1
|
Alanazi NAH, Alamri AA, Mashlawi AM, Almuzaini N, Mohamed G, Salama SA. Gas Chromatography-Mass Spectrometry Chemical Profiling of Commiphora myrrha Resin Extracts and Evaluation of Larvicidal, Antioxidant, and Cytotoxic Activities. Molecules 2024; 29:1778. [PMID: 38675598 PMCID: PMC11051918 DOI: 10.3390/molecules29081778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Plant extracts and essential oils can be alternative environmentally friendly agents to combat pathogenic microbes and malaria vectors. Myrrh is an aromatic oligum resin that is extracted from the stem of Commiphora spp. It is used in medicine as an insecticide, cytotoxic, and aromatic. The current study assessed the effect of Commiphora myrrha resin extracts on the biological potency of the third larval stage of Aedes aegypti, as well as its antioxidant and cytotoxic properties against two types of tumor cells (HepG-2 and Hela cell lines). It also used GC-MS to determine the chemical composition of the C. myrrha resin extracts. Fifty components from the extracted plant were tentatively identified using the GC-MS method, with curzerene (33.57%) typically listed as the primary ingredient, but other compounds also make up a significant portion of the mixture, including 1-Methoxy-3,4,5,7-tetramethylnaphthalene (15.50%), β-Elemene (5.80%), 2-Methoxyfuranodiene (5.42%), 2-Isopropyl-4,7-Dimethyl-1-Naphthol (4.71%), and germacrene B (4.35%). The resin extracts obtained from C. myrrha exhibited significant efficacy in DPPH antioxidant activity, as evidenced by an IC50 value of 26.86 mg/L and a radical scavenging activity percentage of 75.06%. The 50% methanol extract derived from C. myrrha resins exhibited heightened potential for anticancer activity. It demonstrated substantial cytotoxicity against HepG-2 and Hela cells, with IC50 values of 39.73 and 29.41 µg mL-1, respectively. Notably, the extract showed non-cytotoxic activity against WI-38 normal cells, with an IC50 value exceeding 100 µg mL-1. Moreover, the selectivity index for HepG-2 cancer cells (2.52) was lower compared to Hela cancer cells (3.40). Additionally, MeOH resin extracts were more efficient against the different growth stages of the mosquito A. aegypti, with lower LC50, LC90, and LC95 values of 251.83, 923.76, and 1293.35 mg/L, respectively. In comparison to untreated groups (1454 eggs/10 females), the average daily number of eggs deposited (424 eggs/L) decreases at higher doses (1000 mg/L). Finally, we advise continued study into the possible use of C. myrrha resins against additional pests that have medical and veterinary value, and novel chemicals from this extract should be isolated and purified for use in medicines.
Collapse
Affiliation(s)
- Naimah Asid H. Alanazi
- Department of Biology, College of Science, University of Hail, Hail 2240, Saudi Arabia; (N.A.H.A.); (N.A.)
| | - Abdullah A. Alamri
- Physical Sciences Department, College of Science, Jazan University, Jazan 45142, Saudi Arabia;
- Nanotechnology Research Unit, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Abadi M. Mashlawi
- Biology Department, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Nujud Almuzaini
- Department of Biology, College of Science, University of Hail, Hail 2240, Saudi Arabia; (N.A.H.A.); (N.A.)
| | - Gamal Mohamed
- Human Anatomy Department, Faculty of Medicine, Jazan University, Jazan 82817, Saudi Arabia;
| | - Salama A. Salama
- Biology Department, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
2
|
Kusman IT, Pradini GW, Ma’ruf IF, Fauziah N, Berbudi A, Achadiyani A, Wiraswati HL. The Potentials of Ageratum conyzoides and Other Plants from Asteraceae as an Antiplasmodial and Insecticidal for Malaria Vector: An Article Review. Infect Drug Resist 2023; 16:7109-7138. [PMID: 37954507 PMCID: PMC10638911 DOI: 10.2147/idr.s433328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Background Malaria is a life-threatening disease prevalent in tropical and subtropical regions. Artemisinin combination therapy (ACT) used as an antimalarial treatment has reduced efficacy due to resistance, not only to the parasite but also to the vector. Therefore, it is important to find alternatives to overcome malaria cases through medicinal plants such as Ageratum conyzoides and other related plants within Asteraceae family. Purpose This review summarizes the antimalarial and insecticidal activities of A. conyzoides and other plants belonging to Asteraceae family. Data Source Google Scholar, PubMed, Science Direct, and Springer link. Study Selection Online databases were used to retrieve journals using specific keywords combined with Boolean operators. The inclusion criteria were articles with experimental studies either in vivo or in vitro, in English or Indonesian, published after 1st January 2000, and full text available for inclusion in this review. Data Extraction The antimalarial activity, insecticidal activity, and structure of the isolated compounds were retrieved from the selected studies. Data Synthesis Antimalarial in vitro study showed that the dichloromethane extract was the most widely studied with an IC50 value <10 μg/mL. Among 84 isolated active compounds, 2-hydroxymethyl-non-3-ynoic acid 2-[2,2']-bithiophenyl-5- ethyl ester, a bithienyl compound from the Tagetes erecta plant show the smallest IC50 with value 0.01 and 0.02 µg/mL in Plasmodium falciparum MRC-pf-2 and MRC-pf-56, respectively. In vivo studies showed that the aqueous extract of A. conyzoides showed the best activity, with a 98.8% inhibition percentage using a 100 mg/kg dose of Plasmodium berghei (NK65 Strain). (Z)- γ-Bisabolene from Galinsoga parviflora showed very good insecticidal activity against Anopheles stephensi and Anopheles subpictus with LC50 values of 2.04 μg/mL and 4.05 μg/mL. Conclusion A. conyzoides and other plants of Asteraceae family are promising reservoirs of natural compounds that exert antimalarial or insecticidal activity.
Collapse
Affiliation(s)
| | - Gita Widya Pradini
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| | - Ilma Fauziah Ma’ruf
- Research Center for Climate and Atmosphere, National Research and Innovation Agency, Bandung, 40135Indonesia
| | - Nisa Fauziah
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| | - Afiat Berbudi
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| | - Achadiyani Achadiyani
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| | - Hesti Lina Wiraswati
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Jawa Barat, Indonesia
| |
Collapse
|
3
|
Moser SK, Barnard M, Frantz RM, Spencer JA, Rodarte KA, Crooker IK, Bartlow AW, Romero-Severson E, Manore CA. Scoping review of Culex mosquito life history trait heterogeneity in response to temperature. Parasit Vectors 2023; 16:200. [PMID: 37316915 DOI: 10.1186/s13071-023-05792-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Mosquitoes in the genus Culex are primary vectors in the US for West Nile virus (WNV) and other arboviruses. Climatic drivers such as temperature have differential effects on species-specific changes in mosquito range, distribution, and abundance, posing challenges for population modeling, disease forecasting, and subsequent public health decisions. Understanding these differences in underlying biological dynamics is crucial in the face of climate change. METHODS We collected empirical data on thermal response for immature development rate, egg viability, oviposition, survival to adulthood, and adult lifespan for Culex pipiens, Cx. quinquefasciatus, Cx. tarsalis, and Cx. restuans from existing literature according to the PRISMA scoping review guidelines. RESULTS We observed linear relationships with temperature for development rate and lifespan, and nonlinear relationships for survival and egg viability, with underlying variation between species. Optimal ranges and critical minima and maxima also appeared varied. To illustrate how model output can change with experimental input data from individual Culex species, we applied a modified equation for temperature-dependent mosquito type reproduction number for endemic spread of WNV among mosquitoes and observed different effects. CONCLUSIONS Current models often input theoretical parameters estimated from a single vector species; we show the need to implement the real-world heterogeneity in thermal response between species and present a useful data resource for researchers working toward that goal.
Collapse
Affiliation(s)
- S Kane Moser
- Genomics and Bioanalytics (B-GEN), Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Martha Barnard
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Biostatistics, School of Public Health, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Rachel M Frantz
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Mathematics and Statistics, Utah State University, Logan, UT, USA
| | - Julie A Spencer
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Katie A Rodarte
- Genomics and Bioanalytics (B-GEN), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Isabel K Crooker
- Information Systems and Modeling (A-1), Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Biology, Cornell University, Ithaca, NY, USA
| | - Andrew W Bartlow
- Genomics and Bioanalytics (B-GEN), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ethan Romero-Severson
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Carrie A Manore
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
4
|
Mulatier M, Boullis A, Vega-Rúa A. Semiochemical oviposition cues to control Aedes aegypti gravid females: state of the art and proposed framework for their validation. Parasit Vectors 2022; 15:228. [PMID: 35752845 PMCID: PMC9233825 DOI: 10.1186/s13071-022-05337-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
In the fight against mosquito-borne diseases, odour-based lures targeting gravid females represent a promising alternative to conventional tools for both reducing mosquito populations and monitoring pathogen transmission. To be sustainable and effective, they are expected to use semiochemicals that act specifically against the targeted vector species. In control programmes directed against Aedes aegypti, several candidates of different origins (conspecifics, plants) have already been identified as potential oviposition attractants or repellents in laboratory experiments. However, few of these candidates have received validation in field experiments, studies depicting the active molecules and their mode of perception are still scarce, and there are several methodological challenges (i.e. lack of standardization, differences in oviposition index interpretation and use) that should be addressed to ensure a better reproducibility and accelerate the validation of candidates. In this review, we address the state of the art of the compounds identified as potential candidates for trap development against Ae. aegypti and their level of validation. We also offer a critical methodological analysis, highlight remaining gaps and research priorities, and propose a workflow to validate these candidates and to increase the panel of odours available to specifically trap Ae. aegypti.
Collapse
Affiliation(s)
- Margaux Mulatier
- Laboratory of Vector Control Research, Institute Pasteur of Guadeloupe, Lieu-dit Morne Jolivière, 97139, Les Abymes, Guadeloupe, France.
| | - Antoine Boullis
- TERRA, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté 2B, 5030, Gembloux, Belgium
| | - Anubis Vega-Rúa
- Laboratory of Vector Control Research, Institute Pasteur of Guadeloupe, Lieu-dit Morne Jolivière, 97139, Les Abymes, Guadeloupe, France
| |
Collapse
|
5
|
Sanei-Dehkordi A, Moemenbellah-Fard MD, Saffari M, Zarenezhad E, Osanloo M. Nanoliposomes containing limonene and limonene-rich essential oils as novel larvicides against malaria and filariasis mosquito vectors. BMC Complement Med Ther 2022; 22:140. [PMID: 35590314 PMCID: PMC9118734 DOI: 10.1186/s12906-022-03624-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
Background Mosquito-borne diseases such as malaria and encephalitis are still the cause of several hundred thousand deaths annually. The excessive use of chemical insecticides for transmission control has led to environmental pollution and widespread resistance in mosquitoes. Botanical insecticides' efficacies improvement has thus received considerable attention recently. Methods The larvicidal effects of three essential oils from the Citrus family and limonene (their major ingredient) were first investigated against malaria and filariasis mosquito vectors. An attempt was then made to improve their efficacies by preparing nanoliposomes containing each of them. Results The larvicidal effect of nanoformulated forms was more effective than non-formulated states. Nanoliposomes containing Citrus aurantium essential oil with a particle size of 52 ± 4 nm showed the best larvicidal activity (LC50 and LC90 values) against Anopheles stephensi (6.63 and 12.29 µg/mL) and Culex quinquefasciatus (4.9 and 16.4 µg/mL). Conclusion Due to the green constituents and high efficacy of nanoliposomes containing C. aurantium essential oil, it could be considered for further investigation against other mosquitoes’ populations and field trials.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Djaefar Moemenbellah-Fard
- Research Center for Health Sciences, Department of Biology and Control of Disease Vectors, School of Health, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Saffari
- Department of Pharmaceutics, Scholl of Pharmacy, Islamic Azad University, Tehran, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
6
|
Senthoorraja R, Subaharan K, Manjunath S, Pragadheesh VS, Bakthavatsalam N, Mohan MG, Senthil-Nathan S, Basavarajappa S. Electrophysiological, behavioural and biochemical effect of Ocimum basilicum oil and its constituents methyl chavicol and linalool on Musca domestica L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50565-50578. [PMID: 33963471 PMCID: PMC8105153 DOI: 10.1007/s11356-021-14282-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/30/2021] [Indexed: 05/17/2023]
Abstract
Ocimum basilicum essential oil (EO) was evaluated for its biological effects on M. domestica. Characterization of O. basilicum EO revealed the presence of methyl chavicol (70.93%), linalool (9.34%), epi-α-cadinol (3.69 %), methyl eugenol (2.48%), γ-cadinene (1.67%), 1,8-cineole (1.30%) and (E)-β-ocimene (1.11%). The basil EO and its constituents methyl chavicol and linalool elicited a neuronal response in female adults of M. domestica. Adult female flies showed reduced preference to food source laced with basil EO and methyl chavicol. Substrates treated with EO and methyl chavicol at 0.25% resulted in an oviposition deterrence of over 80%. A large ovicidal effect was found for O. basilicum EO (EC50 9.74 mg/dm3) followed by methyl chavicol (EC50 10.67 mg/dm3) and linalool (EC50 13.57 mg/dm3). Adults exposed to EO (LD50 10.01 μg/adult) were more susceptible to contact toxicity than to methyl chavicol and linalool (LD50 13.62 μg/adult and LD50 43.12 μg/adult respectively). EO and its constituents methyl chavicol and linalool also induced the detoxifying enzymes Carboxyl esterase (Car E) and Glutathione S - transferases (GST).
Collapse
Affiliation(s)
- Rajendran Senthoorraja
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India
- DOS in Zoology, University of Mysore, Mysore, 570006, India
| | - Kesavan Subaharan
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India.
| | - Sowmya Manjunath
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India
| | - Vppalayam Shanmugam Pragadheesh
- National Centre for Biological Sciences-TIFR, Bengaluru, 560065, India
- CSIR- Central Institute of Medicinal and Aromatic Plants, Regional Centre, Bengaluru, 560065, India
| | - Nandagopal Bakthavatsalam
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India
| | - Muthu Gounder Mohan
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | | |
Collapse
|
7
|
Ramasamy V, Karthi S, Ganesan R, Prakash P, Senthil-Nathan S, Umavathi S, Krutmuang P, Vasantha-Srinivasan P. Chemical characterization of billy goat weed extracts Ageratum conyzoides (Asteraceae) and their mosquitocidal activity against three blood-sucking pests and their non-toxicity against aquatic predators. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28456-28469. [PMID: 33543438 DOI: 10.1007/s11356-021-12362-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
The petroleum ether crude extracts of A. conyzoides (Pe-Ac) were used to treat three medically intimidating pests of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus, to evaluate their non-target screening against the mosquito predator. The chemical scanning of Pe-Ac through GC-MS analysis revealed a total of nine compounds and the maximum peak area was observed in 1,5-Heptadien-3-yne (22.14%). At the maximum dosage of Pe-Ac (200 ppm), significant larvicidal activity was shown against the fourth instars of Ae. aegypti (96%), An. stephensi (93%), and Cx. quinquefasciatus (92%) respectively. The percentages of oviposition deterrence index (ODI) of all three mosquito vectors are maximum at the highest sub-lethal dosage of Pe-Ac (75 ppm) and minimum at the control dosage. The sub-lethal dosage blocked the activity of carboxylesterase activity and upregulated the detoxifying enzyme activity in a dose-dependent way. The adulticidal activity of Pe-Ac showed that the maximum adult mortality rate (100%) was recorded at the prominent dosage of Pe-Ac 600 ppm against the vectors of all three mosquitos at the maximum adulticidal time of 30 min. Histopathological investigation of fourth instar larvae of all three mosquitos treated with a sub-lethal dosage of Pe-Ac showed that the midgut cells (epithelium, lumen, and peritrophic matrix) are ruptured completely whereas they appear to be normal in control larvae. The non-toxicity evaluation of Pe-Ac compared with the chemical toxin Temephos in aquatic predator Toxorhynchites splendens revealed that the plant extracts are harmless even at the prominent dosage (1000 ppm) as compared to Temephos (1 and 2 ppm) and displayed a higher mortality rate against the mosquito predators. Thus the safety index recommends that the Pe-Ac is more explicit to targets and a suitable auxiliary to chemical pesticides.
Collapse
Affiliation(s)
- Venkatachalam Ramasamy
- PG and Research Department of Zoology, J.K.K. Nataraja College of Arts and Science, Komarapalayam, Tamil Nadu, 638 183, India
| | - Sengodan Karthi
- Division of Bio-pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Raja Ganesan
- Department of Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 66 011, India
| | - Sengottayan Senthil-Nathan
- Division of Bio-pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Subramaniam Umavathi
- PG and Research Department of Zoology, J.K.K. Nataraja College of Arts and Science, Komarapalayam, Tamil Nadu, 638 183, India.
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.
| | - Prabhakaran Vasantha-Srinivasan
- Department of Biotechnology, St. Peter's Institute of Higher Education and Research, Avadi-600 054, Chennai, Tamil Nadu, India.
| |
Collapse
|
8
|
Melo SJ, Sousa JPB, Sá MG, Morais LS, Magalhães NM, Gouveia FN, Albernaz LC, Espindola LS. Machaerium acutifolium compounds with larvicidal activity against Aedes aegypti. PEST MANAGEMENT SCIENCE 2021; 77:1444-1451. [PMID: 33128432 DOI: 10.1002/ps.6163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/11/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Plant extracts and isolated compounds are known for their insecticidal activity. The Aedes aegypti mosquito has a significant medical impact as it transmits a number of arboviruses and is able to develop resistance to the commercially available insecticides. This study investigates larvicidal compounds isolated from Machaerium acutifolium, designated by the Brazilian Forest Service as a sustainable species. RESULTS A M. acutifolium trunk ethyl acetate extract was fractionated using chromatographic methods with full structural elucidation by mass spectrometry (MS), nuclear magnetic resonance and specific rotation analyses revealing: one new 3-arylcoumarin derivative 1; two flavonoids 2 and 3; a trans-stilbene 4, and an unprecedented natural indene 5. The larvicidal activity against Ae. aegypti after 24 h exposure was: crude extract (median lethal dose, LC50 205 mg L-1 ), fraction C (LC50 27 mg L-1 ) and 5 (LC50 24 mg L-1 ). CONCLUSION A M. acutifolium extract showed larvicidal activity, which increased with prolonged exposure, demonstrating LC50 75 mg L-1 after 72 h. Although the flavonoids 2 and 3 and trans-stilbene 4 were deemed inactive according to the adopted mortality limit, additional tests revealed their ability to cause 65% Ae. aegypti larvae mortality, suggesting they could contribute to the larvicidal activity. Compound 5, identified by liquid chromatography-MS, was over eight-fold more toxic to larvae than the crude extract after 24 h. Therefore, 5 constitutes a structural model for new prototypes to control Ae. aegypti. These data reinforce the potential of natural products as a source of commercial alternatives for vector control strategies, respecting both sustainability and eco-friendly principles. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sebastião J Melo
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - João Paulo B Sousa
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Maíra G Sá
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Laís S Morais
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Natália Mg Magalhães
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Fernando N Gouveia
- Laboratório de Produtos Florestais, Serviço Florestal Brasileiro, Brasília, Brazil
| | - Lorena C Albernaz
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Laila S Espindola
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| |
Collapse
|
9
|
Bioactivity of Different Chemotypes of Oregano Essential Oil against the Blowfly Calliphora vomitoria Vector of Foodborne Pathogens. INSECTS 2021; 12:insects12010052. [PMID: 33440619 PMCID: PMC7826667 DOI: 10.3390/insects12010052] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Calliphora vomitoria L. is a very common synanthropic blowfly. Since it is attracted by human food, it plays a main role in the transmission of foodborne diseases. Among aromatic plant essential oils (EOs), those of spices are the most suitable to protect food from insect pests. In the present work, we determined the bioactivity of three oregano EOs against C. vomitoria. The chemical analyses showed that the EOs belonged to three chemotypes, one with a prevalence of carvacrol and two with a prevalence of thymol. The bioassays showed that the bioactivity of the EOs significantly varies among chemotypes, with the thymol chemotype showing an overall higher efficacy compared to the carvacrol one. Abstract Blowflies play a substantial role as vectors of microorganisms, including human pathogens. The control of these insect pests is an important aspect of the prevention of foodborne diseases, which represent a significant public health threat worldwide. Among aromatic plants, spices essential oils (EOs) are the most suitable to protect food from insect pests. In this study, we determined the chemical composition of three oregano EOs and assessed their toxicity and deterrence to oviposition against the blowfly Calliphora vomitoria L. The chemical analyses showed that the EOs belonged to three chemotypes: one with a prevalence of carvacrol, the carvacrol chemotype (CC; carvacrol, 81.5%), and two with a prevalence of thymol, the thymol/p-cymene and thymol/γ-terpinene chemotypes (TCC and TTC; thymol, 43.8, and 36.7%, respectively). The bioassays showed that although all the three EOs chemotypes are able to exert a toxic activity against C. vomitoria adults (LD50 from 0.14 to 0.31 μL insect−1) and eggs (LC50 from 0.008 to 0.038 μL cm−2) as well as deter the oviposition (Oviposition Activity Index, OAI, from 0.40 ± 0.04 to 0.87 ± 0.02), the bioactivity of oregano EOs significantly varies among the chemotypes, with the thymol-rich EOs (TCC and TTC) overall demonstrating more effectiveness than the carvacrol-rich (CC) EO.
Collapse
|
10
|
Ninditya VI, Purwati E, Utami AT, Marwaningtyaz AS, Fairuz NK, Widayanti R, Hamid PH. Artemisia vulgaris efficacies against various stages of Aedes aegypti. Vet World 2020; 13:1423-1429. [PMID: 32848320 PMCID: PMC7429375 DOI: 10.14202/vetworld.2020.1423-1429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/28/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Aedes aegypti is the vector of dengue fever, dengue hemorrhagic fever, chikungunya, and, most recently, Zika. Dengue fever is one of Indonesia’s endemic diseases. The principal tool for preventing dengue is controlling Ae. aegypti by chemical insecticides since vaccine against dengue is still under research. However, Ae. aegypti developed resistance to various chemical insecticides worldwide. Therefore, research on alternate compounds as mosquito insecticides is urgently needed. This study demonstrated the efficacy of Artemisia vulgaris extract as larvicidal, ovicidal, adulticidal, repellency, and oviposition deterrent activity against Ae. aegypti. Materials and Methods: A. vulgaris was obtained from Temanggung, Indonesia, while the eggs of Ae. aegypti were collected from Yogyakarta, Indonesia, and were hatched in Laboratory of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada. Larvicidal activity was evaluated according to the WHO protocol; adulticidal activity was performed using the Centers for Disease Control protocol. Oviposition activity was evaluated using ovitraps added with A. vulgaris extract, complete protection time in the repellent assay was defined as the number of minutes elapsed between compound application and the landing of the first mosquito. Results: A test of the larvicidal activity of A. vulgaris extract returned an LC50 of 65.8 ppm (r2=0.9014) in 1 h and 18.6 ppm (r2=0.575) in 24 h. A. vulgaris was effective as an adulticidal, demonstrating LC50 values of 11.35 mg (r2=0.875) in 90 min, 9.63 mg (r2=0.924) in 105 min, and 6.46 mg (r2=0.925) in 120 min. A. vulgaris at a concentration of 1000 ppm was able to reach 96% of oviposition deterrent effect. The ovicidal assay, a concentration of 1000 ppm resulted in 82.67% of eggs remaining unhatched. An extract concentration of 80 mg/ml achieved 63.3±3.5% biting repellency in adults. Conclusion: This study gives a clear indication that A. vulgaris extract acts on Ae. aegypti at various developmental stages and is a potential alternative bioinsecticide for controlling this disease vector.
Collapse
Affiliation(s)
| | - Endah Purwati
- Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ajeng Tyas Utami
- Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | | | - Rini Widayanti
- Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | |
Collapse
|
11
|
Allium sativum, Rosmarinus officinalis, and Salvia officinalis Essential Oils: A Spiced Shield against Blowflies. INSECTS 2020; 11:insects11030143. [PMID: 32106555 PMCID: PMC7143423 DOI: 10.3390/insects11030143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022]
Abstract
Blowflies are known vectors of many foodborne pathogens and unintentional human ingestion of maggots by meat consumption may lead to intestinal myiasis. In fact, the control of insect pests is an important aspect of industrial and home-made food processing and blowflies (Diptera: Calliphoridae), which are among the most important pests involved in the damage of meat products. Most spices, largely used in food preparations and industry, contain essential oils that are toxic and repellent against insects and exert antimicrobial activity. In this study, we assessed the electro-antennographic responses, the oviposition deterrence, the toxicity, and the repellence of the essential oils (EOs) of Allium sativum L., Salvia officinalis L., and Rosmarinus officinalis L. against the blowfly Calliphora vomitoria L. We tested the EOs antibacterial and antifungal properties and the efficacy of an A. sativum EO-charged mist sprayed in the tunnel entryway of a meat processing room to form an olfactive barrier against the entrance of flies. The results showed that the EOs are perceived by female blowfly’ antennae and exert an evident repellent activity against them completely deterring the oviposition for up to 24 h starting from the concentration of 2.5 μL cm−2 EO. The EOs also exhibited toxic activity by both topical application (LD50 from 0.44 to 1.97 μL insect−1) and fumigation (LC50 from 1.76 to 31.52 μL L−1) against adults of C. vomitoria and were able to exert a clear antimicrobial activity toward pathogens. Lastly, the EO-charged mist was able to reduce by about 40% the presence of Calliphoridae in the meat processing room of a dry-ham factory.
Collapse
|
12
|
Chellappandian M, Senthil-Nathan S, Vasantha-Srinivasan P, Karthi S, Thanigaivel A, Kalaivani K, Sivanesh H, Stanley-Raja V, Chanthini KMP, Shyam-Sundar N. Target and non-target botanical pesticides effect of Trichodesma indicum (Linn) R. Br. and their chemical derivatives against the dengue vector, Aedes aegypti L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16303-16315. [PMID: 30977009 DOI: 10.1007/s11356-019-04870-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/13/2019] [Indexed: 05/06/2023]
Abstract
The effects of crude ethanol derived leaf extract Trichodesma indicum (Linn) (Ex-Ti) and their chief derivatives were accessed on the survival and development of the dengue mosquito Ae. aegypti also their non-toxic activity against mosquito predator. T. indicum is recognized to be the vital weed plant and a promising herb in the traditional ayurvedic medicine. In this study, the GC-MS chromatogram of Ex-Ti showed higher peak area percentage for cis-10-Heptadecenoic acid (21.83%) followed by cycloheptadecanone (14.32%). The Ex-Ti displayed predominant mortality in larvae with 96.45 and 93.31% at the prominent dosage (200 ppm) against III and IV instar. Correspondingly, sub-lethal dosage against the enzymatic profile of III and IV instar showed downregulation of α,β-carboxylesterase and SOD protein profiles at the maximum concentration of 100 ppm. However, enzyme level of GST as well as CYP450 increased significantly dependent on sub-lethal concentration. Likewise, fecundity and hatchability of egg rate of dengue mosquito decreased to the sub-lethal concentration of Ex-Ti. Repellent assay illustrates that Ex-Ti concentration had greater protection time up to 210 min at 100 ppm. Also, activity of Ex-Ti on adult mosquito displayed 100% mortality at the maximum dosage of 600, 500 and 400 ppm within the period of 50, 60 and 70 min, respectively. Photomicrography screening showed that lethal dosage of Ex-Ti (100 ppm) produced severe morphological changes with dysregulation in their body parts as matched to the control. Effects of Ex-Ti on the Toxorhynchites splendens IV instar larvae showed less mortality (43.47%) even at the maximum dosage of 1500 ppm as matched to the chemical pesticide Temephos. Overall, the present research adds a toxicological valuation on the Ex-Ti and their active constituents as a larvicidal, repellent and adulticidal agents against the global burdening dengue mosquito.
Collapse
Affiliation(s)
- Muthiah Chellappandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India.
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
- Department of Biotechnology, St. Peter's Institute of Higher Education and Research, Avadi, Chennai, Tamil Nadu, 600 054, India
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, Tirunelveli, Tamil Nadu, 627 802, India
| | - Haridoss Sivanesh
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Vethamonickam Stanley-Raja
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Narayanan Shyam-Sundar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| |
Collapse
|
13
|
Pavela R, Maggi F, Iannarelli R, Benelli G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop 2019; 193:236-271. [PMID: 30711422 DOI: 10.1016/j.actatropica.2019.01.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/27/2023]
Abstract
In the last decades, major research efforts have been done to investigate the insecticidal activity of plant-based products against mosquitoes. This is a modern and timely challenge in parasitology, aimed to reduce the frequent overuse of synthetic pesticides boosting resistance development in mosquitoes and causing serious threats to human health and environment. This review covers the huge amount of literature available on plant extracts tested as mosquito larvicides, particularly aqueous and alcoholic ones, due to their easy formulation in water without using surfactants. We analysed results obtained on more than 400 plant species, outlining that 29 of them have outstanding larvicidal activity (i.e., LC50 values below 10 ppm) against major vectors belonging to the genera Anopheles, Aedes and Culex, among others. Furthermore, synergistic and antagonistic effects between plant extracts and conventional pesticides, as well as among selected plant extracts are discussed. The efficacy of pure compounds isolated from the most effective plant extracts and - when available - their mechanism of action, as well as the impact on non-target species, is also covered. These belong to the following class of secondary metabolites: alkaloids, alkamides, sesquiterpenes, triterpenes, sterols, flavonoids, coumarins, anthraquinones, xanthones, acetogenonins and aliphatics. Their mode of action on mosquito larvae ranges from neurotoxic effects to inhibition of detoxificant enzymes and larval development and/or midugut damages. In the final section, current drawbacks as well as key challenges for future research, including technologies to synergize efficacy and improve stability - thus field performances - of the selected plant extracts, are outlined. Unfortunately, despite the huge amount of laboratory evidences about their efficacy, only a limited number of studies was aimed to validate their efficacy in the field, nor the epidemiological impact potentially arising from these vector control operations has been assessed. This strongly limits the development of commercial mosquito larvicides of botanical origin, at variance with plant-borne products developed in the latest decades to kill or repel other key arthropod species of medical and veterinary importance (e.g., ticks and lice), as well as mosquito adults. Further research on these issues is urgently needed.
Collapse
Affiliation(s)
- Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06, Prague 6, Ruzyne, Czech Republic
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via Sant'Agostino, 62032 Camerino, Italy.
| | - Romilde Iannarelli
- School of Pharmacy, University of Camerino, via Sant'Agostino, 62032 Camerino, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
14
|
Martianasari R, Hamid PH. Larvicidal, adulticidal, and oviposition-deterrent activity of Piper betle L. essential oil to Aedes aegypti. Vet World 2019; 12:367-371. [PMID: 31089304 PMCID: PMC6487248 DOI: 10.14202/vetworld.2019.367-371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/24/2019] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Aedes aegypti is a primary vector of many arthropod-borne diseases. One of the diseases, dengue fever, is an endemic disease in Indonesia causing high mortalities for decades. There are no preventive and specific treatments for dengue so far. Therefore, prevention of this disease largely depends on the mosquito control. Since resistance to chemical insecticides occurred worldwide, the study on alternate and new mosquito insecticides are mandatory. This study aimed to demonstrate the effect of essential oil from P. betle L. in the larval and adult stages, as well as its influence on oviposition activity of A. aegypti mosquito. Materials and Methods P. betle efficacy was evaluated in various stages of A. aegypti development. For the larvicidal activity, larvae instar III stage was used. Adulticidal assay in this experiment was performed using newly emerged A. aegypti. For oviposition assay, mated A. aegypti was tested for their responses to P. betle-treated and non-treated ovitraps. Results P. betle L. - adulticide activity was effective with a concentration of 2.5 μl/ml, caused 100% mortality within 15-30 min. Larvicide activity was observed after 1 h, 24 h, and 48 h post-treatment with LC50183, 92.7, and 59.8 ppm and LC90 637, 525, and 434.7 ppm, respectively. Oviposition activity index was -0.917 in 1000 ppm. In addition, the eggs number of A. aegypti oviposition with 100 ppm of essential oil P. betle L. was 5 times lower than the control. Conclusion This study demonstrated clearly that essential oil derived from P. betle L. potentially acts as alternate bioinsecticide to control A. aegypti population. The application can be varied or combined in different stages of mosquito development.
Collapse
Affiliation(s)
- Riesna Martianasari
- Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2 Karangmalang 55281, Yogyakarta, Indonesia
| | - Penny Humaidah Hamid
- Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2 Karangmalang 55281, Yogyakarta, Indonesia
| |
Collapse
|
15
|
Bedini S, Flamini G, Cosci F, Ascrizzi R, Echeverria MC, Gomez EV, Guidi L, Landi M, Lucchi A, Conti B. Toxicity and oviposition deterrence of essential oils of Clinopodium nubigenum and Lavandula angustifolia against the myiasis-inducing blowfly Lucilia sericata. PLoS One 2019; 14:e0212576. [PMID: 30785945 PMCID: PMC6382167 DOI: 10.1371/journal.pone.0212576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/05/2019] [Indexed: 01/26/2023] Open
Abstract
Cutaneous myiasis is a severe worldwide medical and veterinary issue. In this trial the essential oil (EO) of the Andean medicinal plant species Clinopodium nubigenum (Kunth) Kuntze was evaluated for its bioactivity against the myiasis-inducing blowfly Lucilia sericata (Meigen) (Diptera Calliphoridae) and compared with that of the well-known medicinal plant species Lavandula angustifolia Mill. The EOs were analysed and tested in laboratory for their oviposition deterrence and toxicity against L. sericata adults. The physiology of EO toxicity was evaluated by enzymatic inhibition tests. The antibacterial and antifungal properties of the EOs were tested as well. At 0.8 μL cm-2, both EOs completely deterred L. sericata oviposition up to 3 hours. After 24 h, the oviposition deterrence was still 82.7% for L. angustifolia and the 89.5% for C. nubigenum. The two EOs were also toxic to eggs and adults of L. sericata. By contact/fumigation, the EOs, the LC50 values against the eggs were 0.07 and 0.48 μL cm-2 while, by topical application on the adults, LD50 values were 0.278 and 0.393 μL per individual for C. nubigenum and L. angustifolia EOs, respectively. Inhibition of acetylcholine esterase of L. sericata by EOs (IC50 = 67.450 and 79.495 mg L-1 for C. nubigenum and L. angustifolia, respectively) suggested that the neural sites are targets of the EO toxicity. Finally, the observed antibacterial and antifungal properties of C. nubigenum and L. angustifolia EOs suggest that they could also help prevent secondary infections.
Collapse
Affiliation(s)
- Stefano Bedini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Francesca Cosci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Maria C. Echeverria
- Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte, Ibarra, Ecuador
| | - Evelin V. Gomez
- Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte, Ibarra, Ecuador
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Barbara Conti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
16
|
Bedini S, Flamini G, Ascrizzi R, Venturi F, Ferroni G, Bader A, Girardi J, Conti B. Essential oils sensory quality and their bioactivity against the mosquito Aedes albopictus. Sci Rep 2018; 8:17857. [PMID: 30552358 PMCID: PMC6294827 DOI: 10.1038/s41598-018-36158-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/02/2018] [Indexed: 11/24/2022] Open
Abstract
Repellents are a main tool to prevent the outbreak of mosquito-borne diseases that represents a threat for millions of people worldwide. Plant-based products are very promising, low-toxic and eco-friendly alternative to synthetic repellents. Here, we performed an olfactory screening of the essential oils (EOs) of Artemisia verlotiorum Lamotte (Asteraceae), Lavandula dentata L. (Lamiaceae), and Ruta chalepensis L. (Rutaceae) for their possible use as ingredients in topical repellents. The EOs smell profiles were then matched with their repellence against the mosquito Aedes albopictus (Skuse) (Diptera Culicidae). To obtain a more complete bioactivity description, we also tested the EOs oviposition deterrence and the larvicidal activity. The best smell profile was associated with A. verlotiorum EO, while R. chalepensis EO showed the lowest overall pleasantness. All the EOs had a significant activity as skin repellent against Ae. albopictus, deterred the oviposition in the field, and exerted a clear larvicidal activity. Beside the best smell profile, A. verlotiorum EO showed also the longest lasting repellent effect, assuring the complete protection of the treated skin against Ae. albopictus for a time 60% longer than the synthetic repellent DEET.
Collapse
Grants
- PRIN 2015 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2015 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2015 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2015 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2015 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2015 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2015 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2015 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Ministero dell'Istruzione, dell'Universit&#x00E0; e della Ricerca (Ministry of Education, University and Research)
Collapse
Affiliation(s)
- S Bedini
- Department of Agriculture, Food and Environment - University of Pisa, Pisa, Italy
| | - G Flamini
- Department of Pharmacy - University of Pisa, Pisa, Italy
| | - R Ascrizzi
- Department of Pharmacy - University of Pisa, Pisa, Italy
| | - F Venturi
- Department of Agriculture, Food and Environment - University of Pisa, Pisa, Italy
| | - G Ferroni
- Department of Agriculture, Food and Environment - University of Pisa, Pisa, Italy
| | - A Bader
- Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - J Girardi
- Department of Agriculture, Food and Environment - University of Pisa, Pisa, Italy
| | - B Conti
- Department of Agriculture, Food and Environment - University of Pisa, Pisa, Italy.
| |
Collapse
|
17
|
Shaalan EAS, Canyon DV. Mosquito oviposition deterrents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10207-10217. [PMID: 29034427 DOI: 10.1007/s11356-017-0408-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Mosquitoes are well-known vectors of disease and threaten the health of millions of people annually. While synthetic insecticides have been relied on to combat these diseases, insecticide resistance and environmental concerns have directed attention towards novel and more targeted mosquitocides derived from botanicals. Research on the activity of botanical derivatives has focused on mosquito larvae and adults with little attention given to their potential as oviposition deterrents against gravid female mosquitoes. This review explores the influence of chemical and biological factors on deterrence and examines issues relating to environmental persistence and non-target effects. With very few discoveries of new insecticide pathways, the answer to effective mosquito control may well reside within other ancient plant-based organisms that have co-resided and evolved with this ubiquitous pest.
Collapse
Affiliation(s)
- Essam Abdel-Saalam Shaalan
- Biological Sciences Department, College of Science, King Faisal University, P.O. Box 380, Al-Hfouf, 31982, Kingdom of Saudi Arabia.
- Zoology Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
| | - Deon Vahid Canyon
- Daniel K. Inouye Asia-Pacific Center for Security Studies, Honolulu, HI, USA
| |
Collapse
|
18
|
Aziz AT, Alshehri MA, Panneerselvam C, Murugan K, Trivedi S, Mahyoub JA, Hassan MM, Maggi F, Sut S, Dall'Acqua S, Canale A, Benelli G. The desert wormwood (Artemisia herba-alba) - From Arabian folk medicine to a source of green and effective nanoinsecticides against mosquito vectors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:225-234. [PMID: 29459314 DOI: 10.1016/j.jphotobiol.2018.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
Abstract
The development of eco-friendly and effective insecticides is crucial for public health worldwide. Herein, we focused on the desert wormwood (Artemisia herba-alba), a plant widely used in Arabian traditional medicine, as a source of green nanoinsecticides against mosquito vectors, as well as growth inhibitors to be employed against microbial pathogens. Ag nanoparticles (AgNPs) fabricated with the A. herba-alba extract were tested on Indian and Saudi Arabian strains of Anopheles, Aedes and Culex mosquitoes. The chemical profile of the A. herba-alba extract was determined by LC-DAD-MS and 1H NMR studies. Then, AgNPs were studied using UV-vis spectroscopy, XRD, FTIR spectroscopy, TEM, and EDX analyses. Artemisia herba-alba-synthesized AgNPs showed high larvicidal toxicity against mosquitoes from both Indian and Saudi Arabian strains. LC50 of AgNPs against Indian strains was 9.76 μg/ml for An. stephensi, 10.70 μg/ml for Ae. aegypti and 11.43 μg/ml for Cx. quinquefasciatus, whereas against Saudi Arabian strains it was 33.58 μg/ml for Ae. aegypti and 38.06 μg/ml for Cx. pipiens. In adulticidal experiments, A. herba-alba extract showed LC50 ranging from 293.02 to 450 μg/ml, while AgNP LC50 ranged from 8.22 to 27.39 μg/ml. Further, low doses of the AgNPs inhibited the growth of selected microbial pathogens. Overall, A. herba-alba can be further considered as a source of phytochemicals, with special reference to saponins, for effective and prompt fabrication of AgNPs with relevant insecticidal and bactericidal activity against species of high public health importance.
Collapse
Affiliation(s)
- Al Thabiani Aziz
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | | | | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Thiruvalluvar University, Serkkadu, Vellore 632 115, Tamil Nadu, India
| | - Subrata Trivedi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Jazem A Mahyoub
- Department of Biology Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; IBB University, Ibb, Republic of Yemen
| | | | - Filippo Maggi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Stefania Sut
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente (DAFNAE), via dell'Università 16, University of Padova, 35020 Legnaro (PD), Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, via Marzolo 5, University of Padova, Italy
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| |
Collapse
|
19
|
Kovendan K, Chandramohan B, Govindarajan M, Jebanesan A, Kamalakannan S, Vincent S, Benelli G. Orchids as Sources of Novel Nanoinsecticides? Efficacy of Bacillus sphaericus and Zeuxine gracilis-Fabricated Silver Nanoparticles Against Dengue, Malaria and Filariasis Mosquito Vectors. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1331-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Bedini S, Flamini G, Cosci F, Ascrizzi R, Echeverria MC, Guidi L, Landi M, Lucchi A, Conti B. Artemisia spp. essential oils against the disease-carrying blowfly Calliphora vomitoria. Parasit Vectors 2017; 10:80. [PMID: 28193253 PMCID: PMC5307756 DOI: 10.1186/s13071-017-2006-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synanthropic flies play a considerable role in the transmission of pathogenic and non-pathogenic microorganisms. In this work, the essential oil (EO) of two aromatic plants, Artemisia annua and Artemisia dracunculus, were evaluated for their abilities to control the blowfly Calliphora vomitoria. Artemisia annua and A. dracunculus EOs were extracted, analysed and tested in laboratory bioassays. Besides, the physiology of EOs toxicity and the EOs antibacterial and antifungal properties were evaluated. RESULTS Both Artemisia EOs deterred C. vomitoria oviposition on fresh beef meat. At 0.05 μl cm-2 A. dracunculus EO completely inhibited C. vomitoria oviposition. Toxicity tests, by contact, showed LD50 of 0.49 and 0.79 μl EO per fly for A. dracunculus and A. annua, respectively. By fumigation, LC50 values were 49.55 and 88.09 μl l-1 air for A. dracunculus and A. annua, respectively. EOs AChE inhibition in C. vomitoria (IC50 = 202.6 and 472.4 mg l-1, respectively, for A. dracunculus and A. annua) indicated that insect neural sites are targeted by the EOs toxicity. Finally, the antibacterial and antifungal activities of the two Artemisia EOs may assist in the reduction of transmission of microbial infections/contaminations. CONCLUSIONS Results suggest that Artemisia EOs could be of use in the control of C. vomitoria, a common vector of pathogenic microorganisms and agent of human and animal cutaneous myiasis. The prevention of pathogenic and parasitic infections is a priority for human and animal health. The Artemisia EOs could represent an eco-friendly, low-cost alternative to synthetic repellents and insecticides to fight synanthropic disease-carrying blowflies.
Collapse
Affiliation(s)
- Stefano Bedini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Francesca Cosci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Barbara Conti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
21
|
da Silva GN, Trindade FT, Dos Santos F, Gosmann G, E Silva AA, Gnoatto SC. Larvicidal activity of natural and modified triterpenoids against Aedes aegypti (Diptera: Culicidae). PEST MANAGEMENT SCIENCE 2016; 72:1883-7. [PMID: 27501778 DOI: 10.1002/ps.4221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 08/31/2015] [Accepted: 12/23/2015] [Indexed: 06/06/2023]
Abstract
BACKGROUND Insecticide resistance to commonly used substances demands new molecules for the chemical control of the dengue vector Aedes aegypti. Because natural product sources have been an alternative to obtain larvicidal compounds, the aim of this study was to evaluate the triterpenoids betulinic (BA) and ursolic (UA) acids and their semi-synthetic derivatives against larval Ae. aegypti. BA, UA, ten derivatives modified at the C-3 position and a positive control (diflubenzuron) were evaluated. Larvicidal assays were carried out with early fourth-instar larvae, and mortality was observed between 48 and 96 h. Doses from 200 to 10 ppm were used to calculate lethal concentrations (LCs). RESULTS Natural compounds, i.e. UA and BA, had the lowest LCs (LC50 of 112 and 142 ppm respectively), except for the modified compound 2b (LC50 of 130 ppm). Larvicidal activity increased significantly from 48 to 96 h for all the compounds evaluated, ranging from 20 to 50% after 48 h and from 48 to 76% after 96 h. Some derivatives, e.g. 2a and 2d, had up to a three-fold larvicidal activity increase from 48 to 96 h. CONCLUSION BA, UA and their derivatives showed larvicidal activity against Ae. aegypti larvae, increasing significantly from 48 to 96 h. The presence of a hydroxyl group is essential for larvicidal potential in these triterpenoids. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gloria Ns da Silva
- Phytochemistry and Organic Synthesis Laboratory, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Frances Tt Trindade
- Insect Bioecology Laboratory, Department of Biology, Federal University of Rondônia, Porto Velho, Rondônia, Brazil
| | - Francine Dos Santos
- Phytochemistry and Organic Synthesis Laboratory, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre A E Silva
- Insect Bioecology Laboratory, Department of Biology, Federal University of Rondônia, Porto Velho, Rondônia, Brazil
| | - Simone Cb Gnoatto
- Phytochemistry and Organic Synthesis Laboratory, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Yu KX, Wong CL, Ahmad R, Jantan I. Mosquitocidal and Oviposition Repellent Activities of the Extracts of Seaweed Bryopsis pennata on Aedes aegypti and Aedes albopictus. Molecules 2015; 20:14082-102. [PMID: 26247928 PMCID: PMC6332061 DOI: 10.3390/molecules200814082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 11/27/2022] Open
Abstract
The ever-increasing threat from infectious diseases and the development of insecticide resistance in mosquito populations drive the global search for new natural insecticides. The aims of this study were to evaluate the mosquitocidal activity of the extracts of seaweed Bryopsis pennata against dengue vectors Aedes aegypti and Aedes albopictus, and determine the seaweed's toxic effect on brine shrimp nauplii (as a non-target organism). In addition, the chemical compositions of the active larvicidal extract and fraction were analyzed by using liquid chromatography-mass spectrometry (LC-MS). Chloroform extract exhibited strong ovicidal activity (with LC50 values of 229.3 and 250.5 µg/mL) and larvicidal activity against Ae. aegypti and Ae. albopictus. The larvicidal potential of chloroform extract was further ascertained when its A7 fraction exhibited strong toxic effect against Ae. aegypti (LC50 = 4.7 µg/mL) and Ae. albopictus (LC50 = 5.3 µg/mL). LC-MS analysis of the chloroform extract gave a tentative identification of 13 compounds; Bis-(3-oxoundecyl) tetrasulfide was identified as the major compound in A7 fraction. Methanol extract showed strong repellent effect against female oviposition, along with weak adulticidal activity against mosquito and weak toxicity against brine shrimp nauplii. The mosquitocidal results of B. pennata suggest further investigation for the development of effective insecticide.
Collapse
Affiliation(s)
- Ke-Xin Yu
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia.
| | - Ching-Lee Wong
- School of Biosciences, Taylor\'s University, Taylor\'s Lakeside Campus, Subang Jaya, 47500 Selangor, Malaysia.
| | - Rohani Ahmad
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, 50588 Kuala Lumpur, Malaysia.
| | - Ibrahim Jantan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|
23
|
Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 2015; 114:3201-12. [DOI: 10.1007/s00436-015-4656-z] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/23/2015] [Indexed: 01/01/2023]
|
24
|
Toxicity and sub-lethal effect of endemic plants from family Anacardiaceae on oviposition behavior of Aedes albopictus. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Satho T, Dieng H, Ahmad MHI, Ellias SB, Hassan AA, Abang F, Ghani IA, Miake F, Ahmad H, Fukumitsu Y, Zuharah WF, Majid AHA, Kassim NFA, Hashim NA, Ajibola OO, Al-Khayyat FA, Nolasco-Hipolito C. Coffee and its waste repel gravid Aedes albopictus females and inhibit the development of their embryos. Parasit Vectors 2015; 8:272. [PMID: 25966847 PMCID: PMC4436121 DOI: 10.1186/s13071-015-0874-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/24/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dengue is a prevalent arboviral disease and the development of insecticide resistance among its vectors impedes endeavors to control it. Coffee is drunk by millions of people daily worldwide, which is associated with the discarding of large amounts of waste. Coffee and its waste contain large amounts of chemicals many of which are highly toxic and none of which have a history of resistance in mosquitoes. Once in solution, coffee is brownish in colour, resembling leaf infusion, which is highly attractive to gravid mosquitoes. To anticipate the environmental issues related to the increasing popularity of coffee as a drink, and also to combat insecticide resistance, we explored the deterrence potentials of coffee leachates against the ovipositing and embryonic stages of the dengue vector, Aedes albopictus. METHODS In a series of choice, no-choice, and embryo toxicity bioassays, we examined changes in the ovipositional behaviours and larval eclosion of Ae. albopictus in response to coffee extracts at different concentrations. RESULTS Oviposition responses were extremely low when ovicups holding highly concentrated extract (HCE) of coffee were the only oviposition sites. Gravid females retained increased numbers of mature eggs until 5 days post-blood feeding. When provided an opportunity to oviposit in cups containing coffee extracts and with water, egg deposition occurred at lower rates in those containing coffee, and HCE cups were far less attractive to females than those containing water only. Females that successfully developed in a coffee environment preferentially oviposited in such cups when in competition with preferred oviposition sites (water cups), but this trait did not continue into the fourth generation. Larval eclosion occurred at lower rates among eggs that matured in a coffee environment, especially among those that were maintained on HCE-moistened substrates. CONCLUSIONS The observations of the present study indicate a pronounced vulnerability of Ae. albopictus to the presence of coffee in its habitats during the early phases of its life cycle. The observations that coffee repels gravid females and inhibits larval eclosion provide novel possibilities in the search for novel oviposition deterrents and anti-larval eclosion agents against dengue vectors.
Collapse
Affiliation(s)
- Tomomitsu Satho
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Hamady Dieng
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia.
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia.
| | | | | | - Ahmad Abu Hassan
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia.
| | - Fatimah Abang
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kuching, Malaysia.
| | - Idris Abd Ghani
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia.
| | - Fumio Miake
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Hamdan Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia.
| | - Yuki Fukumitsu
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Wan Fatma Zuharah
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia.
| | | | | | - Nur Aida Hashim
- School of Food Science and Technology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
| | | | - Fatima Abdulla Al-Khayyat
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.
| | | |
Collapse
|
26
|
Dieng H, Hassan RB, Hassan AA, Ghani IA, Abang FB, Satho T, Miake F, Ahmad H, Fukumitsu Y, Hashim NA, Zuharah WF, Kassim NFA, Majid AHA, Selvarajoo R, Nolasco-Hipolito C, Ajibola OO, Tuen AA. Occurrence of a mosquito vector in bird houses: Developmental consequences and potential epidemiological implications. Acta Trop 2015; 145:68-78. [PMID: 25617636 DOI: 10.1016/j.actatropica.2015.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/29/2014] [Accepted: 01/07/2015] [Indexed: 11/25/2022]
Abstract
Even with continuous vector control, dengue is still a growing threat to public health in Southeast Asia. Main causes comprise difficulties in identifying productive breeding sites and inappropriate targeted chemical interventions. In this region, rural families keep live birds in backyards and dengue mosquitoes have been reported in containers in the cages. To focus on this particular breeding site, we examined the capacity of bird fecal matter (BFM) from the spotted dove, to support Aedes albopictus larval growth. The impact of BFM larval uptake on some adult fitness traits influencing vectorial capacity was also investigated. In serial bioassays involving a high and low larval density (HD and LD), BFM and larval standard food (LSF) affected differently larval development. At HD, development was longer in the BFM environment. There were no appreciable mortality differences between the two treatments, which resulted in similar pupation and adult emergence successes. BFM treatment produced a better gender balance. There were comparable levels of blood uptake and egg production in BFM and LSF females at LD; that was not the case for the HD one, which resulted in bigger adults. BFM and LSF females displayed equivalent lifespans; in males, this parameter was shorter in those derived from the BFM/LD treatment. Taken together these results suggest that bird defecations successfully support the development of Ae. albopictus. Due to their cryptic aspects, containers used to supply water to encaged birds may not have been targeted by chemical interventions.
Collapse
|
27
|
Afify A, Galizia CG. Chemosensory Cues for Mosquito Oviposition Site Selection. JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:120-30. [PMID: 26336295 DOI: 10.1093/jme/tju024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 12/01/2014] [Indexed: 05/10/2023]
Abstract
Gravid mosquitoes use chemosensory (olfactory, gustatory, or both) cues to select oviposition sites suitable for their offspring. In nature, these cues originate from plant infusions, microbes, mosquito immature stages, and predators. While attractants and stimulants are cues that could show the availability of food (plant infusions and microbes) and suitable conditions (the presence of conspecifics), repellents and deterrents show the risk of predation, infection with pathogens, or strong competition. Many studies have addressed the question of which substances can act as positive or negative cues in different mosquito species, with sometimes apparently contradicting results. These studies often differ in species, substance concentration, and other experimental details, making it difficult to compare the results. In this review, we compiled the available information for a wide range of species and substances, with particular attention to cues originating from larval food, immature stages, predators, and to synthetic compounds. We note that the effect of many substances differs between species, and that many substances have been tested in few species only, revealing that the information is scattered across species, substances, and experimental conditions.
Collapse
Affiliation(s)
- Ali Afify
- Department of Neurobiology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany.Corresponding author, e-mail:
| | | |
Collapse
|
28
|
Govindarajan M, Rajeswary M. Ovicidal and adulticidal potential of leaf and seed extract of Albizia lebbeck (L.) Benth. (Family: Fabaceae) against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi (Diptera: Culicidae). Parasitol Res 2015; 114:1949-61. [DOI: 10.1007/s00436-015-4384-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/05/2015] [Indexed: 11/28/2022]
|
29
|
Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M. Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 2014; 114:227-36. [PMID: 25327954 DOI: 10.1007/s00436-014-4183-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/10/2014] [Indexed: 12/28/2022]
Abstract
Neem seed oil (NSO) of Azadirachta indica (Meliaceae) contains more than 100 determined biologically active compounds, and many formulations deriving from them showed toxicity, antifeedancy and repellence against a number of arthropod pests. However, it is widely known that botanical products can differ in their chemical composition and bioactivity, as function of the production site and production process. We used high-performance thin layer chromatography (HPTLC) to investigate differences in chemical constituents of NSOs from three production sites. HPTLC analyses showed several differences in chemical abundance and diversity among NSOs, with special reference to limonoids. Furthermore, the three NSOs and their fractions of increasing polarities [i.e. ethyl acetate (EA) fraction and butanol (BU) fraction] were evaluated for larvicidal toxicity and field oviposition deterrence against the Asian tiger mosquito, Aedes albopictus, currently the most invasive mosquito worldwide. Results from bioactivity experiments showed good toxicity of NSOs and EA fractions against A. albopictus fourth instar larvae (with LC50 values ranging from 142.28 to 209.73 ppm), while little toxicity was exerted by BU fractions. A significant effect of the production site and dosage was also found and is probably linked to differences in abundance of constituents among samples, as highlighted by HPTLC analyses. NSOs and EAs were also able to deter A. albopictus oviposition in the field (effective repellence values ranging from 98.55 to 70.10%), while little effectiveness of BU fractions was found. Concerning ovideterrent activity, no difference due to the production site was found. This is the first report concerning larvicidal toxicity of NSO against A. albopictus and ovideterrence against Culicidae in the field. The chance to use chemicals from the NSO EA fraction seems promising, since they are effective at lower doses, if compared to synthetic products currently marketed, and could be an advantageous alternative to build newer and safer mosquito control tools.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy,
| | | | | | | | | | | |
Collapse
|
30
|
Shedding light on bioactivity of botanical by-products: neem cake compounds deter oviposition of the arbovirus vector Aedes albopictus (Diptera: Culicidae) in the field. Parasitol Res 2013; 113:933-40. [PMID: 24337544 DOI: 10.1007/s00436-013-3725-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Industrial plant-borne by-products can be sources of low-cost chemicals, potentially useful to build eco-friendly control strategies against mosquitoes. Neem cake is a cheap by-product of neem oil extraction obtained by pressing the seeds of Azadirachta indica. Neem products are widely used as insecticides since rarely induce resistance because their multiple mode of action against insect pests and low-toxicity rates have been detected against vertebrates. In this research, we used field bioassays to assess the effective oviposition repellence of neem cake fractions of increasing polarity [n-hexane (A), methanol (B), ethyl acetate (C), n-butanol (D), and aqueous (E) fraction] against Aedes albopictus, currently the most invasive mosquito worldwide. These fractions, already characterized for low nortriterpenoids contents by HPLC analyses, were analyzed for their total content by HPTLC, highlighting striking differences in their chemical composition. Field results showed that B, A, and C tested at 100 ppm exerted higher effective repellence over the control (71.33, 88.59, and 73.49% of ER, respectively), while E and D did not significantly deter A. albopictus oviposition (17.06 and 22.72% of ER, respectively). The highest oviposition activity index was achieved by A (-0.82), followed by C (-0.63), and B (-0.62). Lower OAIs were achieved by D (-0.14) and E (-0.09). On the basis of our results, we believe that A, B, and C are very promising as oviposition deterrents against the arbovirus vector A. albopictus since they are proved as rich in active metabolites, cheap, and really effective at low doses.
Collapse
|
31
|
Strong larvicidal potential of Artemisia annua leaf extract against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti L.) vectors and bioassay-driven isolation of the marker compounds. Parasitol Res 2013; 113:197-209. [PMID: 24158647 DOI: 10.1007/s00436-013-3644-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
Malaria and dengue are the two most important vector-borne human diseases caused by mosquito vectors Anopheles stephensi and Aedes aegypti, respectively. Of the various strategies adopted for eliminating these diseases, controlling of vectors through herbs has been reckoned as one of the important measures for preventing their resurgence. Artemisia annua leaf chloroform extract when tried against larvae of A. stephensi and A. aegypti has shown a strong larvicidal activity against both of these vectors, their respective LC50 and LC90 values being 0.84 and 4.91 ppm for A. stephensi and 0.67 and 5.84 ppm for A. aegypti. The crude extract when separated through column chromatography using petroleum ether-ethyl acetate gradient (0-100%) yielded 76 fractions which were pooled into three different active fractions A, B and C on the basis of same or nearly similar R f values. The aforesaid pooled fractions when assayed against the larvae of A. stephensi too reported a strong larvicidal activity. The respective marker compound purified from the individual fractions A, B and C, were Artemisinin, Arteannuin B and Artemisinic acid, as confirmed and characterized through FT-IR and NMR. This is our first report of strong mortality of A. annua leaf chloroform extract against vectors of two deadly diseases. This technology can be scaled up for commercial exploitation.
Collapse
|