1
|
Arndts K, Wiszniewsky A, Neumann AL, Wiszniewsky K, Katawa G, Hoerauf A, Layland-Heni LE, Ritter M, Hübner MP. Differences of in vitro immune responses between patent and pre-patent Litomosoides sigmodontis-infected mice are independent of the filarial antigenic stimulus used. Parasitol Res 2024; 123:358. [PMID: 39436444 PMCID: PMC11496330 DOI: 10.1007/s00436-024-08365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Lymphatic filariasis and onchocerciasis are neglected tropical diseases and cause significant public health problems in endemic countries, especially in sub-Saharan Africa. Since the human parasites are not viable in immune-competent mice, animal models have been developed, among them Litomosoides sigmodontis which permits a complete life cycle in BALB/c mice, including the development of patent infections with circulating microfilariae (Mf, the worm's offspring). To investigate the immunomodulatory properties of helminths in vitro, antigenic extracts can be prepared from different life cycle stages of the L. sigmodontis model, including adult worms, but the methods to prepare these antigens differ between research groups. This study analyzed whether different centrifugation methods during the preparation of an antigenic extract, the gender of used worms, or the different fractions (soluble or pellet) altered filarial-specific CD4+ T cell responses. These cells were isolated from pre-patent or patent/chronic infected mice, hence those without and those with Mf, respectively. Ex vivo immune responses were compared at these two different time points of the infection as well as the parasitic parameters. Worm burden and cell infiltration were elevated in the thoracic cavity (TC) and draining mediastinal lymph nodes at the pre-patent stage. Within the TC, eosinophils were significantly up-regulated at the earlier time point of infection which was further reflected by the eosinophil-related eotaxin-1 levels. Regarding the production of cytokines by re-stimulated CD4+ T cells in the presence of different antigen preparations, cytokine levels were comparable for all used extracts. Our data show that immune responses differ between pre-patent and patent filarial infection, but not in response to the different antigenic extracts themselves.
Collapse
Affiliation(s)
- Kathrin Arndts
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany.
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany.
| | - Anna Wiszniewsky
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Katharina Wiszniewsky
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie Et Immunomodulation (UR2IM), Université de Lomé, Ecole Supérieure Des Techniques Biologiques Et Alimentaires (ESTBA), Lomé, Togo
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Laura E Layland-Heni
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
2
|
Burger G, Adamou R, Kreuzmair R, Ndoumba WN, Mbassi DE, Mouima AMN, Tabopda CM, Adegnika RM, More A, Okwu DG, Mbadinga LBD, Calle CL, Veletzky L, Metzger WG, Mordmüller B, Ramharter M, Mombo-Ngoma G, Adegnika AA, Zoleko-Manego R, McCall MBB. Eosinophils, basophils and myeloid-derived suppressor cells in chronic Loa loa infection and its treatment in an endemic setting. PLoS Negl Trop Dis 2024; 18:e0012203. [PMID: 38771861 PMCID: PMC11147522 DOI: 10.1371/journal.pntd.0012203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/03/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Chronic infection by Loa loa remains an unsolved immunological paradox. Despite harboring subcutaneously migrating adult worms and often high densities of microfilariae, most patients experience only relatively mild symptoms, yet microfilaricidal treatment can trigger life-threatening inflammation. Here, we investigated innate cell populations hypothesized to play a role in these two faces of the disease, in an endemic population in Gabon. METHODOLOGY/PRINCIPAL FINDINGS We analyzed numbers and activation of eosinophils and basophils, as well as myeloid-derived suppressor cell (MDSC) subsets and associated circulating cytokine levels by flow cytometry in sex- and age-matched L. loa-uninfected (LL-), -amicrofilaraemic (MF-) and -microfilaraemic (MF+) individuals (n = 42), as well as microfilaraemic individuals treated with albendazole (n = 26). The percentage of eosinophils was lower in LL- (3.0%) than in the combined L. loa-infected population, but was similar in MF+ (13.1%) and MF- (12.3%). Upon treatment of MF+, eosinophilia increased from day 0 (17.2%) to day 14 (24.8%) and had decreased below baseline at day 168 (6.3%). Expression of the eosinophil activation marker CD123 followed the same pattern as the percentage of eosinophils, while the inverse was observed for CD193 and to some extent CD125. Circulating IL-5 levels after treatment followed the same pattern as eosinophil dynamics. Basophil numbers did not differ between infection states but increased after treatment of MF+. We did not observe differences in MDSC numbers between infection states or upon treatment. CONCLUSIONS/SIGNIFICANCE We demonstrate that both chronic infection and treatment of L. loa microfilaraemia are associated with eosinophil circulation and distinct phenotypical activation markers that might contribute to inflammatory pathways in this setting. In this first ever investigation into MDSC in L. loa infection, we found no evidence for their increased presence in chronic loiasis, suggesting that immunomodulation by L. loa is induced through other pathways.
Collapse
Affiliation(s)
- Gerrit Burger
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Rafiou Adamou
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Ruth Kreuzmair
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Wilfrid Ndzebe Ndoumba
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
| | - Dorothea Ekoka Mbassi
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
- Centre for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Ayong More
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Dearie Glory Okwu
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
| | | | | | - Luzia Veletzky
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
- Centre for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen Germany
| | - Rella Zoleko-Manego
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research, Partner sites Hamburg-Borstel-Lübeck-Riems, Germany
- Centre for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew B. B. McCall
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Wadephul LM, Arndts K, Katawa G, Dietlmeier E, Horsnell W, Hoerauf A, Ritter M. Walking a thin line between fixation and epitope binding - characterization of antigen retrieval methods suitable for eosinophil and HSV-2 staining in formalin-fixed female reproductive tissue. Eur J Histochem 2024; 68:3929. [PMID: 38624064 PMCID: PMC11059462 DOI: 10.4081/ejh.2024.3929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024] Open
Abstract
Antibody-based fluorescence analysis of female reproductive tissues in research of sexually transmitted diseases allows for an in-depth understanding of protein localization, interactions, and pathogenesis. However, in many cases, cryosectioning is not compatible with biosafety regulations; at all times, exposure of lab personnel and the public to potentially harmful pathogens from biological infectious material must be avoided; thus, formaldehyde fixation is essential. Due to formaldehyde's cross-linking properties, protein detection with antibodies can be impeded. To allow effective epitope binding during immunofluorescence of formalin-fixed paraffin-embedded vaginal tissue, we investigated two antigen retrieval methods. We tested these methods regarding their suitability for automated image analysis, facilitating reproducible quantitative microscopic data acquisition in sexually transmitted disease research. Heat-based retrieval at 80°C in citrate buffer proved to increase antibody binding to eosinophil protein and HSV-2 visibly and tissue morphology best, and was the most efficient for sample processing and quantitative analysis.
Collapse
Affiliation(s)
- Lisa Marie Wadephul
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn.
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn.
| | - Gnatoulma Katawa
- Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé.
| | - Eva Dietlmeier
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn.
| | - William Horsnell
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town.
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn; German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Bonn; German Centre for Infection Research (DZIF), Neglected Tropical Disease, partner site, Bonn-Cologne, Bonn.
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn.
| |
Collapse
|
4
|
Wang J, Zhao X, Li X, Jin X. Akkermansia muciniphila: a deworming partner independent of type 2 immunity. Gut Microbes 2024; 16:2338947. [PMID: 38717824 PMCID: PMC11086001 DOI: 10.1080/19490976.2024.2338947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
The gut microbiota has coevolved with the host for hundreds of millions of years, playing a beneficial role in host health. Human parasitic helminths are widespread and pose a pervasive global public health issue. Although Type 2 immunity provides partial resistance to helminth infections, the composition of the gut microbiota can change correspondingly. Therefore, it raises the question of what role the gut microbiota plays during helminth infection. Akkermansia muciniphila has emerged as a notable representative of beneficial microorganisms in the gut microbiota. Recent studies indicate that A. muciniphila is not merely associated with helminth infection but is also causally linked to infection. Here, we provide an overview of the crosstalk between A. muciniphila and enteric helminth infection. Our goal is to enhance our understanding of the interplay among A. muciniphila, helminths, and their hosts while also exploring the potential underlying mechanisms.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Animal Sciences, Jilin University, Changchun, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiufeng Zhao
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Xianhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, USA
| | - Xuemin Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
5
|
Chen H, Cao Z, Liu M, Diamond MS, Jin X. The impact of helminth-induced immunity on infection with bacteria or viruses. Vet Res 2023; 54:87. [PMID: 37789420 PMCID: PMC10548622 DOI: 10.1186/s13567-023-01216-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
Different human and animal pathogens trigger distinct immune responses in their hosts. The infection of bacteria or viruses can trigger type I pro-inflammatory immune responses (e.g., IFN-γ, TNF-α, TH1 cells), whereas infection by helminths typically elicits a type II host resistance and tolerizing immune response (e.g., IL-4, IL-5, IL-13, TH2 cells). In some respects, the type I and II immune responses induced by these different classes of pathogens are antagonistic. Indeed, recent studies indicate that infection by helminths differentially shapes the response and outcome of subsequent infection by viruses and bacteria. In this review, we summarize the current knowledge on how helminth infections influence concurrent or subsequent microbial infections and also discuss the implications for helminth-mediated immunity on the outcome of SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zengguo Cao
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Scheunemann JF, Risch F, Reichwald JJ, Lenz B, Neumann AL, Garbe S, Frohberger SJ, Koschel M, Ajendra J, Rothe M, Latz E, Coch C, Hartmann G, Schumak B, Hoerauf A, Hübner MP. Potential of Nucleic Acid Receptor Ligands to Improve Vaccination Efficacy against the Filarial Nematode Litomosoides sigmodontis. Vaccines (Basel) 2023; 11:vaccines11050966. [PMID: 37243070 DOI: 10.3390/vaccines11050966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
More than two-hundred-million people are infected with filariae worldwide. However, there is no vaccine available that confers long-lasting protection against filarial infections. Previous studies indicated that vaccination with irradiated infective L3 larvae reduces the worm load. This present study investigated whether the additional activation of cytosolic nucleic acid receptors as an adjuvant improves the efficacy of vaccination with irradiated L3 larvae of the rodent filaria Litomosoides sigmodontis with the aim of identifying novel vaccination strategies for filarial infections. Subcutaneous injection of irradiated L3 larvae in combination with poly(I:C) or 3pRNA resulted in neutrophil recruitment to the skin, accompanied by higher IP-10/CXCL10 and IFN-β RNA levels. To investigate the impact on parasite clearance, BALB/c mice received three subcutaneous injections in 2-week intervals with irradiated L3 larvae in combination with poly(I:C) or 3pRNA prior to the challenge infection. Vaccination with irradiated L3 larvae in combination with poly(I:C) or 3pRNA led to a markedly greater reduction in adult-worm counts by 73% and 57%, respectively, compared to the immunization with irradiated L3 larvae alone (45%). In conclusion, activation of nucleic acid-sensing immune receptors boosts the protective immune response against L. sigmodontis and nucleic acid-receptor agonists as vaccine adjuvants represent a promising novel strategy to improve the efficacy of vaccines against filariae and potentially other helminths.
Collapse
Affiliation(s)
- Johanna F Scheunemann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julia J Reichwald
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephan Garbe
- Clinic for Radiotherapy and Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Maximilian Rothe
- Institute for Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Eicke Latz
- Institute for Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Christoph Coch
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- Nextevidence GmbH, 81541 Munich, Germany
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Beatrix Schumak
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| |
Collapse
|
7
|
Ehrens A, Hoerauf A, Hübner MP. Eosinophils in filarial infections: Inducers of protection or pathology? Front Immunol 2022; 13:983812. [PMID: 36389745 PMCID: PMC9659639 DOI: 10.3389/fimmu.2022.983812] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/05/2022] [Indexed: 05/29/2024] Open
Abstract
Filariae are parasitic roundworms, which can cause debilitating diseases such as lymphatic filariasis and onchocerciasis. Lymphatic filariasis, also known as elephantiasis, and onchocerciasis, commonly referred to as river blindness, can lead to stigmatizing pathologies and present a socio-economic burden for affected people and their endemic countries. Filariae typically induce a type 2 immune response, which is characterized by cytokines, i.e., IL-4, IL-5 and IL-13 as well as type 2 immune cells including alternatively activated macrophages, innate lymphoid cells and Th2 cells. However, the hallmark characteristic of filarial infections is a profound eosinophilia. Eosinophils are innate immune cells and pivotal in controlling helminth infections in general and filarial infections in particular. By modulating the function of other leukocytes, eosinophils support and drive type 2 immune responses. Moreover, as primary effector cells, eosinophils can directly attack filariae through the release of granules containing toxic cationic proteins with or without extracellular DNA traps. At the same time, eosinophils can be a driving force for filarial pathology as observed during tropical pulmonary eosinophilia in lymphatic filariasis, in dermatitis in onchocerciasis patients as well as adverse events after treatment of onchocerciasis patients with diethylcarbamazine. This review summarizes the latest findings of the importance of eosinophil effector functions including the role of eosinophil-derived proteins in controlling filarial infections and their impact on filarial pathology analyzing both human and experimental animal studies.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
8
|
Abo-Aziza FAM, Hendawy SHM, Abdullah HHAM, El Namaky A, Laidoudi Y, Mediannikov O. Emergent and Neglected Equine Filariosis in Egypt: Species Diversity and Host Immune Response. Pathogens 2022; 11:979. [PMID: 36145411 PMCID: PMC9501446 DOI: 10.3390/pathogens11090979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Equine filariosis (EF) is a neglected vector-borne disease caused by nematode species belonging to the Onchocercidae and Setariidae families. Aside from their zoonotic potential, some species are responsible for serious health problems in equids worldwide, leading to significant economic difficulties. Here, we molecularly investigated equine blood samples (320 horses and 109 donkeys from Egypt) and four adult worms isolated from the peritoneal cavity of 5 out of the 94 slaughtered donkeys. In addition, quantitative enzyme-linked immunoassays (ELISAs) targeting circulating cytokines were used to identify whether the immunological profile of the infected animals is a Th1 (i.e., INF-gamma as indicator) or Th2 (i.e., IL-5 and IL-10 as indicators) response type. Overall, 13.8% and 0.3% of the donkeys and horses, respectively, were scored as positive for filaroid DNA. The 18S phylogeny revealed the occurrence of three different filaroid species, identified here as Mansonella (Tetrapetalonema) sp., Setaria digitata and Dirofilaria repens. Th1 (INF-gamma and IL-5) and Th2 (IL-10) immune response types were identified in equines infected with S. digitata and Mansonella (T.) sp., respectively. These results provide new data on the species diversity of EF in Egypt and extend knowledge of the downregulation of the protective immune response by the potentially zoonotic Mansonella (T) sp. There is an urgent need to implement control measures to preserve equine health and limit the propagation of these vector-borne filaroids in Egypt.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Seham H. M. Hendawy
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
- Tick and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Hend H. A. M. Abdullah
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
- Aix Marseille Université, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
| | - Amira El Namaky
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Younes Laidoudi
- Aix Marseille Université, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- PADESCA Laboratory, Veterinary Science Institute, University of Constantine 1, El-Khroub 25100, Algeria
| | - Oleg Mediannikov
- Aix Marseille Université, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
9
|
Ajendra J, Allen JE. Neutrophils: Friend or Foe in Filariasis? Parasite Immunol 2022; 44:e12918. [DOI: 10.1111/pim.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology University Hospital of Bonn Bonn Germany
| | - Judith E. Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell‐Matrix Research, Manchester Academic Health Science Center University of Manchester Manchester UK
| |
Collapse
|
10
|
Tamadaho RSE, Ritter M, Wiszniewsky A, Arndts K, Mack M, Hoerauf A, Layland LE. Infection-Derived Monocytic MDSCs Require TGF-β to Suppress Filarial-Specific IFN-γ But Not IL-13 Release by Filarial-Specific CD4+ T Cells In Vitro. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2021.707100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lymphatic filariasis (LF) remains a major health problem with severe economic repercussions in endemic communities of Sub-saharan Africa, South-East Asia and South America. The rodent-specific nematode Litomosoides sigmodontis (Ls) is used to study the immunomodulatory potential of filariae and research has elucidated pathways involving regulatory T cells (Tregs), IL-10 producing cells and alternatively activated macrophages (AAMs) and that CD4+ T cells play a paramount role during infection. Myeloid-derived suppressor cells (MDSCs) have been identified and characterised in man in cancer and other pathologies. The hallmark of MDSC populations is the suppression of T and B cell responses using various mechanisms, which are mostly specific to the pathology or setting. However, until now, it remains unclear whether they play a role in filarial-specific responses. We report here that monocytic MDSCs (Mo-MDSCs, CD11b+Ly6C+Ly6G-) and polymorphonuclear MDSCs (PMN-MDSCs, CD11b+Ly6Cint/loLy6G+) expanded in the thoracic cavity (TC, the site of infection) and correlated positively with filarial life-stages in Ls-infected BALB/c mice. In vitro, only infection-derived Mo-MDSCs showed a suppressive nature by preventing IL-13 and IFN-γ secretion from filarial-specific CD4+ T cells upon co-culture with soluble worm extract. This suppression was not mediated by IL-10, IL-6 or TNF-α, and did not require cell-contact, nitric oxide (NO), IL-4/IL-5 signalling pathways or CCR2. Interestingly, neutralizing TGF-β significantly rescued IFN-γ but not IL-13 production by filarial-specific CD4+ T cells. In comparison to naive cells, PCR array data showed an overall down-regulation of inflammatory pathways in both infection-derived Mo-MDSCs and PMN-MDSCs. In conclusion, these primary data sets show activity and expansion of MDSCs during Ls infection adding this regulatory cell type to the complex milieu of host responses during chronic helminth infections.
Collapse
|
11
|
Wiszniewsky A, Layland LE, Arndts K, Wadephul LM, Tamadaho RSE, Borrero-Wolff D, Chunda VC, Kien CA, Hoerauf A, Wanji S, Ritter M. Adoptive Transfer of Immune Cells Into RAG2IL-2Rγ-Deficient Mice During Litomosoides sigmodontis Infection: A Novel Approach to Investigate Filarial-Specific Immune Responses. Front Immunol 2021; 12:777860. [PMID: 34868049 PMCID: PMC8636703 DOI: 10.3389/fimmu.2021.777860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Despite long-term mass drug administration programmes, approximately 220 million people are still infected with filariae in endemic regions. Several research studies have characterized host immune responses but a major obstacle for research on human filariae has been the inability to obtain adult worms which in turn has hindered analysis on infection kinetics and immune signalling. Although the Litomosoides sigmodontis filarial mouse model is well-established, the complex immunological mechanisms associated with filarial control and disease progression remain unclear and translation to human infections is difficult, especially since human filarial infections in rodents are limited. To overcome these obstacles, we performed adoptive immune cell transfer experiments into RAG2IL-2Rγ-deficient C57BL/6 mice. These mice lack T, B and natural killer cells and are susceptible to infection with the human filaria Loa loa. In this study, we revealed a long-term release of L. sigmodontis offspring (microfilariae) in RAG2IL-2Rγ-deficient C57BL/6 mice, which contrasts to C57BL/6 mice which normally eliminate the parasites before patency. We further showed that CD4+ T cells isolated from acute L. sigmodontis-infected C57BL/6 donor mice or mice that already cleared the infection were able to eliminate the parasite and prevent inflammation at the site of infection. In addition, the clearance of the parasites was associated with Th17 polarization of the CD4+ T cells. Consequently, adoptive transfer of immune cell subsets into RAG2IL-2Rγ-deficient C57BL/6 mice will provide an optimal platform to decipher characteristics of distinct immune cells that are crucial for the immunity against rodent and human filarial infections and moreover, might be useful for preclinical research, especially about the efficacy of macrofilaricidal drugs.
Collapse
Affiliation(s)
- Anna Wiszniewsky
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Laura E Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Lisa M Wadephul
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Ruth S E Tamadaho
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Dennis Borrero-Wolff
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Valerine C Chunda
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chi Anizette Kien
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | - Samuel Wanji
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
12
|
Lymphatic filariasis and visceral leishmaniasis coinfection: A review on their epidemiology, therapeutic, and immune responses. Acta Trop 2021; 224:106117. [PMID: 34464587 DOI: 10.1016/j.actatropica.2021.106117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
Coinfection is less commonly observed in individuals around the world, yet it is more common than the single infection. Around 800 million people worldwide are infected with helminths as a result of various diseases. Lymphatic filariasis (LF) and visceral leishmaniasis (VL) are chronic, deadly, crippling, and debilitating neglected tropical diseases (NTDs) that are endemic in tropical and subtropical regions of the world. Due to poor hygienic conditions, poverty, and genetic predisposition, those living in endemic areas are more likely to develop both leishmaniasis and filariasis. One of the key challenges in the management of LF/VL coinfection is the development of an effective therapeutic strategy that not only treats the first episode of VL but also prevents LF. However, there is a scarcity of knowledge and data on the relationship between LF and VL coinfection. While reviewing it was apparent that only a few studies relevant to LF/VL coinfections have been reported from southeastern Spain, Sudan, and the Indian subcontinents, highlighting the need for greater research in the most affected areas. We also looked at LF and VL as a single disease and also as a coinfection. Some features of the immune response evolved in mammalian hosts against LF and VL alone or against coinfection are also discussed, including epidemiology, therapeutic regimens, and vaccines. In addition to being potentially useful in clinical research, our findings imply the need for improved diagnostic methodology and therapeutics, which could accelerate the deployment of more specific and effective diagnosis for treatments to lessen the impact of VL/LF coinfections in the population.
Collapse
|
13
|
Risch F, Ritter M, Hoerauf A, Hübner MP. Human filariasis-contributions of the Litomosoides sigmodontis and Acanthocheilonema viteae animal model. Parasitol Res 2021; 120:4125-4143. [PMID: 33547508 PMCID: PMC8599372 DOI: 10.1007/s00436-020-07026-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Filariae are vector-borne parasitic nematodes that are endemic worldwide, in tropical and subtropical regions. Important human filariae spp. include Onchocerca volvulus, Wuchereria bancrofti and Brugia spp., and Loa loa and Mansonella spp. causing onchocerciasis (river blindness), lymphatic filariasis (lymphedema and hydrocele), loiasis (eye worm), and mansonelliasis, respectively. It is estimated that over 1 billion individuals live in endemic regions where filarial diseases are a public health concern contributing to significant disability adjusted life years (DALYs). Thus, efforts to control and eliminate filarial diseases were already launched by the WHO in the 1970s, especially against lymphatic filariasis and onchocerciasis, and are mainly based on mass drug administration (MDA) of microfilaricidal drugs (ivermectin, diethylcarbamazine, albendazole) to filarial endemic areas accompanied with vector control strategies with the goal to reduce the transmission. With the United Nations Sustainable Development Goals (SDGs), it was decided to eliminate transmission of onchocerciasis and stop lymphatic filariasis as a public health problem by 2030. It was also requested that novel drugs and treatment strategies be developed. Mouse models provide an important platform for anti-filarial drug research in a preclinical setting. This review presents an overview about the Litomosoides sigmodontis and Acanthocheilonema viteae filarial mouse models and their role in immunological research as well as preclinical studies about novel anti-filarial drugs and treatment strategies.
Collapse
Affiliation(s)
- Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
14
|
Fercoq F, Remion E, Vallarino-Lhermitte N, Alonso J, Raveendran L, Nixon C, Le Quesne J, Carlin LM, Martin C. Microfilaria-dependent thoracic pathology associated with eosinophilic and fibrotic polyps in filaria-infected rodents. Parasit Vectors 2020; 13:551. [PMID: 33160409 PMCID: PMC7648300 DOI: 10.1186/s13071-020-04428-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary manifestations are regularly reported in both human and animal filariasis. In human filariasis, the main known lung manifestations are the tropical pulmonary eosinophilia syndrome. Its duration and severity are correlated with the presence of microfilariae. Litomosoides sigmodontis is a filarial parasite residing in the pleural cavity of rodents. This model is widely used to understand the immune mechanisms that are established during infection and for the screening of therapeutic molecules. Some pulmonary manifestations during the patent phase of infection with L. sigmodontis have been described in different rodent hosts more or less permissive to infection. METHODS Here, the permissive Mongolian gerbil (Meriones unguiculatus) was infected with L. sigmodontis. Prevalence and density of microfilariae and adult parasites were evaluated. Lungs were analyzed for pathological signatures using immunohistochemistry and 3D imaging techniques (two-photon and light sheet microscopy). RESULTS Microfilaremia in gerbils was correlated with parasite load, as amicrofilaremic individuals had fewer parasites in their pleural cavities. Fibrotic polypoid structures were observed on both pleurae of infected gerbils. Polyps were of variable size and developed from the visceral mesothelium over the entire pleura. The larger polyps were vascularized and strongly infiltrated by immune cells such as eosinophils, macrophages or lymphocytes. The formation of these structures was induced by the presence of adult filariae since small and rare polyps were observed before patency, but they were exacerbated by the presence of gravid females and microfilariae. CONCLUSIONS Altogether, these data emphasize the role of host-specific factors in the pathogenesis of filarial infections.
Collapse
Affiliation(s)
- Frédéric Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM UMR 7245), Muséum national d'Histoire naturelle, CNRS, P52, 61 rue Buffon, 75005, Paris, France
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Estelle Remion
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM UMR 7245), Muséum national d'Histoire naturelle, CNRS, P52, 61 rue Buffon, 75005, Paris, France
| | - Nathaly Vallarino-Lhermitte
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM UMR 7245), Muséum national d'Histoire naturelle, CNRS, P52, 61 rue Buffon, 75005, Paris, France
| | - Joy Alonso
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM UMR 7245), Muséum national d'Histoire naturelle, CNRS, P52, 61 rue Buffon, 75005, Paris, France
| | - Lisy Raveendran
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM UMR 7245), Muséum national d'Histoire naturelle, CNRS, P52, 61 rue Buffon, 75005, Paris, France
| | - Colin Nixon
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - John Le Quesne
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Leo M Carlin
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1GH, UK
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM UMR 7245), Muséum national d'Histoire naturelle, CNRS, P52, 61 rue Buffon, 75005, Paris, France.
| |
Collapse
|
15
|
Finlay CM, Allen JE. The immune response of inbred laboratory mice to Litomosoides sigmodontis: A route to discovery in myeloid cell biology. Parasite Immunol 2020; 42:e12708. [PMID: 32145033 PMCID: PMC7317388 DOI: 10.1111/pim.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Litomosoides sigmodontis is the only filarial nematode where the full life cycle, from larval delivery to the skin through to circulating microfilaria, can be completed in immunocompetent laboratory mice. It is thus an invaluable tool for the study of filariasis. It has been used for the study of novel anti-helminthic therapeutics, the development of vaccines against filariasis, the development of immunomodulatory drugs for the treatment of inflammatory disease and the study of basic immune responses to filarial nematodes. This review will focus on the latter and aims to summarize how the L sigmodontis model has advanced our basic understanding of immune responses to helminths, led to major discoveries in macrophage biology and provided new insights into the immunological functions of the pleural cavity. Finally, and most importantly L sigmodontis represents a suitable platform to study how host genotype affects immune responses, with the potential for further discovery in myeloid cell biology and beyond.
Collapse
Affiliation(s)
- Conor M Finlay
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Judith E Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Pionnier N, Sjoberg H, Furlong-Silva J, Marriott A, Halliday A, Archer J, Steven A, Taylor MJ, Turner JD. Eosinophil-Mediated Immune Control of Adult Filarial Nematode Infection Can Proceed in the Absence of IL-4 Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 205:731-740. [PMID: 32571840 PMCID: PMC7372315 DOI: 10.4049/jimmunol.1901244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/17/2020] [Indexed: 12/19/2022]
Abstract
Immunity to chronic filarial worm infection is apparent in IL-4Rα–deficient mice. Delayed immunity in IL-4Rα−/− mice is due to suboptimal tissue eosinophilia. Eosinophil recruitment in the absence of IL-4R signaling requires CCR3 and IL-5.
Helminth infections are accompanied by eosinophilia in parasitized tissues. Eosinophils are effectors of immunity to tissue helminths. We previously reported that in the context of experimental filarial nematode infection, optimum tissue eosinophil recruitment was coordinated by local macrophage populations following IL-4R–dependent in situ proliferation and alternative activation. However, in the current study, we identify that control of chronic adult filarial worm infection is evident in IL-4Rα–deficient (IL-4Rα−/−) mice, whereby the majority of infections do not achieve patency. An associated residual eosinophilia was apparent in infected IL-4Rα−/− mice. By treating IL-4Rα−/− mice serially with anti-CCR3 Ab or introducing a compound deficiency in CCR3 within IL-4Rα−/− mice, residual eosinophilia was ablated, and susceptibility to chronic adult Brugia malayi infection was established, promoting a functional role for CCR3-dependent eosinophil influx in immune control in the absence of IL-4/IL-13–dependent immune mechanisms. We investigated additional cytokine signals involved in residual eosinophilia in the absence IL-4Rα signaling and defined that IL-4Rα−/−/IL-5−/− double-knockout mice displayed significant eosinophil deficiency compared with IL-4Rα−/− mice and were susceptible to chronic fecund adult filarial infections. Contrastingly, there was no evidence that either IL-4R–dependent or IL-4R–independent/CCR3/IL-5–dependent immunity influenced B. malayi microfilarial loads in the blood. Our data demonstrate multiplicity of Th2-cytokine control of eosinophil tissue recruitment during chronic filarial infection and that IL-4R–independent/IL-5– and CCR3-dependent pathways are sufficient to control filarial adult infection via an eosinophil-dependent effector response prior to patency.
Collapse
Affiliation(s)
- Nicolas Pionnier
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Hanna Sjoberg
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Julio Furlong-Silva
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Amy Marriott
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Alice Halliday
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - John Archer
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Andrew Steven
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Mark J Taylor
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Joseph D Turner
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| |
Collapse
|
17
|
Junaid OQ, Vythilingam I, Khaw LT, Sivanandam S, Mahmud R. Effect of Brugia pahangi co-infection with Plasmodium berghei ANKA in gerbils (Meriones unguiculatus). Parasitol Res 2020; 119:1301-1315. [PMID: 32179986 DOI: 10.1007/s00436-020-06632-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/18/2020] [Indexed: 11/30/2022]
Abstract
Malaria and lymphatic filariasis (LF) are two leading and common mosquito-borne parasitic diseases worldwide. These two diseases are co-endemic in many tropical and sub-tropical regions and are known to share vectors. The interactions between malaria and filarial parasites are poorly understood. Thus, this study aimed at establishing the interactions that occur between Brugia pahangi and Plasmodium berghei ANKA (PbA) co-infection in gerbils. Briefly, the gerbils were matched according to age, sex, and weight and grouped into filarial-only infection, PbA-only infection, co-infection, and control group. The parasitemia, survival and clinical assessment of the gerbils were monitored for a period of 30 days post Plasmodium infection. The immune responses of gerbils to both mono and co-infection were monitored. Findings show that co-infected gerbils have higher survival rate than PbA-infected gerbils. Food and water consumption were significantly reduced in both PbA-infected and co-infected gerbils, although loss of body weight, hypothermia, and anemia were less severe in co-infected gerbils. Plasmodium-infected gerbils also suffered hypoglycemia, which was not observed in co-infected gerbils. Furthermore, gerbil cytokine responses to co-infection were significantly higher than PbA-only-infected gerbils, which is being suggested as a factor for their increased longevity. Co-infected gerbils had significantly elicited interleukin-4, interferon-gamma, and tumor necrotic factor at early stage of infection than PbA-infected gerbils. Findings from this study suggest that B. pahangi infection protect against severe anemia and hypoglycemia, which are manifestations of PbA infection.
Collapse
Affiliation(s)
- Olawale Quazim Junaid
- Department of Parasitology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia. .,Department of Biological Sciences, Faculty of Science, Federal University of Kashere, PMB 0182, Gombe, Gombe State, Nigeria.
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Loke Tim Khaw
- Department of Parasitology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.,Department of Pathology, School of Medicine, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Sinnadurai Sivanandam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Rohela Mahmud
- Department of Parasitology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Frohberger SJ, Fercoq F, Neumann AL, Surendar J, Stamminger W, Ehrens A, Karunakaran I, Remion E, Vogl T, Hoerauf A, Martin C, Hübner MP. S100A8/S100A9 deficiency increases neutrophil activation and protective immune responses against invading infective L3 larvae of the filarial nematode Litomosoides sigmodontis. PLoS Negl Trop Dis 2020; 14:e0008119. [PMID: 32107497 PMCID: PMC7064255 DOI: 10.1371/journal.pntd.0008119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 03/10/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are essentially involved in protective immune responses against invading infective larvae of filarial nematodes. The present study investigated the impact of S100A8/S100A9 on protective immune responses against the rodent filarial nematode Litomosoides sigmodontis. S100A9 forms with S100A8 the heterodimer calprotectin, which is expressed by circulating neutrophils and monocytes and mitigates or amplifies tissue damage as well as inflammation depending on the immune environment. Mice deficient for S100A8/A9 had a significantly reduced worm burden in comparison to wildtype (WT) animals 12 days after infection (dpi) with infective L3 larvae, either by the vector or subcutaneous inoculation, the latter suggesting that circumventing natural immune responses within the epidermis and dermis do not alter the phenotype. Nevertheless, upon intradermal injection of L3 larvae, increased total numbers of neutrophils, eosinophils and macrophages were observed within the skin of S100A8/A9-/- mice. Furthermore, upon infection the bronchoalveolar and thoracic cavity lavage of S100A8/A9-/- mice showed increased concentrations of CXCL-1, CXCL-2, CXCL-5, as well as elastase in comparison to the WT controls. Neutrophils from S100A8/A9-/- mice exhibited an increased in vitro activation and reduced L3 larval motility more effectively in vitro compared to WT neutrophils. The depletion of neutrophils from S100A8/A9-/- mice prior to L. sigmodontis infection until 5dpi abrogated the protective effect and led to an increased worm burden, indicating that neutrophils mediate enhanced protective immune responses against invading L3 larvae in S100A8/A9-/- mice. Interestingly, complete circumvention of protective immune responses in the skin and the lymphatics by intravenous injection of L3 larvae reversed the phenotype and resulted in an increased worm burden in S100A8/A9-/- mice. In summary, our results reveal that lack of S100A8/S100A9 triggers L3-induced inflammatory responses, increasing chemokine levels, granulocyte recruitment as well as neutrophil activation and therefore impairs larval migration and susceptibility for filarial infection.
Collapse
Affiliation(s)
- Stefan J. Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Frederic Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jayagopi Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Estelle Remion
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Thomas Vogl
- Institute of Immunology, University Hospital of Münster, Münster, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
19
|
Frohberger SJ, Ajendra J, Surendar J, Stamminger W, Ehrens A, Buerfent BC, Gentil K, Hoerauf A, Hübner MP. Susceptibility to L. sigmodontis infection is highest in animals lacking IL-4R/IL-5 compared to single knockouts of IL-4R, IL-5 or eosinophils. Parasit Vectors 2019; 12:248. [PMID: 31109364 PMCID: PMC6528299 DOI: 10.1186/s13071-019-3502-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Background Mice are susceptible to infections with the rodent filarial nematode Litomosoides sigmodontis and develop immune responses that resemble those of human filarial infections. Thus, the L. sigmodontis model is used to study filarial immunomodulation, protective immune responses against filariae and to screen drug candidates for human filarial diseases. While previous studies showed that type 2 immune responses are protective against L. sigmodontis, the present study directly compared the impact of eosinophils, IL-5, and the IL-4R on the outcome of L. sigmodontis infection. Methods Susceptible wildtype (WT) BALB/c mice, BALB/c mice lacking eosinophils (dblGATA mice), IL-5−/− mice, IL-4R−/− mice and IL-4R−/−/IL-5−/− mice were infected with L. sigmodontis. Analyses were performed during the peak of microfilaremia in WT animals (71 dpi) as well as after IL-4R−/−/IL-5−/− mice showed a decline in microfilaremia (119 dpi) and included adult worm counts, peripheral blood microfilariae levels, cytokine production from thoracic cavity lavage, the site of adult worm residence, and quantification of major immune cell types within the thoracic cavity and spleen. Results Our study reveals that thoracic cavity eosinophil numbers correlated negatively with the adult worm burden, whereas correlations of alternatively activated macrophage (AAM) numbers with the adult worm burden (positive correlation) were likely attributed to the accompanied changes in eosinophil numbers. IL-4R−/−/IL-5−/− mice exhibited an enhanced embryogenesis achieving the highest microfilaremia with all animals becoming microfilariae positive and had an increased adult worm burden combined with a prolonged adult worm survival. Conclusions These data indicate that mice deficient for IL-4R−/−/IL-5−/− have the highest susceptibility for L. sigmodontis infection, which resulted in an earlier onset of microfilaremia, development of microfilaremia in all animals with highest microfilariae loads, and an extended adult worm survival. Electronic supplementary material The online version of this article (10.1186/s13071-019-3502-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Jayagopi Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Benedikt C Buerfent
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Katrin Gentil
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.
| |
Collapse
|
20
|
Bakowski MA, Shiroodi RK, Liu R, Olejniczak J, Yang B, Gagaring K, Guo H, White PM, Chappell L, Debec A, Landmann F, Dubben B, Lenz F, Struever D, Ehrens A, Frohberger SJ, Sjoberg H, Pionnier N, Murphy E, Archer J, Steven A, Chunda VC, Fombad FF, Chounna PW, Njouendou AJ, Metuge HM, Ndzeshang BL, Gandjui NV, Akumtoh DN, Kwenti TDB, Woods AK, Joseph SB, Hull MV, Xiong W, Kuhen KL, Taylor MJ, Wanji S, Turner JD, Hübner MP, Hoerauf A, Chatterjee AK, Roland J, Tremblay MS, Schultz PG, Sullivan W, Chu XJ, Petrassi HM, McNamara CW. Discovery of short-course antiwolbachial quinazolines for elimination of filarial worm infections. Sci Transl Med 2019; 11:11/491/eaav3523. [DOI: 10.1126/scitranslmed.aav3523] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Abstract
Parasitic filarial nematodes cause debilitating infections in people in resource-limited countries. A clinically validated approach to eliminating worms uses a 4- to 6-week course of doxycycline that targetsWolbachia, a bacterial endosymbiont required for worm viability and reproduction. However, the prolonged length of therapy and contraindication in children and pregnant women have slowed adoption of this treatment. Here, we describe discovery and optimization of quinazolines CBR417 and CBR490 that, with a single dose, achieve >99% elimination ofWolbachiain the in vivoLitomosoides sigmodontisfilarial infection model. The efficacious quinazoline series was identified by pairing a primary cell-based high-content imaging screen with an orthogonal ex vivo validation assay to rapidly quantifyWolbachiaelimination inBrugia pahangifilarial ovaries. We screened 300,368 small molecules in the primary assay and identified 288 potent and selective hits. Of 134 primary hits tested, only 23.9% were active in the worm-based validation assay, 8 of which contained a quinazoline heterocycle core. Medicinal chemistry optimization generated quinazolines with excellent pharmacokinetic profiles in mice. Potent antiwolbachial activity was confirmed inL. sigmodontis,Brugia malayi, andOnchocerca ochengiin vivo preclinical models of filarial disease and in vitro selectivity againstLoa loa(a safety concern in endemic areas). The favorable efficacy and in vitro safety profiles of CBR490 and CBR417 further support these as clinical candidates for treatment of filarial infections.
Collapse
|
21
|
Kushwaha V, Tewari P, Mandal P, Tripathi A, Murthy PK. Troponin 1 of human filarial parasite Brugia malayi: cDNA cloning, expression, purification, and its immunoprophylactic potential. Parasitol Res 2019; 118:1849-1863. [PMID: 31055672 DOI: 10.1007/s00436-019-06316-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
In the search for immunoprophylactics for the control of human lymphatic filariasis, we recently identified troponin 1 (Tn1) in Brugia malayi adult worms. The present study reports the cloning and expression of the B. malayi Tn1 (Tn1bm), its immunoprophylactic efficacy against B. malayi infection, and the immunological responses of the host. The Tn1bm gene was cloned (Acc no. JF912447) and expressed, and the purified recombinant Tn1bm (rTn1bm) presented a single ~ 27 kDa band. Parasite load in rTn1bm-immunized BALB/c mice challenged with B. malayi infective larvae (L3) was assessed. In rTn1bm-immunized animals, IgE, IgG, and IgG subclasses in the serum, cell proliferative response, Th1 and Th2 cytokine secretion (from splenocytes), and NO release (from peritoneal macrophages) were determined. Antibody-dependent cell-mediated cytotoxicity (ADCC) to L3 was assayed using rTn1bm-immune serum. The innate immune response markers MHC class-I, MHC class-II, TLR2, TLR4, and TLR6 expression in peritoneal macrophages and CD3+, CD4+, CD8+, and CD19+ in the splenocyte population were determined in Tn1bm-exposed cells from naïve mice. rTn1bm-immunized L3-challenged animals showed a 60% reduction in parasite burden. Immunization upregulated cellular proliferation, cytokine (IFN-γ, TNF-α, IL-1β, IL-4, IL-6, and IL-10) secretion, NO release, and antigen-specific IgG, IgG1, and IgG2b antibody levels. rTn1bm-immune serum killed > 65% of L3 in the ADCC assay. Increased MHC class-II, TLR2, and TLR6 expression and the relative CD4+ and CD19+ cell populations of naïve animal cells indicated the ability of rTn1bm to mobilize innate immune responses. This is the first report of the immunoprophylactic potential of rTn1bm against B. malayi.
Collapse
Affiliation(s)
- Vikas Kushwaha
- Department of Zoology, University of Lucknow, University Road, Lucknow, Uttar Pradesh, 226007, India.,Postdoctoral Fellow, Zoology Department, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prachi Tewari
- Department of Zoology, University of Lucknow, University Road, Lucknow, Uttar Pradesh, 226007, India
| | - Payal Mandal
- Food Toxicology Lab, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Anurag Tripathi
- Food Toxicology Lab, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - P Kalpana Murthy
- Department of Zoology, University of Lucknow, University Road, Lucknow, Uttar Pradesh, 226007, India.
| |
Collapse
|
22
|
The central adaptor molecule TRIF influences L. sigmodontis worm development. Parasitol Res 2019; 118:539-549. [PMID: 30643971 DOI: 10.1007/s00436-018-6159-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
Worldwide approximately 68 million people are infected with lymphatic filariasis (Lf), provoked by Wuchereria bancrofti, Brugia malayi and Brugia timori. This disease can lead to massive swelling of the limbs (elephantiasis) and disfigurement of the male genitalia (hydrocele). Filarial induced immune regulation is characterised by dominant type 2 helper T cell and regulatory immune responses. In vitro studies have provided evidence that signalling via Toll-like receptor-mediated pathways is triggered by filarial associated factors. Nevertheless, until now, less is known about the role of the adapter molecule TRIF during in vivo infections. Here, we used the rodent-specific nematode Litomosoides sigmodontis to investigate the role of TLR signalling and the corresponding downstream adapter and regulatory molecules TRIF, MyD88, IRF1 and IRF3 during an ongoing infection in semi-susceptible C57BL/6 mice. Interestingly, lack of the central adapter molecule TRIF led to higher worm burden and reduced overall absolute cell numbers in the thoracic cavity (the site of infection) 30 days post-infection. In addition, frequencies of macrophages and lymphocytes in the TC were increased in infected TRIF-/- C57BL/6 mice, whereas frequencies of eosinophils, CD4+ and CD8+ T cells were reduced. Nevertheless, cytokine levels and regulatory T cell populations remained comparable between TRIF-deficient and wildtype C57BL/6 mice upon 30 days of L. sigmodontis infection. In summary, this study revealed a crucial role of the adapter molecule TRIF on worm recovery and immune cell recruitment into the site of infection 30 days upon L. sigmodontis infection in C57BL/6 mice.
Collapse
|
23
|
Absence of IL-17A in Litomosoides sigmodontis-infected mice influences worm development and drives elevated filarial-specific IFN-γ. Parasitol Res 2018; 117:2665-2675. [PMID: 29931394 PMCID: PMC6061040 DOI: 10.1007/s00436-018-5959-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/05/2018] [Indexed: 01/12/2023]
Abstract
Lymphatic filariasis, onchocerciasis and loiasis are widespread neglected tropical diseases causing serious public health problems and impacting the socio-economic climate in endemic communities. More than 100 million people currently suffer from filarial infections but disease-related symptoms and infection-induced immune mechanisms are still ambiguous. Although most infected individuals have dominant Th2 and regulatory immune responses leading to a homeostatic regulated state, filarial-induced overt pathology like lymphedema, dermal pathologies or blindness can occur. Interestingly, besides dominant Th2 and regulatory T cell activation, increased Th17-induced immune responses were associated with filarial infection and overt helminth-induced pathology in humans. However, the immunological mechanisms of Th17 cells and the release of IL-17A during filarial infections remain unclear. To decipher the role of IL-17A during filarial infection, we naturally infected IL-17A-/- and wildtype C57BL/6 mice with the rodent filariae Litomosoides sigmodontis and analysed parasite development and immune alterations. Our study reveals that infected IL-17A-deficient C57BL/6 mice present reduced worm burden on days 7 and 28 p.i. but had longer adult worms on day 28 p.i. in the thoracic cavity (TC), the site of infection. In addition, infiltration of CD4+ T cells, CD4+Foxp3+ regulatory T and functional CD4+Rorγt+pStat3+ Th17 cells in the TC was reduced in IL-17A-deficient mice accompanied by reduced eotaxin-1 and CCL17 levels. Furthermore, mediastinal lymph node cells isolated from IL-17A-/- mice showed increased filarial-specific IFN-γ but not IL-4, IL-6, or IL-21 secretion. This study shows that Th17 signalling is important for host immune responses against filarial infection but appears to facilitate worm growth in those that reach the TC.
Collapse
|
24
|
Abstract
Human lymphatic filariasis, the parasitic disease caused by the filarial nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori, is ranked as the second most complex clinical condition leading to permanent and long-term disability. The multiple antigen peptide (MAP) approach is an effective method to chemically synthesize and deliver multiple T and B cell epitopes as the constituents of a single immunogen. Here, we report on the design, chemical synthesis, and immunoprophylaxis of three epitopes that have been identified from promising vaccine candidates reported in our previous studies, constructed as MAP on an inert lysine core for human lymphatic filariasis in Jird model. Two epitopes from Thioredoxin and one epitope from Transglutaminase were constructed as MAP in an inert lysine core. The immunoprophylaxis of the synthetic vaccine construct studied in Jird models showed protective antibody (1 in 64,000 titer) and cellular immune response. Thioredoxin-Transglutaminase MAP (TT MAP) conferred a significantly high protection of 63.04% compared to control (8.5%). Multi-antigen peptide vaccine is one best approach to provide immunity against multiple antigens delivered by the complex filarial parasite.
Collapse
|
25
|
Fulton A, Babayan SA, Taylor MD. Use of the Litomosoides sigmodontis Infection Model of Filariasis to Study Type 2 Immunity. Methods Mol Biol 2018; 1799:11-26. [PMID: 29956140 DOI: 10.1007/978-1-4939-7896-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Helminth parasites infect over 2 billion people worldwide resulting in huge global health and economic burden. Helminths typically stimulate Type 2 immune responses and excel at manipulating or suppressing host-immune responses resulting in chronic infections that can last for years to decades. Alongside the importance for the development of helminth treatments and vaccines, studying helminth immunity has unraveled many fundamental aspects of Type 2 immunity and immune regulation with implications for the treatment of autoimmunity and Type 2-mediated diseases, such as allergies. Here we describe the maintenance and use of Litomosoides sigmodontis, a murine model for studying host-parasite interactions, Type 2 immunity, and vaccines to tissue-dwelling filarial nematodes, which in humans cause lymphatic filariasis (e.g., Brugia malayi) and onchocerciasis (Onchocerca volvulus).
Collapse
Affiliation(s)
- A Fulton
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Immunology, Infection, and Evolution, University of Edinburgh, Edinburgh, UK
| | - S A Babayan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - M D Taylor
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- Centre for Immunology, Infection, and Evolution, University of Edinburgh, Edinburgh, UK.
- Ashworth Laboratories, Edinburgh, UK.
| |
Collapse
|
26
|
Ritter M, Tamadaho RS, Feid J, Vogel W, Wiszniewsky K, Perner S, Hoerauf A, Layland LE. IL-4/5 signalling plays an important role during Litomosoides sigmodontis infection, influencing both immune system regulation and tissue pathology in the thoracic cavity. Int J Parasitol 2017; 47:951-960. [PMID: 28859850 DOI: 10.1016/j.ijpara.2017.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 12/15/2022]
Abstract
Approximately 100 million people suffer from filarial diseases including lymphatic filariasis (elephantiasis), onchocerciasis (river blindness) and loiasis. These diseases are amongst the most devastating of the neglected tropical diseases in terms of social and economic impact. Moreover, many infection-induced immune mechanisms in the host, their relationship to disease-related symptoms and the development of pathology within the site of infection remain unclear. To improve on current drug therapies or vaccines, further studies are necessary to decipher the mechanisms behind filaria-driven immune responses and pathology development, and thus the rodent model of Litomosoides sigmodontis can be used to unravel host-filaria interactions. Interestingly, BALB/c mice develop a patent state (release of microfilariae, the transmission life-stage, into the periphery) when exposed to L. sigmodontis. Thus, using this model, we determined levels of host inflammation and pathology development during a L. sigmodontis infection in vivo for the first known time. Our study reveals that after 30days p.i., inflammation and pathology began to develop in infected wild type BALB/c mice between the lung and diaphragm, close to the site of infection - the thoracic cavity. Interestingly, infected IL-4Rα/IL-5-/- BALB/c mice had accentuated inflammation of the pleural lung and pleural diaphragm, and higher parasite burdens. Corresponding to the pleural inflammation, levels of IP-10, MIP-1α, MIP-1β, MIP-2 and RANTES were significantly elevated in the thoracic cavity fluid of infected IL-4Rα/IL-5-/- mice compared with wild type controls. Moreover, upon L. sigmodontis antigen stimulation, IFN-γ and IL-17A secretions by cells isolated from draining lymph nodes of IL-4Rα/IL-5-/- mice were significantly elevated, whereas secretion of IL-5, IL-13 and IL-10 was reduced. Elevated filaria-specific IFN-γ secretion was also observed in spleen-derived CD4+ T cell co-cultures from IL-4Rα/IL-5-/- mice. In summary, this study unravels the essential role of IL-4/IL-5 signalling in controlling immunity against filarial infections and demonstrates the requirement of this pathway for the host to control ensuing pathology and inflammation.
Collapse
Affiliation(s)
- Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Germany
| | - Ruth S Tamadaho
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Germany
| | - Judith Feid
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| | - Wenzel Vogel
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and Research Center Borstel, Leibniz Center for Medicine and Biosciences, Luebeck and Borstel, Germany
| | - Katharina Wiszniewsky
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Germany
| | - Sven Perner
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and Research Center Borstel, Leibniz Center for Medicine and Biosciences, Luebeck and Borstel, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| | - Laura E Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
27
|
Ajendra J, Specht S, Ziewer S, Schiefer A, Pfarr K, Parčina M, Kufer TA, Hoerauf A, Hübner MP. NOD2 dependent neutrophil recruitment is required for early protective immune responses against infectious Litomosoides sigmodontis L3 larvae. Sci Rep 2016; 6:39648. [PMID: 28004792 PMCID: PMC5177913 DOI: 10.1038/srep39648] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022] Open
Abstract
Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) recognizes muramyl dipeptide (MDP) of bacterial cell walls, triggering NFκB-induced pro-inflammation. As most human pathogenic filariae contain Wolbachia endobacteria that synthesize the MDP-containing cell wall precursor lipid II, NOD2’s role during infection with the rodent filaria Litomosoides sigmodontis was investigated. In NFκB reporter-cells, worm-extract containing Wolbachia induced NOD2 and NOD1. NOD2-deficient mice infected with L. sigmodontis had significantly more worms than wildtype controls early in infection. Increased worm burden was not observed after subcutaneous infection, suggesting that protective NOD2-dependent immune responses occur within the skin. Flow cytometry demonstrated that neutrophil recruitment to the skin was impaired in NOD2−/− mice after intradermal injection of third stage larvae (L3), and blood neutrophil numbers were reduced after L. sigmodontis infection. PCR array supported the requirement of NOD2 for recruitment of neutrophils to the skin, as genes associated with neutrophil recruitment and activation were downregulated in NOD2−/− mice after intradermal L3 injection. Neutrophil depletion before L. sigmodontis infection increased worm recovery in wildtype mice, confirming that neutrophils are essential against invading L3 larvae. This study indicates that NOD-like receptors are implemented in first-line protective immune responses against filarial nematodes.
Collapse
Affiliation(s)
- Jesuthas Ajendra
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Sabine Specht
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Sebastian Ziewer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Andrea Schiefer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, University Hohenheim, Stuttgart, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Berbudi A, Surendar J, Ajendra J, Gondorf F, Schmidt D, Neumann AL, Wardani APF, Layland LE, Hoffmann LS, Pfeifer A, Hoerauf A, Hübner MP. Filarial Infection or Antigen Administration Improves Glucose Tolerance in Diet-Induced Obese Mice. J Innate Immun 2016; 8:601-616. [PMID: 27544668 DOI: 10.1159/000448401] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/14/2016] [Indexed: 12/25/2022] Open
Abstract
Helminths induce type 2 immune responses and establish an anti-inflammatory milieu in their hosts. This immunomodulation was previously shown to improve diet-induced insulin resistance which is linked to chronic inflammation. In the current study, we demonstrate that infection with the filarial nematode Litomosoides sigmodontis increased the eosinophil number and alternatively activated macrophage abundance within epididymal adipose tissue (EAT) and improved glucose tolerance in diet-induced obese mice in an eosinophil-dependent manner. L. sigmodontis antigen (LsAg) administration neither altered the body weight of animals nor adipose tissue mass or adipocyte size, but it triggered type 2 immune responses, eosinophils, alternatively activated macrophages, and type 2 innate lymphoid cells in EAT. Improvement in glucose tolerance by LsAg treatment remained even in the absence of Foxp3+ regulatory T cells. Furthermore, PCR array results revealed that LsAg treatment reduced inflammatory immune responses and increased the expression of genes related to insulin signaling (Glut4, Pde3b, Pik3r1, and Hk2) and fatty acid uptake (Fabp4 and Lpl). Our investigation demonstrates that L. sigmodontis infection and LsAg administration reduce diet-induced EAT inflammation and improve glucose tolerance. Helminth-derived products may, therefore, offer new options to improve insulin sensitivity, while loss of helminth infections in developing and developed countries may contribute to the recent increase in the prevalence of type 2 diabetes.
Collapse
Affiliation(s)
- Afiat Berbudi
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mbah GE, Ayiseh RB, Cho-Ngwa F. Development and validation of an Onchocerca ochengi microfilarial hamster model for onchocerciasis drug screens. BMC Infect Dis 2016; 16:404. [PMID: 27515037 PMCID: PMC4982420 DOI: 10.1186/s12879-016-1753-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/04/2016] [Indexed: 12/02/2022] Open
Abstract
Background Onchocerciasis, caused by the parasitic nematode, Onchocerca volvulus afflicts some 37 million people worldwide, and is the second leading infectious cause of blindness globally. The only currently recommended drug for treatment of the disease, ivermectin, is only microfilaricidal and has serious adverse effects in individuals co-infected with high loads of Loa loa microfilariae (mf), prompting the search for new and better drugs. Onchocerciasis drug discovery studies have so far been based on in vivo models using Onchocerca species which are not the closest to O. volvulus, and which may therefore, not adequately mimic the natural infection in humans. Therefore, this study was carried out to develop a better drug screening model for onchocerciasis, based on the use of cow-derived O. ochengi, the closest known relative of O. volvulus. Methods Mf of O. ochengi were injected subcutaneously at the nape of Syrian hamsters (Mesocricetus auratus) and BALB/c mice. The skin, and especially the earlobes of the animals were examined for mf 15–31 days after infection. For selected model validation, the hamsters were treated with ivermectin at 150 or 600 μg/kg body weight and examined 30 days after infection for mf. For L. loa studies in hamsters, isolated mf were injected intraperitoneally and animal organs were examined on day 26 for mf. Results The Syrian hamsters were found to be the more permissive to O. ochengi mf as fully viable mf were recovered from them on day 30, compared to BALB/c mice where such mf were recovered on day 15, but not 30. However, both animals were not permissive to L. loa mf even by day 15. Interestingly, more than 50 % of the total O. ochengi mf recovered were from the earlobes. The number of mf injected was directly proportional to the number recovered. Ivermectin at both concentrations tested completely eliminated the O. ochengi mf from the hamsters. Conclusion This study reveals the Syrian hamster as an appropriate small animal model for screening of novel compounds against O. ochengi, the closest known relative of O. volvulus.
Collapse
Affiliation(s)
- Glory Enjong Mbah
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, South West Region, Cameroon
| | - Rene Bilingwe Ayiseh
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, South West Region, Cameroon
| | - Fidelis Cho-Ngwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, South West Region, Cameroon.
| |
Collapse
|
30
|
Buerfent BC, Gondorf F, Wohlleber D, Schumak B, Hoerauf A, Hübner MP. Escherichia coli-induced immune paralysis is not exacerbated during chronic filarial infection. Immunology 2015; 145:150-60. [PMID: 25521437 DOI: 10.1111/imm.12435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/26/2014] [Accepted: 12/12/2014] [Indexed: 01/17/2023] Open
Abstract
Sepsis initially starts with a systemic inflammatory response (SIRS phase) and is followed by a compensatory anti-inflammatory response syndrome (CARS) that causes impaired adaptive T-cell immunity, immune paralysis and an increased susceptibility to secondary infections. In contrast, parasitic filariae release thousands of microfilariae into the peripheral blood without triggering inflammation, as they induce regulatory, anti-inflammatory host responses. Hence, we investigated the impact of chronic filarial infection on adaptive T-cell responses during the SIRS and CARS phases of a systemic bacterial infection and analysed the development of T-cell paralysis following a subsequent adenovirus challenge in BALB/c mice. Chronic filarial infection impaired adenovirus-specific CD8(+) T-cell cytotoxicity and interferon-γ responses in the absence of a bacterial challenge and led to higher numbers of splenic CTLA-4(+) CD4(+) T cells, whereas splenic T-cell expression of CD69 and CD62 ligand, serum cytokine levels and regulatory T-cell frequencies were comparable to naive controls. Irrespective of filarial infection, the SIRS phase dominated 6-24 hr after intravenous Escherichia coli challenge with increased T-cell activation and pro-inflammatory cytokine production, whereas the CARS phase occurred 6 days post E. coli challenge and correlated with high levels of transforming growth factor-β and increased CD62 ligand T-cell expression. Escherichia coli-induced impairment of adenovirus-specific CD8(+) T-cell cytotoxicity and interferon-γ production was not additionally impaired by chronic filarial infection. This suggests that filarial immunoregulation does not exacerbate E. coli-induced T-cell paralysis.
Collapse
Affiliation(s)
- Benedikt C Buerfent
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Rückerl D, Allen JE. Macrophage proliferation, provenance, and plasticity in macroparasite infection. Immunol Rev 2015; 262:113-33. [PMID: 25319331 PMCID: PMC4324133 DOI: 10.1111/imr.12221] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages have long been center stage in the host response to microbial infection, but only in the past 10–15 years has there been a growing appreciation for their role in helminth infection and the associated type 2 response. Through the actions of the IL-4 receptor α (IL-4Rα), type 2 cytokines result in the accumulation of macrophages with a distinctive activation phenotype. Although our knowledge of IL-4Rα-induced genes is growing rapidly, the specific functions of these macrophages have yet to be established in most disease settings. Understanding the interplay between IL-4Rα-activated macrophages and the other cellular players is confounded by the enormous transcriptional heterogeneity within the macrophage population and by their highly plastic nature. Another level of complexity is added by the new knowledge that tissue macrophages can be derived either from a resident prenatal population or from blood monocyte recruitment and that IL-4 can increase macrophage numbers through proliferative expansion. Here, we review current knowledge on the contribution of macrophages to helminth killing and wound repair, with specific attention paid to distinct cellular origins and plasticity potential.
Collapse
Affiliation(s)
- Dominik Rückerl
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
32
|
Gondorf F, Berbudi A, Buerfent BC, Ajendra J, Bloemker D, Specht S, Schmidt D, Neumann AL, Layland LE, Hoerauf A, Hübner MP. Chronic filarial infection provides protection against bacterial sepsis by functionally reprogramming macrophages. PLoS Pathog 2015; 11:e1004616. [PMID: 25611587 PMCID: PMC4303312 DOI: 10.1371/journal.ppat.1004616] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/09/2014] [Indexed: 12/26/2022] Open
Abstract
Helminths immunomodulate their hosts and induce a regulatory, anti-inflammatory milieu that prevents allergies and autoimmune diseases. Helminth immunomodulation may benefit sepsis outcome by preventing exacerbated inflammation and severe pathology, but the influence on bacterial clearance remains unclear. To address this, mice were chronically infected with the filarial nematode Litomosoides sigmodontis (L.s.) and the outcome of acute systemic inflammation caused by i.p. Escherichia coli injection was determined. L.s. infection significantly improved E. coli-induced hypothermia, bacterial clearance and sepsis survival and correlated with reduced concentrations of associated pro-inflammatory cytokines/chemokines and a less pronounced pro-inflammatory macrophage gene expression profile. Improved sepsis outcome in L.s.-infected animals was mediated by macrophages, but independent of the alternatively activated macrophage subset. Endosymbiotic Wolbachia bacteria that are present in most human pathogenic filariae, as well as L.s., signal via TLR2 and modulate macrophage function. Here, gene expression profiles of peritoneal macrophages from L.s.-infected mice revealed a downregulation of genes involved in TLR signaling, and pulsing of macrophages in vitro with L.s. extract reduced LPS-triggered activation. Subsequent transfer improved sepsis outcome in naïve mice in a Wolbachia- and TLR2-dependent manner. In vivo, phagocytosis was increased in macrophages from L.s.-infected wild type, but not TLR2-deficient animals. In association, L.s. infection neither improved bacterial clearance in TLR2-deficient animals nor ameliorated E. coli-induced hypothermia and sepsis survival. These results indicate that chronic L.s. infection has a dual beneficial effect on bacterial sepsis, reducing pro-inflammatory immune responses and improving bacterial control. Thus, helminths and their antigens may not only improve the outcome of autoimmune and allergic diseases, but may also present new therapeutic approaches for acute inflammatory diseases that do not impair bacterial control. As the human immune system evolved in the presence of helminth infections, it is postulated that improved hygiene and subsequent loss of helminth infections and their immunomodulatory functions contributed to the sharp increase of autoimmune diseases and allergies over the last decades. Accordingly, helminth-induced anti-inflammatory, regulatory immune responses ameliorate allergy and autoimmune diseases and are likely to impact other immunological disorders including sepsis. Sepsis is an exacerbated, systemic inflammatory disease that occurs when pathogens cannot be locally confined and spread via the blood stream. Thus, efficient sepsis therapies should reduce excessive inflammation without impairing protective immune responses. In the present study we demonstrate that chronic filarial infection modulates macrophages to a less pro-inflammatory phenotype with improved phagocytic capacity. This immunomodulation reduces sepsis-induced inflammation and hypothermia and clears bacteria more efficiently thus improving sepsis survival. Moreover, we found that Wolbachia, the endosymbiotic bacteria of filariae, play a crucial role in triggering the correct macrophage response via TLR2. Thus, our observations suggest that helminths and helminth-derived antigens may not only present new treatment options for allergies and autoimmune diseases, but may also allow treatment of sepsis caused inflammation without impairing bacterial control.
Collapse
Affiliation(s)
- Fabian Gondorf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Afiat Berbudi
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Benedikt C. Buerfent
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Dominique Bloemker
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Sabine Specht
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - David Schmidt
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Laura E. Layland
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
33
|
Chronic Filarial Infection Provides Protection against Bacterial Sepsis by Functionally Reprogramming Macrophages. PLoS Pathog 2015. [DOI: 10.1371/journal.ppat.1004616 order by 14300--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Aparnaa R, Mahalakshmi N, Harini A, Jeyaprita PJ, Anugraha G, Amdare NP, Khatri VK, Reddy MVR, Kaliraj P. Wuchereria bancrofti 20/22 a homologue of abundant larval transcript L3 stage filarial antigen: molecular and immunological characterization. Parasite Immunol 2014; 36:475-84. [PMID: 24888320 DOI: 10.1111/pim.12120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/30/2014] [Indexed: 11/28/2022]
Abstract
The chromadorea abundant larval transcript (ALT) family of proteins contains ALT one of the most studied putative vaccine candidate in experimental filariasis. This study reports the characterization of Wuchereria bancrofti 20/22 (Wb20/22) as a member of chromadorea, the ALT family of proteins from the L3 stage of W. bancrofti. The high reactivity with serum from the endemic normal (EN) population suggests that Wb20/22 could be a target of elicit protective immunity. The glutamic acid-rich region of Wb20/22 was predicted to harbour the longest linear B-cell epitope by insilico prediction tools. The significance of this region was revealed by studying the mutant form of Wb20/22, without acidic domain (WOAD) which was cloned, and the immune response was compared with Wb20/22. The signal sequence of Wb20/22 was also an immunodominant region, and mutant construct without signal sequence (WOSS) was cloned and characterized. The peak antibody titre elicited by WOAD was higher than Wb20/22 or WOSS, which pointed to the immunomodulatory role of glutamic acid-rich region. Wb20/22 elicited very high levels of IL-10 and diminished levels of IL-4 and IL-5 which could be the reason for low antibody titre. The prophylactic efficacy of WOAD conferred protection (62·26%) which was higher than Wb20/22 (49·82%) and WOSS (54·78%).
Collapse
Affiliation(s)
- Ramanathan Aparnaa
- Centre for Biotechnology, Anna University, Guindy, Chennai, 600025, Tamilnadu, India
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bouchery T, Ehrhardt K, Lefoulon E, Hoffmann W, Bain O, Martin C. Differential tissular distribution of Litomosoides sigmodontis microfilariae between microfilaremic and amicrofilaremic mice following experimental infection. Parasite 2014. [PMID: 23193519 PMCID: PMC3671463 DOI: 10.1051/parasite/2012194351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Filariases are caused by onchocercid nematodes that are transmitted by arthropod vectors. More than 180 million people are infected worldwide. Mass drug administration has been set up in many endemic areas to control the parasite burden. Although very successful in limiting microfilarial load, transmission has not been completely interrupted in such areas. A proportion of infected patients with lymphatic filariasis or loiasis are known to be amicrofilaremic, as they do not present microfilariae in their bloodstream despite the presence of adult worms. A mirror status also exists in CBA/Ca mice infected with Litomosoides sigmodontis, the well-established model of filariasis. Using this model, the goal of this study was to determine if the kinetics of blood clearance of microfilariae differed between amicrofilaremic CBA/Ca mice and microfilaremic BALB/c mice. For this purpose, a qPCR approach was devised to detect microfilariae in different tissues, after a controlled inoculation of microfilariae. We showed that the rapid clearance of microfilariae from the pleural cavity or from the bloodstream of CBA/Ca mice was associated with a massive accumulation of first stage larvae in the lungs, liver and spleen.
Collapse
Affiliation(s)
- T Bouchery
- UMR 7245 MCAM MNHN CNRS & UMR 7205 OSEB MNHN CNRS, Muséum National d'Histoire Naturelle, Paris Cedex, France
| | | | | | | | | | | |
Collapse
|
36
|
Gentil K, Lentz CS, Rai R, Muhsin M, Kamath AD, Mutluer O, Specht S, Hübner MP, Hoerauf A. Eotaxin-1 is involved in parasite clearance during chronic filarial infection. Parasite Immunol 2014; 36:60-77. [PMID: 24112106 DOI: 10.1111/pim.12079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 09/19/2013] [Indexed: 01/10/2023]
Abstract
Eosinophil migration as key feature of helminth infection is increased during infection with filarial nematodes. In a mouse model of filariasis, we investigated the role of the eosinophil-attracting chemokine Eotaxin-1 on disease outcome. BALB/c and Eotaxin-1(-/-) mice were infected with the rodent filaria Litomosoides sigmodontis, and parasitic parameters, cellular migration to the site of infection, and cellular responsiveness were investigated. We found increased parasite survival but unaffected eosinophil migration to the site of infection in Eotaxin-1(-/-) mice. Expression of CD80 and CD86 was reduced on eosinophils from Eotaxin-1(-/-) mice after in vitro TLR2 stimulation and exposure to filarial antigen, respectively, suggesting a potential reduced activation state of eosinophils in Eotaxin-1 deficient mice. We further demonstrated that macrophages from Eotaxin-1(-/-) mice produce decreased amounts of IL-6 in vitro, a cytokine found to be associated with parasite containment, suggesting possible mechanisms by which Eotaxin-1 regulates activation of inflammatory cells and thus parasite survival.
Collapse
Affiliation(s)
- K Gentil
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mishra R, Sahoo PK, Mishra S, Achary KG, Dwibedi B, Kar SK, Satapathy AK. Bancroftian filariasis: circulating B-1 cells decreased in microfilaria carriers and correlate with immunoglobulin M levels. Parasite Immunol 2014; 36:207-17. [DOI: 10.1111/pim.12105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/28/2014] [Indexed: 02/04/2023]
Affiliation(s)
- R. Mishra
- Regional Medical Research Centre (ICMR); Chandrasekharpur Bhubaneswar Odisha India
| | - P. K. Sahoo
- Regional Medical Research Centre (ICMR); Chandrasekharpur Bhubaneswar Odisha India
| | - S. Mishra
- Regional Medical Research Centre (ICMR); Chandrasekharpur Bhubaneswar Odisha India
| | - K. G. Achary
- Regional Medical Research Centre (ICMR); Chandrasekharpur Bhubaneswar Odisha India
| | - B. Dwibedi
- Regional Medical Research Centre (ICMR); Chandrasekharpur Bhubaneswar Odisha India
| | - S. K. Kar
- Regional Medical Research Centre (ICMR); Chandrasekharpur Bhubaneswar Odisha India
| | - A. K. Satapathy
- Regional Medical Research Centre (ICMR); Chandrasekharpur Bhubaneswar Odisha India
| |
Collapse
|
38
|
Ajendra J, Specht S, Neumann AL, Gondorf F, Schmidt D, Gentil K, Hoffmann WH, Taylor MJ, Hoerauf A, Hübner MP. ST2 deficiency does not impair type 2 immune responses during chronic filarial infection but leads to an increased microfilaremia due to an impaired splenic microfilarial clearance. PLoS One 2014; 9:e93072. [PMID: 24663956 PMCID: PMC3963995 DOI: 10.1371/journal.pone.0093072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 02/28/2014] [Indexed: 11/18/2022] Open
Abstract
Background Interactions of the Th2 cytokine IL-33 with its receptor ST2 lead to amplified Type 2 immune responses. As Type 2 immune responses are known to mediate protection against helminth infections we hypothesized that the lack of ST2 would lead to an increased susceptibility to filarial infections. Methodology/Principal Finding ST2 deficient and immunocompetent BALB/c mice were infected with the filarial nematode Litomosoides sigmodontis. At different time points after infection mice were analyzed for worm burden and their immune responses were examined within the thoracic cavity, the site of infection, and systemically using spleen cells and plasma. Absence of ST2 led to significantly increased levels of peripheral blood microfilariae, the filarial progeny, whereas L. sigmodontis adult worm burden was not affected. Development of local and systemic Type 2 immune responses were not impaired in ST2 deficient mice after the onset of microfilaremia, but L. sigmodontis infected ST2-ko mice had significantly reduced total numbers of cells within the thoracic cavity and spleen compared to infected immunocompetent controls. Pronounced microfilaremia in ST2-ko mice did not result from an increased microfilariae release by adult female worms, but an impaired splenic clearance of microfilariae. Conclusions/Significance Our findings suggest that the absence of ST2 does not impair the establishment of adult L. sigmodontis worms, but is important for the splenic clearance of microfilariae from peripheral blood. Thus, ST2 interactions may be important for therapies that intend to block the transmission of filarial disease.
Collapse
Affiliation(s)
- Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Sabine Specht
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Fabian Gondorf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - David Schmidt
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Katrin Gentil
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | | | - Mark J. Taylor
- Filariasis Research Laboratory, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
39
|
Chakraborty S, Gurusamy M, Zawieja DC, Muthuchamy M. Lymphatic filariasis: perspectives on lymphatic remodeling and contractile dysfunction in filarial disease pathogenesis. Microcirculation 2014; 20:349-64. [PMID: 23237232 DOI: 10.1111/micc.12031] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/07/2012] [Indexed: 01/02/2023]
Abstract
Lymphatic filariasis, one of the most debilitating diseases associated with the lymphatic system, affects over a hundred million people worldwide and manifests itself in a variety of severe clinical pathologies. The filarial parasites specifically target the lymphatics and impair lymph flow, which is critical for the normal functions of the lymphatic system in maintenance of body fluid balance and physiological interstitial fluid transport. The resultant contractile dysfunction of the lymphatics causes fluid accumulation and lymphedema, one of the major pathologies associated with filarial infection. In this review, we take a closer look at the contractile mechanisms of the lymphatics, its altered functions, and remodeling during an inflammatory state and how it relates to the severe pathogenesis underlying a filarial infection. We further elaborate on the complex host-parasite interactions, and molecular mechanisms contributing to the disease pathogenesis. The overall emphasis is on elucidating some of the emerging concepts and new directions that aim to harness the process of lymphangiogenesis or enhance contractility in a dysfunctional lymphatics, thereby restoring the fluid imbalance and mitigating the pathological conditions of lymphatic filariasis.
Collapse
Affiliation(s)
- Sanjukta Chakraborty
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station/Temple, TX 77843, USA
| | | | | | | |
Collapse
|
40
|
Morris CP, Evans H, Larsen SE, Mitre E. A comprehensive, model-based review of vaccine and repeat infection trials for filariasis. Clin Microbiol Rev 2013; 26:381-421. [PMID: 23824365 PMCID: PMC3719488 DOI: 10.1128/cmr.00002-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY Filarial worms cause highly morbid diseases such as elephantiasis and river blindness. Since the 1940s, researchers have conducted vaccine trials in 27 different animal models of filariasis. Although no vaccine trial in a permissive model of filariasis has provided sterilizing immunity, great strides have been made toward developing vaccines that could block transmission, decrease pathological sequelae, or decrease susceptibility to infection. In this review, we have organized, to the best of our ability, all published filaria vaccine trials and reviewed them in the context of the animal models used. Additionally, we provide information on the life cycle, disease phenotype, concomitant immunity, and natural immunity during primary and secondary infections for 24 different filaria models.
Collapse
Affiliation(s)
- C. Paul Morris
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Holly Evans
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sasha E. Larsen
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Basophils help establish protective immunity induced by irradiated larval vaccination for filariasis. Vaccine 2013; 31:3675-82. [PMID: 23777951 DOI: 10.1016/j.vaccine.2013.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 11/21/2022]
Abstract
Basophils are increasingly recognized as playing important roles in the immune response toward helminths. In this study, we evaluated the role of basophils in vaccine-mediated protection against filariae, tissue-invasive parasitic nematodes responsible for diseases such as elephantiasis and river blindness. Protective immunity and immunological responses were assessed in BALB/c mice vaccinated with irradiated L3 stage larvae and depleted of basophils with weekly injections of anti-CD200R3 antibody. Depletion of basophils after administration of the vaccination regimen but before challenge infection did not alter protective immunity. In contrast, basophil depletion initiated prior to vaccination and continued after challenge infection significantly attenuated the protective effect conferred by vaccination. Vaccine-induced cellular immune responses to parasite antigen were substantially decreased in basophil-depleted mice, with significant decreases in CD4(+) T-cell production of IL-4, IL-5, IL-10, and IFN-γ. Interestingly, skin mast cell numbers, which increased significantly after vaccination with irradiated L3 larvae, were unchanged after vaccination in basophil-depleted mice. These findings demonstrate that basophils help establish the immune responses responsible for irradiated L3 vaccine protection.
Collapse
|
42
|
Haben I, Hartmann W, Specht S, Hoerauf A, Roers A, Müller W, Breloer M. T-cell-derived, but not B-cell-derived, IL-10 suppresses antigen-specific T-cell responses in Litomosoides sigmodontis-infected mice. Eur J Immunol 2013; 43:1799-805. [PMID: 23529858 DOI: 10.1002/eji.201242929] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 03/13/2013] [Accepted: 03/20/2013] [Indexed: 12/23/2022]
Abstract
IL-10, a cytokine with pleiotropic functions is produced by many different cells. Although IL-10 may be crucial for initiating protective Th2 responses to helminth infection, it may also function as a suppressive cytokine preventing immune pathology or even contributing to helminth-induced immune evasion. Here, we show that B cells and T cells produce IL-10 during murine Litomosoides sigmodontis infection. IL-10-deficient mice produced increased amounts of L. sigmodontis-specific IFN-γ and IL-13 suggesting a suppressive role for IL-10 in the initiation of the T-cell response to infection. Using cell type-specific IL-10-deficient mice, we dissected different functions of T-cell- and B-cell-derived IL-10. Litomosoides sigmodontis-specific IFN-γ, IL-5, and IL-13 production increased in the absence of T-cell-derived IL-10 at early and late time points of infection. In contrast, B-cell-specific IL-10 deficiency did not lead to significant changes in L. sigmodontis-specific cytokine production compared to WT mice. Our results suggest that the initiation of Ag-specific cellular responses during L. sigmodontis infection is suppressed by T-cell-derived IL-10 and not by B-cell-derived IL-10.
Collapse
Affiliation(s)
- Irma Haben
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Nag JK, Shrivastava N, Gupta J, Misra-Bhattacharya S. Recombinant translation initiation factor-1 of Wolbachia is an immunogenic excretory secretory protein that elicits Th2 mediated immune protection against Brugia malayi. Comp Immunol Microbiol Infect Dis 2013; 36:25-38. [DOI: 10.1016/j.cimid.2012.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/28/2012] [Accepted: 09/06/2012] [Indexed: 01/01/2023]
|
44
|
Babayan SA, Allen JE, Taylor DW. Future prospects and challenges of vaccines against filariasis. Parasite Immunol 2012; 34:243-53. [PMID: 22150082 DOI: 10.1111/j.1365-3024.2011.01350.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Filarial infections remain a major public health and socio-economic problem across the tropics, despite considerable effort to reduce disease burden or regionally eliminate the infection with mass drug administration programmes. The sustainability of these programmes is now open to question owing to a range of issues, not least of which is emerging evidence for drug resistance. Vaccination, if developed appropriately, remains the most cost-effective means of long-term disease control. The rationale for the feasibility of vaccination against filarial parasites including onchocerciasis (river blindness, Onchocerca volvulus) and lymphatic filariasis (Wuchereria bancrofti or Brugia malayi) is founded on evidence from both humans and animal models for the development of protective immunity. Nonetheless, enormous challenges need to be faced in terms of overcoming parasite-induced suppression without inducing pathology as well as the need to both recognize and tackle evolutionary and ecological obstacles to successful vaccine development. Nonetheless, new technological advances in addition to systems biology approaches offer hope that optimal immune responses can be induced that will prevent infection, disease and/or transmission.
Collapse
Affiliation(s)
- Simon A Babayan
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
45
|
Bouchery T, Dénécé G, Attout T, Ehrhardt K, Lhermitte-Vallarino N, Hachet-Haas M, Galzi JL, Brotin E, Bachelerie F, Gavotte L, Moulia C, Bain O, Martin C. The chemokine CXCL12 is essential for the clearance of the filaria Litomosoides sigmodontis in resistant mice. PLoS One 2012; 7:e34971. [PMID: 22511975 PMCID: PMC3325259 DOI: 10.1371/journal.pone.0034971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/10/2012] [Indexed: 01/07/2023] Open
Abstract
Litomosoides sigmodontis is a cause of filarial infection in rodents. Once infective larvae overcome the skin barrier, they enter the lymphatic system and then settle in the pleural cavity, causing soft tissue infection. The outcome of infection depends on the parasite's modulatory ability and also on the immune response of the infected host, which is influenced by its genetic background. The goal of this study was to determine whether host factors such as the chemokine axis CXCL12/CXCR4, which notably participates in the control of immune surveillance, can influence the outcome of the infection. We therefore set up comparative analyses of subcutaneous infection by L. sigmodontis in two inbred mouse strains with different outcomes: one susceptible strain (BALB/c) and one resistant strain (C57BL/6). We showed that rapid parasite clearance was associated with a L. sigmodontis-specific CXCL12-dependent cell response in C57BL/6 mice. CXCL12 was produced mainly by pleural mesothelial cells during infection. Conversely, the delayed parasite clearance in BALB/c mice was neither associated with an increase in CXCL12 levels nor with cell influx into the pleural cavity. Remarkably, interfering with the CXCL12/CXCR4 axis in both strains of mice delayed filarial development, as evidenced by the postponement of the fourth molting process. Furthermore, the in vitro growth of stage 4 filariae was favored by the addition of low amounts of CXCL12. The CXCL12/CXCR4 axis thus appears to have a dual effect on the L. sigmodontis life cycle: by acting as a host-cell restriction factor for infection, and as a growth factor for worms.
Collapse
Affiliation(s)
- Tiffany Bouchery
- UMR 7245 MCAM MNHN CNRS & UMR 7205 OSEB MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Gaelle Dénécé
- UMR 7245 MCAM MNHN CNRS & UMR 7205 OSEB MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Tarik Attout
- UMR 7245 MCAM MNHN CNRS & UMR 7205 OSEB MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Katharina Ehrhardt
- UMR 7245 MCAM MNHN CNRS & UMR 7205 OSEB MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Muriel Hachet-Haas
- IREBS, Biotechnologie et Signalisation Cellulaire, UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Jean Luc Galzi
- IREBS, Biotechnologie et Signalisation Cellulaire, UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Emilie Brotin
- INSERM UMR-S 996, University of Paris-Sud 11, LabEx LERMIT, Clamart, France
| | | | - Laurent Gavotte
- UMR 5554 ISEM CNRS, Université Montpellier 2, Montpellier, France
| | - Catherine Moulia
- UMR 5554 ISEM CNRS, Université Montpellier 2, Montpellier, France
| | - Odile Bain
- UMR 7245 MCAM MNHN CNRS & UMR 7205 OSEB MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Coralie Martin
- UMR 7245 MCAM MNHN CNRS & UMR 7205 OSEB MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
46
|
Arndts K, Deininger S, Specht S, Klarmann U, Mand S, Adjobimey T, Debrah AY, Batsa L, Kwarteng A, Epp C, Taylor M, Adjei O, Layland LE, Hoerauf A. Elevated adaptive immune responses are associated with latent infections of Wuchereria bancrofti. PLoS Negl Trop Dis 2012; 6:e1611. [PMID: 22509424 PMCID: PMC3317915 DOI: 10.1371/journal.pntd.0001611] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 02/28/2012] [Indexed: 12/24/2022] Open
Abstract
In order to guarantee the fulfillment of their complex lifecycle, adult filarial nematodes release millions of microfilariae (MF), which are taken up by mosquito vectors. The current strategy to eliminate lymphatic filariasis as a public health problem focuses upon interrupting this transmission through annual mass drug administration (MDA). It remains unclear however, how many rounds of MDA are required to achieve low enough levels of MF to cease transmission. Interestingly, with the development of further diagnostic tools a relatively neglected cohort of asymptomatic (non-lymphedema) amicrofilaremic (latent) individuals has become apparent. Indeed, epidemiological studies have suggested that there are equal numbers of patent (MF+) and latent individuals. Since the latter represent a roadblock for transmission, we studied differences in immune responses of infected asymptomatic male individuals (n = 159) presenting either patent (n = 92 MF+) or latent (n = 67 MF−) manifestations of Wuchereria bancrofti. These individuals were selected on the basis of MF, circulating filarial antigen in plasma and detectable worm nests. Immunological profiles of either Th1/Th17, Th2, regulatory or innate responses were determined after stimulation of freshly isolated PBMCs with either filarial-specific extract or bystander stimuli. In addition, levels of total and filarial-specific antibodies, both IgG subclasses and IgE, were ascertained from plasma. Results from these individuals were compared with those from 22 healthy volunteers from the same endemic area. Interestingly, we observed that in contrast to MF+ patients, latent infected individuals had lower numbers of worm nests and increased adaptive immune responses including antigen-specific IL-5. These data highlight the immunosuppressive status of MF+ individuals, regardless of age or clinical hydrocele and reveal immunological profiles associated with latency and immune-mediated suppression of parasite transmission. The tropical helminth infection lymphatic filariasis affects more than 120 million people worldwide and is considered a major public health concern. Over 90% of infections are elicited by Wucheria bancrofti and adult worms reside in the lymphatic system releasing millions of microfilariae (MF), which periodically circulate in the blood. New diagnostic tools have provided a method to determine asymptomatic patients that are amicrofilaremic: a subset of individuals that have so far been neglected but are of special interest since these patients represent a dead end in terms of parasite transmission. Therefore, we were interested in determining whether the absence of MF was associated with distinct immunological profiles and observed that indeed responses in MF+ patients were dampened. From the viewpoint of the helminth such overall suppression of immune responses may facilitate MF transmission. Latent individuals however, presented elevated filarial specific responses and extrapolating these findings to the host provides novel insight into possible protective mechanisms which either actively hinders the release of MF from worms or their travel to the periphery. Further research into these aspects may broaden the range of strategies currently employed to reduce transmission and in turn eliminate bancroftian filariasis.
Collapse
Affiliation(s)
- Kathrin Arndts
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Susanne Deininger
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Sabine Specht
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Ute Klarmann
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Sabine Mand
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Tomabu Adjobimey
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexander Y. Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Faculty of Allied Health Sciences, Department of Theoretical and Applied Biology, and School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Linda Batsa
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Alexander Kwarteng
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Christian Epp
- Department für Infektiologie, Parasitologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Mark Taylor
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ohene Adjei
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Faculty of Allied Health Sciences, Department of Theoretical and Applied Biology, and School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Laura E. Layland
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
47
|
Ziewer S, Hübner MP, Dubben B, Hoffmann WH, Bain O, Martin C, Hoerauf A, Specht S. Immunization with L. sigmodontis microfilariae reduces peripheral microfilaraemia after challenge infection by inhibition of filarial embryogenesis. PLoS Negl Trop Dis 2012; 6:e1558. [PMID: 22413031 PMCID: PMC3295809 DOI: 10.1371/journal.pntd.0001558] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/24/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lymphatic filariasis and onchocerciasis are two chronic diseases mediated by parasitic filarial worms causing long term disability and massive socioeconomic problems. Filariae are transmitted by blood-feeding mosquitoes that take up the first stage larvae from an infected host and deliver it after maturation into infective stage to a new host. After closure of vector control programs, disease control relies mainly on mass drug administration with drugs that are primarily effective against first stage larvae and require many years of annual/biannual administration. Therefore, there is an urgent need for alternative treatment ways, i.e. other effective drugs or vaccines. METHODOLOGY/PRINCIPAL FINDINGS Using the Litomosoides sigmodontis murine model of filariasis we demonstrate that immunization with microfilariae together with the adjuvant alum prevents mice from developing high microfilaraemia after challenge infection. Immunization achieved 70% to 100% protection in the peripheral blood and in the pleural space and furthermore strongly reduced the microfilarial load in mice that remained microfilaraemic. Protection was associated with the impairment of intrauterine filarial embryogenesis and with local and systemic microfilarial-specific host IgG, as well as IFN-γ secretion by host cells from the site of infection. Furthermore immunization significantly reduced adult worm burden. CONCLUSIONS/SIGNIFICANCE Our results present a tool to understand the immunological basis of vaccine induced protection in order to develop a microfilariae-based vaccine that reduces adult worm burden and prevents microfilaraemia, a powerful weapon to stop transmission of filariasis.
Collapse
Affiliation(s)
- Sebastian Ziewer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Marc P. Hübner
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Bettina Dubben
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Wolfgang H. Hoffmann
- Institute of Tropical Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Odile Bain
- UMR 7245 MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Coralie Martin
- UMR 7245 MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Sabine Specht
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
48
|
Tendongfor N, Wanji S, Ngwa JC, Esum ME, Specht S, Enyong P, Matthaei KI, Hoerauf A. The human parasite Loa loa in cytokine and cytokine receptor gene knock out BALB/c mice: survival, development and localization. Parasit Vectors 2012; 5:43. [PMID: 22348321 PMCID: PMC3305519 DOI: 10.1186/1756-3305-5-43] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/21/2012] [Indexed: 11/16/2022] Open
Abstract
Background Immunological mechanisms involved in the survival and development of human filarial species in the vertebrate host are poorly known due to the lack of suitable experimental models. In order to understand the role of cytokines in the survival and development of filarial larvae in the vertebrate host, we infected different strains of BALB/c mice deficient in a number of cytokine or cytokine receptor genes with Loa loa. The survival and development of larvae were monitored. Methods BALB/c mice genetically deficient in IL-4R, IFN-γ, IFN-γ/IL-5, IL-5, and IL-4R/IL-5 cytokine or cytokine receptor genes were infected with a human strain of L. loa and necropsies were performed at different time intervals up to 70 days post infection to monitor the survival and development of L. loa larvae. The larvae were teased out of the skin, muscles, peritoneal and pleural cavities, heart and lung tissues. The length and width of the recovered larvae were measured to assess their growth. Results In mice deficient for IL-4R, IFN-γ, IFN-γ/IL-5, IL-5 and IL-4R/IL-5, the larvae survived up to 5, 20, 40, 50 and 70 days respectively. Worms recovered 70 days post infection in IL-4R/IL-5 DKO mice were young adults and measured 10.12 mm in length and 0.1 mm in width. Overall, 47% of larvae were recovered from subcutaneous tissues, 40% from muscles, 6% from the peritoneal cavity and 4% from the pleural cavity, lungs and heart. Conclusion L. loa exhibits a differential survival and development in different strains of cytokine or cytokine receptor gene knockout mice with IL-4R and IL-5 playing critical roles in the host resistance to L. loa infection. The knock out BALB/c mouse therefore represents a useful tool to explore the key effectors of adaptive immunity involved in the killing of the L. loa parasite in a mammal host.
Collapse
|
49
|
Transforming growth factor–β1 variant Leu10Pro is associated with both lack of microfilariae and differential microfilarial loads in the blood of persons infected with lymphatic filariasis. Hum Immunol 2011; 72:1143-8. [DOI: 10.1016/j.humimm.2011.07.305] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 07/08/2011] [Accepted: 07/25/2011] [Indexed: 11/22/2022]
|
50
|
Over expression of IL-10 by macrophages overcomes resistance to murine filariasis. Exp Parasitol 2011; 132:90-6. [PMID: 21959021 DOI: 10.1016/j.exppara.2011.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 09/11/2011] [Accepted: 09/13/2011] [Indexed: 01/10/2023]
Abstract
Individuals infected with parasitic helminths are able to tolerate the presence of parasites for considerable time without clinical pathology. Immunosuppressive responses induced by the filarial parasite are considered responsible for this long-lasting relationship, inuring to the benefit of both parasite and host. In order to directly link IL-10 with parasite survival, we infected mice, in which over expression of IL-10 was restricted to macrophages under control of the CD68 promoter (macIL-10tg), with Litomosoides sigmodontis. IL-10 overexpression by macrophages led to increased susceptibility with a significantly higher number of adult worms. Most profound, IL-10 overexpression was sufficient to convert resistant FVB wild-type mice towards a patent phenotype, since microfilariae were exclusively found in macIL-10tg mice. These findings were associated with reduced Th2 cytokine production in macIL-10tg mice. Expression of arginase-1, Ym1 and Fizz1, genes that are found strongly expressed in murine alternatively activated macrophages, were detected in macIL-10tg mice. Thus, IL-10 produced by macrophages with characteristics of alternative activation can overcome resistance and allow full patency in murine filariasis.
Collapse
|