1
|
Zhu Y, Zuo F, Ouyang H, Chen L, Zhang M, Shang Y, Lv Z, Chang Y, He J. Determination of eleven components in rat plasma by UPLC-MS/MS and GC-MS for pharmacokinetic studies after oral administration of Citri Reticulatae Pericarpium extract. J Pharm Biomed Anal 2024; 248:116315. [PMID: 38964166 DOI: 10.1016/j.jpba.2024.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Citri Reticulatae Pericarpium (CRP) is used as common health-care food and traditional Chinese medicine (TCM), which exerts pharmacological effects, such as anti-cardiovascular, anti-tumor, anti-oxidant, anti-inflammatory, anti-virus, hepatoprotective, blood pressure-lowering and neuroprotective. In this study, reliable, and sensitive ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) methods were developed and validated for the determination of eleven active components in rat plasma after oral administration of the CRP extract. The results of this method exhibited that the specificity, linearity (r > 0.999), precision and accuracy (the coefficient of variation (CV) < 11.5 %), recovery (52.9-107.9 %), matrix effects (63.8-107.5 %), and stability (CV < 10.8 %) met all requirements for the quantitation of plasma samples. The pharmacokinetic results showed that the Tmax of flavone glycosides was less than 0.7 h, and that of polymethoxyflavones and volatile components were within 1-7 h. Meanwhile, the area-under-the-curve (AUC) and concentration maximum (Cmax) of hesperidin, nobiletin, tangeretin, and D-limonene were higher than those of the other components, suggesting that the plasma exposure levels of these constituents were higher in CRP. The present research lays a foundation for elucidating the therapeutic material basis and provides a reference for further scientific research and clinical application of CRP.
Collapse
Affiliation(s)
- Yameng Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fanjiao Zuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huizi Ouyang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lu Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Mengmeng Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Ye Shang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhenguo Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yanxu Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jun He
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
2
|
Shi M, Guo Q, Xiao Z, Sarengaowa, Xiao Y, Feng K. Recent Advances in the Health Benefits and Application of Tangerine Peel ( Citri Reticulatae Pericarpium): A Review. Foods 2024; 13:1978. [PMID: 38998484 PMCID: PMC11241192 DOI: 10.3390/foods13131978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Citrus fruits, renowned for their abundant of phytochemicals and bioactive compounds, hold a prominent position as commercially grown fruits with health-promoting properties. In this context, tangerine peel (Citri Reticulatae Pericarpium, CRP) is garnering attention as a byproduct of citrus fruits. Within the framework of the circular economy, CRP has emerged as a focal point due to its potential health benefits. CRP, extracted from Citrus reticulata cv. and aged for over three years, has attracted increasing attention for its diverse health-promoting effects, including its anticancer, cardiovascular-protecting, gastrointestinal-modulating, antioxidant, anti-inflammatory, and neuroprotective properties. Moreover, CRP positively impacts skeletal health and various physiological functions. This review delves into the therapeutic effects and molecular mechanisms of CRP. The substantial therapeutic potential of CRP highlights the need for further research into its applications in both food and medicine. As a value-added functional ingredient, CRP and its constituents are extensively utilized in the development of food and health supplements, such as teas, porridges, and traditional medicinal formulations.
Collapse
Affiliation(s)
- Minke Shi
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Qihan Guo
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Zhewen Xiao
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Sarengaowa
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Ying Xiao
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Ke Feng
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
3
|
Abbas MG, Azeem M, Bashir MU, Ali F, Mozūratis R, Binyameen M. Chemical Composition, Repellent, and Oviposition Deterrent Potential of Wild Plant Essential Oils against Three Mosquito Species. Molecules 2024; 29:2657. [PMID: 38893531 PMCID: PMC11173646 DOI: 10.3390/molecules29112657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, the chemical composition, repellent, and oviposition deterrent effects of five plant essential oils (EOs) extracted from Lantana camara (Verbenaceae), Schinus terebinthifolia (Anacardiaceae), Callistemon viminalis (Myrtaceae), Helichrysum odoratissimum (Asteraceae), and Hyptis suaveolens (Lamiaceae) were evaluated against Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus. When tested at 33.3 µg/cm2, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum were effective repellents against Ae. aegypti (89%, 91%, 90%, and 51% repellency, respectively), but they were less repellent against An. gambiae (66%, 86%, 59%, and 49% repellency, respectively). Interestingly, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum exhibited 100% repellency against Cx. quinquefasciatus at 33.3 μg/cm2. In time-span bioassays performed at 333 μg/cm2, the EO of L. camara exhibited 100% repellence against Ae. aegypti and An. gambiae for up to 15 min and against Cx. quinquefasciatus for 75 min. The oviposition bioassays revealed that L. camara exhibited the highest activity, showing 85%, 59%, and 89% oviposition deterrence against Ae. aegypti, An. gambiae, and Cx. quinquefasciatus, respectively. The major compounds of L. camara, S. terebinthifolia, and C. viminalis were trans-β-caryophyllene (16.7%), α-pinene (15.5%), and 1,8-cineole (38.1%), respectively. In conclusion, the L. camara and S. terebinthifolia EOs have the potential to be natural mosquito repellents.
Collapse
Affiliation(s)
- Muhammad Ghazanfar Abbas
- Laboratory of Insect Chemical Ecology, Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.G.A.); (M.U.B.)
| | - Muhammad Azeem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.A.); (F.A.)
| | - Muhammad Umar Bashir
- Laboratory of Insect Chemical Ecology, Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.G.A.); (M.U.B.)
| | - Fawad Ali
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.A.); (F.A.)
| | - Raimondas Mozūratis
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, LT-08412 Vilnius, Lithuania
| | - Muhammad Binyameen
- Laboratory of Insect Chemical Ecology, Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.G.A.); (M.U.B.)
| |
Collapse
|
4
|
Brah AS, Armah FA, Obuah C, Akwetey SA, Adokoh CK. Toxicity and therapeutic applications of citrus essential oils (CEOs): a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2158864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Augustine S. Brah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Francis A. Armah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Collins Obuah
- Department of Chemistry, University of Ghana, Legon, Ghana
| | - Samuel A. Akwetey
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Clinical Microbiology, School of Medicine, University for Development Studies, Tamale
| | - Christian K. Adokoh
- Department of Forensic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
5
|
Girardi J, Berķe-Ļubinska K, Mežaka I, Nakurte I, Skudriņš G, Pastare L. In Vivo Bioassay of the Repellent Activity of Caraway Essential Oil against Green Peach Aphid. INSECTS 2023; 14:876. [PMID: 37999074 PMCID: PMC10672326 DOI: 10.3390/insects14110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
An in vivo dual choice bioassay with white cabbage as a host plant was used to determine the repellent effect of three different accessions of caraway (Carum carvi L.) essential oils (EOs) against the green peach aphid Myzus persicae (Sulzer). The dominant components of the EO were D-Carvone (47.3-74.4%) and D-limonene (25.2-51.9%), which accounted for 99.2-99.5% of the EOs determined by GC/MS. The EO with the highest D-limonene content (51.9%) showed the highest repellence (Repellency Index (RI) = +41%), which was stable up to 330 min. The incorporation of several surfactants with different hydrophilic-lipophilic balance values (from 12.4 to 16.7) with caraway EO caused a general inhibition of the repellent effect during the testing period (RI from +41% to -19%). Overall, the findings indicate that caraway EO could be used as a green peach aphid repellent, but more work is needed to formulate the EO into a ready-to-use product.
Collapse
Affiliation(s)
- Jessica Girardi
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (K.B.-Ļ.); (I.M.); (I.N.); (G.S.); (L.P.)
| | | | | | | | | | | |
Collapse
|
6
|
Chapman KM, Richardson FJ, Forster CY, Middleton EJT, White TE, Burke PF, Latty T. Artificial flowers as a tool for investigating multimodal flower choice in wild insects. Ecol Evol 2023; 13:e10687. [PMID: 38020672 PMCID: PMC10659823 DOI: 10.1002/ece3.10687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Flowers come in a variety of colours, shapes, sizes and odours. Flowers also differ in the quality and quantity of nutritional reward they provide to entice potential pollinators to visit. Given this diversity, generalist flower-visiting insects face the considerable challenge of deciding which flowers to feed on and which to ignore. Working with real flowers poses logistical challenges due to correlations between flower traits, maintenance costs and uncontrolled variables. Here, we overcome this challenge by designing multimodal artificial flowers that varied in visual, olfactory and reward attributes. We used artificial flowers to investigate the impact of seven floral attributes (three visual cues, two olfactory cues and two rewarding attributes) on flower visitation and species richness. We investigated how flower attributes influenced two phases of the decision-making process: the decision to land on a flower, and the decision to feed on a flower. Artificial flowers attracted 890 individual insects representing 15 morphospecies spanning seven arthropod orders. Honeybees were the most common visitors accounting for 46% of visitors. Higher visitation rates were driven by the presence of nectar, the presence of linalool, flower shape and flower colour and was negatively impacted by the presence of citral. Species richness was driven by the presence of nectar, the presence of linalool and flower colour. For hymenopterans, the probability of landing on the artificial flowers was influenced by the presence of nectar or pollen, shape and the presence of citral and/or linalool. The probability of feeding increased when flowers contained nectar. For dipterans, the probability of landing on artificial flowers increased when the flower was yellow and contained linalool. The probability of feeding increased when flowers contained pollen, nectar and linalool. Our results demonstrate the multi-attribute nature of flower preferences and highlight the usefulness of artificial flowers as tools for studying flower visitation in wild insects.
Collapse
Affiliation(s)
- Kathryn M. Chapman
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Freya J. Richardson
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Sydney Institute of AgricultureThe University of SydneySydneyNew South WalesAustralia
| | - Caitlyn Y. Forster
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Eliza J. T. Middleton
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Thomas E. White
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Paul F. Burke
- UTS Business School and Centre for Business Intelligence and Data AnalyticsUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Tanya Latty
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Sydney Institute of AgricultureThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
7
|
Liggri PGV, Pérez-Garrido A, Tsitsanou KE, Dileep KV, Michaelakis A, Papachristos DP, Pérez-Sánchez H, Zographos SE. 2D finger-printing and molecular docking studies identified potent mosquito repellents targeting odorant binding protein 1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023:103961. [PMID: 37217081 DOI: 10.1016/j.ibmb.2023.103961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Personal protection measures against the mosquitoes like the use of repellents constitute valuable tools in the effort to prevent the transmission of vector-borne diseases. Therefore, the discovery of novel repellent molecules which will be effective at lower concentrations and provide a longer duration of protection remains an urgent need. Mosquito Odorant-Binding Proteins (OBPs) involved in the initial steps of the olfactory signal transduction cascade have been recognized not only as passive carriers of odors and pheromones but also as the first molecular filter to discriminate semiochemicals, hence serving as molecular targets for the design of novel pest control agents. Among the three-dimensional structures of mosquito OBPs solved in the last decades, the OBP1 complexes with known repellents have been widely used as reference structures in docking analysis and molecular dynamics simulation studies for the structure-based discovery of new molecules with repellent activity. Herein, ten compounds known to be active against mosquitoes and/or displaying a binding affinity for Anopheles gambiae AgamOBP1 were used as queries in an in silico screening of over 96 million chemical samples in order to detect molecules with structural similarity. Further filtering of the acquired hits on the basis of toxicity, vapor pressure, and commercial availability resulted in 120 unique molecules that were subjected to molecular docking studies against OBP1. For seventeen potential OBP1-binders, the free energy of binding (FEB) and mode of interaction with the protein were further estimated by molecular docking simulations leading to the selection of eight molecules exhibiting the highest similarity with their parental compounds and favorable energy values. The in vitro determination of their binding affinity to AgamOBP1 and the evaluation of their repellent activity against female Aedes albopictus mosquitoes revealed that our combined ligand similarity screening and OBP1 structure-based molecular docking successfully detected three molecules with enhanced repellent properties. A novel DEET-like repellent with lower volatility (8.55 × 10-4 mmHg) but a higher binding affinity for OBP1 than DEET (1.35 × 10-3 mmHg). A highly active repellent molecule that is predicted to bind to the secondary Icaridin (sIC)-binding site of OBP1 with higher affinity than to the DEET-site and, therefore, represents a new scaffold to be exploited for the discovery of binders targeting multiple OBP sites. Finally, a third potent repellent exhibiting a high degree of volatility was found to be a strong DEET-site binder of OBP1 that could be used in slow-release formulations.
Collapse
Affiliation(s)
- Panagiota G V Liggri
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| | - Alfonso Pérez-Garrido
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia (UCAM), 30107, Spain
| | - Katerina E Tsitsanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Kalarickal V Dileep
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, 680005, India
| | - Antonios Michaelakis
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, 8 S Delta Str. 14561, Kifissia, Athens, Greece
| | - Dimitrios P Papachristos
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, 8 S Delta Str. 14561, Kifissia, Athens, Greece
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia (UCAM), 30107, Spain.
| | - Spyros E Zographos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece.
| |
Collapse
|
8
|
Giatropoulos A, Koliopoulos G, Pantelakis PN, Papachristos D, Michaelakis A. Evaluating the Sublethal Effects of Origanum vulgare Essential Oil and Carvacrol on the Biological Characteristics of Culex pipiens biotype molestus (Diptera: Culicidae). INSECTS 2023; 14:400. [PMID: 37103215 PMCID: PMC10146918 DOI: 10.3390/insects14040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Culex pipiens is a mosquito species complex spread worldwide that poses a serious threat to human health as the primary vector of West Nile virus. Its control is mainly based on larvicidal applications with synthetic insecticides on mosquito breeding sites. However, the excessive use of synthetic larvicides may provoke mosquito resistance issues and negative side effects to the aquatic environment and human health. Plant-derived essential oils, including those from the Lamiaceae family, can be eco-friendly alternative larvicidal agents causing acute larval toxicity and/or growth inhibitory effects on the developmental stages of mosquitoes through different modes of action. In the current laboratory study, we evaluated the sublethal effects of carvacrol-rich oregano essential oil and pure carvacrol on Cx. pipiens biotype molestus, the autogenous member of the Cx. pipiens species complex, after the exposure of 3rd-4th instar larvae to LC50 concentrations. The short-term (24 h) larvicidal treatment with the sublethal concentrations of both tested materials exhibited an acute lethal effect on the exposed larvae as well as significant delayed mortality for surviving larvae and pupae. Larvicidal treatment with carvacrol reduced the longevity of the emerged males. In addition, the morphological abnormalities that were observed at the larval and pupal stage along with failed adult emergence indicate the potential growth inhibitory properties of the tested bioinsecticides. Our findings suggest that carvacrol and carvacrol-rich oregano oil are effective plant-based larvicides at doses lower than the acute lethal ones, thus promoting an environmentally friendly and more affordable perspective for their use against the WNV vector Cx. pipiens biotype molestus.
Collapse
Affiliation(s)
- Athanasios Giatropoulos
- Laboratory of Efficacy Control of Pesticides, Benaki Phytopathological Institute, 14561 Kifissia, Greece
| | - George Koliopoulos
- Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, 11855 Athens, Greece
| | - Pavlos-Nektarios Pantelakis
- Laboratory of Efficacy Control of Pesticides, Benaki Phytopathological Institute, 14561 Kifissia, Greece
- Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Papachristos
- Laboratory of Agricultural Entomology, Benaki Phytopathological Institute, 14561 Kifissia, Greece
| | - Antonios Michaelakis
- Laboratory of Insects and Parasites of Medical Importance, Benaki Phytopathological Institute, 14561 Kifissia, Greece
| |
Collapse
|
9
|
Luu-dam NA, Le CVC, Satyal P, Le TMH, Bui VH, Vo VH, Ngo GH, Bui TC, Nguyen HH, Setzer WN. Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam. Molecules 2023; 28:2361. [PMID: 36903605 PMCID: PMC10005233 DOI: 10.3390/molecules28052361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Using essential oils to control vectors, intermediate hosts, and disease-causing microorganisms is a promising approach. The genus Croton in the family Euphorbiaceae is a large genus, with many species containing large amounts of essential oils, however, essential oil studies are limited in terms of the number of Croton species investigated. In this work, the aerial parts of C. hirtus growing wild in Vietnam were collected and analyzed by gas chromatography/mass spectrometry (GC/MS). A total of 141 compounds were identified in C. hirtus essential oil, in which sesquiterpenoids dominated, comprising 95.4%, including the main components β-caryophyllene (32.8%), germacrene D (11.6%), β-elemene (9.1%), α-humulene (8.5%), and caryophyllene oxide (5.0%). The essential oil of C. hirtus showed very strong biological activities against the larvae of four mosquito species with 24 h LC50 values in the range of 15.38-78.27 μg/mL, against Physella acuta adults with a 48 h LC50 value of 10.09 μg/mL, and against ATCC microorganisms with MIC values in the range of 8-16 μg/mL. In order to provide a comparison with previous works, a literature survey on the chemical composition, mosquito larvicidal, molluscicidal, antiparasitic, and antimicrobial activities of essential oils of Croton species was conducted. Seventy-two references (seventy articles and one book) out of a total of two hundred and forty-four references related to the chemical composition and bioactivity of essential oils of Croton species were used for this paper. The essential oils of some Croton species were characterized by their phenylpropanoid compounds. The experimental results of this research and the survey of the literature showed that Croton essential oils have the potential to be used to control mosquito-borne and mollusk-borne diseases, as well as microbial infections. Research on unstudied Croton species is needed to search for species with high essential oil contents and excellent biological activities.
Collapse
Affiliation(s)
- Ngoc Anh Luu-dam
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), No. 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 100803, Vietnam
- Vietnam Academy of Science and Technology (VAST), Graduate University of Science and Technology, No. 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 100803, Vietnam
| | - Canh Viet Cuong Le
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), 321 Huynh Thuc Khang, Hue 530000, Thua Thien Hue, Vietnam
| | - Prabodh Satyal
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
| | - Thi Mai Hoa Le
- Faculty of Pharmacy, Vinh Medical University, 161 Nguyen Phong Sac, Vinh 461150, Vietnam
| | - Van Huong Bui
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), No. 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 100803, Vietnam
- Vietnam Academy of Science and Technology (VAST), Graduate University of Science and Technology, No. 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 100803, Vietnam
| | - Van Hoa Vo
- Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Gia Huy Ngo
- Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 5000, Vietnam
| | - Thi Chinh Bui
- Faculty of Biology, University of Education, Hue University, 34 Le Loi St., Hue 530000, Vietnam
| | - Huy Hung Nguyen
- Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 5000, Vietnam
| | - William N. Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
10
|
Haris A, Azeem M, Abbas MG, Mumtaz M, Mozūratis R, Binyameen M. Prolonged Repellent Activity of Plant Essential Oils against Dengue Vector, Aedes aegypti. Molecules 2023; 28:molecules28031351. [PMID: 36771017 PMCID: PMC9919174 DOI: 10.3390/molecules28031351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Repellents are effective personal protective means against outdoor biting mosquitoes. Repellent formulations composed of EOs are finding increased popularity among consumers. In this study, after an initial screening of 11 essential oils (EOs) at the concentration of 33 μg/cm2, five of the most repellent EOs, Perovskia atriplicifolia, Citrus reticulata (fruit peels), C. reticulata (leaves), Mentha longifolia, and Dysphania ambrosioides were further investigated for repellent activity against Aedes aegypti mosquitoes in time span bioassays. When tested at the concentrations of 33 μg/cm2, 165 μg/cm2 and 330 μg/cm2, the EO of P. atriplicifolia showed the longest repellent effect up to 75, 90 and 135 min, respectively, which was followed by C. reticulata (peels) for 60, 90 and 120 min, M. longifolia for 45, 60 and 90 min, and C. reticulata (leaves) for 30, 45 and 75 min. Notably, the EO of P. atriplicifolia tested at the dose of 330 μg/cm2 showed complete protection for 60 min which was similar to the commercial mosquito repellent DEET. Gas chromatographic-mass spectrometric analyses of the EOs revealed camphor (19.7%), limonene (92.7%), sabinene (24.9%), carvone (82.6%), and trans-ascaridole (38.8%) as the major constituents of P. atriplicifolia, C. reticulata (peels), C. reticulata (leaves), M. longifolia, and D. ambrosioides, respectively. The results of the present study could help develop plant-based commercial repellents to protect humans from dengue mosquitoes.
Collapse
Affiliation(s)
- Abdullah Haris
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Azeem
- Department of Chemistry, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Muhammad Ghazanfar Abbas
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Mumtaz
- Department of Chemistry, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Raimondas Mozūratis
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, SE-10691 Stockholm, Sweden
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, LT-08412 Vilnius, Lithuania
- Correspondence: (R.M.); (M.B.)
| | - Muhammad Binyameen
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
- Correspondence: (R.M.); (M.B.)
| |
Collapse
|
11
|
Ibrahium SM, Wahba AA, Farghali AA, Abdel-Baki AAS, Mohamed SAA, Al-Quraishy S, Hassan AO, Aboelhadid SM. Acaricidal Activity of Tea Tree and Lemon Oil Nanoemulsions against Rhipicephalus annulatus. Pathogens 2022; 11:pathogens11121506. [PMID: 36558840 PMCID: PMC9787657 DOI: 10.3390/pathogens11121506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Tick infestation is a serious problem in many countries since it has an impact on the health of animals used for food production and pets, and frequently affects humans. Therefore, the present study aimed to investigate the acaricidal effects of nanoemulsions of essential oils of Melaleuca alternifolia (tea tree, TT) and Citrus limon (lemon oil, CL) against the different stages (adult, eggs, and larvae) of deltamethrin-resistant Rhipicephalus annulatus ticks. Three forms of these oils were tested: pure oils, nanoemulsions, and a binary combination. Tea tree and lemon oil nanoemulsions were prepared, and their properties were assessed using a zeta droplet size measurement and a UV-Vis spectrophotometer. The results showed that TT and CL exhibited higher adulticidal effects in their pure forms than in their nanoemulsion forms, as demonstrated by the lower concentrations required to achieve LC50 (2.05 and 1.26%, vs. 12.8 and 11.4%, respectively) and LC90 (4.01% and 2.62%, vs. 20.8 and 19.9%, respectively). Significant larvicidal activity was induced by the TTCL combination, and LC50 was reached at a lower concentration (0.79%) than that required for the pure and nanoemulsion forms. The use of pure CL oil was found to have the most effective ovicidal effects. In conclusion, pure TT and CL have potent acaricidal effects against phenotypically resistant R. annulatus isolates. It is interesting that the activity levels of TT and CL EOs' binary and nanoemulsion forms were lower than those of their individual pure forms.
Collapse
Affiliation(s)
- Samar M. Ibrahium
- Department of Parasitology, Animal Health Research Institute, Fayum Branch 16101, Egypt
- Correspondence: (S.M.I.); (S.M.A.)
| | - Ahmed A. Wahba
- Department of Parasitology, Animal Health Research Institute, Dokki Branch 12611, Egypt
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | | | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed O. Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shawky M. Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence: (S.M.I.); (S.M.A.)
| |
Collapse
|
12
|
Chatzidaki MD, Demisli S, Zingkou E, Liggri PG, Papachristos DP, Balatsos G, Karras V, Nallet F, Michaelakis A, Sotiropoulou G, Zographos SE, Papadimitriou V. Essential oil-in-water microemulsions for topical application: structural study, cytotoxic effect and insect repelling activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Makri A, Papachristos DP, Michaelakis A, Vidali VP. Colupulone, colupone and novel deoxycohumulone geranyl analogues as larvicidal agents against Culex pipiens. PEST MANAGEMENT SCIENCE 2022; 78:4217-4222. [PMID: 35705833 DOI: 10.1002/ps.7039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As climate change proceeds, the management of the population of mosquitoes becomes more and more challenging. Insect adulticides and larvicides constitute significant control techniques, with the latter being considered the leading mosquito control method. However, the development of mosquito resistance development and the adverse side effects caused by the extensive use of synthetic insecticides have turned research towards the discovery of environmentally-friendly solutions. Plants and bacteria have historically proven to be a good source of insecticidally active compounds, which may possess novel modes of action to overcome current resistance mechanisms and could also possess favorable human and environmental safety profiles. A previous study demonstrated that the naturally occurring prenylated acyl phloroglucinol deoxycohumulone is a potent larvicidal agent against Culex pipiens. Herein the structural characteristics that improve it are explored by evaluating colupulone and novel geranylated analogues. RESULTS Colupulone, a prenylated acyl phloroglucinol isolated from Humulus lupulus, colupone, and novel geranylated acyl phloroglucinol congeners, were synthesized and evaluated against Cx. pipiens larva. Results indicated that selected derivatives exhibited superior potency than deoxycohumulone (LC50 43.7 mg L-1 ). Thus, strong activity was observed for colupulone (LC50 19.7 mg L-1 ), and some novel geranyl analogues of deoxycohumulone reaching at LC50 17.1 mg L-1 , while colupone and similar compounds were almost inactive. CONCLUSION The results determined the relationship between the target activity and the chemical structure of the tested compounds, and they revealed significantly improved larvicidal candidates. These results highlight the potential of the acyl phloroglucinol chemistry for further development of mosquito larvicides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Apostolia Makri
- Natural Products and Bioorganic Chemistry Laboratory, Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Athens, Greece
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Dimitrios P Papachristos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Antonios Michaelakis
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Veroniki P Vidali
- Natural Products and Bioorganic Chemistry Laboratory, Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Athens, Greece
| |
Collapse
|
14
|
Giatropoulos A, Karamaouna F, Ampatzi A, Papachristos D, Michaelakis A. Sublethal effects of oregano essential oil and its major compound carvacrol on biological parameters of Aedes albopictus (Diptera: Culicidae). Exp Parasitol 2022; 242:108392. [PMID: 36191614 DOI: 10.1016/j.exppara.2022.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
Abstract
Mosquito management programs rely basically on the use of conventional synthetic larvicides. However, frequent applications and misuse of some synthetic insecticides have led to problems related to mosquito resistance development, harmful effects on human health and unacceptable environmental effects on non-target organisms. Recently, a growing number of phytochemicals has been tested as more eco-friendly larvicides against various mosquito species, exerting high efficacy with multiple modes of action. In the laboratory, we investigated for the first time the sublethal effects of oregano oil and its major compound carvacrol, against Aedes albopictus (Asian tiger mosquito), a mosquito of great medical importance. We determined the effects of short term (24h) exposure of 3rd- 4th larvae to LC50 concentrations on survival and development of survived larvae until adulthood, as well as on fecundity, fertility, longevity and wing length of emerged adults. Only half of 24h survived larvae from oregano oil and carvacrol treatment finally reached adulthood. Abnormal shapes of dead larvae and pupae, and failed adult emergence were also observed, indicating a potential growth inhibitory activity of the tested materials. No particular effects from exposure to larvicidal LC50 concentrations were recorded on life cycle parameters of successfully emerged adults. These findings suggest the tested oregano oil and carvacrol as sufficiently effective larvicides against Ae. albopictus at lower than the acutely toxic concentrations, promoting a more eco-friendly and less costly profile for these biopesticides.
Collapse
Affiliation(s)
- Athanasios Giatropoulos
- Laboratory of Efficacy Control of Pesticides, Benaki Phytopathological Institute, 14561, Kifissia, Greece.
| | - Filitsa Karamaouna
- Laboratory of Efficacy Control of Pesticides, Benaki Phytopathological Institute, 14561, Kifissia, Greece
| | - Argyro Ampatzi
- Laboratory of Efficacy Control of Pesticides, Benaki Phytopathological Institute, 14561, Kifissia, Greece
| | - Dimitrios Papachristos
- Laboratory of Agricultural Entomology, Benaki Phytopathological Institute, 14561, Kifissia, Greece
| | - Antonios Michaelakis
- Laboratory of Insects and Parasites of Medical Importance, Benaki Phytopathological Institute, 14561, Kifissia, Greece
| |
Collapse
|
15
|
Belliard SA, Bachmann GE, Fernández PC, Hurtado J, Vera MT, Segura DF. Identification of host plant volatile stimulants of Anastrepha fraterculus male courtship behavior. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.943260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In some tephritid fruit flies, exposure to volatile compounds from host plants increases male sexual success. This phenomenon has been used to boost sterile males’ sexual competitiveness in the framework of the sterile insect technique (SIT). Previous studies revealed that males of Anastrepha fraterculus (Diptera: Tephritidae) exposed to volatiles from guava (Psidium guajava) fruit (GF) and guava essential oil (GEO) exhibit intensified courtship behavior and have greater copulatory success relative to unexposed males. Similar results were achieved in these flies through exposure to moradillo (Schinus polygama) essential oil or lemon (Citrus limon) essential oil. To identify the responsible compounds involved in these effects, we compared the volatile chemical profiles of GF, GEO, moradillo essential oil, and lemon essential oil. We selected five candidate compounds: (E)-β-ocimene, (Z)-β-ocimene, limonene, β-caryophyllene, and α-humulene. Using the electroantennographic detection (EAD) technique, we verified that males are able to detect all the candidate compounds and built dose-response curves between 0.01 and 100 μg/μl for each compound. We confirmed a stimulating effect on the courtship behavior of males for (E/Z)-β-ocimene and (R)-limonene, whereas β-caryophyllene and α-Humulene did not affect male courtship behavior. For those compounds that sexually stimulated males, we found a dose-dependent effect. Males’ behavioral response to the semiochemicals was maximum when (R)-limonene was combined with (E/Z)-β-ocimene, but the response was reduced when β-caryophyllene and α-humulene were included, which suggests some sort of negative interaction between them. Our results may contribute to the ongoing development of the SIT in this species.
Collapse
|
16
|
Kritsi E, Liggri PGV, Stamati ECV, Tsitsanou KE, Zographos SE, Michaelakis A, Papachristos D, Zoumpoulakis P. A Combined Computational Methodology for the Discovery of Hit Compounds with Putative Insect Repellency Properties. ChemMedChem 2022; 17:e202200271. [PMID: 35754000 DOI: 10.1002/cmdc.202200271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/11/2022]
Abstract
Mosquitoes and other hematophagous arthropods, the primary vectors of multiple parasites and viruses, are responsible for the transmission of serious diseases to humans. Nowadays, the interest is focused on the development of novel repellents to the existing ones with advanced properties. The present study attempts the discovery of novel hit compounds which may evolve as insect repellents using a combined computational methodology targeting the Odorant Binding Protein 1 (OBP1). The in silico results indicated two compounds, namely coniferyl alcohol and 1,2-diphenyl-2-propanol, which were further evaluated (a) in vitro for their binding affinity to AgamOBP1 and (b) in vivo using dose-depended repellence tests against the aggressive-day biting Aedes albopictus. The combination of in vitro and in vivo results pointed that coniferyl alcohol and 1,2-diphenyl-2-propanol exhibited high binding affinity over OBP1 with 69.4 and 84.7 nM, respectively as well as efficient repellent activity. Compounds were also tested for their dose-depended repellency activity in vivo against Aedes albopictus. Overall, the selected compounds can serve as scaffolds for the development of novel repellents.
Collapse
Affiliation(s)
- Eftichia Kritsi
- National Hellenic Research Foundation Institute of Chemical Biology: Ethniko Idryma Ereunon Institouto Chemikes Biologias, Chemical Biology, GREECE
| | - Panagiota G V Liggri
- National Hellenic Research Foundation Institute of Chemical Biology: Ethniko Idryma Ereunon Institouto Chemikes Biologias, Chemical Biology, GREECE
| | - Evgenia C V Stamati
- National Hellenic Research Foundation Institute of Chemical Biology: Ethniko Idryma Ereunon Institouto Chemikes Biologias, Chemical Biology, GREECE
| | - Katerina E Tsitsanou
- National Hellenic Research Foundation Institute of Chemical Biology: Ethniko Idryma Ereunon Institouto Chemikes Biologias, Chemical Biology, GREECE
| | - Spyros E Zographos
- National Hellenic Research Foundation Institute of Chemical Biology: Ethniko Idryma Ereunon Institouto Chemikes Biologias, Chemical Biology, GREECE
| | - Antonios Michaelakis
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, GREECE
| | - Dimitrios Papachristos
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, GREECE
| | - Panagiotis Zoumpoulakis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Vas. Constantinou 48, 11635, Athens, GREECE
| |
Collapse
|
17
|
Utilization of Pomelo (Citrus maxima) Peel Waste into Bioactive Essential Oils: Chemical Composition and Insecticidal Properties. INSECTS 2022; 13:insects13050480. [PMID: 35621814 PMCID: PMC9146202 DOI: 10.3390/insects13050480] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
Abstract
Simple Summary The disposal of agricultural waste products is an emerging concern and an alternative to this is the development of value-added products from these wastes. Here we extracted the essential oil from Citrus maxima (CMEO) and examined its larvicidal and pest control potentials. Results pointed out that CMEO can be effective biopesticides against two major insect pests of stored grains. Furthermore, CMEO had a significant larvicidal action against different mosquito species. This study provided useful information on the compositional aspects and insecticidal properties of CMEO. Abstract The wastes generated during the post-harvest handling of various agricultural commodities is rather under-utlilized. The peels of citrus fruits are often discarded as waste. Citrus peels are rich in essential oils and exhibit toxicity towards various insect species. The essential oils are also an eco-friendly option for insect pest management. The Citrus maxima peel essential oil (CMEO), a waste product, characterized it, and evaluated its potential for insect pest management. The major terpenoids present in CMEO are Limonene and α-Pinene. The CMEO displayed potentials in controlling the insect pests via contact and fumigant toxicity. Moreover, CMEO showed significant larvicidal activities against Culex tritaeniorhynchus and Aedes aegypti species of mosquitoes; however, Armigeres subalbatus was more resistant. The biological safety of the essential oil was also tested against the stored seeds, where no significant inhibition of seed germination was noticed compared to the control. Utilizing a waste product such as citrus peel for pest management can achieve the dual objective of waste utilization and eco-friendly pest management. Overall, the CMEO is therefore found to be a bioactive essential oil extracted from the wastes of pomelo (C. maxima).
Collapse
|
18
|
Devillers J, Sartor V, Doucet JP, Doucet-Panaye A, Devillers H. In silico prediction of mosquito repellents for clothing application. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:239-257. [PMID: 35532305 DOI: 10.1080/1062936x.2022.2062871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Use of protective clothing is a simple and efficient way to reduce the contacts with mosquitoes and consequently the probability of transmission of diseases spread by them. This mechanical barrier can be enhanced by the application of repellents. Unfortunately the number of available repellents is limited. As a result, there is a crucial need to find new active and safer molecules repelling mosquitoes. In this context, a structure-activity relationship (SAR) model was proposed for the design of repellents active on clothing. It was computed from a dataset of 2027 chemicals for which repellent activity on clothing was measured against Aedes aegypti. Molecules were described by means of 20 molecular descriptors encoding physicochemical properties, topological information and structural features. A three-layer perceptron was used as statistical tool. An accuracy of 87% was obtained for both the training and test sets. Most of the wrong predictions can be explained. Avenues for increasing the performances of the model have been proposed.
Collapse
Affiliation(s)
| | - V Sartor
- Laboratoire des IMRCP, Université de Toulouse, Toulouse, France
| | - J P Doucet
- Université de Paris, ITODYS, CNRS, Paris, France
| | | | - H Devillers
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
19
|
Sharma S, Loach N, Gupta S, Mohan L. Evaluation of larval toxicity, mode of action and chemical composition of citrus essential oils against Anopheles stephensi and Culex quinquefasciatus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Antonatos S, Papadopoulos NT, Anastasaki E, Kimbaris A, Papachristos DP. Oviposition Responses of Female Mediterranean Fruit Flies (Diptera: Tephritidae) to Fruit Volatile Compounds. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2307-2314. [PMID: 34545399 DOI: 10.1093/jee/toab178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 06/13/2023]
Abstract
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), is one of the most important pests of fruits worldwide. In the present study, we investigated the ovipositional response of C. capitata females to 37 compounds of fruit volatiles from various chemical groups and the dose response to five of them. Red plastic hollow hemispheres (domes) were used as oviposition substrates in all tests. Twenty of the compounds tested increased female egg laying compared to control substrates that contain no chemicals. With 16 compounds, similar number of eggs was deposited in treated and in control oviposition substrates. One terpene ((±)-linalool) reduced egg laying indicating a deterrent ovipositional effect. Both the esters and aldehydes tested increased the ovipositional responses in C. capitata. Most of the monoterpene hydrocarbons increased oviposition, while oxygenated monoterpenes, sesquiterpenes hydrocarbons, and oxygenated sesquiterpenes had mostly neutral effect. Ethyl hexanoate and R-(+)-limonene increased oviposition in the majority of doses tested. Different doses of (-)-linalool elicited differential female ovipositional responses. In contrast, valencene and citral, regardless of dose did not affect female oviposition. Practical implications of these findings are discussed.
Collapse
Affiliation(s)
- Spyridon Antonatos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, 145 61 Attica, Greece
| | - Nikolaos T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Street, N. Ionia, 384 46 Magnisias, Greece
| | - Eirini Anastasaki
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, 145 61 Attica, Greece
| | - Athanasios Kimbaris
- Laboratory of Chemistry and Biochemistry, Department of Agricultural Development, Democritus University of Thrace, 193 Pantazidou Street, 68 200 Ν. Orestiada, Greece
| | - Dimitrios P Papachristos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, 145 61 Attica, Greece
| |
Collapse
|
21
|
Mwanauta RW, Ndakidemi PA, Venkataramana P. A Review on Papaya Mealybug Identification and Management Through Plant Essential Oils. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1016-1027. [PMID: 34382647 DOI: 10.1093/ee/nvab077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 06/13/2023]
Abstract
Papaya (Carica papaya L.) production suffers from a multitude of abiotic and biotic constraints, among those are insect pests, diseases, and environmental conditions. One of the seriously damaging pests of papaya is invasive papaya mealybug, Paracoccus marginatus, which can inflict heavy yield loss if not contained. Little information on papaya mealybug species has been documented due to challenges in identification approaches to species level. The current approach is based on the morphological features which are restricted to the mealybug life cycle leading to unclear identification. In Sub-Saharan Africa, where a wide diversity of mealybug species exists, it is essential to have a correct identification of these insect species due to the specificity of control measures. Molecular identification could be the best way to identify the mealybug at the species level. Presently, farmers rely heavily on chemical pesticides as their only available option for papaya mealybug control. The overuse of pesticides due to insect waxy covering has led to the development of pesticide resistance and the negative impact on the local ecosystem. Alternatively, the use of plant essential oils (EOs) with adjuvant is suggested as the safe solution to papaya mealybug control as they contain a rich source of natural chemicals that dissolve the insect wax layer, causing the cell membrane to rupture eventually leading to death. This review provides current research knowledge about the papaya mealybug identification approaches and plant EOs from Sweet orange, garlic, castor, and adjuvant (isopropyl alcohol, and paraffin) as sustainable papaya mealybug management.
Collapse
Affiliation(s)
- Regina W Mwanauta
- School of Life Sciences and Bioengineering - The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Patrick A Ndakidemi
- School of Life Sciences and Bioengineering - The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Pavithravani Venkataramana
- School of Life Sciences and Bioengineering - The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| |
Collapse
|
22
|
Anastasaki E, Psoma A, Partsinevelos G, Papachristos D, Milonas P. Electrophysiological responses of Philaenus spumarius and Neophilaenus campestris females to plant volatiles. PHYTOCHEMISTRY 2021; 189:112848. [PMID: 34171506 DOI: 10.1016/j.phytochem.2021.112848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The spittlebugs Philaenus spumarius and Neophilaenus campestris (Hemiptera: Aphrophoridae) are xylem-feeder insects that have been identified as vectors of Xylella fastidiosa in Europe. In the present study, we aim to identify volatile organic compounds (VOCs) that may act as semiochemicals for these species. Using the dynamic headspace technique, we collected VOCs from Olea europaea L. and Polygala myrtifolia L., highly susceptible plant species to X. fastidiosa, Pinus halepensis Mill., a common plant where N. campestris is found during summer, and from host plant species that are used as cover crops or exist as natural vegetation in olive orchards, such as Cistus creticus L., Medicago sativa L., Cynodon dactylon (L.) Pers., Lolium arundinaceum (Schreb.) Darbysh., Apium graveolens L. and Petroselinum crispum (Mill.) Fuss. We tested the response of female antennae on those blends with Gas Chromatography-Electroantennographic Detection (GC-EAD). The chemical profile of C. creticus and P. halepensis was rich in terpenes, alcohols, aldehydes, and esters. In the O. europaea profile, the main compounds were terpenes. As for P. myrtifolia, the volatile profile consisted mostly of alkanes and their substitutes. In the volatile profile of M. sativa, C. dactylon and L. arundinaceum, common volatile compounds were detected. Petroselinum crispum and Apium graveolens chemical profiles were dominated by terpenes. Several compounds elicited a consistent response to the female antennae of both species. In total, 65 compounds elicited consistent EAD responses for P. spumarius and 16 compounds for N. campestris. α-pinene was found in all tested plants and elicited consistent EAD responses of P. spumarius in five plants. In addition, antennae of P. spumarius females responded to camphor, limonene, 4-methyl octane and sabinene. These compounds were found in the volatile profile of at least 5 out of 8 examined plant species. Behavioral bioassays using Y-tube olfactometry were performed on volatiles that elicited antennal responses during electrophysiological studies. Among the compounds tested in behavioral studies, namely (-)-α-pinene, (+)-α-pinene, sabinene, (-)-S-limonene and (1R)-(+)-camphor, only the last one elicited a significant attraction response by P. spumarius females. The results achieved shed light on the VOCs from selected host plant species of X. fastidiosa that are perceived by two important insect vectors and a non-host plant, P. crispum. The identification of semiochemicals for manipulating spittlebugs' behavior contribute to the development of efficient monitoring tools for X. fastidiosa vectors.
Collapse
Affiliation(s)
- Eirini Anastasaki
- Department of Entomology, Benaki Phytopathological Institute, 8 S. Delta Street, 14561, Kifissia, Greece
| | - Aikaterini Psoma
- Department of Entomology, Benaki Phytopathological Institute, 8 S. Delta Street, 14561, Kifissia, Greece
| | - George Partsinevelos
- Department of Entomology, Benaki Phytopathological Institute, 8 S. Delta Street, 14561, Kifissia, Greece
| | - Dimitrios Papachristos
- Department of Entomology, Benaki Phytopathological Institute, 8 S. Delta Street, 14561, Kifissia, Greece
| | - Panagiotis Milonas
- Department of Entomology, Benaki Phytopathological Institute, 8 S. Delta Street, 14561, Kifissia, Greece.
| |
Collapse
|
23
|
Matiadis D, Liggri PGV, Kritsi E, Tzioumaki N, Zoumpoulakis P, Papachristos DP, Balatsos G, Sagnou M, Michaelakis A. Curcumin Derivatives as Potential Mosquito Larvicidal Agents against Two Mosquito Vectors, Culex pipiens and Aedes albopictus. Int J Mol Sci 2021; 22:8915. [PMID: 34445622 PMCID: PMC8396198 DOI: 10.3390/ijms22168915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
Vector-borne diseases have appeared or re-emerged in many Southern Europe countries making the transmission of infectious diseases by mosquitoes (vectors) one of the greatest worldwide health threats. Larvicides have been used extensively for the control of Aedes (Stegomyia) albopictus (Skuse, 1895) (Diptera: Culicidae) and Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) mosquitoes in urban and semi-urban environments, causing the increasing resistance of mosquitoes to commercial insecticides. In this study, 27 curcuminoids and monocarbonyl curcumin derivatives were synthesised and evaluated as potential larvicidal agents against Cx. pipiens and Ae. albopictus. Most of the compounds were more effective against larvae of both mosquito species. Four of the tested compounds, curcumin, demethoxycurcumin, curcumin-BF2 complex and a monocarbonyl tetramethoxy curcumin derivative exhibited high activity against both species. In Cx. pipiens the recorded LC50 values were 6.0, 9.4, 5.0 and 32.5 ppm, respectively, whereas in Ae. albopictus they exhibited LC50 values of 9.2, 36.0, 5.5 and 23.6 ppm, respectively. No conclusive structure activity relationship was evident from the results and the variety of descriptors values generated in silico provided some insight to this end.
Collapse
Affiliation(s)
- Dimitris Matiadis
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece;
| | - Panagiota G. V. Liggri
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (P.G.V.L.); (N.T.)
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - Eftichia Kritsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece; (E.K.); (P.Z.)
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Niki Tzioumaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (P.G.V.L.); (N.T.)
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece; (E.K.); (P.Z.)
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Dimitrios P. Papachristos
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - George Balatsos
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece;
| | - Antonios Michaelakis
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| |
Collapse
|
24
|
Development of cellulose nanocrystal-stabilized Pickering emulsions of massoia and nutmeg essential oils for the control of Aedes albopictus. Sci Rep 2021; 11:12038. [PMID: 34103581 PMCID: PMC8187374 DOI: 10.1038/s41598-021-91442-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
We investigated the larvicidal potential of 10 plant essential oils (EOs) against the Asian tiger mosquito Aedes albopictus. Among the EOs, larvicidal activity against Ae. albopictus was strongest in those derived from massoia (Massoia aromatica) and nutmeg (Myristica fragrans). Larvicidal activities of massoia and nutmeg EOs against Ae. albopictus were 95.0% and 85.0% at 50 μg/mL, respectively. A total of 4 and 14 compounds were identified from massoia and nutmeg, respectively, and two massoia lactones, C10 and C12, were isolated from massoia EO. Among the identified compounds, benzyl salicylate, terpinolene, C12 massoia lactone, sabinene, benzyl benzoate, methyl eugenol, and C10 massoia lactone exhibited the strong larvicidal activity. Cellulose nanocrystal (CNC)-stabilized Pickering emulsions of massoia and nutmeg EOs were developed to overcome the insolubility of EOs in water. CNC/massoia and CNC/nutmeg emulsions were stable for at least 10 days, and larvicidal activities of CNC/massoia PE and CNC/nutmeg were higher than those of crude massoia and nutmeg EOs. This study presents a CNC-stabilized PE, a suitable formulation for EOs, as a potential larvicide against Ae. albopictus.
Collapse
|
25
|
Isolation of Volatile Compounds with Repellent Properties against Aedes albopictus (Diptera: Culicidae) Using CPC Technology. Molecules 2021; 26:molecules26113072. [PMID: 34063887 PMCID: PMC8196645 DOI: 10.3390/molecules26113072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022] Open
Abstract
The present work describes the use of Centrifugal Partition Chromatography (CPC) for the bio-guided isolation of repellent active volatile compounds from essential oils. Five essential oils (EOs) obtained from three Pinus and two Juniperus species were initially analyzed by gas chromatography–mass spectrometry (GC/MS) and evaluated for their repellent properties against Aedes albopictus. The essential oil from needles of P. pinea (PPI) presented the higher activity, showing 82.4% repellency at a dose of 0.2 μL/cm2. The above EO, together with the EO from the fruits of J. oxycedrus subsp. deltoides (JOX), were further analyzed by CPC using the biphasic system n-Heptane/ACN/BuOH in ratio 1.6/1.6/0.2 (v/v/v). The analysis of PPI essential oil resulted in the recovery of (−)-limonene, guaiol and simple mixtures of (−)-limonene/β-pheladrene, while the fractionation of JOX EO led to the recovery of β-myrcene, germacrene-D, and mixtures of α-pinene/β-pinene (ratio 70/30) and α-pinene/germacrene D (ratio 65/45). All isolated compounds and recovered mixtures were tested for their repellent activity. From them, (−)-limonene, guaiol, germacrene-D as well the mixtures of (−)-limonene/β-pheladrene presented significant repellent activity (>97% repellency) against Ae. albopictus. The present methodology could be a valuable tool in the effort to develop potent mosquito repellents which are environmentally friendly.
Collapse
|
26
|
Chemical characterization and in vitro anthelmintic activity of Citrus bergamia Risso and Citrus X paradisii Macfad essential oil against Haemonchus contortus Kirby isolate. Acta Trop 2021; 217:105869. [PMID: 33631121 DOI: 10.1016/j.actatropica.2021.105869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/06/2021] [Accepted: 02/17/2021] [Indexed: 11/23/2022]
Abstract
Haemonchus contortus, a blood-sucking parasite of small ruminants, produces very important economic losses in the productive sector. This abomasum parasite has become resistant to most commercial drugs worldwide, and alternatives to fight this problem are urgently needed. Essential oils (EO) are a complex mixture of volatile secondary metabolites, composed mainly by terpenoids and phenolic compounds, from plants that have several pharmacological properties, including anthelmintic activity. Particularly, citrus peel is a source of cold-pressed EO, where limonene is its major component, and can be used as an additional food component for ruminants. The aim of the present work was to determine the in vitro anthelmintic activity of EO from Citrus bergamia (EOB), C. x paradisii (EOG) and limonene against the benzimidazole-susceptible Kirby isolate of H. contortus, using the egg hatch test (EHT) and the exsheathed third stage larval motility test (XLMT) using a WMicroTracker equipment. Albendazole (ABZ) and monepantel (MON) were used as positive controls. The 50% inhibitory concentrations (IC50) in XLMT were 8.77 and 13.88 µg/ml for EOB and EOG respectively, after an incubation of 72 h. An interesting observation on XLMT resulted when the positive controls were tested on the same plate, but in different well of the EOB. The volatile components of the EO significantly influenced (P < 0.05) the percentage of larval motility, reducing values from 66.9 to 19.6% for ABZ, and from 72.8 to 33.7% for MON, when comparing the activity of positive controls in a control plate without EO. The in vitro anthelmintic activity of EOB and EOG shows that they could be interesting candidates for nematode control. It is still necessary additional studies against the adult stage of H. contortus in efficacy trials in infected animals to validate their anthelmintic activity.
Collapse
|
27
|
Santos AA, Wanderley-Teixeira V, dos Santos Cruz G, de Andrade Dutra K, do Amaral Ferraz Navarro DM, de Oliveira JV, Lapa-Neto CJC, e Silva Barbosa DR, Teixeira ÁAC. Essential oil toxicity on biological and reproductive parameters of Alabama argillacea (Hübner) (Lepidoptera: Erebidae). Acta Histochem 2021; 123:151714. [PMID: 33857700 DOI: 10.1016/j.acthis.2021.151714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022]
Abstract
Several studies have demonstrated the effects of essential oils on insect pests. These effects vary and affect fundamental parameters for the survival of these organisms. However, there is a scarcity of research on the effect of these substances on Alabama argillacea (Hübner) (Lepidoptera: Erebidae), the main defoliating pest of cotton (Gossypium hirsutum L.). Thus, the present study aimed to evaluate the activity of essential oils from Litsea cubeba (Lour.) Pers., Melaleuca alternifolia Cheel, Juniperus virginiana L., and Mentha spicata L., on the biological and reproductive parameters of A. argillacea and the consequent effects on the gonads of both males and females of this pest. All essential oils presented toxicity by contact in third instar larvae of A. argillacea, causing a reduction in the weight of larvae and pupae, as well as affecting the number and viability of eggs. These essential oils changed the histochemistry of the testicles, and M. alternifolia, J. virginiana, and M. spicata also affected their morphology. The histochemistry of the ovarioles was altered by the essential oils from M. alternifolia, J. virginiana, and L. cubeba. Thus, the essential oils tested in the present work are promising for the control of A. argillacea, as they are toxic and affect the development and reproduction of this key pest of cotton.
Collapse
|
28
|
Kythreoti G, Sdralia N, Tsitoura P, Papachristos DP, Michaelakis A, Karras V, Ruel DM, Yakir E, Bohbot JD, Schulz S, Iatrou K. Volatile allosteric antagonists of mosquito odorant receptors inhibit human-host attraction. J Biol Chem 2020; 296:100172. [PMID: 33298524 PMCID: PMC7948460 DOI: 10.1074/jbc.ra120.016557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 11/06/2022] Open
Abstract
Odorant-dependent behaviors in insects are triggered by the binding of odorant ligands to the variable subunits of heteromeric olfactory receptors. Previous studies have shown, however, that specific odor binding to ORco, the common subunit of odorant receptor heteromers, may allosterically alter olfactory receptor function and profoundly affect subsequent behavioral responses. Using an insect cell-based screening platform, we identified and characterized several antagonists of the odorant receptor coreceptor of the African malaria vector Anopheles gambiae (AgamORco) in a small collection of natural volatile organic compounds. Because some of the identified antagonists were previously shown to strongly repel Anopheles and Culex mosquitoes, we examined the bioactivities of the identified antagonists against Aedes, the third major genus of the Culicidae family. The tested antagonists inhibited the function of Ae. aegypti ORco ex vivo and repelled adult Asian tiger mosquitoes (Ae. albopictus). Binary mixtures of specific antagonists elicited higher repellency than single antagonists, and binding competition assays suggested that this enhanced repellence is due to antagonist interaction with distinct ORco sites. Our results also suggest that the enhanced mosquito repellency by antagonist mixtures is due to additive rather than synergistic effects of the specific antagonist combinations on ORco function. Taken together, these findings provide novel insights concerning the molecular aspects of odorant receptor function. Moreover, our results demonstrate that a simple screening assay may be used for the identification of allosteric modifiers of olfactory-driven behaviors capable of providing enhanced personal protection against multiple mosquito-borne infectious diseases.
Collapse
Affiliation(s)
- Georgia Kythreoti
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Greece
| | - Nadia Sdralia
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Greece
| | - Panagiota Tsitoura
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Greece
| | | | - Antonios Michaelakis
- Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Vasileios Karras
- Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Kifissia, Greece
| | - David M Ruel
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Esther Yakir
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jonathan D Bohbot
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kostas Iatrou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Greece.
| |
Collapse
|
29
|
Theochari I, Giatropoulos A, Papadimitriou V, Karras V, Balatsos G, Papachristos D, Michaelakis A. Physicochemical Characteristics of Four Limonene-Based Nanoemulsions and Their Larvicidal Properties against Two Mosquito Species, Aedes albopictus and Culex pipiens molestus. INSECTS 2020; 11:E740. [PMID: 33126682 PMCID: PMC7693712 DOI: 10.3390/insects11110740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
Negative impacts on the environment from the continuous use of synthetic insecticides against mosquitoes has driven research towards more ecofriendly products. Phytochemicals, classified as low-risk substances, have been recognized as potential larvicides of mosquitoes; however, problems related to water solubility and stability are limiting factors for their use in mosquito control programs in the field. In this context, many researchers have focused on formulating essential oils in nanoemulsions, exploiting innovative nanotechnology. In the current study, we prepared 4 (R)-(+)-limonene oil-in-water nanoemulsions using low and high energy methods, and we evaluated their physicochemical characteristics (e.g., viscosity, stability, mean droplet diameter, polydispersity index) and their bioactivity against larvae of two mosquito species of great medical importance, namely, Cx. pipiens molestus and Ae. albopictus. According to the dose-response bioassays with the limonene-based nanoemulsions and pure limonene (dissolved in organic solvent), the tested nanoformulations improved the activity of limonene against Ae. albopictus larvae, while the performance of limonene was either the same or better than limonene against Cx. pipiens molestus, depending on the applied system. Overall, we achieved the production of limonene-based delivery nanosystems, with sufficient lethal properties against mosquito larvae to consider them promising larvicidal formulations applicable to mosquito breeding sites.
Collapse
Affiliation(s)
- Ioanna Theochari
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (I.T.); (V.P.)
| | - Athanasios Giatropoulos
- Laboratory of Efficacy Assessment of Pesticides, Scientific Directorate of Pesticide’s Assessment and Phytopharmacy, Benaki Phytopathological Institute, 14561 Kifissia, Greece;
| | - Vassiliki Papadimitriou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (I.T.); (V.P.)
| | - Vasileios Karras
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 14561 Kifissia, Greece; (V.K.); (G.B.); (D.P.)
| | - Georgios Balatsos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 14561 Kifissia, Greece; (V.K.); (G.B.); (D.P.)
| | - Dimitrios Papachristos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 14561 Kifissia, Greece; (V.K.); (G.B.); (D.P.)
| | - Antonios Michaelakis
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 14561 Kifissia, Greece; (V.K.); (G.B.); (D.P.)
| |
Collapse
|
30
|
Essential Oil Compositions of Three Invasive Conyza Species Collected in Vietnam and Their Larvicidal Activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Molecules 2020; 25:molecules25194576. [PMID: 33036394 PMCID: PMC7583829 DOI: 10.3390/molecules25194576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 11/17/2022] Open
Abstract
Mosquito-borne infectious diseases are a persistent problem in tropical regions of the world, including Southeast Asia. Vector control has relied principally on synthetic insecticides, but these have detrimental environmental effects and there is an increasing demand for plant-based agents to control insect pests. Invasive weedy plant species may be able to serve as readily available sources of essential oils, some of which may be useful as larvicidal agents for control of mosquito populations. We hypothesize that members of the genus Conyza (Asteraceae) may produce essential oils that may have mosquito larvicidal properties. The essential oils from the aerial parts of Conyza bonariensis, C. canadensis, and C. sumatrensis were obtained by hydrodistillation, analyzed by gas chromatography–mass spectrometry, and screened for mosquito larvicidal activity against Aedes aegypti, Ae. albopictus and Culex quinquefasciatus. The essential oils of C. canadensis and C. sumatrensis, both rich in limonene (41.5% and 25.5%, respectively), showed notable larvicidal activities against Ae. aegypti (24-h LC50 = 9.80 and 21.7 μg/mL, respectively) and Ae. albopictus (24-h LC50 = 18.0 and 19.1 μg/mL, respectively). These two Conyza species may, therefore, serve as sources for alternative, environmentally-benign larvicidal control agents.
Collapse
|
31
|
Essential Oils of Zingiber Species from Vietnam: Chemical Compositions and Biological Activities. PLANTS 2020; 9:plants9101269. [PMID: 32993137 PMCID: PMC7601767 DOI: 10.3390/plants9101269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Mosquito-borne diseases are a large problem in Vietnam as elsewhere. Due to environmental concerns regarding the use of synthetic insecticides as well as developing insecticidal resistance, there is a need for environmentally-benign alternative mosquito control agents. In addition, resistance of pathogenic microorganisms to antibiotics is an increasing problem. As part of a program to identify essential oils as alternative larvicidal and antimicrobial agents, the leaf, stem, and rhizome essential oils of several Zingiber species, obtained from wild-growing specimens in northern Vietnam, were acquired by hydrodistillation and investigated using gas chromatography. The mosquito larvicidal activities of the essential oils were assessed against Culex quinquefasciatus, Aedes albopictus, and Ae. aegypti, and for antibacterial activity against a selection of Gram-positive and Gram-negative bacteria, and for activity against Candida albicans. Zingiber essential oils rich in α-pinene and β-pinene showed the best larvicidal activity. Zingiber nudicarpum rhizome essential oil showed excellent antibacterial activity against Enterococcus faecalis, Staphylococcus aureus, and Bacillus cereus, with minimum inhibitory concentrations (MIC) of 2, 8, and 1 μg/mL, respectively. However, the major components, α-pinene and β-pinene, cannot explain the antibacterial activities obtained.
Collapse
|
32
|
Abstract
Dengue virus (DENV) belongs to the family Flaviviridae, genus Flavivirus. It is a single-stranded positive-sense ribonucleic acid virus with 10,700 bases. The genus Flavivirus includes other arthropod borne viruses such as yellow fever virus, West Nile virus, Zika virus, tick-borne encephalitis virus. It infects ~50–200 million people annually, putting over 3.6 billion people living in tropical regions at risk and causing ~20,000 deaths annually. The expansion of dengue is attributed to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement, and also viral evolution. There are four antigenically different serotypes of DENV based on the differences in their viral structural and nonstructural proteins. DENV infection causes a spectrum of illness ranging from asymptomatic to dengue fever to severe dengue shock syndrome. Infection with one serotype confers lifelong immunity against that serotype, but heterologus infection leads to severe dengue hemorrhagic fever due to antibody-dependent enhancement. Diagnosis of dengue infections is based mainly on serological detection of either antigen in acute cases or antibodies in both acute and chronic infection. Viral detection and real-time PCR detection though helpful is not feasible in resource poor setup. Treatment of dengue depends on symptomatic management along with fluid resuscitation and may require platelet transfusion. Although vaccine development is in late stages of development, developing a single vaccine against four serotypes often causes serious challenges to researchers; hence, the main stay of prevention is vector control and management.
Collapse
|
33
|
Salehi B, Upadhyay S, Erdogan Orhan I, Kumar Jugran A, L.D. Jayaweera S, A. Dias D, Sharopov F, Taheri Y, Martins N, Baghalpour N, C. Cho W, Sharifi-Rad J. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019; 9:E738. [PMID: 31739596 PMCID: PMC6920849 DOI: 10.3390/biom9110738] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
α- and β-pinene are well-known representatives of the monoterpenes group, and are found in many plants' essential oils. A wide range of pharmacological activities have been reported, including antibiotic resistance modulation, anticoagulant, antitumor, antimicrobial, antimalarial, antioxidant, anti-inflammatory, anti-Leishmania, and analgesic effects. This article aims to summarize the most prominent effects of α- and β-pinene, namely their cytogenetic, gastroprotective, anxiolytic, cytoprotective, anticonvulsant, and neuroprotective effects, as well as their effects against H2O2-stimulated oxidative stress, pancreatitis, stress-stimulated hyperthermia, and pulpal pain. Finally, we will also discuss the bioavailability, administration, as well as their biological activity and clinical applications.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - Shashi Upadhyay
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora-263643, Uttarakhand, India;
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Arun Kumar Jugran
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre, Srinagar-246174, Uttarakhand, India
| | - Sumali L.D. Jayaweera
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia (D.A.D.)
| | - Daniel A. Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia (D.A.D.)
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, 734003 Dushanbe, Tajikistan;
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (Y.T.); (N.B.)
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Navid Baghalpour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (Y.T.); (N.B.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran
| |
Collapse
|
34
|
Hung NH, Satyal P, Hieu HV, Chuong NTH, Dai DN, Huong LT, Tai TA, Setzer WN. Mosquito Larvicidal Activity of the Essential Oils of Erechtites Species Growing Wild in Vietnam. INSECTS 2019; 10:insects10020047. [PMID: 30717463 PMCID: PMC6410152 DOI: 10.3390/insects10020047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 12/26/2022]
Abstract
Mosquito-borne infections are a constant problem in Vietnam, and mosquito vector control is a primary approach to control these infections. Essential oils represent environmentally friendly alternatives to synthetic pesticides for mosquito control. The essential oils of two weedy species in Vietnam, Erechtites hieraciifolius and E. valerianifolius, have been obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry. The essential oils have been screened for mosquito larvicidal activity against Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus. The essential oil from the aerial parts of E. hieraciifolius was rich in α-pinene (14.5%), limonene (21.4%), and caryophyllene oxide (15.1%), while E. valerianifolius essential oil was dominated by myrcene (47.8%) and α-pinene (30.2%). Both essential oils showed good larvicidal activity against Ae. albopictus (24-h LC50 10.5 and 5.8 μg/mL, respectively) and Ae. aegypti (24-h LC50 10.6 and 12.5 μg/mL, respectively). The essential oil of E. valerianifolius also showed good activity against Cx. quinquefasciatus larvae (24-h LC50 = 40.7 μg/mL). Thus, Erechtites essential oils may serve as low-cost vector control agents for mosquito-borne infections.
Collapse
Affiliation(s)
- Nguyen Huy Hung
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University,03 Quang Trung, Da Nang 50000, Vietnam.
| | - Prabodh Satyal
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| | - Ho Viet Hieu
- Parasitology and Entomology Unit, Department of Medicine, Duy Tan University, 03 Quang Trung, Da Nang 50000, Vietnam.
| | - Nguyen Thi Hong Chuong
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University,03 Quang Trung, Da Nang 50000, Vietnam.
| | - Do Ngoc Dai
- Faculty of Agriculture, Forestry and Fishery, Nghe An Economics University, Vinh City 43000, Nghe An Province, Vietnam.
| | - Le Thi Huong
- School of Natural Science Education, Vinh University, 182 Le Duan, Vinh City 43000, Nghệ An Province, Vietnam.
| | - Thieu Anh Tai
- Department of Pharmacy, Duy Tan University, 03⁻Quang Trung, Da Nang 50000, Vietnam.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
35
|
Benelli G, Pavela R, Drenaggi E, Maggi F. Insecticidal efficacy of the essential oil of jambú (Acmella oleracea (L.) R.K. Jansen) cultivated in central Italy against filariasis mosquito vectors, houseflies and moth pests. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:272-279. [PMID: 30149065 DOI: 10.1016/j.jep.2018.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/03/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acmella oleracea (L.) R.K. Jansen (Compositae), well-known as jambú, is a medicinal herb of pungent taste, native to Brazil but cultivated in different parts of the world due to its aromatic and pharmacological properties. In folk medicine, the plant has been used against parasites and to combat insects and mites. No data are available on the insecticidal activity of jambú essential oil. AIM OF THE STUDY To test the jambú essential oil obtained from A. oleracea cultivated in central Italy against the filariasis vector, Culex quinquefasciatus, the Egyptian cotton worm, Spodoptera littoralis, and the housefly, Musca domestica. MATERIALS AND METHODS The chemical composition of the essential oil was achieved by GC-FID and GC-MS analyses. Acute toxicity experiments were conducted on larvae of the filariasis vector C. quinquefasciatus and S. littoralis and adults of M. domestica to determine the LC50(LD50) and LC90(LD90) values of the oil, along with the positive control, α-cypermethrin. RESULTS (E)-caryophyllene (20.8%), β-pinene (17.3%), myrcene (17.1%) and caryophyllene oxide (10.0%) were the major volatile constituents. Interestingly, the oil contained little amounts (3.9%) of the insecticidal spilanthol. Jambú essential oil exerted relevant effects on C. quinquefasciatus (LC50 = 42.2 mg L-1, LC90 = 73.6 mg L-1) and S. littoralis 3rd instar larvae (LD50 = 68.1 µg larva-1, LD90 = 132.1 µg larva-1). High acute toxicity was also detected testing the jambú oil against adult females of M. domestica, achieving a LD50 value of 44.3 µg adult-1 and a LD90 value of 87.5 µg adult-1. CONCLUSIONS Taken together our data support the traditional use of jambú as an insecticidal agent and represent the scientific basis for the industrial exploitation of the essential oil in the fabrication of green insecticides.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06 Prague, Czech Republic.
| | - Ettore Drenaggi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, Camerino, Italy.
| |
Collapse
|
36
|
Negrini M, Fidelis EG, Schurt DA, Silva FDS, Pereira RS, Bizzo HR. Insecticidal activity of essential oils in controlling fall armyworm, Spodoptera frugiperda. ARQUIVOS DO INSTITUTO BIOLÓGICO 2019. [DOI: 10.1590/1808-1657001112018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT: Fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) is one of the main pests in maize crop with developing resistance to chemical products and Bt technology. Therefore, alternative control methods such as essential oils are important steps in the implementation management strategies for this pest. This study aimed to evaluate the efficiency of essential oils (EOs) of Corymbia citriodora, Myrciaria dubia (Myrtaceae), Lippia microphylla (Verbenaceae) and Piper umbelattum (Piperaceae) in controlling S. frugiperda. The OEs were extracted and mortality tests were conducted with topic and volatile applications, in 30 second-instar caterpillars originated from insect rearing and artificial diet. As a control, we conducted tests with distilled water and acetone. EOs that provided mortality rates above 80% were submitted to chemical analysis for constituent identification. The efficient EOs were only those of C. citriodora and L. microphylla. For EO of C. citriodora, the LD80 was 7.06 ± 0.73 mg.g-1 in topical application and 5.85 ± 0.75 µL via volatile application. On the other hand, for EO of L. microphylla, DL80 was 9.95 ± 1.25 mg.g-1 in topical application and 18.56 ± 3.55 µL via volatile application. Chemical analysis showed that the main constituents were citronella for the EO of C. citriodora and (E)-caryophyllene and (E)-nerolidol to the EO of L. microphylla. EOs of C. citriodora and L. microphylla are promising for controlling S. frugiperda, with emphasis on the volatile effect of C. citriodora oil.
Collapse
|
37
|
Evergetis E, Bellini R, Balatsos G, Michaelakis A, Carrieri M, Veronesi R, Papachristos DP, Puggioli A, Kapsaski-Kanelli VN, Haroutounian SA. From Bio-Prospecting to Field Assessment: The Case of Carvacrol Rich Essential Oil as a Potent Mosquito Larvicidal and Repellent Agent. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Stefopoulou Α, Balatsos G, Petraki A, LaDeau SL, Papachristos D, Michaelakis Α. Reducing Aedes albopictus breeding sites through education: A study in urban area. PLoS One 2018; 13:e0202451. [PMID: 30408031 PMCID: PMC6224055 DOI: 10.1371/journal.pone.0202451] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/20/2018] [Indexed: 12/03/2022] Open
Abstract
Aedes albopictus tends to proliferate in small, often man-made bodies of water, largely present in urban private areas. For this reason, education and community participation are considered crucial for source reduction and mosquito control. In the current study, we identify mosquito breeding habitat and evaluate the effectiveness of resident education. Since 2010 several outbreaks of West Nile virus infection occurred in Greece however urban population has no previous experience with mosquito–borne disease related to Aedes species, such as Dengue, Zika and Chikungunya. After the introduction of Ae. albopictus in Greece, urban areas have been considered to be at risk of epidemic arboviral outbreaks and identifying effective control strategies is imperative. Our study examines the relationship between mosquito breeding sources and socioeconomic or demographic characteristics of different households in a Greek municipality and evaluates efficacy of resident education. The results revealed that only a minority of residents knew where mosquitoes breed (18.6%) and only 46% felt that residents had any responsibility for managing breeding habitat. Our findings strongly suggest that only the presence of scientific staff inspecting possible habitats in their properties, could be enough to stimulate practices towards source reduction. However, educational interventions alone with printed education material cannot enhance significant community participation and source reduction.
Collapse
Affiliation(s)
- Αngeliki Stefopoulou
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, Kifissia, Greece
| | - George Balatsos
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, Kifissia, Greece
| | - Angeliki Petraki
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, Kifissia, Greece
| | - Shannon L. LaDeau
- Cary Institute of Ecosystem Studies, Millbrook, New York, United States of America
| | - Dimitrios Papachristos
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, Kifissia, Greece
| | - Αntonios Michaelakis
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, Kifissia, Greece
- * E-mail:
| |
Collapse
|
39
|
da Silva LVF, Veras Mourão RH, Manimala J, Lnenicka GA. The essential oil of Lippia alba and its components affect Drosophila behavior and synaptic physiology. ACTA ACUST UNITED AC 2018; 221:jeb.176909. [PMID: 29880632 DOI: 10.1242/jeb.176909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/29/2018] [Indexed: 11/20/2022]
Abstract
Lippia alba is a flowering shrub in the verbena family and its essential oil (EO) is known for its sedative, antidepressant and analgesic properties. In the Amazon region of Brazil, it is used in aquaculture to anesthetize fish during transport. Many of the specialized metabolites found in EOs presumably evolved to protect plants from herbivores, especially insects. We used Drosophila to test the behavioral and physiological actions of this EO and its components. We found that a 150 min exposure to the EO vapors resulted in immobilization of adult flies. Gas chromatography-mass spectrometry identified the major components of the EO as the monoterpenes citral (59%), carvone (7%) and limonene (7%). Fly immobilization by the EO was due to citral and carvone, with citral producing more rapid effects than carvone. We tested whether the EO affected synaptic physiology by applying it to the larval neuromuscular junction. The EO delivered at 0.012% (v/v) produced over a 50% reduction in excitatory postsynaptic potential (EPSP) amplitude within 3-4 min. When the EO components were applied at 0.4 mmol l-1, citral and carvone produced a significant reduction in EPSP amplitude, with citral producing the largest effect. Measurement of miniature EPSP amplitudes demonstrated that citral produced over a 50% reduction in transmitter release. Calcium imaging experiments showed that citral produced about 30% reduction in presynaptic Ca2+ influx, which likely resulted in the decrease in transmitter release. Thus, the EO blocks synaptic transmission, largely due to citral, and this likely contributes to its behavioral effects.
Collapse
Affiliation(s)
- Lenise Vargas Flores da Silva
- Water Science and Technology Institute, University of Western Para, Av. Mendonça Furtado, 2946- Bairro Fátima, CEP 68040-470, Santarem, Párá, Brazil
| | - Rosa Helena Veras Mourão
- Health Collective Institute, University of Western Para, Av. Mendonça Furtado, 2946- Bairro Fátima, CEP 68040-470, Santarem, Párá- Brazil
| | - Jibin Manimala
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Gregory A Lnenicka
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
40
|
Giatropoulos A, Kimbaris A, Michaelakis Α, Papachristos DP, Polissiou MG, Emmanouel N. Chemical composition and assessment of larvicidal and repellent capacity of 14 Lamiaceae essential oils against Aedes albopictus. Parasitol Res 2018; 117:1953-1964. [DOI: 10.1007/s00436-018-5892-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/24/2018] [Indexed: 11/25/2022]
|
41
|
Benelli G, Rajeswary M, Vijayan P, Senthilmurugan S, Alharbi NS, Kadaikunnan S, Khaled JM, Govindarajan M. Boswellia ovalifoliolata (Burseraceae) essential oil as an eco-friendly larvicide? Toxicity against six mosquito vectors of public health importance, non-target mosquito fishes, backswimmers, and water bugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10264-10271. [PMID: 28332087 DOI: 10.1007/s11356-017-8820-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
The use of synthetic pesticides to control vector populations is detrimental to human health and the environment and may lead to the development of resistant strains. Plants can be alternative sources of safer compounds effective on mosquito vectors. In this study, the mosquito larvicidal activity of Boswellia ovalifoliolata leaf essential oil (EO) was evaluated against Anopheles stephensi, Anopheles subpictus, Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Culex tritaeniorhynchus. GC-MS revealed that the B. ovalifoliolata EO contained at least 20 compounds. The main constituents were β-pinene, α-terpineol, and caryophyllene. In acute toxicity assays, the EO was toxic to larvae of An. stephensi, Ae. aegypti, Cx. quinquefasciatus, An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 61.84, 66.24, 72.47, 82.26, 89.80, and 97.95 μg/ml, respectively. B. ovalifoliolata EO was scarcely toxic to mosquito fishes, backswimmers, and water bugs predating mosquito larvae with LC50 from 4186 to 14,783 μg/ml. Overall, these results contribute to develop effective and affordable instruments to magnify the reliability of Culicidae control programs.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| | - Mohan Rajeswary
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Periasamy Vijayan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Sengamalai Senthilmurugan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India.
| |
Collapse
|
42
|
Badieritakis Ε, Papachristos D, Latinopoulos D, Stefopoulou Α, Kolimenakis Α, Bithas K, Patsoula Ε, Beleri S, Maselou D, Balatsos G, Michaelakis Α. Aedes albopictus (Skuse, 1895) (Diptera: Culicidae) in Greece: 13 years of living with the Asian tiger mosquito. Parasitol Res 2017; 117:453-460. [PMID: 29275504 DOI: 10.1007/s00436-017-5721-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/12/2017] [Indexed: 11/29/2022]
Abstract
Aedes (Stegomyia) albopictus (Skuse, 1895) (Diptera: Culicidae), commonly known as the Asian tiger mosquito, is an invasive mosquito species of public health significance, well established in many countries worldwide. In Greece, it was first recorded in Corfu and Thesprotia between 2003 and 2004. In the following years, further distribution and establishment of Ae. albopictus in Greece have been confirmed in many Regional Units of the country. In the current study, we report the invasion history of Ae. albopictus in Greece, until 2016. The results from the entomological investigation following imported virus cases in 2014, 2015, and 2016 are also included. Moreover, its presence in Greece is demonstrated in a thematic map based on (a) information provided by pest control companies and/or citizens, (b) the official samples sent to Benaki Phytopathological Institute (BPI) and the National School of Public Health (NSPH), and
Collapse
Affiliation(s)
- Ε Badieritakis
- Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61, Kifissia-Athens, Greece
| | - D Papachristos
- Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61, Kifissia-Athens, Greece
| | - D Latinopoulos
- Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Α Stefopoulou
- Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61, Kifissia-Athens, Greece
| | - Α Kolimenakis
- Institute of Urban Environment and Human Resources, Panteion University, 176 71, Athens, Greece
| | - K Bithas
- Institute of Urban Environment and Human Resources, Panteion University, 176 71, Athens, Greece
| | - Ε Patsoula
- Department of Parasitology, Entomology and Tropical Diseases, National School of Public Health, 115 21, Athens, Greece
| | - S Beleri
- Department of Parasitology, Entomology and Tropical Diseases, National School of Public Health, 115 21, Athens, Greece
| | - D Maselou
- Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61, Kifissia-Athens, Greece
| | - G Balatsos
- Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61, Kifissia-Athens, Greece
| | - Α Michaelakis
- Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61, Kifissia-Athens, Greece.
| |
Collapse
|
43
|
Dutta S, Celestine MJ, Khanal S, Huddleston A, Simms C, Arca JF, Mitra A, Heller L, Kraj PJ, Ledizet M, Anderson JF, Neelakanta G, Holder AA, Sultana H. Coordination of different ligands to copper(II) and cobalt(III) metal centers enhances Zika virus and dengue virus loads in both arthropod cells and human keratinocytes. Biochim Biophys Acta Gen Subj 2017; 1862:40-50. [PMID: 29030319 DOI: 10.1016/j.bbagen.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/01/2017] [Accepted: 10/06/2017] [Indexed: 11/17/2022]
Abstract
Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen)2]Cl2, (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen)3]Cl3, (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl2·2H2O) or cobalt(II) chloride hexahydrate (CoCl2·6H2O) alone had no effects as "free" cations. Taken together, these findings suggest that use of Cu(II) or Co(III) conjugation to organic compounds, in insect repellents and/or food additives could enhance DENV2/ZIKV loads in human cells and perhaps induce pathogenesis in infected individuals or individuals pre-exposed to such conjugated complexes. IMPORTANCE Mosquito-borne diseases are of great concern to the mankind. Use of chemicals/repellents against mosquito bites and transmission of microbes has been the topic of interest for many years. Here, we show that thiosemicarbazone ligand(s) derived from 2-acetylethiazole or citral or 1,10-phenanthroline upon conjugation with copper(II) or cobalt(III) metal centers enhances dengue virus (serotype 2; DENV2) and/or Zika virus (ZIKV) infections in mosquito, mouse and human cells. Enhanced ZIKV/DENV2 capsid mRNA or envelope protein loads were evident in mosquito cells and human keratinocytes, when treated with compounds before/after infections. Also, treatment with copper(II) or cobalt(III) conjugated compounds increased viral titers and number of plaque formations. These studies suggest that conjugation of compounds in repellents/essential oils/natural products/food additives with copper(II) or cobalt(III) metal centers may not be safe, especially in tropical and subtropical places, where several dengue infection cases and deaths are reported annually or in places with increased ZIKV caused microcephaly.
Collapse
Affiliation(s)
- Shovan Dutta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Michael J Celestine
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Supreet Khanal
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Alexis Huddleston
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Colin Simms
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Jessa Faye Arca
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Amlan Mitra
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Loree Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; School of Medical Diagnostic & Translational Sciences College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Piotr J Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA; Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | | | - John F Anderson
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA; Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA; Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
44
|
"Gold" Pressed Essential Oil: An Essay on the Volatile Fragment from Citrus Juice Industry By-Products Chemistry and Bioactivity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2761461. [PMID: 29109957 PMCID: PMC5646304 DOI: 10.1155/2017/2761461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022]
Abstract
Present essay explores the potentials of Citrus juice industry's by-products as alternative bioactive natural products resources. Four crude Cold Pressed Essential Oils (CPEOs), derived from orange, lemon, grapefruit, and mandarin, were studied. All CPEOs were subjected to water distillation, in order to obtain the volatile fragment, which was further fractionated with respect to distillation period in two parts, concluding to eight samples. These samples along with the four original CPEOs were assessed in relation to their phytochemical content and their repellent and larvicidal properties against Asian Tiger Mosquito. The volatiles recovery rates ranged from 74% to 88% of the CPEO. Limonene presented a significant increase in all samples ranging from 8% to 52% of the respective CPEO's content and peaked in mandarin's 2nd volatile fragment which comprised 97% of the essential oil. The refinement process presented clear impacts on both bioassays: a significant increase in larvicidal potency was observed, annotated best by the improvement by 1100% and 1300% of the grapefruit volatile fractions; repellence testing provided only one significant result, the decrease of landings by 50% as a response to mandarin's second volatile fraction. The applied methodology thus may be considered for the improvement of Citrus juice industry's by-products chemistry and bioactivity.
Collapse
|
45
|
Alvarez Costa A, Naspi CV, Lucia A, Masuh HM. Repellent and Larvicidal Activity of the Essential Oil From Eucalyptus nitens Against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:670-676. [PMID: 28399283 DOI: 10.1093/jme/tjw222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Dengue, chikungunya, and yellow fever are important vector-borne diseases transmitted by female mosquitoes when they feed on humans. The use of repellents based on natural products is an alternative for personal protection against these diseases. Application of chemicals with larvicidal activity is another strategy for controlling the mosquito population. The repellent and larvicidal activities of the essential oil from Eucalyptus nitens were tested against Aedes aegypti and Aedes albopictus, the main vectors of these arboviruses. The essential oil was extracted by hydrodistillation and then analyzed by gas chromatography-mass spectrometry. The main components of Eucalyptus nitens essential oil were found to be terpenes such as 1,8-cineole and p-cymene, followed by β-triketones and alkyl esters. The repellent activity of the essential oil against both species was significantly higher when compared with the main component, 1,8-cineole, alone. These results indicate that the repellent effect of E. nitens is not due only to the main component, 1,8-cineole, but also that other compounds may be responsible. Aedes aegypti was found to be more tolerant to the essential oil larvicidal effects than Ae. albopictus (Ae. aegypti LC50 = 52.83 ppm, Ae. albopictus LC 50 = 28.19 ppm). The repellent and larvicidal activity could be associated to the presence of cyclic β-triketones such as flavesone, leptospermone, and isoleptospermone.
Collapse
Affiliation(s)
- Agustín Alvarez Costa
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, B1603ALO, Villa Martelli, Buenos Aires, Argentina (; ; ; )
| | - Cecilia V Naspi
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, B1603ALO, Villa Martelli, Buenos Aires, Argentina (; ; ; )
| | - Alejandro Lucia
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, B1603ALO, Villa Martelli, Buenos Aires, Argentina (; ; ; )
| | - Héctor M Masuh
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, B1603ALO, Villa Martelli, Buenos Aires, Argentina (; ; ; )
| |
Collapse
|
46
|
Essential oils and their components as an alternative in the control of mosquito vectors of disease. BIOMEDICA 2017; 37:224-243. [PMID: 29161495 DOI: 10.7705/biomedica.v37i0.3475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/27/2017] [Indexed: 11/21/2022]
Abstract
More than half of the human population is exposed to mosquito-borne infections. Climate change and the emergence of strains resistant to traditionally used insecticides have motivated the search of new agents for mosquito population control. Essential oils have been effective repellents and larvicidal agents.The aim of this work was to review research studies conducted in recent years on the larvicidal activity of essential oils and their components against Aedes, Anopheles and Culex mosquitoes, as well as the latest reports about their possible mechanism of action.
Collapse
|
47
|
Leyva M, French-Pacheco L, Quintana F, Montada D, Castex M, Hernandez A, Marquetti MDC. Melaleuca quinquenervia (Cav.) S.T. Blake (Myrtales: Myrtaceae): Natural alternative for mosquito control. ASIAN PAC J TROP MED 2016; 9:979-984. [DOI: 10.1016/j.apjtm.2016.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/23/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022] Open
|
48
|
Enhanced Anti-Ultraviolet and Thermal Stability of a Pesticide via Modification of a Volatile Organic Compound (VOC)-Free Vinyl-Silsesquioxane in Desert Areas. Polymers (Basel) 2016; 8:polym8080282. [PMID: 30974559 PMCID: PMC6432495 DOI: 10.3390/polym8080282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 11/17/2022] Open
Abstract
Due to the effect of severe environmental conditions, such as intense heat, blowing sand, and ultraviolet light, conventional pesticide applications have repeatedly failed to adequately control mosquito and sandfly populations in desert areas. In this study, a vinyl silsesquioxane (VS) was added to a pesticide (citral) to enhance residual, thermal and anti-ultraviolet properties via three double-bond reactions in the presence of an initiator: (1) the connection of VS and citral, (2) a radical self-polymerization of VS and (3) a radical self-polymerization of citral. VS-citral, the expected and main product of the copolymerization of VS and citral, was characterized using standard spectrum techniques. The molecular consequences of the free radical polymerization were analyzed by MALDITOF spectrometry. Anti-ultraviolet and thermal stability properties of the VS-citral system were tested using scanning spectrophotometry (SSP) and thermogravimetric analysis (TGA). The repellency of VS-citral decreased over time, from 97.63% at 0 h to 72.98% at 1 h and 60.0% at 2 h, as did the repellency of citral, from 89.56% at 0 h to 62.73% at 1 h and 50.95% at 2 h.
Collapse
|
49
|
Zuharah WF, Ahbirami R, Dieng H, Thiagaletchumi M, Fadzly N. EVALUATION OF SUBLETHAL EFFECTS OF Ipomoea cairica LINN. EXTRACT ON LIFE HISTORY TRAITS OF DENGUE VECTORS. Rev Inst Med Trop Sao Paulo 2016; 58:44. [PMID: 27253746 PMCID: PMC4880001 DOI: 10.1590/s1678-9946201658044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 12/14/2015] [Indexed: 11/23/2022] Open
Abstract
Plant derived insecticides have considerable potential for mosquito control because these products are safer than conventional insecticides. This study aimed to investigate sublethal activities of Ipomoea carica or railway creeper crude acethonilic extract against life history trait of dengue vectors, Aedes albopictus and Aedes aegypti. The late third instar larvae of Ae. albopictus and Ae. aegypti were exposed to a sublethal dose at LC50 and larvae that survived were further cultured. Overall, Ipomea cairica crude extracts affected the whole life history of both Aedes species. The study demonstrated significantly lower egg production (fecundity) and eggs hatchability (fertility) in Ae. albopictus. The sublethal dose of crude extracts reduced significantly the width of larval head capsule and the wing length of both sexes in both Aedes species. The significance of sublethal effects of I. cairica against Aedes mosquitoes was an additional hallmark to demonstrate further activity of this plant despite its direct toxicity to the larvae. The reduced reproductive capacity as well as morphological and physiological anomalies are some of the effects that make I. cairica a potential candidate to be used as a new plant-based insecticide to control dengue vectors.
Collapse
Affiliation(s)
- Wan Fatma Zuharah
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia, , , ,
| | - Rattanam Ahbirami
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia, , , ,
| | - Hamady Dieng
- Institute of Biodiversity and Environmental Conservation, Universiti Sains Malaysia, Sarawak, Malaysia,
| | | | - Nik Fadzly
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia, , , ,
| |
Collapse
|
50
|
Aboelhadid SM, Mahrous LN, Hashem SA, Abdel-Kafy EM, Miller RJ. In vitro and in vivo effect of Citrus limon essential oil against sarcoptic mange in rabbits. Parasitol Res 2016; 115:3013-20. [PMID: 27098160 DOI: 10.1007/s00436-016-5056-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/08/2016] [Indexed: 12/25/2022]
Abstract
The effect of lemon oil (Citrus limon) on Sarcoptes scabiei var. cuniculi was evaluated in vitro and in vivo. The mite samples were collected from naturally infected rabbits. The lemon oil was prepared in six concentrations by dilution with distilled water (2.5, 5, 10, 20, 50, and 100 %). In vitro application was done in five replicates for each concentration in petri dishes in the laboratory. The treated mites were observed at 1, 12, and 24 h post application (PA) for lemon oil effect. In addition, oxidative stress profile was evaluated for the treated mite. Dependent on in vitro results, 20 % lemon oil was used in vivo trial. Twenty-four naturally infected rabbits were divided into three groups of eight: 20 % lemon oil, deltamethrin, and untreated control. The infected parts of rabbits were treated topically once a week for four successive weeks. In vitro application results showed that lemon oil 10 and 20 % diluted in water caused mortality to 100 % of mites after 24 h PA. The oxidative stress profile revealed that mites treated with 20 % lemon oil had significantly (P < 0.05) higher hydrogen peroxide and malondialdehyde when compared with mites treated with deltamethrin or distilled water. In vivo application of 20 % lemon oil on naturally infected rabbits showed complete recovery from clinical signs, absence of mite in microscopic examination from the second week of treatment. In addition, productive performance was significantly better than infected untreated group. Also, the treated tissue showed stoppage of scale formation and hair growth faster than deltamethrin-treated rabbits. Consequently, lemon oil has remarkable miticidal activity in vitro and in vivo applications.
Collapse
Affiliation(s)
- S M Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni Suef University, Beni-Suef, 62511, Egypt.
| | - Lilian N Mahrous
- Parasitology Department, Faculty of Veterinary Medicine, Beni Suef University, Beni-Suef, 62511, Egypt
| | - Shimaa A Hashem
- Animal Production Research Institute (APRI), Agriculture Research Center (ARC), Giza, Egypt
| | - E M Abdel-Kafy
- Animal Production Research Institute (APRI), Agriculture Research Center (ARC), Giza, Egypt
| | - Robert J Miller
- USDA ARS Cattle Fever Tick Research Laboratory, Edinburg, TX, USA
| |
Collapse
|