdés JA, Madan N, Kitano R, Akiyama S, Skotko BG, Feldman HA, Bianchi DW, Grant PE, Tarui T, Im K. Regional Alterations in Cortical Sulcal Depth in Living Fetuses with Down Syndrome. Cereb Cortex 2021; 31:757-767. [PMID: 32940649 PMCID: PMC7786357 DOI: 10.1093/cercor/bhaa255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of developmental disabilities. Advanced analysis of brain magnetic resonance imaging (MRI) has been used to find brain abnormalities and their relationship to neurocognitive impairments in children and adolescents with DS. Because genetic factors affect brain development in early fetal life, there is a growing interest in analyzing brains from living fetuses with DS. In this study, we investigated regional sulcal folding depth as well as global cortical gyrification from fetal brain MRIs. Nine fetuses with DS (29.1 ± 4.24 gestational weeks [mean ± standard deviation]) were compared with 17 typically developing [TD] fetuses (28.4 ± 3.44). Fetuses with DS showed lower whole-brain average sulcal depths and gyrification index than TD fetuses. Significant decreases in sulcal depth were found in bilateral Sylvian fissures and right central and parieto-occipital sulci. On the other hand, significantly increased sulcal depth was shown in the left superior temporal sulcus, which is related to atypical hemispheric asymmetry of cortical folding. Moreover, these group differences increased as gestation progressed. This study demonstrates that regional sulcal depth is a sensitive marker for detecting alterations of cortical development in DS during fetal life, which may be associated with later neurocognitive impairment.
Collapse
Affiliation(s)
- Hyuk Jin Yun
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juan David Ruiz Perez
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patricia Sosa
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - J Alejandro Valdés
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Neel Madan
- Department of Radiology, Tufts Medical Center, Boston, MA 02111, USA
| | - Rie Kitano
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Shizuko Akiyama
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Brian G Skotko
- Down Syndrome Program, Genetics, Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Henry A Feldman
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana W Bianchi
- Prenatal Genomics and Fetal Therapy Section, Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tomo Tarui
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
46
|
Soto-Perez J, Baumgartner M, Kanadia RN. Role of NDE1 in the Development and Evolution of the Gyrified Cortex. Front Neurosci 2020; 14:617513. [PMID: 33390896 PMCID: PMC7775536 DOI: 10.3389/fnins.2020.617513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
An expanded cortex is a hallmark of human neurodevelopment and endows increased cognitive capabilities. Recent work has shown that the cell cycle-related gene NDE1 is essential for proper cortical development. Patients who have mutations in NDE1 exhibit congenital microcephaly as a primary phenotype. At the cellular level, NDE1 is essential for interkinetic nuclear migration and mitosis of radial glial cells, which translates to an indispensable role in neurodevelopment. The nuclear migration function of NDE1 is well conserved across Opisthokonta. In mammals, multiple isoforms containing alternate terminal exons, which influence the functionality of NDE1, have been reported. It has been noted that the pattern of terminal exon usage mirrors patterns of cortical complexity in mammals. To provide context to these findings, here, we provide a comprehensive review of the literature regarding NDE1, its molecular biology and physiological relevance at the cellular and organismal levels. In particular, we outline the potential roles of NDE1 in progenitor cell behavior and explore the spectrum of NDE1 pathogenic variants. Moreover, we assessed the evolutionary conservation of NDE1 and interrogated whether the usage of alternative terminal exons is characteristic of species with gyrencephalic cortices. We found that gyrencephalic species are more likely to express transcripts that use the human-associated terminal exon, whereas lissencephalic species tend to express transcripts that use the mouse-associated terminal exon. Among gyrencephalic species, the human-associated terminal exon was preferentially expressed by those with a high order of gyrification. These findings underscore phylogenetic relationships between the preferential usage of NDE1 terminal exon and high-order gyrification, which provide insight into cortical evolution underlying high-order brain functions.
Collapse
Affiliation(s)
- Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | | | - Rahul N. Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
47
|
Rana S, Shishegar R, Quezada S, Johnston L, Walker DW, Tolcos M. The Subplate: A Potential Driver of Cortical Folding? Cereb Cortex 2020; 29:4697-4708. [PMID: 30721930 DOI: 10.1093/cercor/bhz003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 01/06/2023] Open
Abstract
In many species of Mammalia, the surface of the brain develops from a smooth structure to one with many fissures and folds, allowing for vast expansion of the surface area of the cortex. The importance of understanding what drives cortical folding extends beyond mere curiosity, as conditions such as preterm birth, intrauterine growth restriction, and fetal alcohol syndrome are associated with impaired folding in the infant and child. Despite being a key feature of brain development, the mechanisms driving cortical folding remain largely unknown. In this review we discuss the possible role of the subplate, a developmentally transient compartment, in directing region-dependent development leading to sulcal and gyral formation. We discuss the development of the subplate in species with lissencephalic and gyrencephalic cortices, the characteristics of the cells found in the subplate, and the possible presence of molecular cues that guide axons into, and out of, the overlying and multilayered cortex before the appearance of definitive cortical folds. An understanding of what drives cortical folding is likely to help in understanding the origins of abnormal folding patterns in clinical pathologies.
Collapse
Affiliation(s)
- Shreya Rana
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Rosita Shishegar
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Sebastian Quezada
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Leigh Johnston
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Mary Tolcos
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
48
|
Pizzagalli F, Auzias G, Yang Q, Mathias SR, Faskowitz J, Boyd JD, Amini A, Rivière D, McMahon KL, de Zubicaray GI, Martin NG, Mangin JF, Glahn DC, Blangero J, Wright MJ, Thompson PM, Kochunov P, Jahanshad N. The reliability and heritability of cortical folds and their genetic correlations across hemispheres. Commun Biol 2020; 3:510. [PMID: 32934300 PMCID: PMC7493906 DOI: 10.1038/s42003-020-01163-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cortical folds help drive the parcellation of the human cortex into functionally specific regions. Variations in the length, depth, width, and surface area of these sulcal landmarks have been associated with disease, and may be genetically mediated. Before estimating the heritability of sulcal variation, the extent to which these metrics can be reliably extracted from in-vivo MRI must be established. Using four independent test-retest datasets, we found high reliability across the brain (intraclass correlation interquartile range: 0.65-0.85). Heritability estimates were derived for three family-based cohorts using variance components analysis and pooled (total N > 3000); the overall sulcal heritability pattern was correlated to that derived for a large population cohort (N > 9000) calculated using genomic complex trait analysis. Overall, sulcal width was the most heritable metric, and earlier forming sulci showed higher heritability. The inter-hemispheric genetic correlations were high, yet select sulci showed incomplete pleiotropy, suggesting hemisphere-specific genetic influences.
Collapse
Grants
- P41 EB015922 NIBIB NIH HHS
- R01 EB015611 NIBIB NIH HHS
- P01 AG026276 NIA NIH HHS
- R21 NS064534 NINDS NIH HHS
- R01 MH078111 NIMH NIH HHS
- R01 HD050735 NICHD NIH HHS
- R01 NS056307 NINDS NIH HHS
- R01 MH121246 NIMH NIH HHS
- P50 MH071616 NIMH NIH HHS
- R03 EB012461 NIBIB NIH HHS
- R01 AG059874 NIA NIH HHS
- U24 RR021382 NCRR NIH HHS
- P30 AG066444 NIA NIH HHS
- P01 AG003991 NIA NIH HHS
- P50 AG005681 NIA NIH HHS
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- U54 MH091657 NIMH NIH HHS
- R01 AG021910 NIA NIH HHS
- R01 MH078143 NIMH NIH HHS
- P41 RR015241 NCRR NIH HHS
- S10 OD023696 NIH HHS
- R01 MH083824 NIMH NIH HHS
- This research was funded in part by NIH ENIGMA Center grant U54 EB020403, supported by the Big Data to Knowledge (BD2K) Centers of Excellence program funded by a cross-NIH initiative. Additional grant support was provided by: R01 AG059874, R01 MH117601, R01 MH121246, and P41 EB015922. QTIM was supported by NIH R01 HD050735, and the NHMRC 486682, Australia; GOBS: Financial support for this study was provided by the National Institute of Mental Health grants MH078143 (PI: DC Glahn), MH078111 (PI: J Blangero), and MH083824 (PI: DC Glahn & J Blangero); HCP data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University; UK Biobank: This research was conducted using the UK Biobank Resource under Application Number ‘11559’; BrainVISA’s Morphologist software development received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement No 720270 & 785907 (Human Brain ProjectSGA1 & SGA2), and by the FRM DIC20161236445. OASIS: Cross-Sectional: Principal Investigators: D. Marcus, R. Buckner, J. Csernansky J. Morris; P50 AG05681, P01 AG03991, P01 AG026276, R01 AG021910, P20 MH071616, U24 RR021382. KKI was supported by NIH grants NCRR P41 RR015241 (Peter C.M. van Zijl), 1R01NS056307 (Jerry Prince), 1R21NS064534-01A109 (Bennett A. Landman/Jerry L. Prince), 1R03EB012461-01 (Bennett A. Landman). Neda Jahanshad and Paul Thompson are MPIs of a research project grant from Biogen, Inc. (PO 969323).
Collapse
Affiliation(s)
- Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université & CNRS, Marseille, France
| | - Qifan Yang
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Joshua Faskowitz
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Joshua D Boyd
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Armand Amini
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, France
- CATI, Multicenter Neuroimaging Platform, Paris, France
| | - Katie L McMahon
- School of Clinical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Greig I de Zubicaray
- Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | | | - Jean-François Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, France
- CATI, Multicenter Neuroimaging Platform, Paris, France
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.
| |
Collapse
|
49
|
Ortinau CM, Rollins CK, Gholipour A, Yun HJ, Marshall M, Gagoski B, Afacan O, Friedman K, Tworetzky W, Warfield SK, Newburger JW, Inder TE, Grant PE, Im K. Early-Emerging Sulcal Patterns Are Atypical in Fetuses with Congenital Heart Disease. Cereb Cortex 2020; 29:3605-3616. [PMID: 30272144 DOI: 10.1093/cercor/bhy235] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 08/28/2018] [Indexed: 12/30/2022] Open
Abstract
Fetuses with congenital heart disease (CHD) have third trimester alterations in cortical development on brain magnetic resonance imaging (MRI). However, the intersulcal relationships contributing to global sulcal pattern remain unknown. This study applied a novel method for examining the geometric and topological relationships between sulci to fetal brain MRIs from 21-30 gestational weeks in CHD fetuses (n = 19) and typically developing (TD) fetuses (n = 17). Sulcal pattern similarity index (SI) to template fetal brain MRIs was determined for the position, area, and depth for corresponding sulcal basins and intersulcal relationships for each subject. CHD fetuses demonstrated altered global sulcal patterns in the left hemisphere compared with TD fetuses (TD [SI, mean ± SD]: 0.822 ± 0.023, CHD: 0.795 ± 0.030, P = 0.002). These differences were present in the earliest emerging sulci and were driven by differences in the position of corresponding sulcal basins (TD: 0.897 ± 0.024, CHD: 0.878 ± 0.019, P = 0.006) and intersulcal relationships (TD: 0.876 ± 0.031, CHD: 0.857 ± 0.018, P = 0.033). No differences in cortical gyrification index, mean curvature, or surface area were present. These data suggest our methods may be more sensitive than traditional measures for evaluating cortical developmental alterations early in gestation.
Collapse
Affiliation(s)
- Cynthia M Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Hyuk Jin Yun
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Division of Newborn Medicine, Boston Children's Hospital Boston, MA, USA
| | - Mackenzie Marshall
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Borjan Gagoski
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA.,Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Onur Afacan
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Kevin Friedman
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Department of Cardiology, Boston Children's Hospital Boston, MA, USA
| | - Wayne Tworetzky
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Department of Cardiology, Boston Children's Hospital Boston, MA, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jane W Newburger
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Department of Cardiology, Boston Children's Hospital Boston, MA, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - P Ellen Grant
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA.,Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA.,Division of Newborn Medicine, Boston Children's Hospital Boston, MA, USA
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Division of Newborn Medicine, Boston Children's Hospital Boston, MA, USA
| |
Collapse
|
50
|
Kim SY, Liu M, Hong SJ, Toga AW, Barkovich AJ, Xu D, Kim H. Disruption and Compensation of Sulcation-based Covariance Networks in Neonatal Brain Growth after Perinatal Injury. Cereb Cortex 2020; 30:6238-6253. [PMID: 32656563 DOI: 10.1093/cercor/bhaa181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/05/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Perinatal brain injuries in preterm neonates are associated with alterations in structural neurodevelopment, leading to impaired cognition, motor coordination, and behavior. However, it remains unknown how such injuries affect postnatal cortical folding and structural covariance networks, which indicate functional parcellation and reciprocal brain connectivity. Studying 229 magnetic resonance scans from 158 preterm neonates (n = 158, mean age = 28.2), we found that severe injuries including intraventricular hemorrhage, periventricular leukomalacia, and ventriculomegaly lead to significantly reduced cortical folding and increased covariance (hyper-covariance) in only the early (<31 weeks) but not middle (31-35 weeks) or late stage (>35 weeks) of the third trimester. The aberrant hyper-covariance may drive acceleration of cortical folding as a compensatory mechanism to "catch-up" with normal development. By 40 weeks, preterm neonates with/without severe brain injuries exhibited no difference in cortical folding and covariance compared with healthy term neonates. However, graph theory-based analysis showed that even after recovery, severely injured brains exhibit a more segregated, less integrated, and overall inefficient network system with reduced integration strength in the dorsal attention, frontoparietal, limbic, and visual network systems. Ultimately, severe perinatal injuries cause network-level deviations that persist until the late stage of the third trimester and may contribute to neurofunctional impairment.
Collapse
Affiliation(s)
- Sharon Y Kim
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Mengting Liu
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Seok-Jun Hong
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - A James Barkovich
- Department of Radiology, School of Medicine, University of California San Francisco, 1 Irving St., San Francisco, CA 94143, USA
| | - Duan Xu
- Department of Radiology, School of Medicine, University of California San Francisco, 1 Irving St., San Francisco, CA 94143, USA
| | - Hosung Kim
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| |
Collapse
|