1
|
Mazenq J, Dubus JC, Chanez P, Gras D. Post viral bronchiolitis obliterans in children: A rare and potentially devastating disease. Paediatr Respir Rev 2024; 52:58-65. [PMID: 39214823 DOI: 10.1016/j.prrv.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 09/04/2024]
Abstract
Post infectious bronchiolitis obliterans (PIBO) is a rare but severe disease in children. Several respiratory pathogens are incriminated but adenovirus is still the most represented. Risk factors are well described: the male gender, hypoxemia at diagnosis and required mechanical ventilation. No risk factor is linked to the newborn period. The clinical spectrum of PIBO is broad, ranging from asymptomatic patients with fixed airflow obstruction to severe respiratory insufficiency requiring continuous oxygen supplementation. Diagnosis includes a combination of a clinical history, absence of reversible airflow obstructions and ground glass and gas trapping on high resolution computed tomography. PIBO is primarily a neutrophilic pathology of small bronchioles characterized by high levels of pro-inflammatory cytokines leading to tissue remodeling and fibrosis of the small airways. The difficulty is to discriminate between the host's normal response, an exaggerated inflammatory response and the potential iatrogenic consequences of the initial infection treatment, particularly prolonged mechanical ventilation. Damage to the respiratory epithelium with a possible link to viral infections are considered as potential mechanisms of PIBO. No specific management exists. Much remains to be done in this field to clarify the underlying mechanisms, identify biomarkers, and develop clear monitoring pathways and treatment protocols.
Collapse
Affiliation(s)
- Julie Mazenq
- Service de pneumologie pédiatrique, CHU Timone enfants, Assistante Publique des Hôpitaux de Marseille, France; Aix-Marseille Université, INSERM, INRAE, C2VN Marseille, France.
| | - Jean-Christophe Dubus
- Service de pneumologie pédiatrique, CHU Timone enfants, Assistante Publique des Hôpitaux de Marseille, France; Aix-Marseille Université, INSERM, INRAE, C2VN Marseille, France
| | - Pascal Chanez
- Aix-Marseille Université, INSERM, INRAE, C2VN Marseille, France; Clinique des bronches, de l'allergie et du sommeil, CHU Nord, Assistante Publique des Hôpitaux de Marseille, France
| | - Delphine Gras
- Aix-Marseille Université, INSERM, INRAE, C2VN Marseille, France
| |
Collapse
|
2
|
Liu X, Li Z, Li X, Zhang X, Zheng Y, Su W, Feng Y, Liu Y, Wu W, Sun X, Wang N, Ye X, Zhou Z, Liu W, He J, Wang W, Qu L, Zhou R, Chen L, Feng L. Neutralizing monoclonal antibodies protect against human adenovirus type 55 infection in transgenic mice and tree shrews. Emerg Microbes Infect 2024; 13:2307513. [PMID: 38240267 PMCID: PMC10836490 DOI: 10.1080/22221751.2024.2307513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Re-emerging human adenovirus type 55 (HAdV55) has become a significant threat to public health due to its widespread circulation and the association with severe pneumonia, but an effective anti-HAdV55 agent remains unavailable. Herein, we report the generation of macaque-derived, human-like monoclonal antibodies (mAbs) protecting against HAdV55 infection with high potency. Using fluorophore-labelled HAdV55 virions as probes, we isolated specific memory B cells from rhesus macaques (Macaca mulatta) that were immunized twice with an experimental vaccine based on E1-, E3-deleted, replication-incompetent HAdV55. We cloned a total of 19 neutralizing mAbs, nine of which showed half-maximal inhibitory concentrations below 1.0 ng/ml. These mAbs recognized the hyper-variable-region (HVR) 1, 2, or 7 of viral hexon protein, or the fibre knob. In transgenic mice expressing human desmoglein-2, the major cellular receptor for HAdV55, a single intraperitoneal injection with hexon-targeting mAbs efficiently prevented HAdV55 infection, and mAb 29C12 showed protection at a dose as low as 0.004 mg/kg. Fibre-targeting mAb 28E8, however, showed protection only at a dose up to 12.5 mg/kg. In tree shrews that are permissive for HAdV55 infection and disease, mAb 29C12 effectively prevented HAdV55-caused pneumonia. Further analysis revealed that fibre-targeting mAbs blocked the attachment of HAdV55 to host cells, whereas hexon-targeting mAbs, regardless of their targeting HVRs, mainly functioned at post-attachment stage via inhibiting viral endosomal escape. Our results indicate that hexon-targeting mAbs have great anti-HAdV55 activities and warrant pre-clinical and clinical evaluation.
Collapse
Affiliation(s)
- Xinglong Liu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhengfeng Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoyan Zhang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yali Zheng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wan Su
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Ying Feng
- Guangzhou Laboratory & Bioland Laboratory, Guangzhou, People's Republic of China
| | - Yutong Liu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Weixuan Wu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xikui Sun
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Nana Wang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Xianmiao Ye
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jun He
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei Wang
- Guangzhou Laboratory & Bioland Laboratory, Guangzhou, People's Republic of China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Rong Zhou
- Guangzhou Laboratory & Bioland Laboratory, Guangzhou, People's Republic of China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou nBiomed Ltd., Guangzhou, People's Republic of China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
3
|
Zhou C, Liao X, Zhou Z, Mo C, Yang Y, Liao H, Liu M, Zhang Q, Li Q, Tian X, Zhou R, Cao H. A humanized neutralizing antibody protects against human adenovirus type 7 infection in humanized desmoglein-2 and CD46 double-receptor transgenic mice. Virol J 2024; 21:294. [PMID: 39548554 PMCID: PMC11568553 DOI: 10.1186/s12985-024-02572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Human adenovirus type 7 (HAdV7) has become a major public health threat due to its widespread transmission, severe associated pneumonia, and a lack of effective anti-HAdV7 drugs. The aim of the current study is to design a humanized monoclonal antibody (mAb) demonstrating efficacy against HAdV-7 infections in vitro and in vivo. METHODS The humanized neutralizing antibody, 3G5-hu, was derived from the murine mAb 3G5. Antibody activity was evaluated using a flow cytometry-based neutralization (FCN) assay to identify humanized mAbs retaining potent neutralizing activity. Additionally, a humanized hDSG2/hCD46 dual-receptor transgenic mouse model was developed to simulate HAdV-7 infection. RESULTS Using recombinant HAdV-7 expressing enhanced green fluorescent protein and clinically isolated wild-type HAdV-7, the half-maximal effective concentration of 3G5-hu against HAdV-7 was determined to be < 30 ng/mL. Notably, 3G5-hu exhibits high specificity for the hexon protein of the HAdV-7 capsid (affinity: KD = 9.02 × 10- 11 M). Microneutralization studies with wild-type HAdV-7 and rAd7EGFP confirmed that humanized mAb 3G5-hu neutralizes 10-30 ng/mL HAdV-7 (approximately 67-200 pM). Furthermore, hDSG2/hCD46 double-receptor transgenic mice are more susceptible to HAdV-7 infection than single-receptor transgenic mice. Meanwhile, the humanized mAb 3G5-hu provides good protection against HAdV-7 infection in hDSG2/hCD46 knock-in transgenic mice. CONCLUSIONS The newly designed humanized mAb 3G5-hu specifically neutralizes HAdV-7 in vitro and in vivo. 3G5-hu elicits protection against HAdV-7 infection in hDSG2/hCD46 knock-in transgenic mice. The findings of this study provide insights to guide the future development of preventative and therapeutic treatments for HAdV-7 infection.
Collapse
MESH Headings
- Animals
- Mice, Transgenic
- Adenoviruses, Human/immunology
- Adenoviruses, Human/genetics
- Humans
- Antibodies, Neutralizing/immunology
- Mice
- Membrane Cofactor Protein/genetics
- Membrane Cofactor Protein/immunology
- Antibodies, Viral/immunology
- Desmoglein 2/immunology
- Desmoglein 2/genetics
- Adenovirus Infections, Human/immunology
- Adenovirus Infections, Human/prevention & control
- Adenovirus Infections, Human/virology
- Disease Models, Animal
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Neutralization Tests
Collapse
Affiliation(s)
- Chengxing Zhou
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | | | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chuncong Mo
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yujie Yang
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hui Liao
- Guangzhou National Laboratory, Guangzhou, China
| | - Minglei Liu
- Guangzhou National Laboratory, Guangzhou, China
| | - Qiong Zhang
- Guangzhou National Laboratory, Guangzhou, China
| | - Qiuru Li
- Guangzhou National Laboratory, Guangzhou, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Rong Zhou
- Guangzhou National Laboratory, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Koizumi N, Hirai T, Kano J, Sato A, Suzuki Y, Sasaki A, Nomura T, Utoguchi N. Utilizing Adenovirus Knob Proteins as Carriers in Cancer Gene Therapy Amidst the Presence of Anti-Knob Antibodies. Int J Mol Sci 2024; 25:10679. [PMID: 39409008 PMCID: PMC11476472 DOI: 10.3390/ijms251910679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Numerous gene therapy drugs for cancer have received global approval, yet their efficacy against solid tumors remains inadequate. Our previous research indicated that the fiber protein, a component of the adenovirus capsid, can propagate from infected cells to neighboring cells that express the adenovirus receptor. We hypothesize that merging this fiber protein with an anti-cancer protein could enable the anti-cancer protein to disseminate around the transfected cells, presenting a novel approach to cancer gene therapy. In our study, we discovered that the knob region of the adenovirus type 5 fiber protein is the smallest unit capable of spreading to adjacent cells in a receptor-specific manner. We also showed that the recombinant knob protein infiltrates cells after dispersing to surrounding cells. To assess the potential of the knob protein to augment gene therapy for solid tumors in mice, we expressed a fusion gene of the A subunit of cytotoxic cholera toxin and the knob region in mouse tumors. We found that this fusion protein only inhibited tumor growth in receptor-expressing mouse melanomas, and this inhibitory effect persisted even in mice with anti-knob antibodies. Our study's findings propose a novel cancer gene therapy strategy that enhances therapeutic effects by specifically delivering therapeutic proteins, expressed from in vivo administered genes, to target molecules. This outcome offers a fresh perspective on gene therapy for solid cancers, and we anticipate that knob proteins will serve as a platform for this method.
Collapse
Affiliation(s)
- Naoya Koizumi
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| | - Takamasa Hirai
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Junpei Kano
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| | - Anna Sato
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| | - Yurika Suzuki
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| | - Arisa Sasaki
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| | - Tetsuya Nomura
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| | - Naoki Utoguchi
- Laboratory of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Tokyo 194-8543, Japan; (T.H.); (T.N.); (N.U.)
| |
Collapse
|
5
|
Seo SH, Choi JA, Jung DI, Park Y, Yang E, Jung S, Kwon T, Kwon SH, Song M. Prime-boost immunization with inactivated human adenovirus type 55 combined with an adjuvant enhances neutralizing antibody responses in mice. Virol J 2024; 21:220. [PMID: 39285440 PMCID: PMC11406814 DOI: 10.1186/s12985-024-02491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Human adenovirus type 55 (hAd55) infection can lead to acute respiratory diseases that often present with severe symptoms. Despite its persistent prevalence in military camps and communities, there are no commercially available vaccines or vaccine candidates undergoing clinical evaluation; therefore, there is an urgent need to address this. In this study, we evaluated the immunogenicity of inactivated hAd55 isolates and investigated the effects of adjuvants and various immunization intervals. METHODS AND RESULTS To select a vaccine candidate, four hAd55 strains (6-9, 6-15 (AFMRI 41014), 28-48 (AFMRI 41013), and 12-164 (AFMRI 41012)) were isolated from infected patients in military camps. Sequence analysis revealed no variation in the coding regions of structural proteins, including pentons, hexons, and fibers. Immunization with inactivated hAd55 isolates elicited robust hAd55-specific binding and neutralizing antibody responses in mice, with adjuvants, particularly alum hydroxide (AH), enhancing antibody titers. Co-immunization with AH also induced hAd14-specific neutralizing antibody responses but did not induce hAd11-specific neutralizing antibody responses. Notably, booster immunization administered at a four-week interval resulted in superior immune responses compared with shorter immunization intervals. CONCLUSIONS Prime-boost immunization with the inactivated hAd55 isolate and an AH adjuvant shows promise as a potential approach for preventing hAd55-induced respiratory disease. Further research is needed to evaluate the efficacy and safety of these vaccine candidates in preventing hAd55-associated respiratory illnesses.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Mice
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Humans
- Adenoviruses, Human/immunology
- Adenoviruses, Human/genetics
- Adjuvants, Immunologic/administration & dosage
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- Female
- Immunization, Secondary
- Adenovirus Vaccines/immunology
- Adenovirus Vaccines/administration & dosage
- Mice, Inbred BALB C
- Adjuvants, Vaccine/administration & dosage
- Adenovirus Infections, Human/immunology
- Adenovirus Infections, Human/prevention & control
- Adenovirus Infections, Human/virology
Collapse
Affiliation(s)
- Sang Hwan Seo
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Jung-Ah Choi
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Dae-Im Jung
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Yunjeong Park
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Eunji Yang
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Seohee Jung
- Department of Infectious Diseases, Armed Forces Medical Research Institute, Daejeon, Republic of Korea
| | - Taesoo Kwon
- CLOUD9, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Soon-Hwan Kwon
- Department of Infectious Diseases, Armed Forces Medical Research Institute, Daejeon, Republic of Korea.
| | - Manki Song
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Liu Z, Tang G, Peng Y, Lan J, Xian Y, Tian X, Chen D. The short fiber knobs of human adenovirus in species F elicit cross-neutralizing antibody responses. Heliyon 2024; 10:e35783. [PMID: 39170224 PMCID: PMC11337035 DOI: 10.1016/j.heliyon.2024.e35783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Human adenovirus (HAdV) type 40 in species F (HAdV-F40) and HAdV-F41 represent the third most prevalent causative agents of non-bacterial acute gastroenteritis in infants and young children, following norovirus and rotavirus. Despite their significant contribution to global child morbidity, vaccines to preemptively combat these viruses remain elusive. In this study, we investigate the potential for cross-neutralization between HAdV-F40 and HAdV-F41 using immune sera with the short fiber knob (SFK). We implemented a series of assays to evaluate the responses, including enzyme-linked immunosorbent, micro-neutralization, immunofluorescence, and quantitative polymerase chain reaction. Our results demonstrate that immune sera with HAdV-F40 SFK or HAdV-F41 SFK could effectively neutralize both HAdV-F40 and HAdV-F41, indicating a mutual cross-neutralizing effect. Notably, the immune sera with HAdV-F40 SFK demonstrated a stronger neutralization effect, suggesting the potential to develop a subunit vaccine that can simultaneously counteract both viruses. These findings underscore the potential of SFK immunization in evoking a cross-neutralizing antibody response between HAdV-F40 and HAdV-F41. This suggests a promising avenue for developing subunit vaccines against HAdV-F40 and HAdV-F41 and provides a novel perspective on the potential of neutralizing antibodies to protect against these two types of HAdV.
Collapse
Affiliation(s)
- Zhenwei Liu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Guolu Tang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou Medical University, Guangzhou, China
| | - Yinghui Peng
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou Medical University, Guangzhou, China
| | - Jixian Lan
- Guangdong Sanmai Biotechnology Co., Ltd, Guangzhou, China
| | - Yuting Xian
- Guangdong Sanmai Biotechnology Co., Ltd, Guangzhou, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Dehui Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Wallace R, Bliss CM, Parker AL. The Immune System-A Double-Edged Sword for Adenovirus-Based Therapies. Viruses 2024; 16:973. [PMID: 38932265 PMCID: PMC11209478 DOI: 10.3390/v16060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications.
Collapse
Affiliation(s)
- Rebecca Wallace
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
| | - Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
8
|
Trifonova I, Korsun N, Madzharova I, Alexiev I, Ivanov I, Levterova V, Grigorova L, Stoikov I, Donchev D, Christova I. Epidemiological and Genetic Characteristics of Respiratory Viral Coinfections with Different Variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Viruses 2024; 16:958. [PMID: 38932250 PMCID: PMC11209099 DOI: 10.3390/v16060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to determine the incidence and etiological, seasonal, and genetic characteristics of respiratory viral coinfections involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Between October 2020 and January 2024, nasopharyngeal samples were collected from 2277 SARS-CoV-2-positive patients. Two multiplex approaches were used to detect and sequence SARS-CoV-2, influenza A/B viruses, and other seasonal respiratory viruses: multiplex real-time polymerase chain reaction (PCR) and multiplex next-generation sequencing. Coinfections of SARS-CoV-2 with other respiratory viruses were detected in 164 (7.2%) patients. The most common co-infecting virus was respiratory syncytial virus (RSV) (38 cases, 1.7%), followed by bocavirus (BoV) (1.2%) and rhinovirus (RV) (1.1%). Patients ≤ 16 years of age had the highest rate (15%) of mixed infections. Whole-genome sequencing produced 19 complete genomes of seasonal respiratory viral co-pathogens, which were subjected to phylogenetic and amino acid analyses. The detected influenza viruses were classified into the genetic groups 6B.1A.5a.2a and 6B.1A.5a.2a.1 for A(H1N1)pdm09, 3C.2a1b.2a.2a.1 and 3C.2a.2b for A(H3N2), and V1A.3a.2 for the B/Victoria lineage. The RSV-B sequences belonged to the genetic group GB5.0.5a, with HAdV-C belonging to type 1, BoV to genotype VP1, and PIV3 to lineage 1a(i). Multiple amino acid substitutions were identified, including at the antibody-binding sites. This study provides insights into respiratory viral coinfections involving SARS-CoV-2 and reinforces the importance of genetic characterization of co-pathogens in the development of therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Ivelina Trifonova
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria; (N.K.); (I.M.); (I.A.); (L.G.); (I.C.)
| | - Neli Korsun
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria; (N.K.); (I.M.); (I.A.); (L.G.); (I.C.)
| | - Iveta Madzharova
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria; (N.K.); (I.M.); (I.A.); (L.G.); (I.C.)
| | - Ivailo Alexiev
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria; (N.K.); (I.M.); (I.A.); (L.G.); (I.C.)
| | - Ivan Ivanov
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.I.); (V.L.); (I.S.); (D.D.)
| | - Viktoria Levterova
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.I.); (V.L.); (I.S.); (D.D.)
| | - Lyubomira Grigorova
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria; (N.K.); (I.M.); (I.A.); (L.G.); (I.C.)
| | - Ivan Stoikov
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.I.); (V.L.); (I.S.); (D.D.)
| | - Dean Donchev
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.I.); (V.L.); (I.S.); (D.D.)
| | - Iva Christova
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 1233 Sofia, Bulgaria; (N.K.); (I.M.); (I.A.); (L.G.); (I.C.)
- Department of Microbiology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (I.I.); (V.L.); (I.S.); (D.D.)
| |
Collapse
|
9
|
Zhao C, Porter JM, Burke PC, Arnberg N, Smith JG. Alpha-defensin binding expands human adenovirus tropism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596681. [PMID: 38854108 PMCID: PMC11160700 DOI: 10.1101/2024.05.30.596681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mammalian α-defensins are a family of abundant effector peptides of the mucosal innate immune system. Although primarily considered to be antimicrobial, α-defensins can increase rather than block infection by certain prominent bacterial and viral pathogens in cell culture and in vivo . We have shown previously that exposure of mouse and human adenoviruses (HAdVs) to α-defensins is able to overcome competitive inhibitors that block cell binding, leading us to hypothesize a defensin-mediated binding mechanism that is independent of known viral receptors. To test this hypothesis, we used genetic approaches to demonstrate that none of several primary receptors nor integrin co-receptors are needed for human α-defensin-mediated binding of HAdV to cells; however, infection remains integrin dependent. Thus, our studies have revealed a novel pathway for HAdV binding to cells that bypasses viral primary receptors. We speculate that this pathway functions in parallel with receptor-mediated entry and contributes to α-defensin-enhanced infection of susceptible cells. Remarkably, we also found that in the presence of α-defensins, HAdV tropism is expanded to non-susceptible cells, even when viruses are exposed to a mixture of both susceptible and non-susceptible cells. Therefore, we propose that in the presence of sufficient concentrations of α-defensins, such as in the lung or gut, integrin expression rather than primary receptor expression will dictate HAdV tropism in vivo . In summary, α-defensins may contribute to tissue tropism not only through the neutralization of susceptible viruses but also by allowing certain defensin-resistant viruses to bind to cells independently of previously described mechanisms. Author Summary In this study, we demonstrate a novel mechanism for binding of human adenoviruses (HAdVs) to cells that is dependent upon interactions with α-defensin host defense peptides but is independent of known viral receptors and co-receptors. To block normal receptor-mediated HAdV infection, we made genetic changes to both host cells and HAdVs. Under these conditions, α-defensins restored cell binding; however, infection still required the function of HAdV integrin co-receptors. This was true for multiple types of HAdVs that use different primary receptors and for cells that are either naturally devoid of HAdV receptors or were engineered to be receptor deficient. These observations suggest that in the presence of concentrations of α-defensins that would be found naturally in the lung or intestine, there are two parallel pathways for HAdV binding to cells that converge on integrins for productive infection. Moreover, these binding pathways function independently, and both operate in mixed culture. Thus, we have found that viruses can co-opt host defense molecules to expand their tropism.
Collapse
|
10
|
Park A, Lee C, Lee JY. Genomic Evolution and Recombination Dynamics of Human Adenovirus D Species: Insights from Comprehensive Bioinformatic Analysis. J Microbiol 2024; 62:393-407. [PMID: 38451451 DOI: 10.1007/s12275-024-00112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 03/08/2024]
Abstract
Human adenoviruses (HAdVs) can infect various epithelial mucosal cells, ultimately causing different symptoms in infected organ systems. With more than 110 types classified into seven species (A-G), HAdV-D species possess the highest number of viruses and are the fastest proliferating. The emergence of new adenovirus types and increased diversity are driven by homologous recombination (HR) between viral genes, primarily in structural elements such as the penton base, hexon and fiber proteins, and the E1 and E3 regions. A comprehensive analysis of the HAdV genome provides valuable insights into the evolution of human adenoviruses and identifies genes that display high variation across the entire genome to determine recombination patterns. Hypervariable regions within genetic sequences correlate with functional characteristics, thus allowing for adaptation to new environments and hosts. Proteotyping of newly emerging and already established adenoviruses allows for prediction of the characteristics of novel viruses. HAdV-D species evolved in a direction that increased diversity through gene recombination. Bioinformatics analysis across the genome, particularly in highly variable regions, allows for the verification or re-evaluation of recombination patterns in both newly introduced and pre-existing viruses, ultimately aiding in tracing various biological traits such as virus tropism and pathogenesis. Our research does not only assist in predicting the emergence of new adenoviruses but also offers critical guidance in regard to identifying potential regulatory factors of homologous recombination hotspots.
Collapse
Affiliation(s)
- Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Chanhee Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
11
|
Lee C, Park A, Lee JY. In Silico Intensive Analysis for the E4 Gene Evolution of Human Adenovirus Species D. J Microbiol 2024; 62:409-418. [PMID: 38689047 DOI: 10.1007/s12275-024-00132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 05/02/2024]
Abstract
Adenovirus (Ad) is a ubiquitous pathogen capable of infecting a wide range of animals and humans. Human Adenovirus (HAdV) can cause severe infection, particularly in individuals with compromised immune systems. To date, over 110 types of HAdV have been classified into seven species from A to G, with the majority belonging to the human adenovirus species D (HAdV-D). In the HAdV-D, the most significant factor for the creation of new adenovirus types is homologous recombination between viral genes involved in determining the virus tropism or evading immune system of host cells. The E4 gene, consisting of seven Open Reading Frames (ORFs), plays a role in both the regulation of host cell metabolism and the replication of viral genes. Despite long-term studies, the function of each ORF remains unclear. Based on our updated information, ORF2, ORF3, and ORF4 have been identified as regions with relatively high mutations compared to other ORFs in the E4 gene, through the use of in silico comparative analysis. Additionally, we managed to visualize high mutation sections, previously undetectable at the DNA level, through a powerful amino acid sequence analysis tool known as proteotyping. Our research has revealed the involvement of the E4 gene in the evolution of human adenovirus, and has established accurate sequence information of the E4 gene, laying the groundwork for further research.
Collapse
Affiliation(s)
- Chanhee Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
12
|
Shirazi MMA, Saedi TA, Moghaddam ZS, Nemati M, Shiri R, Negahdari B, Goradel NH. Nanotechnology and nano-sized tools: Newer approaches to circumvent oncolytic adenovirus limitations. Pharmacol Ther 2024; 256:108611. [PMID: 38387653 DOI: 10.1016/j.pharmthera.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Oncolytic adenoviruses (OAds), engineered Ads preferentially infect and lyse tumor cells, have attracted remarkable attention as immunotherapy weapons for the treatment of various malignancies. Despite hopeful successes in preclinical investigations and translation into clinical phases, they face some challenges that thwart their therapeutic effectiveness, including low infectivity of cancer cells, liver sequestration, pre-existing neutralizing antibodies, physical barriers to the spread of Ads, and immunosuppressive TME. Nanotechnology and nano-sized tools provide several advantages to overcome these limitations of OAds. Nano-sized tools could improve the therapeutic efficacy of OAds by enhancing infectivity and cellular uptake, targeting and protecting from pre-existing immune responses, masking and preventing liver tropism, and co-delivery with other therapeutic agents. Herein, we reviewed the constructs of various OAds and their application in clinical trials, as well as the limitations they have faced. Furthermore, we emphasized the potential applications of nanotechnology to solve the constraints of OAds to improve their anti-tumor activities.
Collapse
Affiliation(s)
| | - Tayebeh Azam Saedi
- Department of Genetics, Faculty of Science, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Zahra Samadi Moghaddam
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shiri
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran; Arthropod-Borne Diseases Research Centre, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
13
|
He Y, Zhou J, Gao H, Liu C, Zhan P, Liu X. Broad-spectrum antiviral strategy: Host-targeting antivirals against emerging and re-emerging viruses. Eur J Med Chem 2024; 265:116069. [PMID: 38160620 DOI: 10.1016/j.ejmech.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Viral infections are amongst the most prevalent diseases that pose a significant threat to human health. Targeting viral proteins or host factors represents two primary strategies for the development of antiviral drugs. In contrast to virus-targeting antivirals (VTAs), host-targeting antivirals (HTAs) offer advantages in terms of overcoming drug resistance and effectively combating a wide range of viruses, including newly emerging ones. Therefore, targeting host factors emerges as an extremely promising strategy with the potential to address critical challenges faced by VTAs. In recent years, extensive research has been conducted on the discovery and development of HTAs, leading to the approval of maraviroc, a chemokine receptor type 5 (CCR5) antagonist used for the treatment of HIV-1 infected individuals, with several other potential treatments in various stages of development for different viral infections. This review systematically summarizes advancements made in medicinal chemistry regarding various host targets and classifies them into four distinct catagories based on their involvement in the viral life cycle: virus attachment and entry, biosynthesis, nuclear import and export, and viral release.
Collapse
Affiliation(s)
- Yong He
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Jiahui Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Huizhan Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| |
Collapse
|
14
|
Zhang H, Wang H, An Y, Chen Z. Construction and application of adenoviral vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102027. [PMID: 37808925 PMCID: PMC10556817 DOI: 10.1016/j.omtn.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Adenoviral vectors have been widely used as vaccine candidates or potential vaccine candidates against infectious diseases due to the convenience of genome manipulation, their ability to accommodate large exogenous gene fragments, easy access of obtaining high-titer of virus, and high efficiency of transduction. At the same time, adenoviral vectors have also been used extensively in clinical research for cancer gene therapy and treatment of diseases caused by a single gene defect. However, application of adenovirus also faces a series of challenges such as poor targeting, strong immune response against the vector itself, and they cannot be used repeatedly. It is believed that these problems will be solved gradually with further research and technological development in related fields. Here, we review the construction methods of adenoviral vectors, including "gutless" adenovirus and discuss application of adenoviral vectors as prophylactic vaccines for infectious pathogens and their application prospects as therapeutic vaccines for cancer and other kinds of chronic infectious disease such as human papillomavirus, hepatitis B virus, and hepatitis C virus.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Hongdan Wang
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Youcai An
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Ze Chen
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| |
Collapse
|
15
|
Grand RJ. Pathogenicity and virulence of human adenovirus F41: Possible links to severe hepatitis in children. Virulence 2023; 14:2242544. [PMID: 37543996 PMCID: PMC10405776 DOI: 10.1080/21505594.2023.2242544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Over 100 human adenoviruses (HAdVs) have been isolated and allocated to seven species, A-G. Species F comprises two members-HAdV-F40 and HAdV-F41. As their primary site of infection is the gastrointestinal tract they have been termed, with species A, enteric adenoviruses. HAdV-F40 and HAdV-F41 are a common cause of gastroenteritis and diarrhoea in children. Partly because of difficulties in propagating the viruses in the laboratory, due to their restrictions on growth in many cell lines, our knowledge of the properties of individual viral proteins is limited. However, the structure of HAdV-F41 has recently been determined by cryo-electron microscopy. The overall structure is similar to those of HAdV-C5 and HAdV-D26 although with some differences. The sequence and arrangement of the hexon hypervariable region 1 (HVR1) and the arrangement of the C-terminal region of protein IX differ. Variations in the penton base and hexon HVR1 may play a role in facilitating infection of intestinal cells by HAdV-F41. A unique feature of HAdV-F40 and F41, among human adenoviruses, is the presence and expression of two fibre genes, giving long and short fibre proteins. This may also contribute to the tropism of these viruses. HAdV-F41 has been linked to a recent outbreak of severe acute hepatitis "of unknown origin" in young children. Further investigation has shown a very high prevalence of adeno-associated virus-2 in the liver and/or plasma of some cohorts of patients. These observations have proved controversial as HAdV-F41 had not been reported to infect the liver and AAV-2 has generally been considered harmless.
Collapse
Affiliation(s)
- Roger J. Grand
- Institute for Cancer and Genomic Science, the Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
Hegazy GE, Abu-Serie MM, Soliman NA, Teleb M, Abdel-Fattah YR. Superior anti-pulmonary viral potential of Natrialba sp. M6-producing surfactin and C50 carotenoid pigment with unveiling its action modes. Virol J 2023; 20:249. [PMID: 37904234 PMCID: PMC10614327 DOI: 10.1186/s12985-023-02215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Respiratory viruses, particularly adenoviruses (ADV), influenza A virus (e.g., H1N1), and coronaviruses (e.g., HCoV-229E and SARS-CoV-2) pose a global public health problem. Therefore, developing natural wide-spectrum antiviral compounds for disrupting the viral life cycle with antioxidant activity provides an efficient treatment approach. Herein, biosurfactant (Sur) and C50 carotenoid pigment (Pig) of haloalkaliphilic archaeon Natrialba sp. M6 which exhibited potent efficacy against hepatitis and anti-herpes simplex viruses, were investigated against pulmonary viruses. METHODS The cytotoxicity of the extracted Sur and Pig was examined on susceptible cell lines for ADV, HIN1, HCoV-229E, and SARS-CoV-2. Their potential against the cytopathic activity of these viruses was detected with investigating the action modes (including, virucidal, anti-adsorption, and anti-replication), unveiling the main mechanisms, and using molecular docking analysis. Radical scavenging activity was determined and HPLC analysis for potent extract (Sur) was performed. RESULTS All current investigations stated higher anti-pulmonary viruses of Sur than Pig via mainly virucidal and/or anti-replicative modes. Moreover, Sur had stronger ADV's capsid protein binding, ADV's DNA polymerase inhibition, suppressing hemagglutinin and neuraminidase of H1N1, and inhibiting chymotrypsin-like (3CL) protease of SARS-CoV-2, supporting with in-silico analysis, as well as radical scavenging activity than Pig. HPLC analysis of Sur confirmed the predominate presence of surfactin in it. CONCLUSION This study declared the promising efficacy of Sur as an efficient pharmacological treatment option for these pulmonary viruses and considered as guide for further in vivo research.
Collapse
Affiliation(s)
- Ghada E Hegazy
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt.
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt.
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Yasser R Abdel-Fattah
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt.
| |
Collapse
|
17
|
Jurković M, Radić Stojković M, Božinović K, Nestić D, Majhen D, Delgado-Pinar E, Inclán M, García-España E, Piantanida I. Novel Tripodal Polyamine Tris-Pyrene: DNA/RNA Binding and Photodynamic Antiproliferative Activity. Pharmaceutics 2023; 15:2197. [PMID: 37765167 PMCID: PMC10536304 DOI: 10.3390/pharmaceutics15092197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
A novel tri-pyrene polyamine (TAL3PYR) bearing net five positive charges at biorelevant conditions revealed strong intramolecular interactions in aqueous medium between pyrenes, characterised by pronounced excimer fluorescence. A novel compound revealed strong binding to ds-DNA and ds-RNA, along with pronounced thermal stabilisation of DNA/RNA and extensive changes in DNA/RNA structure, as evidenced by circular dichroism. New dye caused pronounced ds-DNA or ds-RNA condensation, which was attributed to a combination of electrostatic interactions between 5+ charge of dye and negatively charged polynucleotide backbone, accompanied by aromatic and hydrophobic interactions of pyrenes within polynucleotide grooves. New dye also showed intriguing antiproliferative activity, strongly enhanced upon photo-induced activation of pyrenes, and is thus a promising lead compound for theranostic applications on ds-RNA or ds-DNA targets, applicable as a new strategy in cancer and gene therapy.
Collapse
Affiliation(s)
- Marta Jurković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.J.); (M.R.S.)
| | - Marijana Radić Stojković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.J.); (M.R.S.)
| | - Ksenija Božinović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (D.N.); (D.M.)
| | - Davor Nestić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (D.N.); (D.M.)
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (D.N.); (D.M.)
| | - Estefanía Delgado-Pinar
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980 Paterna, Spain; (E.D.-P.); (M.I.)
| | - Mario Inclán
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980 Paterna, Spain; (E.D.-P.); (M.I.)
- Escuela Superior de Ingeniería, Ciencia y Tecnología, Universidad Internacional de Valencia (VIU), 46002 Valencia, Spain
| | - Enrique García-España
- Department of Inorganic Chemistry, Institute for Molecular Science, University of Valencia, Catedratico Jose Beltran 2, 46980 Paterna, Spain; (E.D.-P.); (M.I.)
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.J.); (M.R.S.)
| |
Collapse
|
18
|
Wang J, Ning X, Xu Y, Wang R, Guo X, Xu J, Guo J, Ma Q, Li H, Niu D, Liu Y, Mao N, Zhu Z. Etiological Study of Acute Conjunctivitis Caused by Human Adenovirus in Shanxi Province, China, between 2016 and 2019. Microbiol Spectr 2023; 11:e0015923. [PMID: 37486235 PMCID: PMC10434163 DOI: 10.1128/spectrum.00159-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Human adenovirus (HAdV) is the primary cause of acute conjunctivitis. To improve our understanding of the etiology of adenoviral conjunctivitis, ocular samples were collected from 160 conjunctivitis cases in the Shanxi province of northern China between 2016 and 2019. Through preliminary identification, virus isolation, and type identification, a total of 63 HAdV isolates were obtained from the samples. Three species and seven types (HAdV-3, HAdV-4, HAdV-8, HAdV-37, HAdV-53, HAdV-64, and HAdV-85) were detected, with HAdV-64, HAdV-3, and HAdV-8 being the predominant types in 2016, 2018, and 2019, respectively. Further phylogenetic analysis indicated the relative genomic stability of seven HAdV-type strains, except for 4 HAdV-3 strains in 2018 with a novel amino acid insertion site (Pro) between P19 and S20 in the penton base gene. It is worth noting that the genomes of two Shanxi HAdV-85 strains from 2016 were almost identical to those of previously reported HAdV-85 strains that circulated in Japan in 2014 to 2018. China was the second country to sample and isolate HAdV-85, suggesting that HAdV-85 might be underreported as an ocular pathogen. Data obtained in this study provide valuable information on the prevalence of acute conjunctivitis caused by HAdV. IMPORTANCE HAdV types in cases of conjunctivitis in Shanxi province, China, in 2016 to 2019 showed evident diversity, with seven types (HAdV-3, HAdV-4, HAdV-8, HAdV-37, HAdV-53, HAdV-64, and HAdV-85) being identified, and relative genome stability of these viruses was observed. In addition, China was the second country to sample and isolate HAdV-85, which suggests that HAdV-85 might be underreported as an important pathogen associated with ocular infections. These results enhance the understanding of the etiology of adenoviral conjunctivitis and may aid in the development of prevention and control strategies for HAdV-related ocular infections in China.
Collapse
Affiliation(s)
- Jitao Wang
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan, People’s Republic of China
| | - Xiaoling Ning
- Comprehensive Inspection Section, Shanxi Eye Hospital, Taiyuan, People’s Republic of China
| | - Yang Xu
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan, People’s Republic of China
| | - Rui Wang
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan, People’s Republic of China
| | - Xiaofang Guo
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan, People’s Republic of China
| | - Jihong Xu
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan, People’s Republic of China
| | - Jiane Guo
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan, People’s Republic of China
| | - Qin Ma
- Comprehensive Inspection Section, Shanxi Eye Hospital, Taiyuan, People’s Republic of China
| | - Hong Li
- Clinical Research Institute, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Dandan Niu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ying Liu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Naiying Mao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zhen Zhu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
19
|
Huang H, Liu M, Sun M, Duan S, Pan S, Liu P, Cheng Z, Ergonul O, Can F, Wang Z, Pang Z, Liu F. Virus-Protein Corona Replacement Strategy to Improve the Antitumor Efficacy of Intravenously Injected Oncolytic Adenovirus. ACS NANO 2023; 17:14461-14474. [PMID: 37367941 DOI: 10.1021/acsnano.3c00847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Intravenous administration of oncolytic adenoviruses (OVs) is a hopeful tumor therapeutic modality. However, the sharp clearance of OVs by the immune system dampens its effectiveness. Many studies have attempted to extend the circulation of intravenously administered OVs, almost all by preventing OVs from binding to neutralizing antibodies and complements in the blood, but the results have not been satisfactory. In contrast to previous conclusions, we found that the key to improving the circulation of OVs is to prevent the formation of the virus-protein corona rather than simply preventing the binding of neutralizing antibodies or complements to OVs. After identifying the key protein components of the virus-protein corona, we proposed a virus-protein corona replacement strategy, where an artificial virus-protein corona was formed on OVs to completely prevent the interaction of OVs with key virus-protein corona components in the plasma. It was found that this strategy dramatically prolonged the circulation time of OVs by over 30 fold and increased the distribution of OVs in tumors by over 10-fold, resulting in superior antitumor efficacy in primary and metastatic tumor models. Our finding provides a perspective on intravenous delivery of OVs, shifting the focus of future studies from preventing OV binding with neutralization antibodies and complements to preventing OVs from interacting with key virus-protein corona components in the plasma.
Collapse
Affiliation(s)
- Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, 200120 Shanghai, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
| | - Mingyang Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, 200120 Shanghai, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, 200120 Shanghai, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
| | - Siwei Pan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
| | - Pengfei Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
| | - Zhenguo Cheng
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Onder Ergonul
- Koç University Iş Bank Center for Infectious Diseases (KUISCID), Koç University School of Medicine and American Hospital, Istanbul 34450, Turkey
| | - Füsun Can
- Koç University Iş Bank Center for Infectious Diseases (KUISCID), Koç University School of Medicine and American Hospital, Istanbul 34450, Turkey
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education, 200120 Shanghai, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, 110000, Heping District, Shenyang, China
- Phase I Clinical Trials Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang 110102, Liaoning, China
| |
Collapse
|
20
|
Fang L, Zhou L, Kulić Ž, Lehner MD, Tamm M, Roth M. EPs ® 7630 Stimulates Tissue Repair Mechanisms and Modifies Tight Junction Protein Expression in Human Airway Epithelial Cells. Int J Mol Sci 2023; 24:11230. [PMID: 37446408 DOI: 10.3390/ijms241311230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Airway epithelium repair after infection consists of wound repair, re-synthesis of the extracellular matrix (ECM), and tight junction proteins. In humans, EPs® 7630 obtained from Pelargonium sidoides roots reduces the severity and duration of acute respiratory tract infections. The effect of EPs® 7630 on tissue repair of rhinovirus-16 (RV-16) infected and control human airway epithelial cells was assessed for: (i) epithelial cell proliferation by manual cell counts, (ii) epithelial wound repair by "scratch assay", (iii) ECM composition by Western-blotting and cell-based ELISA, and (iv) epithelial tight junction proteins by Western-blotting. EPs® 7630 stimulated cell proliferation through cAMP, CREB, and p38 MAPK. EPs® 7630 significantly improved wound repair. Pro-inflammatory collagen type-I expression was reduced by EPs® 7630, while fibronectin was increased. Virus-binding tight junction proteins desmoglein2, desmocollin2, ZO-1, claudin1, and claudin4 were downregulated by EPs® 7630. The RV16-induced shift of the ECM towards the pro-inflammatory type was prevented by EPs® 7630. Most of the effects of EPs® 7630 on tissue repair and regeneration were sensitive to inhibition of cAMP-induced signaling. The data suggest that EPs® 7630-dependent modification of epithelial cell metabolism and function might underlie the faster recovery time from viral infections, as reported by others in clinical studies.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research, Department of Biomedicine & Clinic of Pneumology, University and University Hospital Basel, CH-4031 Basel, Switzerland
| | - Liang Zhou
- Pulmonary Cell Research, Department of Biomedicine & Clinic of Pneumology, University and University Hospital Basel, CH-4031 Basel, Switzerland
| | - Žarko Kulić
- Preclinical Research and Development, Dr. Willmar Schwabe GmbH & Co. KG, D-76227 Karlsruhe, Germany
| | - Martin D Lehner
- Preclinical Research and Development, Dr. Willmar Schwabe GmbH & Co. KG, D-76227 Karlsruhe, Germany
| | - Michael Tamm
- Pulmonary Cell Research, Department of Biomedicine & Clinic of Pneumology, University and University Hospital Basel, CH-4031 Basel, Switzerland
| | - Michael Roth
- Pulmonary Cell Research, Department of Biomedicine & Clinic of Pneumology, University and University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
21
|
Zhang J, Zhu Y, Zhou Y, Gao F, Qiu X, Li J, Yuan H, Jin W, Lin W. Pediatric adenovirus pneumonia: clinical practice and current treatment. Front Med (Lausanne) 2023; 10:1207568. [PMID: 37476615 PMCID: PMC10354292 DOI: 10.3389/fmed.2023.1207568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Adenovirus pneumonia is common in pediatric upper respiratory tract infection, which is comparatively easy to develop into severe cases and has a high mortality rate with many influential sequelae. As for pathogenesis, adenoviruses can directly damage target cells and activate the immune response to varying degrees. Early clinical recognition depends on patients' symptoms and laboratory tests, including those under 2 years old, dyspnea with systemic toxic symptoms, atelectasis or emphysema in CT image, decreased leukocytes, and significantly increased C-reaction protein (CRP) and procalcitonin (PCT), indicating the possibility of severe cases. Until now, there is no specific drug for adenovirus pneumonia, so in clinical practice, current treatment comprises antiviral drugs, respiratory support and bronchoscopy, immunomodulatory therapy, and blood purification. Additionally, post-infectious bronchiolitis obliterans (PIBO), hemophagocytic syndrome, and death should be carefully noted. Independent risk factors associated with the development of PIBO are invasive mechanical ventilation, intravenous steroid use, duration of fever, and male gender. Meanwhile, hypoxemia, hypercapnia, invasive mechanical ventilation, and low serum albumin levels are related to death. Among these, viral load and serological identification are not only "gold standard" for adenovirus pneumonia, but are also related to the severity and prognosis. Here, we discuss the progress of pathogenesis, early recognition, therapy, and risk factors for poor outcomes regarding severe pediatric adenovirus pneumonia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
22
|
Benhaghnazar RL, Medina-Kauwe L. Adenovirus-Derived Nano-Capsid Platforms for Targeted Delivery and Penetration of Macromolecules into Resistant and Metastatic Tumors. Cancers (Basel) 2023; 15:3240. [PMID: 37370850 PMCID: PMC10296971 DOI: 10.3390/cancers15123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Macromolecular therapeutics such as nucleic acids, peptides, and proteins have the potential to overcome treatment barriers for cancer. For example, nucleic acid or peptide biologics may offer an alternative strategy for attacking otherwise undruggable therapeutic targets such as transcription factors and similar oncologic drivers. Delivery of biological therapeutics into tumor cells requires a robust system of cell penetration to access therapeutic targets within the cell interior. A highly effective means of accomplishing this may be borrowed from cell-penetrating pathogens such as viruses. In particular, the cell entry function of the adenovirus penton base capsid protein has been effective at penetrating tumor cells for the intracellular deposition of macromolecular therapies and membrane-impermeable drugs. Here, we provide an overview describing the evolution of tumor-targeted penton-base-derived nano-capsids as a framework for discussing the requirements for overcoming key barriers to macromolecular delivery. The development and pre-clinical testing of these proteins for therapeutic delivery has begun to also uncover the elusive mechanism underlying the membrane-penetrating function of the penton base. An understanding of this mechanism may unlock the potential for macromolecular therapeutics to be effectively delivered into cancer cells and to provide a treatment option for tumors resisting current clinical therapies.
Collapse
Affiliation(s)
| | - Lali Medina-Kauwe
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Gumanova NG, Zlobina PD, Bogdanova NL, Brutyan HA, Kalemberg EN, Metelskaya VA, Davtyan KV, Drapkina OM. Associations of adenovirus-reactive immunoglobulins with atrial fibrillation and body mass index. Front Cardiovasc Med 2023; 10:1190051. [PMID: 37293276 PMCID: PMC10246773 DOI: 10.3389/fcvm.2023.1190051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Adenovirus (AdV) has been suggested to be involved in pathogenesis of atrial fibrillation (AF). We aimed to evaluate an association between AdV-specific immunoglobulins G in the serum (AdV-IgG) and AF. The present case-control study comprised two cohorts, including cohort 1 of patients with AF and cohort 2 of asymptomatic subjects. Initially, two groups, MA and MB, were selected from the cohorts 1 and 2, respectively, for serum proteome profiling using an antibody microarray to identify possible relevant protein targets. The data of microarray analysis indicated a possible overall increase in the total adenovirus signals in the group MA vs. group MB, suggesting potential relevance of adenoviral infection to AF. Then, the groups A (with AF) and B (control) were selected from the cohorts 1 and 2, respectively, to assay the presence and levels of AdV-IgG- by ELSA. The prevalence of AdV-IgG-positive status demonstrated a 2-fold increase in the group A (AF) compared with that in the group B (asymptomatic subjects); odds ratio 2.06 (95%CI: 1.11-3.84; P = 0.02). The prevalence of obesity demonstrated an approximately 3-fold increase in AdV-IgG-positive patients of the group A compared with that in AdV-IgG-negative patients of the same group A (odds ratio 2.7; 95% CI: 1.02-7.1; P = 0.04). Thus, AdV-IgG-positive reactivity was independently associated with AF, and AF was independently associated with BMI, indicating that adenoviral infection may be a possible etiological factor for AF.
Collapse
|
24
|
Shang P, Simpson JD, Taylor GM, Sutherland DM, Welsh OL, Aravamudhan P, Natividade RDS, Schwab K, Michel JJ, Poholek AC, Wu Y, Rajasundaram D, Koehler M, Alsteens D, Dermody TS. Paired immunoglobulin-like receptor B is an entry receptor for mammalian orthoreovirus. Nat Commun 2023; 14:2615. [PMID: 37147336 PMCID: PMC10163058 DOI: 10.1038/s41467-023-38327-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.
Collapse
Affiliation(s)
- Pengcheng Shang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua D Simpson
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gwen M Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Pavithra Aravamudhan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kristina Schwab
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua J Michel
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University Munich, Freising, Germany
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Li X, Le Y, Zhang Z, Nian X, Liu B, Yang X. Viral Vector-Based Gene Therapy. Int J Mol Sci 2023; 24:ijms24097736. [PMID: 37175441 PMCID: PMC10177981 DOI: 10.3390/ijms24097736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Gene therapy is a technique involving the modification of an individual's genes for treating a particular disease. The key to effective gene therapy is an efficient carrier delivery system. Viral vectors that have been artificially modified to lose their pathogenicity are used widely as a delivery system, with the key advantages of their natural high transduction efficiency and stable expression. With decades of development, viral vector-based gene therapies have achieved promising clinical outcomes. Currently, the three key vector strategies are based on adeno-associated viruses, adenoviruses, and lentiviruses. However, certain challenges, such as immunotoxicity and "off-target", continue to exist. In the present review, the above three viral vectors are discussed along with their respective therapeutic applications. In addition, the major translational challenges encountered in viral vector-based gene therapies are summarized, and the possible strategies to address these challenges are also discussed.
Collapse
Affiliation(s)
- Xuedan Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yang Le
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Zhegang Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Bo Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
26
|
Podgorski II, Harrach B, Benkő M, Papp T. Characterization of monkey adenoviruses with three fiber genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 108:105403. [PMID: 36610683 DOI: 10.1016/j.meegid.2023.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Although the occurrence of three fiber genes in monkey adenoviruses had already been described, the relatedness of the "extra" fibers have not yet been discussed. Here we report the genome analysis of two simian adenovirus (SAdV) serotypes from Old World monkeys and the phylogenetic analysis of the multiple fiber genes found in these and related AdVs. One of the newly sequenced serotypes (SAdV-2), isolated from a rhesus macaque (Macaca mulatta), was classified into species Human mastadenovirus G (HAdV-G), while the other serotype (SAdV-17), originating from a grivet (Chlorocebus aethiops), classified to Simian mastadenovirus F (SAdV-F). We identified unique features in the gene content of these SAdVs compared to those typical for other members of the genus Mastadenovirus. Namely, in the E1B region of SAdV-2, the 19K gene was replaced by an ITR repetition and a copy of the E4 ORF1 gene. Among the 37 genes in both SAdVs, three genes of different lengths, predicted to code for the cellular attachment proteins (the fibers), were found. These proteins exhibit high diversity. Yet, phylogenetic calculations of their conserved parts could reveal the probable evolutionary steps leading to the multiple-fibered contemporary HAdV and SAdV species. Seemingly, there existed (a) common ancestor(s) with two fiber genes for the lineages of the AdVs in species SAdV-B, -E, -F and HAdV-F, alongside a double-fibered ancestor for today's SAdV-C and HAdV-G, which later diverged into descendants forming today's species. Additionally, some HAdV-G members picked up a third fiber gene either to the left-hand or to the in-between position from the existing two. A SAdV-F progenitor also obtained a third copy to the middle, as observed in SAdV-17. The existence of three fiber genes in these contemporary AdVs brings novel possibilities for the design of optimised AdV-based vectors with potential multiple target binding abilities.
Collapse
Affiliation(s)
- Iva I Podgorski
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary.
| | - Balázs Harrach
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary.
| | - Mária Benkő
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary.
| | - Tibor Papp
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary.
| |
Collapse
|
27
|
Direct evidence of fiber-protein-directed hemagglutination by canine adenoviruses. Arch Virol 2023; 168:93. [PMID: 36795171 PMCID: PMC9935737 DOI: 10.1007/s00705-023-05718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023]
Abstract
Canine adenoviruses (CAdVs) are divided into two serotypes, CAdV1 and CAdV2, whose members mainly cause infectious hepatitis and laryngotracheitis, respectively, in canids. To gain insight into the molecular basis of viral hemagglutination, we constructed chimeric viruses whose fiber proteins or their knob domains, which play a role in viral attachment to cells, were swapped among CAdV1, CAdV2, and bat adenovirus via reverse genetics. The results revealed that, in each case, viral hemagglutination was specifically mediated by the fiber protein or knob domain, providing direct evidence for fiber-protein-directed receptor-binding characteristics of CAdVs.
Collapse
|
28
|
Viruses Binding to Host Receptors Interacts with Autophagy. Int J Mol Sci 2023; 24:ijms24043423. [PMID: 36834833 PMCID: PMC9968160 DOI: 10.3390/ijms24043423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Viruses must cross the plasma membrane to infect cells, making them eager to overcome this barrier in order to replicate in hosts. They bind to cell surface receptors as the first step of initiating entry. Viruses can use several surface molecules that allow them to evade defense mechanisms. Various mechanisms are stimulated to defend against viruses upon their entry into cells. Autophagy, one of the defense systems, degrades cellular components to maintain homeostasis. The presence of viruses in the cytosol regulates autophagy; however, the mechanisms by which viral binding to receptors regulates autophagy have not yet been fully established. This review discusses recent findings on autophagy induced by interactions between viruses and receptors. It provides novel perspectives on the mechanism of autophagy as regulated by viruses.
Collapse
|
29
|
Karpuzcu BA, Türk E, Ibrahim AH, Karabulut OC, Süzek BE. Machine Learning Methods for Virus-Host Protein-Protein Interaction Prediction. Methods Mol Biol 2023; 2690:401-417. [PMID: 37450162 DOI: 10.1007/978-1-0716-3327-4_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The attachment of a virion to a respective cellular receptor on the host organism occurring through the virus-host protein-protein interactions (PPIs) is a decisive step for viral pathogenicity and infectivity. Therefore, a vast number of wet-lab experimental techniques are used to study virus-host PPIs. Taking the great number and enormous variety of virus-host PPIs and the cost as well as labor of laboratory work, however, computational approaches toward analyzing the available interaction data and predicting previously unidentified interactions have been on the rise. Among them, machine-learning-based models are getting increasingly more attention with a great body of resources and tools proposed recently.In this chapter, we first provide the methodology with major steps toward the development of a virus-host PPI prediction tool. Next, we discuss the challenges involved and evaluate several existing machine-learning-based virus-host PPI prediction tools. Finally, we describe our experience with several ensemble techniques as utilized on available prediction results retrieved from individual PPI prediction tools. Overall, based on our experience, we recognize there is still room for the development of new individual and/or ensemble virus-host PPI prediction tools that leverage existing tools.
Collapse
Affiliation(s)
- Betül Asiye Karpuzcu
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Erdem Türk
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ahmad Hassan Ibrahim
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Onur Can Karabulut
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Barış Ethem Süzek
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey.
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey.
| |
Collapse
|
30
|
Klann PJ, Wang X, Elfert A, Zhang W, Köhler C, Güttsches AK, Jacobsen F, Weyen U, Roos A, Ehrke-Schulz E, Ehrhardt A, Vorgerd M, Bayer W. Seroprevalence of Binding and Neutralizing Antibodies against 39 Human Adenovirus Types in Patients with Neuromuscular Disorders. Viruses 2022; 15:79. [PMID: 36680119 PMCID: PMC9866721 DOI: 10.3390/v15010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
High pre-existing antibodies against viral vectors reduce their functionality and may lead to adverse complications. To circumvent this problem in future gene therapy approaches, we tested the seroprevalence of a large range of human adenovirus types in patients with neuromuscular disorders (NMDs) to find appropriate viral vector candidates for gene replacement therapy for NMDs. Binding and neutralizing antibodies against 39 human adenovirus types were tested in the sera of 133 patients with NMDs and 76 healthy controls aged 17-92 years. The influence of age, sex, and NMDs on antibody levels was analyzed. The seroprevalence of different adenoviruses in the cohort varied widely. The highest levels of binding antibodies were detected against HAdV-D27, -C1, -D24, -D70, -B14, -C6, -D13, -B34, and -E4, whereas the lowest reactivity was detected against HAdV-F41, -A31, -B11, -D75, -D8, -D65, -D26, -D80, and -D17. The highest neutralizing reactivity was observed against HAdV-B3, -C2, -E4, -C1, -G52, -C5, and -F41, whereas the lowest neutralizing reactivity was observed against HAdV-D74, -B34, -D73, -B37, -D48, -D13, -D75, -D8, -B35, and -B16. We detected no influence of sex and only minor differences between different age groups. Importantly, there were no significant differences between healthy controls and patients with NMDs. Our data show that patients with NMDs have very similar levels of binding and neutralizing antibodies against HAdV compared to healthy individuals, and we identified HAdV-A31, -B16, -B34, -B35, -D8, -D37, -D48, -D73, -D74, -D75, and -D80 as promising candidates for future vector development due to their low binding and neutralizing antibody prevalence.
Collapse
Affiliation(s)
- Patrick Julian Klann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Xiaoyan Wang
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Anna Elfert
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Medical Education and Research, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Cornelia Köhler
- Clinics for Pediatrics and Adolescent Medicine, University Hospital Sankt Josef, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Anne-Katrin Güttsches
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Frank Jacobsen
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Ute Weyen
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Andreas Roos
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Medical Education and Research, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Medical Education and Research, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Matthias Vorgerd
- Heimer Institute for Muscle Research, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
31
|
Yang K, Feng S, Luo Z. Oncolytic Adenovirus, a New Treatment Strategy for Prostate Cancer. Biomedicines 2022; 10:biomedicines10123262. [PMID: 36552019 PMCID: PMC9775875 DOI: 10.3390/biomedicines10123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer is the most common cancer and one of the leading causes of cancer mortality in males. Androgen-deprivation therapy (ADT) is an effective strategy to inhibit tumour growth at early stages. However, 10~50% of cases are estimated to progress to metastatic castration-resistant prostate cancer (mCRPC) which currently lacks effective treatments. Clinically, salvage treatment measures, such as endocrine therapy and chemotherapy, are mostly used for advanced prostate cancer, but their clinical outcomes are not ideal. When the existing clinical therapeutic methods can no longer inhibit the development of advanced prostate cancer, human adenovirus (HAdV)-based gene therapy and viral therapy present promising effects. Pre-clinical studies have shown its powerful oncolytic effect, and clinical studies are ongoing to further verify its effect and safety in prostate cancer treatment. Targeting the prostate by HAdV alone or in combination with radiotherapy and chemotherapy sheds light on patients with castration-resistant and advanced prostate cancer. This review summarizes the advantages of oncolytic virus-mediated cancer therapy, strategies of HAdV modification, and existing preclinical and clinical investigations of HAdV-mediated gene therapy to further evaluate the potential of oncolytic adenovirus in prostate cancer treatment.
Collapse
Affiliation(s)
- Kaiyi Yang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (K.Y.); (Z.L.)
| | - Shenghui Feng
- Provincial Key Laboratory of Tumour Pathogens and Molecular Pathology, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhijun Luo
- Provincial Key Laboratory of Tumour Pathogens and Molecular Pathology, Queen Mary School, Nanchang University, Nanchang 330031, China
- Correspondence: (K.Y.); (Z.L.)
| |
Collapse
|
32
|
Wang WC, Sayedahmed EE, Mittal SK. Significance of Preexisting Vector Immunity and Activation of Innate Responses for Adenoviral Vector-Based Therapy. Viruses 2022; 14:v14122727. [PMID: 36560730 PMCID: PMC9787786 DOI: 10.3390/v14122727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
An adenoviral (AdV)-based vector system is a promising platform for vaccine development and gene therapy applications. Administration of an AdV vector elicits robust innate immunity, leading to the development of humoral and cellular immune responses against the vector and the transgene antigen, if applicable. The use of high doses (1011-1013 virus particles) of an AdV vector, especially for gene therapy applications, could lead to vector toxicity due to excessive levels of innate immune responses, vector interactions with blood factors, or high levels of vector transduction in the liver and spleen. Additionally, the high prevalence of AdV infections in humans or the first inoculation with the AdV vector result in the development of vector-specific immune responses, popularly known as preexisting vector immunity. It significantly reduces the vector efficiency following the use of an AdV vector that is prone to preexisting vector immunity. Several approaches have been developed to overcome this problem. The utilization of rare human AdV types or nonhuman AdVs is the primary strategy to evade preexisting vector immunity. The use of heterologous viral vectors, capsid modification, and vector encapsulation are alternative methods to evade vector immunity. The vectors can be optimized for clinical applications with comprehensive knowledge of AdV vector immunity, toxicity, and circumvention strategies.
Collapse
|
33
|
A link between severe hepatitis in children and adenovirus 41 and adeno-associated virus 2 infections. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the past few months there have been reports of severe acute hepatitis in several hundred, otherwise healthy, immunocompetent young children. Several deaths have been recorded and a relatively large proportion of the patients have needed liver transplants. Most of the cases, so far, have been seen in the UK and in North America, but it has also been reported in many other European countries, the Middle East and Asia. Most common viruses have been ruled out as a causative agent; hepatitis A virus (HAV), hepatitis B virus (HBV) and hepatitis C virus (HCV) were not detected, nor were Epstein–Barr virus (EBV), cytomegalovirus (CMV) and human immunodeficiency virus (HIV) in many cases. A small proportion of the children had been infected with SARS-CoV-2 but these seem to be in a minority; similarly, almost none of the children had been vaccinated against COVID-19. Significantly, many of the patients were infected with adenovirus 41 (HAdV-F41). Previously, HAdV-41 had not been linked to hepatitis and is usually considered to cause gastroenteritis in both immunocompetent and immunocompromised patients. In two most recent studies, adeno-associated virus 2 (AAV2) was detected in almost all patients, together with species C and F HAdVs and human herpesvirus 6B (HHV6B). Here, I discuss the possibility that a change in tropism of HAdV-41 and changes in AAV2 may be responsible for their links to acute hepatitis.
Collapse
|
34
|
Gandhi L, Maisnam D, Rathore D, Chauhan P, Bonagiri A, Venkataramana M. Respiratory illness virus infections with special emphasis on COVID-19. Eur J Med Res 2022; 27:236. [PMID: 36348452 PMCID: PMC9641310 DOI: 10.1186/s40001-022-00874-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses that emerge pose challenges for treatment options as their uniqueness would not know completely. Hence, many viruses are causing high morbidity and mortality for a long time. Despite large diversity, viruses share common characteristics for infection. At least 12 different respiratory-borne viruses are reported belonging to various virus taxonomic families. Many of these viruses multiply and cause damage to the upper and lower respiratory tracts. The description of these viruses in comparison with each other concerning their epidemiology, molecular characteristics, disease manifestations, diagnosis and treatment is lacking. Such information helps diagnose, differentiate, and formulate the control measures faster. The leading cause of acute illness worldwide is acute respiratory infections (ARIs) and are responsible for nearly 4 million deaths every year, mostly in young children and infants. Lower respiratory tract infections are the fourth most common cause of death globally, after non-infectious chronic conditions. This review aims to present the characteristics of different viruses causing respiratory infections, highlighting the uniqueness of SARS-CoV-2. We expect this review to help understand the similarities and differences among the closely related viruses causing respiratory infections and formulate specific preventive or control measures.
Collapse
Affiliation(s)
- Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
35
|
Richter M, Wang H, Lieber A. Role of Fiber Shaft Length in Tumor Targeting with Ad5/3 Vectors. Genes (Basel) 2022; 13:2056. [PMID: 36360292 PMCID: PMC9690795 DOI: 10.3390/genes13112056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/28/2024] Open
Abstract
Desmoglein 2 (DSG2) is overexpressed in many epithelial cancers and therefore represents a target receptor for oncolytic viruses, including Ad5/3-based viruses. For most Ad serotypes, the receptor-binding fiber is composed of tail, shaft, and knob domains. Here, we investigated the role of the fiber shaft in Ad5/3 tumor transduction in vitro and in human DSG2-transgenic mice carrying human DSG2high tumors. DSG2tg mice express DSG2 in a pattern similar to humans. We constructed Ad5/3L (with the "long" Ad5 shaft) and Ad5/3S (with the "short" Ad3 shaft) expressing GFP or luciferase. In in vitro studies we found that coagulation factor X, which is known to mediate undesired hepatocyte transduction of Ad5, enhances the transduction of Ad5/3(L), but not the transduction of Ad5/3(S). We therefore hypothesized that Ad5/3(S) would target DSG2high tumors while sparing the liver after intravenous injection. In vivo imaging studies for luciferase and analysis of luciferase activity in isolated organs, showed that Ad5/3(L) vectors efficiently transduced DSG2high tumors and liver but not normal epithelial tissues after intravenous injection. Ad5/3(S) showed minimal liver transduction, however it failed to transduce DSG2high tumors. Further modifications of the Ad5/3(S) capsid are required to compensate for the lower infectivity of Ad5/3(S) vectors.
Collapse
Affiliation(s)
| | | | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Virus-Associated Nephropathies: A Narrative Review. Int J Mol Sci 2022; 23:ijms231912014. [PMID: 36233315 PMCID: PMC9569621 DOI: 10.3390/ijms231912014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022] Open
Abstract
While most viral infections cause mild symptoms and a spontaneous favorable resolution, some can lead to severe or protracted manifestations, specifically in immunocompromised hosts. Kidney injuries related to viral infections may have multiple causes related to the infection severity, drug toxicity or direct or indirect viral-associated nephropathy. We review here the described virus-associated nephropathies in order to guide diagnosis strategies and treatments in cases of acute kidney injury (AKI) occurring concomitantly with a viral infection. The occurrence of virus-associated nephropathy depends on multiple factors: the local epidemiology of the virus, its ability to infect renal cells and the patient's underlying immune response, which varies with the state of immunosuppression. Clear comprehension of pathophysiological mechanisms associated with a summary of described direct and indirect injuries should help physicians to diagnose and treat viral associated nephropathies.
Collapse
|
37
|
Greber UF, Suomalainen M. Adenovirus entry: Stability, uncoating, and nuclear import. Mol Microbiol 2022; 118:309-320. [PMID: 35434852 PMCID: PMC9790413 DOI: 10.1111/mmi.14909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022]
Abstract
Adenoviruses (AdVs) are widespread in vertebrates. They infect the respiratory and gastrointestinal tracts, the eyes, heart, liver, and kidney, and are lethal to immunosuppressed people. Mastadenoviruses infecting mammals comprise several hundred different types, and many specifically infect humans. Human adenoviruses are the most widely used vectors in clinical applications, including cancer treatment and COVID-19 vaccination. AdV vectors are physically and genetically stable and generally safe in humans. The particles have an icosahedral coat and a nucleoprotein core with a DNA genome. We describe the concept of AdV cell entry and highlight recent advances in cytoplasmic transport, uncoating, and nuclear import of the viral DNA. We highlight a recently discovered "linchpin" function of the virion protein V ensuring cytoplasmic particle stability, which is relaxed at the nuclear pore complex by cues from the E3 ubiquitin ligase Mind bomb 1 (MIB1) and the proteasome triggering disruption. Capsid disruption by kinesin motor proteins and microtubules exposes the linchpin and renders protein V a target for MIB1 ubiquitination, which dissociates V from viral DNA and enhances DNA nuclear import. These advances uncover mechanisms controlling capsid stability and premature uncoating and provide insight into nuclear transport of nucleic acids.
Collapse
Affiliation(s)
- Urs F. Greber
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Maarit Suomalainen
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
38
|
Ramos-Martínez IE, Ramos-Martínez E, Segura-Velázquez RÁ, Saavedra-Montañez M, Cervantes-Torres JB, Cerbón M, Papy-Garcia D, Zenteno E, Sánchez-Betancourt JI. Heparan Sulfate and Sialic Acid in Viral Attachment: Two Sides of the Same Coin? Int J Mol Sci 2022; 23:ijms23179842. [PMID: 36077240 PMCID: PMC9456526 DOI: 10.3390/ijms23179842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022] Open
Abstract
Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.
Collapse
Affiliation(s)
- Ivan Emmanuel Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Edgar Ramos-Martínez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - René Álvaro Segura-Velázquez
- Unidad de Investigación, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Manuel Saavedra-Montañez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Jacquelynne Brenda Cervantes-Torres
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Dulce Papy-Garcia
- Glycobiology, Cell Growth ant Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), F-94010 Créteil, France
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Ivan Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| |
Collapse
|
39
|
Wang H, Yang S, Liu J, Fu Z, Liu Y, Zhou L, Guo H, Lan K, Chen Y. Human adenoviruses: A suspect behind the outbreak of acute hepatitis in children amid the COVID-19 pandemic. CELL INSIGHT 2022; 1:100043. [PMID: 37192861 PMCID: PMC10120317 DOI: 10.1016/j.cellin.2022.100043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 05/18/2023]
Abstract
As of 10 May 2022, at least 450 cases of pediatric patients with acute hepatitis of unknown cause have been reported worldwide. Human adenoviruses (HAdVs) have been detected in at least 74 cases, including the F type HAdV41 in 18 cases, which indicates that adenoviruses may be associated with this mysterious childhood hepatitis, although other infectious agents or environmental factors cannot be excluded. In this review, we provide a brief introduction of the basic features of HAdVs and describe diseases caused by different HAdVs in humans, aiming to help understand the biology and potential risk of HAdVs and cope with the outbreak of acute child hepatitis.
Collapse
Affiliation(s)
- Hongyun Wang
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shimin Yang
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiejie Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiying Fu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics, Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Wang C, Zhao Y, Qiao H, Gao Z, Yang J, Chuai X. Hold Breath: Autonomic Neural Regulation of Innate Immunity to Defend Against SARS-CoV-2 Infection. Front Microbiol 2022; 12:819638. [PMID: 35310398 PMCID: PMC8929440 DOI: 10.3389/fmicb.2021.819638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel member of the genus of betacoronavirus, which caused a pandemic of coronavirus disease 2019 (COVID-19) worldwide. The innate immune system plays a critical role in eliminating the virus, which induces inflammatory cytokine and chemokine secretion, produces different interferons, and activates the adaptive immune system. Interactions between the autonomic nervous system and innate immunity release neurotransmitters or neuropeptides to balance the excess secretion of inflammatory cytokines, control the inflammation, and restore the host homeostasis. However, more neuro-immune mechanisms to defend against viral infection should be elucidated. Here, we mainly review and provide our understanding and viewpoint on the interaction between respiratory viral proteins and host cell receptors, innate immune responses to respiratory viral infection, and the autonomic neural regulation of the innate immune system to control respiratory viruses caused by lungs and airways inflammation.
Collapse
Affiliation(s)
- Changle Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Hongxiu Qiao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Zhiyun Gao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Jing Yang
- International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, Shijiazhuang, China
| | - Xia Chuai
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xia Chuai,
| |
Collapse
|
41
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
42
|
Wang Z, Zhang X. Adenovirus vector-attributed hepatotoxicity blocks clinical application in gene therapy. Cytotherapy 2021; 23:1045-1052. [PMID: 34548241 DOI: 10.1016/j.jcyt.2021.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Adenoviruses (Ads), common self-limiting pathogens in humans and animals, usually cause conjunctivitis, mild upper respiratory tract infection or gastroenteritis in humans and hepatotoxicity syndrome in chickens and dogs, posing great threats to public health and livestock husbandry. Artificially modified Ads, which wipe out virulence-determining genes, are the most frequently used viral vectors in gene therapy, and some Ad vector (AdV)-related medicines and vaccines have been licensed and applied. Inherent liver tropism enables AdVs to specifically deliver drugs/genes to the liver; however, AdVs are closely associated with acute hepatotoxicity in immunocompromised individuals, and the side effects of AdVs, which stimulate a strong inflammatory reaction in the liver and cause acute hepatotoxicity, have largely limited clinical application. Therefore, this review systematically elucidates the intimate relationship between AdVs and hepatotoxicity in terms of virus and host and precisely illustrates the accumulated understanding in this field over the past decades. This review demonstrates the liver tropism of AdVs and molecular mechanism of AdV-induced hepatotoxicity and looks at the studies on AdV-mediated animal hepatotoxicity, which will undoubtedly deepen the understanding of AdV-caused liver injury and be of benefit in the further safe development of AdVs.
Collapse
Affiliation(s)
- Zeng Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
43
|
Shieh WJ. Human adenovirus infections in pediatric population - an update on clinico-pathologic correlation. Biomed J 2021; 45:38-49. [PMID: 34506970 PMCID: PMC9133246 DOI: 10.1016/j.bj.2021.08.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
Human adenoviruses can cause infections at any age but most commonly in pediatric population, especially in young children and infants. By the time of 10 years old, most children have had at least one episode of adenovirus infection. Adenoviruses can cause many symptoms similar to common cold, including rhinorrhea, fever, cough, and sore throat. Lower respiratory infections such as bronchitis, bronchiolitis, and pneumonia can be severe and even fatal. Other diseases such as conjunctivitis, gastroenteritis, cystitis, myocarditis, cardiomyopathy, and meningoencephalitis can also be associated with adenovirus infections. A variety of recent advancement of structural and molecular biology methods have revamped the taxonomy of adenoviruses and furthered our understanding of the diversity of related clinical diseases. Because of the wide spectrum and complexity of diseases associated with human adenovirus infections, the scope of this review is limited to basic virology and epidemiology of adenoviruses with a main focus on the clinico–pathologic correlation. Clinical manifestations and pathology of any infectious disease are always related; therefore, it is logical to review clinico–pathologic correlation within the specific disease entity caused by adenoviruses to better understand this common viral infection in pediatric population.
Collapse
Affiliation(s)
- Wun-Ju Shieh
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.
| |
Collapse
|
44
|
Tesse A, André FM, Ragot T. Aluminum particles generated during millisecond electric pulse application enhance adenovirus-mediated gene transfer in L929 cells. Sci Rep 2021; 11:17725. [PMID: 34489497 PMCID: PMC8421418 DOI: 10.1038/s41598-021-96781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Gene electrotransfer is an attractive method of non-viral gene delivery. However, the mechanism of DNA penetration across the plasma membrane is widely discussed. To explore this process for even larger structures, like viruses, we applied various combinations of short/long and high/low-amplitude electric pulses to L929 cells, mixed with a human adenovirus vector expressing GFP. We observed a transgene expression increase, both in the number of GFP-converted cells and GFP levels, when we added a low-voltage/millisecond-pulse treatment to the adenovirus/cell mixture. This increase, reflecting enhanced virus penetration, was proportional to the applied electric field amplitude and pulse number, but was not associated with membrane permeabilization, nor to direct cell modifications. We demonstrated that this effect is mainly due to adenovirus particle interactions with aggregated aluminum particles released from energized electrodes. Indeed, after centrifugation of the pulsed viral suspension and later on addition to cells, the activity was found mainly associated with the aluminum aggregates concentrated in the lower fraction and was proportional to generated quantities. Overall, this work focused on the use of electrotransfer to facilitate the adenovirus entry into cell, demonstrating that modifications of the penetrating agent can be more important than modifications of the target cell for transfer efficacy.
Collapse
Affiliation(s)
- Angela Tesse
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000, Nantes, France
| | - Franck M André
- CNRS, Institut Gustave Roussy, Université Paris-Saclay, Aspects métaboliques et systémiques de l'oncogenèse pour de nouvelles approches thérapeutiques, UMR 9018, 114 rue Edouard Vaillant, F-94805, Villejuif, France
| | - Thierry Ragot
- CNRS, Institut Gustave Roussy, Université Paris-Saclay, Aspects métaboliques et systémiques de l'oncogenèse pour de nouvelles approches thérapeutiques, UMR 9018, 114 rue Edouard Vaillant, F-94805, Villejuif, France.
| |
Collapse
|
45
|
Cheng G, Dong H, Yang C, Liu Y, Wu Y, Zhu L, Tong X, Wang S. A review on the advances and challenges of immunotherapy for head and neck cancer. Cancer Cell Int 2021; 21:406. [PMID: 34332576 PMCID: PMC8325213 DOI: 10.1186/s12935-021-02024-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancer (HNC), which includes lip and oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx malignancies, is one of the most common cancers worldwide. Due to the interaction of tumor cells with immune cells in the tumor microenvironment, immunotherapy of HNCs, along with traditional treatments such as chemotherapy, radiotherapy, and surgery, has attracted much attention. Four main immunotherapy strategies in HNCs have been developed, including oncolytic viruses, monoclonal antibodies, chimeric antigen receptor T cells (CAR-T cells), and therapeutic vaccines. Oncorine (H101), an approved oncolytic adenovirus in China, is the pioneer of immunotherapy for the treatment of HNCs. Pembrolizumab and nivolumab are mAbs against PD-L1 that have been approved for recurrent and metastatic HNC patients. To date, several clinical trials using immunotherapy agents and their combination are under investigation. In this review, we summarize current the interaction of tumor cells with immune cells in the tumor microenvironment of HNCs, the main strategies that have been applied for immunotherapy of HNCs, obstacles that hinder the success of immunotherapies in patients with HNCs, as well as solutions for overcoming the challenges to enhance the response of HNCs to immunotherapies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Hui Dong
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Chen Yang
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yang Liu
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yi Wu
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Lifen Zhu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shibing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China. .,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
46
|
Weklak D, Pembaur D, Koukou G, Jönsson F, Hagedorn C, Kreppel F. Genetic and Chemical Capsid Modifications of Adenovirus Vectors to Modulate Vector-Host Interactions. Viruses 2021; 13:1300. [PMID: 34372506 PMCID: PMC8310343 DOI: 10.3390/v13071300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Adenovirus-based vectors are playing an important role as efficacious genetic vaccines to fight the current COVID-19 pandemic. Furthermore, they have an enormous potential as oncolytic vectors for virotherapy and as vectors for classic gene therapy. However, numerous vector-host interactions on a cellular and noncellular level, including specific components of the immune system, must be modulated in order to generate safe and efficacious vectors for virotherapy or classic gene therapy. Importantly, the current widespread use of Ad vectors as vaccines against COVID-19 will induce antivector immunity in many humans. This requires the development of strategies and techniques to enable Ad-based vectors to evade pre-existing immunity. In this review article, we discuss the current status of genetic and chemical capsid modifications as means to modulate the vector-host interactions of Ad-based vectors.
Collapse
Affiliation(s)
| | | | | | | | | | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Street 10, 58453 Witten, Germany; (D.W.); (D.P.); (G.K.); (F.J.); (C.H.)
| |
Collapse
|
47
|
Garofalo M, Bellato F, Magliocca S, Malfanti A, Kuryk L, Rinner B, Negro S, Salmaso S, Caliceti P, Mastrotto F. Polymer Coated Oncolytic Adenovirus to Selectively Target Hepatocellular Carcinoma Cells. Pharmaceutics 2021; 13:pharmaceutics13070949. [PMID: 34202714 PMCID: PMC8309094 DOI: 10.3390/pharmaceutics13070949] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 01/15/2023] Open
Abstract
Despite significant advances in chemotherapy, the overall prognosis of hepatocellular carcinoma (HCC) remains extremely poor. HCC targeting strategies were combined with the tumor cell cytotoxicity of oncolytic viruses (OVs) to develop a more efficient and selective therapeutic system. OVs were coated with a polygalactosyl-b-agmatyl diblock copolymer (Gal32-b-Agm29), with high affinity for the asialoglycoprotein receptor (ASGPR) expressed on the liver cell surface, exploiting the electrostatic interaction of the positively charged agmatine block with the negatively charged adenoviral capsid surface. The polymer coating altered the viral particle diameter (from 192 to 287 nm) and zeta-potential (from -24.7 to 23.3 mV) while hiding the peculiar icosahedral symmetrical OV structure, as observed by TEM. Coated OVs showed high potential therapeutic value on the human hepatoma cell line HepG2 (cytotoxicity of 72.4% ± 4.96), expressing a high level of ASGPRs, while a lower effect was attained with ASPGR-negative A549 cell line (cytotoxicity of 54.4% ± 1.59). Conversely, naked OVs showed very similar effects in both tested cell lines. Gal32-b-Agm29 OV coating enhanced the infectivity and immunogenic cell death program in HepG2 cells as compared to the naked OV. This strategy provides a rationale for future studies utilizing oncolytic viruses complexed with polymers toward effective treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (F.B.); (S.M.); (S.S.); (P.C.)
- Correspondence: (M.G.); (F.M.); Tel.: +39-04-9827-5710 (M.G.); +39-04-9827-5708 (F.M.)
| | - Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (F.B.); (S.M.); (S.S.); (P.C.)
| | - Salvatore Magliocca
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (F.B.); (S.M.); (S.S.); (P.C.)
| | - Alessio Malfanti
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium;
| | - Lukasz Kuryk
- Department of Virology, National Institute of Public Health—National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Saukonpaadenranta 2, 00180 Helsinki, Finland
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, Roseggerweg 48, 8036 Graz, Austria;
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (F.B.); (S.M.); (S.S.); (P.C.)
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (F.B.); (S.M.); (S.S.); (P.C.)
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (F.B.); (S.M.); (S.S.); (P.C.)
- Correspondence: (M.G.); (F.M.); Tel.: +39-04-9827-5710 (M.G.); +39-04-9827-5708 (F.M.)
| |
Collapse
|
48
|
Adenovirus Structure: What Is New? Int J Mol Sci 2021; 22:ijms22105240. [PMID: 34063479 PMCID: PMC8156859 DOI: 10.3390/ijms22105240] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Adenoviruses are large (~950 Å) and complex non-enveloped, dsDNA icosahedral viruses. They have a pseudo-T = 25 triangulation number with at least 12 different proteins composing the virion. These include the major and minor capsid proteins, core proteins, maturation protease, terminal protein, and packaging machinery. Although adenoviruses have been studied for more than 60 years, deciphering their architecture has presented a challenge for structural biology techniques. An outstanding event was the first near-atomic resolution structure of human adenovirus type 5 (HAdV-C5), solved by cryo-electron microscopy (cryo-EM) in 2010. Discovery of new adenovirus types, together with methodological advances in structural biology techniques, in particular cryo-EM, has lately produced a considerable amount of new, high-resolution data on the organization of adenoviruses belonging to different species. In spite of these advances, the organization of the non-icosahedral core is still a great unknown. Nevertheless, alternative techniques such as atomic force microscopy (AFM) are providing interesting glimpses on the role of the core proteins in genome condensation and virion stability. Here we summarize the current knowledge on adenovirus structure, with an emphasis on high-resolution structures obtained since 2010.
Collapse
|
49
|
Li J, Wang W, Wang J, Cao Y, Wang S, Zhao J. Viral Gene Therapy for Glioblastoma Multiforme: A Promising Hope for the Current Dilemma. Front Oncol 2021; 11:678226. [PMID: 34055646 PMCID: PMC8155537 DOI: 10.3389/fonc.2021.678226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM), as one of the most common malignant brain tumors, was limited in its treatment effectiveness with current options. Its invasive and infiltrative features led to tumor recurrence and poor prognosis. Effective treatment and survival improvement have always been a challenge. With the exploration of genetic mutations and molecular pathways in neuro-oncology, gene therapy is becoming a promising therapeutic approach. Therapeutic genes are delivered into target cells with viral vectors to act specific antitumor effects, which can be used in gene delivery, play an oncolysis effect, and induce host immune response. The application of engineering technology makes the virus vector used in genetics a more prospective future. Recent advances in viral gene therapy offer hope for treating brain tumors. In this review, we discuss the types and designs of viruses as well as their study progress and potential applications in the treatment of GBM. Although still under research, viral gene therapy is promising to be a new therapeutic approach for GBM treatment in the future.
Collapse
Affiliation(s)
- Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Karabulut OC, Karpuzcu BA, Türk E, Ibrahim AH, Süzek BE. ML-AdVInfect: A Machine-Learning Based Adenoviral Infection Predictor. Front Mol Biosci 2021; 8:647424. [PMID: 34026828 PMCID: PMC8139618 DOI: 10.3389/fmolb.2021.647424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/22/2021] [Indexed: 01/08/2023] Open
Abstract
Adenoviruses (AdVs) constitute a diverse family with many pathogenic types that infect a broad range of hosts. Understanding the pathogenesis of adenoviral infections is not only clinically relevant but also important to elucidate the potential use of AdVs as vectors in therapeutic applications. For an adenoviral infection to occur, attachment of the viral ligand to a cellular receptor on the host organism is a prerequisite and, in this sense, it is a criterion to decide whether an adenoviral infection can potentially happen. The interaction between any virus and its corresponding host organism is a specific kind of protein-protein interaction (PPI) and several experimental techniques, including high-throughput methods are being used in exploring such interactions. As a result, there has been accumulating data on virus-host interactions including a significant portion reported at publicly available bioinformatics resources. There is not, however, a computational model to integrate and interpret the existing data to draw out concise decisions, such as whether an infection happens or not. In this study, accepting the cellular entry of AdV as a decisive parameter for infectivity, we have developed a machine learning, more precisely support vector machine (SVM), based methodology to predict whether adenoviral infection can take place in a given host. For this purpose, we used the sequence data of the known receptors of AdVs, we identified sets of adenoviral ligands and their respective host species, and eventually, we have constructed a comprehensive adenovirus–host interaction dataset. Then, we committed interaction predictions through publicly available virus-host PPI tools and constructed an AdV infection predictor model using SVM with RBF kernel, with the overall sensitivity, specificity, and AUC of 0.88 ± 0.011, 0.83 ± 0.064, and 0.86 ± 0.030, respectively. ML-AdVInfect is the first of its kind as an effective predictor to screen the infection capacity along with anticipating any cross-species shifts. We anticipate our approach led to ML-AdVInfect can be adapted in making predictions for other viral infections.
Collapse
Affiliation(s)
- Onur Can Karabulut
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Betül Asiye Karpuzcu
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Erdem Türk
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ahmad Hassan Ibrahim
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Barış Ethem Süzek
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey.,Georgetown University Medical Center, Biochemistry and Molecular and Cellular Biology, Washington, DC, United States
| |
Collapse
|