1
|
Ling Y, Yang YX, Chen YC, Wang JH, Feng DG, Xiang SJ, Zhang X, Lyu J, Li SS. Newly identified single-nucleotide polymorphism associated with the transition from nonalcoholic fatty liver disease to liver fibrosis: results from a nested case-control study in the UK biobank. Ann Med 2025; 57:2458201. [PMID: 39898988 PMCID: PMC11792139 DOI: 10.1080/07853890.2025.2458201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Genetic factors may have a significant influence on the likelihood of liver fibrosis in individuals with nonalcoholic fatty liver disease (NAFLD). The present study was conducted to explore how single-nucleotide polymorphism (SNP) impacts the development of fibrosis in those suffering from NAFLD. MATERIALS AND METHODS Utilizing the UK Biobank dataset, we conducted a nested case-control analysis among NAFLD participants, defining the case group as those with liver fibrosis and cirrhosis during follow-up. For our in vitro investigations, we employed the LX-2 human hepatic stellate cell line. Our procedures included cultivating these cells, employing SAMM50-rs2073080 plasmid techniques to enhance the expression of recently discovered SNPs, and conducting biochemical assays. To quantify gene expression, we used real-time PCR with fluorescence detection. RESULTS The study analyzed data from 5467 participants (1094 cases and 4373 controls). Genome-wide association analysis identified nine significant loci, including the novel rs2073080 variant, strongly associated with NAFLD-associated hepatic fibrosis. In vitro TGF-β modeling revealed significant upregulation of α-SMA and COL1A1, confirming model effectiveness. Oxidative stress markers like elevated malondialdehyde (MDA) and reduced catalase (CAT) and superoxide dismutase (SOD) levels indicated liver damage in the TGF-β group. SAMM50-rs2073080 was upregulated in the NAFLD-associated fibrosis model. In vitro experiments on LX-2 cells showed that SAMM50-rs2073080 overexpression led to increased fibrosis, as indicated by higher cellular MDA levels and lower CAT and SOD levels, compared to the vector group. CONCLUSION Our research highlights a significant association of SAMM50-rs2073080 with the progression of NAFLD to hepatic fibrosis, and the in vitro experiments further corroborated these findings.
Collapse
Affiliation(s)
- Yitong Ling
- Department of Neurology, Jinan University First Affiliated Hospital, Guangzhou, China
| | - Yu Xuan Yang
- Department of Pharmacy, Jinan University First Affiliated Hospital, Guangzhou, China
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Yan Chun Chen
- Department of Pharmacy, Jinan University First Affiliated Hospital, Guangzhou, China
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Jing Hao Wang
- Department of Pharmacy, Jinan University First Affiliated Hospital, Guangzhou, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, the First Affiliated Hospital, Jinan University, Guangzhou China
| | - Dong Ge Feng
- Department of Pharmacy, Jinan University First Affiliated Hospital, Guangzhou, China
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Shi Jian Xiang
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoyu Zhang
- Department of Rheumatology, Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Lyu
- Department of Clinical Research, Jinan University First Affiliated Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Sha Sha Li
- Department of Pharmacy, Jinan University First Affiliated Hospital, Guangzhou, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, the First Affiliated Hospital, Jinan University, Guangzhou China
| |
Collapse
|
2
|
Yuan Q, Hodgkinson C, Liu X, Barton B, Diazgranados N, Schwandt M, Morgan T, Bataller R, Liangpunsakul S, Nagy LE, Goldman D. Exome-wide association analysis identifies novel risk loci for alcohol-associated hepatitis. Hepatology 2025; 81:1304-1317. [PMID: 39058584 PMCID: PMC11902603 DOI: 10.1097/hep.0000000000001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND AND AIMS Alcohol-associated hepatitis (AH) is a clinically severe, acute disease that afflicts only a fraction of patients with alcohol use disorder. Genomic studies of alcohol-associated cirrhosis (AC) have identified several genes of large effect, but the genetic and environmental factors that lead to AH and AC, and their degree of genetic overlap, remain largely unknown. This study aims to identify genes and genetic variations that contribute to the development of AH. APPROACH AND RESULTS Exome-sequencing of patients with AH (N=784) and heavy drinking controls (N=951) identified an exome-wide significant association for AH at patalin-like phospholipase domain containing 3, as previously observed for AC in genome-wide association study, although with a much lower effect size. Single nucleotide polymorphisms (SNPs) of large effect size at inducible T cell costimulatory ligand ( ICOSLG ) (Chr 21) and TOX4/RAB2B (Chr 14) were also exome-wide significant. ICOSLG encodes a co-stimulatory signal for T-cell proliferation and cytokine secretion and induces B-cell proliferation and differentiation. TOX high mobility group box family member 4 ( TOX4 ) was previously implicated in diabetes and immune system function. Other genes previously implicated in AC did not strongly contribute to AH, and the only prominently implicated (but not exome-wide significant) gene overlapping with alcohol use disorder was alcohol dehydrogenase 1B ( ADH1B ). Polygenic signals for AH were observed in both common and rare variant analysis and identified genes with roles associated with inflammation. CONCLUSIONS This study has identified 2 new genes of high effect size with a previously unknown contribution to alcohol-associated liver disease and highlights both the overlap in etiology between liver diseases and the unique origins of AH.
Collapse
Affiliation(s)
- Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Colin Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Xiaochen Liu
- Department of Epidemiology and Biostatistics, University of California, Irvine, Irvine, California, USA
| | - Bruce Barton
- Department of Population & Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Melanie Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | | | - Timothy Morgan
- Department of Gastroenterology, Long Beach Veterans Healthcare System (VALVE), Long Beach, California, USA
- Department of Medicine, University of California, Irvine, CA, USA
| | - Ramon Bataller
- Liver Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Facultad de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Suthat Liangpunsakul
- Division of Gastroenterology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Laura E. Nagy
- Department of Inflammation & Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Chen VL, Kuppa A, Oliveri A, Chen Y, Ponnandy P, Patel PB, Palmer ND, Speliotes EK. Human genetics of metabolic dysfunction-associated steatotic liver disease: from variants to cause to precision treatment. J Clin Invest 2025; 135:e186424. [PMID: 40166930 PMCID: PMC11957700 DOI: 10.1172/jci186424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by increased hepatic steatosis with cardiometabolic disease and is a leading cause of advanced liver disease. We review here the genetic basis of MASLD. The genetic variants most consistently associated with hepatic steatosis implicate genes involved in lipoprotein input or output, glucose metabolism, adiposity/fat distribution, insulin resistance, or mitochondrial/ER biology. The distinct mechanisms by which these variants promote hepatic steatosis result in distinct effects on cardiometabolic disease that may be best suited to precision medicine. Recent work on gene-environment interactions has shown that genetic risk is not fixed and may be exacerbated or attenuated by modifiable (diet, exercise, alcohol intake) and nonmodifiable environmental risk factors. Some steatosis-associated variants, notably those in patatin-like phospholipase domain-containing 3 (PNPLA3) and transmembrane 6 superfamily member 2 (TM6SF2), are associated with risk of developing adverse liver-related outcomes and provide information beyond clinical risk stratification tools, especially in individuals at intermediate to high risk for disease. Future work to better characterize disease heterogeneity by combining genetics with clinical risk factors to holistically predict risk and develop therapies based on genetic risk is required.
Collapse
Affiliation(s)
- Vincent L. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Annapurna Kuppa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Antonino Oliveri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanhua Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Prabhu Ponnandy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Puja B. Patel
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Elizabeth K. Speliotes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Wang JJ, Chen XY, Zhang YR, Shen Y, Zhu ML, Zhang J, Zhang JJ. Role of genetic variants and DNA methylation of lipid metabolism-related genes in metabolic dysfunction-associated steatotic liver disease. Front Physiol 2025; 16:1562848. [PMID: 40166716 PMCID: PMC11955510 DOI: 10.3389/fphys.2025.1562848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), is one of the most common chronic liver diseases, which encompasses a spectrum of diseases, from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may ultimately progress to MASH-related cirrhosis and hepatocellular carcinoma (HCC). MASLD is a complex disease that is influenced by genetic and environmental factors. Dysregulation of hepatic lipid metabolism plays a crucial role in the development and progression of MASLD. Therefore, the focus of this review is to discuss the links between the genetic variants and DNA methylation of lipid metabolism-related genes and MASLD pathogenesis. We first summarize the interplay between MASLD and the disturbance of hepatic lipid metabolism. Next, we focus on reviewing the role of hepatic lipid related gene loci in the onset and progression of MASLD. We summarize the existing literature around the single nucleotide polymorphisms (SNPs) associated with MASLD identified by genome-wide association studies (GWAS) and candidate gene analyses. Moreover, based on recent evidence from human and animal studies, we further discussed the regulatory function and associated mechanisms of changes in DNA methylation levels in the occurrence and progression of MASLD, with a particular emphasis on its regulatory role of lipid metabolism-related genes in MASLD and MASH. Furthermore, we review the alterations of hepatic DNA and blood DNA methylation levels associated with lipid metabolism-related genes in MASLD and MASH patients. Finally, we introduce potential value of the genetic variants and DNA methylation profiles of lipid metabolism-related genes in developing novel prognostic biomarkers and therapeutic targets for MASLD, intending to provide references for the future studies of MASLD.
Collapse
Affiliation(s)
- Jun-Jie Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiao-Yuan Chen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Rong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yan Shen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Meng-Lin Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun-Jie Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Goyal NP, Xanthakos S, Schwimmer JB. Metabolic dysfunction-associated steatotic liver disease in children. Gut 2025; 74:669-677. [PMID: 39848671 DOI: 10.1136/gutjnl-2023-331090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/06/2024] [Indexed: 01/25/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, is the most common cause of chronic liver disease in children. MASLD encompasses a spectrum of liver disease and can be severe, with 10% of affected children presenting with advanced fibrosis. While biopsy remains the most accurate method for diagnosing and staging the disease, MRI proton density fat fraction and magnetic resonance elastography are the most reliable non-invasive measures for assessing steatosis and fibrosis, respectively. MASLD is associated with multiple comorbidities including type 2 diabetes, hypertension, dyslipidaemia, decreased bone mineral density, obstructive sleep apnoea, anxiety and depression. Currently, there are no pharmacological treatments available for children, highlighting the urgent need for paediatric clinical trials. A diet low in free sugars is promising for reducing steatosis and decreasing alanine aminotransferase, a surrogate marker for hepatic inflammation. Emerging data indicate that steatosis can be present in children under 6 years of age, which was previously considered rare. The intricate interplay of genetics may inform future therapeutics and prognostication, with the PNPLA3 gene showing the most evidence for association with the risk and severity of steatotic liver disease and steatohepatitis. MASLD is a complex disease affecting one in ten children and is associated with increased early mortality risk. More dedicated studies are needed in children to advance our understanding of this disease and find effective treatments.
Collapse
Affiliation(s)
- Nidhi P Goyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Stavra Xanthakos
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's, Cincinnati, Ohio, USA
| | - Jeffrey B Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
6
|
Bourganou MV, Chondrogianni ME, Kyrou I, Flessa CM, Chatzigeorgiou A, Oikonomou E, Lambadiari V, Randeva HS, Kassi E. Unraveling Metabolic Dysfunction-Associated Steatotic Liver Disease Through the Use of Omics Technologies. Int J Mol Sci 2025; 26:1589. [PMID: 40004054 PMCID: PMC11855544 DOI: 10.3390/ijms26041589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now referred to as metabolic dysfunction-associated steatotic liver disease (MASLD), is the most prevalent liver disorder globally, linked to obesity, type 2 diabetes, and cardiovascular risk. Understanding its potential progression from simple steatosis to cirrhosis and hepatocellular carcinoma (HCC) is crucial for patient management and treatment strategies. The disease's complexity requires innovative approaches for early detection and personalized care. Omics technologies-such as genomics, transcriptomics, proteomics, metabolomics, and exposomics-are revolutionizing the study of MASLD. These high-throughput techniques allow for a deeper exploration of the molecular mechanisms driving disease progression. Genomics can identify genetic predispositions, whilst transcriptomics and proteomics reveal changes in gene expression and protein profiles during disease evolution. Metabolomics offers insights into the metabolic alterations associated with MASLD, while exposomics links environmental exposures to MASLD progression and pathology. By integrating data from various omics platforms, researchers can map out the intricate biochemical pathways involved in liver disease progression. This review discusses the roles of omics technologies in enhancing the understanding of disease progression and highlights potential diagnostic and therapeutic targets within the MASLD spectrum, emphasizing the need for non-invasive tools in disease staging and treatment development.
Collapse
Affiliation(s)
- Maria V. Bourganou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Maria Eleni Chondrogianni
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- College of Health, Psychology and Social Care, University of Derby, Derby DE22 IGB, UK
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Thoracic Diseases Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vaia Lambadiari
- 2nd Department of Internal-Medicine, Diabetes Centre, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.V.B.); (M.E.C.); (C.-M.F.)
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Wang Y, Zhang K, Wang B, Yu B, Zhang Z, Yu Y, Yu Y, Sun Y, Chen Y, Zhang W, Cai Y, Xiang Q, Xia F, Wang N, Lu Y. Early-life famine exposure, genetic susceptibility and risk of MAFLD in adulthood. J Nutr Health Aging 2025; 29:100443. [PMID: 39667094 DOI: 10.1016/j.jnha.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/02/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVES Early-famine exposure was reported to be associated with metabolic associated fatty liver disease (MAFLD); however, it has not been fully elucidated whether the gene-famine interaction exist in this association. We aimed to investigate the association between early-life famine exposure in different genetic risk stratifications and the risk of MAFLD in adulthood. DESIGN, SETTING, PARTICIPANTS, AND MEASUREMENTS The study included 8213 participants from the SPECT-China study. Famine exposure subgroups was defined according to the birth year. A genetic risk score (GRS) was constructed with single nucleotide polymorphisms associated with MAFLD in East Asians. Logistic models were used to examine the association of famine exposure and GRS with MAFLD. RESULTS Early-life famine exposure was positively associated with MAFLD after adjusting for multiple confounders (OR (95% CI): fetal-exposure 1.3(1.11-1.53), childhood exposure 1.12(1-1.25)). Meanwhile, with per SD increment of GRS (2.49 points), the OR(95%CI) of MAFLD was 1.1(1.04-1.16). In high GRS group, fetal-exposure was positively associated with 45% higher risk of MAFLD (1.45(1.15-1.83)). In men, neither in low or high GRS subgroups observed an association between early-life famine exposure and MAFLD. But in women with high GRS of MAFLD, fetal-exposure was positively associated with even higher risk of MAFLD (1.64(1.22-2.22)). CONCLUSION The positive association between early-life famine exposure and MAFLD is intensified by high genetic susceptibility of MAFLD in women and in general population in China; while this association does not exist in men or in those with low genetic risk scores.
Collapse
Affiliation(s)
- Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Kun Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Bin Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Bowei Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Ziteng Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yuetian Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yuefeng Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Ying Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Wen Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yan Cai
- Department of Endocrinology, The Fifth Affiliated Hospital of Kunming Medical University, Yunnan Honghe Prefecture Central Hospital (Ge Jiu People's Hospital), Yunnan, China
| | - Qian Xiang
- Department of Endocrinology, The Fifth Affiliated Hospital of Kunming Medical University, Yunnan Honghe Prefecture Central Hospital (Ge Jiu People's Hospital), Yunnan, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
8
|
Wang SW, Wang C, Cheng YM, Chen CY, Hsieh TH, Wang CC, Kao JH. Genetic predisposition of metabolic dysfunction-associated steatotic liver disease: a population-based genome-wide association study. Hepatol Int 2025:10.1007/s12072-024-10769-0. [PMID: 39755997 DOI: 10.1007/s12072-024-10769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND/PURPOSE Although metabolic dysfunction-associated steatotic liver disease (MASLD) has been proposed to replace the diagnosis of non-alcoholic fatty liver disease (NAFLD) with new diagnostic criteria since 2023, the genetic predisposition of MASLD remains to be explored. METHODS Participants with data of genome-wide association studies (GWAS) in the Taiwan Biobank database were collected. Patients with missing data, positive for HBsAg, anti-HCV, and alcohol drinking history were excluded. MASLD was defined if having hepatic steatosis on ultrasound, plus at least one of cardiometabolic criteria. The Taiwan biobank used two genetic chips during the period of data collection: Taiwan biobank version 1 (TWBv1) as the initial chip and TWBv2 specifically designed for the Taiwanese population. TWBv2 was used as test group and TWBv1 as validation group. NAFLD fibrosis score (NFS) was used to assess the degree of liver fibrosis, and carotid plaques on duplex ultrasound were employed for the diagnosis of atherosclerosis. RESULTS In a total of 16,407 (mean age 55.35 ± 10.41; 29.6% males) participants, 6722 (41.0%) had MASLD. Eleven single-nucleotide polymorphisms (SNP) were identified to be associated with MASLD. Their functions were exonic in two and intronic in nine. They were related to the PNALA3, and SAMM50 genes located on chromosome 22. The linkage disequilibrium showed a high correlation with each other. Four SNPs of PNALA3 and SAMM50 genes had increased risk of MASLD and higher levels of AST/ALT. In addition, there was no association of these two genes with glucose metabolism, but better lipid profiles in SAMM50. CONCLUSIONS This large GWAS study indicates that eleven SNPs of PNPLA3 and SAMM50 genes predispose the development of MASLD in Taiwanese population.
Collapse
Affiliation(s)
- Shao-Wen Wang
- Department of Education, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Ching Wang
- National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Yu-Ming Cheng
- Department of Gastroenterology and Hepatology, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chun-Yi Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Tsung-Han Hsieh
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chia-Chi Wang
- Department of Gastroenterology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, 289 Jianguo Rd., Xindian Area, New Taipei City, 23142, Taiwan.
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
9
|
Lu CW, Chou TJ, Wu TY, Lee YH, Yang HJ, Huang KC. PNPLA3 and SAMM50 variants are associated with lean nonalcoholic fatty liver disease in Asian population. Ann Hepatol 2024; 30:101761. [PMID: 39638042 DOI: 10.1016/j.aohep.2024.101761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/02/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION AND OBJECTIVES Lean adults with nonalcoholic fatty liver disease (NAFLD) have a higher risk of metabolic syndrome than lean controls. The study aimed to investigate the clinical and genetic features of lean NAFLD which remain unclear in Asian populations. MATERIALS AND METHODS This was a genetic cohort study conducted in the HAVO Health Exam Clinic in 2020-2021 in Taiwan. Adults with a body mass index less than 24 kg/m2 were enrolled. Fatty liver was defined by ultrasonography. The candidate gene approach was based on the library of the NHGRI-EBI website. After removing duplication and nonsignificant variants, rs738409 in the PNPLA3 gene and rs3761472 in the SAMM50 gene were chosen. Multiple logistic regression models and receiver operating characteristic (ROC) curves were used. RESULTS A total of 1652 lean controls and 602 lean NAFLD patients were enrolled. The average age was 43.8 ± 11.5 years. Lean NAFLD subjects were older and had a higher percentage of metabolic syndrome (case vs. control: 10.5 % vs. 1.5 %). The GG genotypes of PNPLA3 rs12483959 (OR: 3.06; 95% CI: 2.15-4.37) and SAMM50 rs3761472 (OR: 2.90; 95% CI: 2.04-4.14) had a higher risk of fatty liver after adjusting for BMI and metabolic syndrome. The areas under the ROC curve for PNPLA3 rs738409 and SAMM50 rs3761472 in the detection of lean NAFLD were 0.859 (95%CI: 0.841, 0.877) and 0.860 (95%CI: 0.843, 0.877), respectively. CONCLUSIONS PNPLA3 rs738409 and SAMM50 rs3761472 gene polymorphisms are associated with a higher risk of fatty liver in lean individuals independent of BMI and metabolic syndrome in Asian populations.
Collapse
Affiliation(s)
- Chia-Wen Lu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Jung Chou
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Family Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Tsan-Yu Wu
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Jen Yang
- Min-Sheng General Hospital, Taoyuan, Taiwan; Share Hope Medicine Co., Ltd., Taoyuan, Taiwan
| | - Kuo-Chin Huang
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Family Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan.
| |
Collapse
|
10
|
Sato S, Iino C, Sasada T, Soma G, Furusawa K, Yoshida K, Sawada K, Mikami T, Fukuda S, Nakaji S, Sakuraba H. An epidemiological study on the factors including genetic polymorphism influencing ALT >30 U/L and liver fibrosis progression in metabolic dysfunction-associated steatotic liver disease among the general population. JGH Open 2024; 8:e70043. [PMID: 39713746 PMCID: PMC11659511 DOI: 10.1002/jgh3.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 12/24/2024]
Abstract
Background and Aim Identifying the factors contributing to the progression of metabolic dysfunction-associated steatotic liver disease (MASLD), a lifestyle-related disease, is crucial for preventing future liver-related deaths. This study aimed to epidemiologically investigate factors, including single-nucleotide polymorphisms (SNPs) associated with alanine aminotransferase (ALT) levels >30 U/L and potential risk factors for liver fibrosis, in a general population cohort of patients with MASLD. Methods Among 1059 participants in the health checkup project, 228 who were diagnosed with MASLD were analyzed. Liver fat content and stiffness were measured using FibroScan, and 13 SNPs associated with non-alcoholic fatty liver disease (NAFLD) were measured in addition to other clinical parameters. Results In the multivariate analysis, male sex, younger age, and high triglyceride levels were significant risk factors for ALT levels >30 U/L (P-value < 0.05). Furthermore, among the 13 SNPs measured, only the GG genotypes of patatin-like phospholipase domain-containing 3 gene (PNPLA3) rs738409 and rs2896019 were significant risk factors for ALT levels >30 U/L (P-value 0.004 and 0.007). The GG genotypes of PNPLA3 rs738409 and rs2896019 had higher FibroScan-aspartate aminotransferase (FAST) and APRI scores than the CC + CG and TT + TG genotypes (P-value < 0.05). In addition, multivariate analysis revealed that the GG genotypes of rs738409 and rs2896019 were significant risk factors independent of cardiovascular metabolic risk for patients with MASLD (P-value 0.038 and 0.021). Conclusion An individualized treatment approach is warranted for patients with MASLD due to the influence of various factors on its progression, including genetic factors and lifestyle diseases.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Chikara Iino
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takafumi Sasada
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Go Soma
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Keisuke Furusawa
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kenta Yoshida
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kaori Sawada
- Department of Preemptive MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Tatsuya Mikami
- Department of Preemptive MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Shinsaku Fukuda
- Department of Preemptive MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Shigeyuki Nakaji
- Department of Preemptive MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hirotake Sakuraba
- Department of Gastroenterology, Hematology and Clinical ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
11
|
Lee KJ, Moon JS, Lim JG, Huh H, Ahn JE, Kim L, Kim NY, Ko JS. PARVB and HSD17B13 variants are associated with nonalcoholic fatty liver disease in children. J Gastroenterol Hepatol 2024; 39:1172-1182. [PMID: 38418429 DOI: 10.1111/jgh.16521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/02/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND AND AIM The aim of this study was to investigate the comprehensive genetic effects of exploratory variants of LYPLAL1, GCKR, HSD17B13, TRIB1, APOC3, MBOAT7, and PARVB on pediatric nonalcoholic fatty liver disease in addition to the previously reported variants of TM6SF2, PNPLA3, and SAMM50 in Korean children. METHODS A prospective case-control study was conducted involving 309 patients diagnosed using ultrasound and 339 controls. Anthropometric measurements, liver function tests, and metabolic marker analysis were conducted, and fibrosis scores were calculated. Transient elastography was performed in 69 some patients with nonalcoholic fatty liver disease. TaqMan allelic discrimination assays were used for genotyping. The genetic risk scores were calculated using significant variants, namely, HSD17B13, PARVB, PNPLA3, SAMM50, and TM6SF2, to evaluate the additive effect. RESULTS Risk allele carriers of the PARVB variant showed significantly higher levels of aminotransferases, gamma-glutamyl transferase, alkaline phosphatase, pediatric nonalcoholic fatty liver disease fibrosis score, and aspartate aminotransferase/platelet ratio index. Individuals with a homozygous variant of HSD17B13 showed significantly lower levels of aminotransferase, gamma-glutamyl transferase, liver stiffness measurement, and aspartate aminotransferase/platelet ratio index than those with other genotypes. These parameters did not significantly differ among other variants of LYPLAL1, GCKR, TRIB1, APOC3, and MBOAT7. The genetic risk scores was identified as an independent risk factor for nonalcoholic fatty liver disease and had a positive association with severity. CONCLUSION HSD17B13 has protective effects on the severity of pediatric nonalcoholic fatty liver disease. Variants of HSD17B13, PARVB, PNPLA3, SAMM50, and TM6SF2 had an additive effect on nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Kyung Jae Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Jin Soo Moon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Gyu Lim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Homin Huh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Eun Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Lia Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Nan Young Kim
- Hallym Institute of Translational Genomics & Bioinformatics, Hallym University Medical Center, Anyang, Korea
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Lee Y, Cho EJ, Choe EK, Kwak MS, Yang JI, Oh SW, Yim JY, Chung GE. Genome-wide association study of metabolic dysfunction-associated fatty liver disease in a Korean population. Sci Rep 2024; 14:9753. [PMID: 38679617 PMCID: PMC11056367 DOI: 10.1038/s41598-024-60152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Genome-wide association studies have identified several genetic variants associated with nonalcoholic fatty liver disease. To emphasize metabolic abnormalities in fatty liver, metabolic (dysfunction)-associated fatty liver disease (MAFLD) has been introduced; thus, we aimed to investigate single-nucleotide polymorphisms related to MAFLD and its subtypes. A genome-wide association study was performed to identify genetic factors related to MAFLD. We used a Korean population-based sample of 2282 subjects with MAFLD and a control group of 4669. We replicated the results in a validation sample which included 639 patients with MAFLD and 1578 controls. Additionally, we categorized participants into three groups, no MAFLD, metabolic dysfunction (MD)-MAFLD, and overweight/obese-MAFLD. After adjusting for age, sex, and principal component scores, rs738409 [risk allele G] and rs3810622 [risk allele T], located in the PNPLA3 gene, showed significant associations with MAFLD (P-values, discovery set = 1.60 × 10-15 and 4.84 × 10-10; odds ratios, 1.365 and 1.284, validation set = 1.39 × 10-4, and 7.15 × 10-4, odds ratios, 1.299 and 1.264, respectively). An additional SNP rs59148799 [risk allele G] located in the GATAD2A gene showed a significant association with MAFLD (P-values, discovery set = 2.08 × 10-8 and validation set = 0.034, odds ratios, 1.387 and 1.250). rs738409 was significantly associated with MAFLD subtypes ([overweight/obese-MAFLD; odds ratio (95% confidence interval), P-values, 1.515 (1.351-1.700), 1.43 × 10-12 and MD-MAFLD: 1.300 (1.191-1.416), 2.90 × 10-9]. There was a significant relationship between rs3810622 and overweight/obese-MAFLD and MD-MAFLD [odds ratios (95% confidence interval), P-values, 1.418 (1.258, 1.600), 1.21 × 10-8 and 1.225 (1.122, 1.340), 7.06 × 10-6, respectively]; the statistical significance remained in the validation set. PNPLA3 was significantly associated with MAFLD and MAFLD subtypes in the Korean population. These results indicate that genetic factors play an important role in the pathogenesis of MAFLD.
Collapse
Affiliation(s)
- Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
- Department of Applied Statistics, Chung-Ang University, Seoul, Republic of Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Kyung Choe
- Department of Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Min-Sun Kwak
- Department of Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Jong In Yang
- Department of Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Seung-Won Oh
- Department of Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
- Department of Family Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Yoon Yim
- Department of Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Goh Eun Chung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Choochuay K, Kunhapan P, Puangpetch A, Tongsima S, Srisawasdi P, Sobhonslidsuk A, Sungkanuparph S, Biswas M, Sukasem C. Associations of PNPLA3 and LEP genetic polymorphisms with metabolic-associated fatty liver disease in Thai people living with human immunodeficiency virus. World J Hepatol 2024; 16:366-378. [PMID: 38577531 PMCID: PMC10989307 DOI: 10.4254/wjh.v16.i3.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The prevalence of metabolic-associated fatty liver disease (MAFLD) is a growing public health issue in people living with human immunodeficiency virus (PLWH). However, the pathophysiology of MAFLD is still unknown, and the role of genetic variables is only now becoming evident. AIM To evaluate the associations of gene-polymorphism-related MAFLD in PLWH. METHODS The study employed transient elastography with a controlled attenuation parameter ≥ 248 dB/m to identify MAFLD in patients from a Super Tertiary Hospital in central Thailand. Candidate single-nucleotide polymorphisms (SNPs) were genotyped using TaqMan® MGB probe 5' nuclease assays for seven MAFLD-related genes. Statistical analyses included SNP frequency analysis, Fisher's Exact and Chi-square tests, odds ratio calculations, and multivariable logistic regression. RESULTS The G-allele carriers of PNPLA3 (rs738409) exhibited a two-fold rise in MAFLD, increasing by 2.5 times in MAFLD with human immunodeficiency virus infection. The clinical features and genetic patterns imply that LEP rs7799039 A-allele carriers had a nine times (P = 0.001) more significant chance of developing aberrant triglyceride among PLWH. CONCLUSION The current study shows an association between PNPLA3 rs738409 and LEP rs7799039 with MAFLD in PLWH.
Collapse
Affiliation(s)
- Kanuengnit Choochuay
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand
- Laboratory for Pharmacogenomics, Division of Pharmacogenomics and Personalized Medicine, Somdech Phra Debaratana Medical Center, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Punna Kunhapan
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Apichaya Puangpetch
- Laboratory for Pharmacogenomics, Division of Pharmacogenomics and Personalized Medicine, Somdech Phra Debaratana Medical Center, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, Pathum Thani 12120, Thailand
| | - Pornpen Srisawasdi
- Division of Clinical Chemistry, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Abhasnee Sobhonslidsuk
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Somnuek Sungkanuparph
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Mohitosh Biswas
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Chonlaphat Sukasem
- Laboratory for Pharmacogenomics, Division of Pharmacogenomics and Personalized Medicine, Somdech Phra Debaratana Medical Center, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Pharmacogenomics Clinic, Bumrungrad Genomic Medicine Institute, Bumrungrad International Hospital, Bangkok 10110, Thailand
- Research and Development Laboratory, Bumrungrad International Hospital, Bangkok 10110, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
14
|
Kurokawa S, Kobori T, Yoneda M, Ogawa Y, Honda Y, Kessoku T, Imajo K, Saito S, Nakajima A, Hotta K. Identification of differentially methylated regions associated with both liver fibrosis and hepatocellular carcinoma. BMC Gastroenterol 2024; 24:57. [PMID: 38302914 PMCID: PMC10832174 DOI: 10.1186/s12876-024-03149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Liver fibrosis is a major risk factor for hepatocellular carcinoma (HCC). We have previously reported that differentially methylated regions (DMRs) are correlated with the fibrosis stages of metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, the methylation levels of those DMRs in liver fibrosis and subsequent HCC were examined. METHODS The methylation levels of DMRs were investigated using alcoholic cirrhosis and HCC (GSE60753). The data of hepatitis C virus-infected cirrhosis and HCC (GSE60753), and two datasets (GSE56588 and GSE89852) were used for replication analyses. The transcriptional analyses were performed using GSE114564, GSE94660, and GSE142530. RESULTS Hypomethylated DMR and increased transcriptional level of zinc finger and BTB domain containing 38 (ZBTB38) were observed in HCC. Hypermethylated DMRs, and increased transcriptional levels of forkhead box K1 (FOXK1) and zinc finger CCCH-type containing 3 (ZC3H3) were observed in HCC. The methylation levels of DMR of kazrin, periplakin interacting protein (KAZN) and its expression levels were gradually decreased as cirrhosis progressed to HCC. CONCLUSIONS Changes in the methylation and transcriptional levels of ZBTB38, ZC3H3, FOXK1, and KAZN are important for the development of fibrosis and HCC; and are therefore potential therapeutic targets and diagnostic tools for cirrhosis and HCC.
Collapse
Affiliation(s)
- Suguru Kurokawa
- Laboratoy of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Takuro Kobori
- Laboratoy of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yuji Ogawa
- Department of Gastroenterology, National Hospital Organization Yokohama Medical Center, 3-60-2 Harajyuku, Totsuka, Yokohama, 245-8675, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
- Department of Palliative Medicine, International University of Health and Welfare Narita Hospital, 852, Hatakeda, Narita, 286-8520, Japan
| | - Kento Imajo
- Department of Gastroenterology, Shin-yurigaoka General Hospital, 255 Furusawatsuko, Asao, Kawasaki, 2150-0026, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Kikuko Hotta
- Laboratoy of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan.
| |
Collapse
|
15
|
Miteva D, Peshevska-Sekulovska M, Snegarova V, Peruhova M, Vasilev GH, Vasilev GV, Sekulovski M, Lazova S, Gulinac M, Tomov L, Mihova A, Velikova T. Microbiome and Genetic Factors in the Pathogenesis of Liver Diseases. GASTROENTEROLOGY INSIGHTS 2023; 14:575-597. [DOI: 10.3390/gastroent14040041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Our genetic background has not changed over the past century, but chronic diseases are on the rise globally. In addition to the genetic component, among the critical factors for many diseases are inhabitants of our intestines (gut microbiota) as a crucial environmental factor. Dysbiosis has been described in liver diseases with different etiologies like non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease (ALD), viral hepatitis, autoimmune hepatitis (AIH), primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), cirrhosis, hepatocellular carcinoma (HCC). On the other hand, new technologies have increased our understanding of liver disease genetics and treatment options. Genome-wide association studies (GWAS) identify unknown genetic risk factors, positional cloning of unknown genes associated with different diseases, gene tests for single nucleotide variations (SNVs), and next-generation sequencing (NGS) of selected genes or the complete genome. NGS also allowed studying the microbiome and its role in various liver diseases has begun. These genes have proven their effect on microbiome composition in host genome–microbiome association studies. We focus on altering the intestinal microbiota, and supplementing some bacterial metabolites could be considered a potential therapeutic strategy. The literature data promote probiotics/synbiotics role in reducing proinflammatory cytokines such as TNF-α and the interleukins (IL-1, IL-6, IL-8), therefore improving transaminase levels, hepatic steatosis, and NAFLD activity score. However, even though microbial therapy appears to be risk-free, evaluating side effects related to probiotics or synbiotics is imperative. In addition, safety profiles for long-term usage should be researched. Thus, this review focuses on the human microbiome and liver diseases, recent GWASs on liver disease, the gut-liver axis, and the associations with the microbiome and microbiome during/after liver disease therapy.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Monika Peshevska-Sekulovska
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Gastroenterology, University Hospital Lozenetz, Kozyak 1 Str., 1407 Sofia, Bulgaria
| | - Violeta Snegarova
- Clinic of Internal Diseases, Naval Hospital—Varna, Military Medical Academy, Medical Faculty, Medical University, Blvd. Hristo Smirnenski 3, 9000 Varna, Bulgaria
| | - Milena Peruhova
- Department of Gastroenterology, Heart and Brain Hospital, Zdrave 1 Str., 8000 Burgas, Bulgaria
| | - Georgi H. Vasilev
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Laboratory of Hematopathology and Immunology, National Specialized Hospital for Active Treatment of Hematological Diseases, “Plovdivsko Pole” Str. 6, 1756 Sofia, Bulgaria
| | - Georgi V. Vasilev
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Emergency Medicine and Clinic of Neurology, University Hospital “Sv. Georgi”, Blvd. Peshtersko Shose 66, 4000 Plovdiv, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Snezhina Lazova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Pediatric Department, University Hospital “N. I. Pirogov”, 21 “General Eduard I. Totleben” Blvd, 1606 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health, “Prof. Tsekomir Vodenicharov, MD, DSc”, Medical University of Sofia, Bialo More 8 Str., 1527 Sofia, Bulgaria
| | - Milena Gulinac
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of General and Clinical Pathology, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Latchezar Tomov
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Informatics, New Bulgarian University, Montevideo 21 Str., 1618 Sofia, Bulgaria
| | - Antoaneta Mihova
- SMDL Ramus, Department of Immunology, Blvd. Kap. Spisarevski 26, 1527 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| |
Collapse
|
16
|
Reinshagen M, Kabisch S, Pfeiffer AF, Spranger J. Liver Fat Scores for Noninvasive Diagnosis and Monitoring of Nonalcoholic Fatty Liver Disease in Epidemiological and Clinical Studies. J Clin Transl Hepatol 2023; 11:1212-1227. [PMID: 37577225 PMCID: PMC10412706 DOI: 10.14218/jcth.2022.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 03/21/2023] [Indexed: 07/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome and type 2 diabetes and independently contributes to long-term complications. Being often asymptomatic but reversible, it would require population-wide screening, but direct diagnostics are either too invasive (liver biopsy), costly (MRI) or depending on the examiner's expertise (ultrasonography). Hepatosteatosis is usually accommodated by features of the metabolic syndrome (e.g. obesity, disturbances in triglyceride and glucose metabolism), and signs of hepatocellular damage, all of which are reflected by biomarkers, which poorly predict NAFLD as single item, but provide a cheap diagnostic alternative when integrated into composite liver fat indices. Fatty liver index, NAFLD LFS, and hepatic steatosis index are common and accurate indices for NAFLD prediction, but show limited accuracy for liver fat quantification. Other indices are rarely used. Hepatic fibrosis scores are commonly used in clinical practice, but their mandatory reflection of fibrotic reorganization, hepatic injury or systemic sequelae reduces sensitivity for the diagnosis of simple steatosis. Diet-induced liver fat changes are poorly reflected by liver fat indices, depending on the intervention and its specific impact of weight loss on NAFLD. This limited validity in longitudinal settings stimulates research for new equations. Adipokines, hepatokines, markers of cellular integrity, genetic variants but also simple and inexpensive routine parameters might be potential components. Currently, liver fat indices lack precision for NAFLD prediction or monitoring in individual patients, but in large cohorts they may substitute nonexistent imaging data and serve as a compound biomarker of metabolic syndrome and its cardiometabolic sequelae.
Collapse
Affiliation(s)
- Mona Reinshagen
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| | - Stefan Kabisch
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| | - Andreas F.H. Pfeiffer
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Neuherberg, Germany
| |
Collapse
|
17
|
Chen Y, Du X, Kuppa A, Feitosa MF, Bielak LF, O'Connell JR, Musani SK, Guo X, Kahali B, Chen VL, Smith AV, Ryan KA, Eirksdottir G, Allison MA, Bowden DW, Budoff MJ, Carr JJ, Chen YDI, Taylor KD, Oliveri A, Correa A, Crudup BF, Kardia SLR, Mosley TH, Norris JM, Terry JG, Rotter JI, Wagenknecht LE, Halligan BD, Young KA, Hokanson JE, Washko GR, Gudnason V, Province MA, Peyser PA, Palmer ND, Speliotes EK. Genome-wide association meta-analysis identifies 17 loci associated with nonalcoholic fatty liver disease. Nat Genet 2023; 55:1640-1650. [PMID: 37709864 PMCID: PMC10918428 DOI: 10.1038/s41588-023-01497-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is common and partially heritable and has no effective treatments. We carried out a genome-wide association study (GWAS) meta-analysis of imaging (n = 66,814) and diagnostic code (3,584 cases versus 621,081 controls) measured NAFLD across diverse ancestries. We identified NAFLD-associated variants at torsin family 1 member B (TOR1B), fat mass and obesity associated (FTO), cordon-bleu WH2 repeat protein like 1 (COBLL1)/growth factor receptor-bound protein 14 (GRB14), insulin receptor (INSR), sterol regulatory element-binding transcription factor 1 (SREBF1) and patatin-like phospholipase domain-containing protein 2 (PNPLA2), as well as validated NAFLD-associated variants at patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily 2 (TM6SF2), apolipoprotein E (APOE), glucokinase regulator (GCKR), tribbles homolog 1 (TRIB1), glycerol-3-phosphate acyltransferase (GPAM), mitochondrial amidoxime-reducing component 1 (MARC1), microsomal triglyceride transfer protein large subunit (MTTP), alcohol dehydrogenase 1B (ADH1B), transmembrane channel like 4 (TMC4)/membrane-bound O-acyltransferase domain containing 7 (MBOAT7) and receptor-type tyrosine-protein phosphatase δ (PTPRD). Implicated genes highlight mitochondrial, cholesterol and de novo lipogenesis as causally contributing to NAFLD predisposition. Phenome-wide association study (PheWAS) analyses suggest at least seven subtypes of NAFLD. Individuals in the top 10% and 1% of genetic risk have a 2.5-fold to 6-fold increased risk of NAFLD, cirrhosis and hepatocellular carcinoma. These genetic variants identify subtypes of NAFLD, improve estimates of disease risk and can guide the development of targeted therapeutics.
Collapse
Affiliation(s)
- Yanhua Chen
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Xiaomeng Du
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Annapurna Kuppa
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey R O'Connell
- Department of Endocrinology, Diabetes and Nutrition, University of Maryland - Baltimore, Baltimore, MD, USA
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Bratati Kahali
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Vincent L Chen
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen A Ryan
- Department of Endocrinology, Diabetes and Nutrition, University of Maryland - Baltimore, Baltimore, MD, USA
| | | | - Matthew A Allison
- Department of Family Medicine, University of California San Diego, San Diego, CA, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Matthew J Budoff
- Department of Internal Medicine, Lundquist Institute at Harbor-UCLA, Torrance, CA, USA
| | - John Jeffrey Carr
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yii-Der I Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antonino Oliveri
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Breland F Crudup
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - James G Terry
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brian D Halligan
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - George R Washko
- Department of Medicine, Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Elizabeth K Speliotes
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Zhao J, Xu X, Wei X, Zhang S, Xu H, Wei X, Zhang Y, Zhang J. SAMM50- rs2073082, - rs738491 and - rs3761472 Interactions Enhancement of Susceptibility to Non-Alcoholic Fatty Liver Disease. Biomedicines 2023; 11:2416. [PMID: 37760857 PMCID: PMC10525902 DOI: 10.3390/biomedicines11092416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND AND AIM Several studies have identified that three SAMM50 polymorphisms (rs2073082, rs738491, rs3761472) are associated with an increased risk of non-alcoholic fatty liver disease (NAFLD). However, the clinical significance of the SAMM50 SNP in relation to NAFLD remains largely unknown. Therefore, we conducted a clinical study and SNP-SNP interaction analysis to further elucidate the effect of the SAMM50 SNP on the progression of NAFLD in the elderly. METHODS A total of 1053 patients over the age of 65 years were recruited. Liver fat and fibrosis were detected by abdominal ultrasound or FibroScan, respectively. Genomic DNA was extracted and then genotyped by Fluidigm 96.96 Dynamic Array. Multivariable logistic regression was used to evaluate the association between NAFLD and SNP. SNP-SNP interactions were analyzed using generalized multivariate dimensionality reduction (GMDR). RESULTS The risk of NAFLD was substantially higher in people who carried SAMM50-rs2073082 G and -rs738491 T alleles (OR, 1.962; 95% CI, 1.448-2.659; p < 0.001; OR, 1.532; 95% CI, 1.246-1.884; p = 0.021, respectively) compared to noncarriers. Carriers of the rs738491 T and rs3761472 G alleles in the cohort showed a significant increase in liver stiffness measurements (LSM). The combination of the three SNPs showed the highest predictive power for NAFLD. The rs2073082 G allele, rs738491 T allele and rs3761472 G carriers had a two-fold higher risk of NAFLD compared to noncarriers. CONCLUSIONS Our research has demonstrated a strong correlation between the genetic polymorphism of SAMM50 and NAFLD in the elderly, which will contribute to a better understanding of the impact of age and genetics on this condition. Additionally, this study provides a potential predictive model for the early clinical warning of NAFLD.
Collapse
Affiliation(s)
- Jinhan Zhao
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaoyi Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xinhuan Wei
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
| | - Shuang Zhang
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
- Menkuang Hospital, Beijing Jingmei Group General Hospital, Beijing Energy Holding Company Limited, Beijing 102399, China
| | - Hangfei Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaodie Wei
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
| | - Yang Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jing Zhang
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (J.Z.); (X.X.); (X.W.); (S.Z.); (H.X.); (X.W.)
| |
Collapse
|
19
|
Germani G, D’Arcangelo F, Grasso M, Burra P. Advances and Controversies in Acute Alcohol-Related Hepatitis: From Medical Therapy to Liver Transplantation. Life (Basel) 2023; 13:1802. [PMID: 37763206 PMCID: PMC10532507 DOI: 10.3390/life13091802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alcohol-related hepatitis (AH) is a clinical syndrome characterized by recent-onset jaundice in the context of alcohol consumption. In patients with severe AH "unresponsive" to steroid therapy, mortality rates exceed 70% within six months. According to European and American guidelines, liver transplantation (LT) may be considered in highly selected patients who do not respond to medical therapy. The aim of this narrative review is to summarize current knowledge from medical therapy to liver transplantation in acute alcohol-related hepatitis. Due to the impossibility to guarantee six-month abstinence, LT for AH is controversial. Principal concerns are related to organ scarcity in the subset of stigma of "alcohol use disorder" (AUD) and the risk of relapse to alcohol use after LT. Return to alcohol use after LT is a complex issue that cannot be assessed as a yes/no variable with heterogeneous results among studies. In conclusion, present data indicate that well-selected patients have excellent outcomes, with survival rates of up to 100% at 24 and 36 months after LT. Behavioral therapy, ongoing psychological support, and strong family support seem essential to improve long-term outcomes after LT and reduce the risk in relapse of alcohol use.
Collapse
Affiliation(s)
- Giacomo Germani
- Multivisceral Transplant Unit, Azienda Ospedale—Università Padova, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Francesca D’Arcangelo
- Gastroenterology and Multivisceral Transplant Unit, Azienda Ospedale—Università Padova, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy; (F.D.); (M.G.); (P.B.)
| | - Marco Grasso
- Gastroenterology and Multivisceral Transplant Unit, Azienda Ospedale—Università Padova, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy; (F.D.); (M.G.); (P.B.)
| | - Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Azienda Ospedale—Università Padova, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy; (F.D.); (M.G.); (P.B.)
| |
Collapse
|
20
|
Buchynskyi M, Oksenych V, Kamyshna I, Vari SG, Kamyshnyi A. Genetic Predictors of Comorbid Course of COVID-19 and MAFLD: A Comprehensive Analysis. Viruses 2023; 15:1724. [PMID: 37632067 PMCID: PMC10459448 DOI: 10.3390/v15081724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) and its potential impact on the severity of COVID-19 have gained significant attention during the pandemic. This review aimed to explore the genetic determinants associated with MAFLD, previously recognized as non-alcoholic fatty liver disease (NAFLD), and their potential influence on COVID-19 outcomes. Various genetic polymorphisms, including PNPLA3 (rs738409), GCKR (rs780094), TM6SF2 (rs58542926), and LYPLAL1 (rs12137855), have been investigated in relation to MAFLD susceptibility and progression. Genome-wide association studies and meta-analyses have revealed associations between these genetic variants and MAFLD risk, as well as their effects on lipid metabolism, glucose regulation, and liver function. Furthermore, emerging evidence suggests a possible connection between these MAFLD-associated polymorphisms and the severity of COVID-19. Studies exploring the association between indicated genetic variants and COVID-19 outcomes have shown conflicting results. Some studies observed a potential protective effect of certain variants against severe COVID-19, while others reported no significant associations. This review highlights the importance of understanding the genetic determinants of MAFLD and its potential implications for COVID-19 outcomes. Further research is needed to elucidate the precise mechanisms linking these genetic variants to disease severity and to develop gene profiling tools for the early prediction of COVID-19 outcomes. If confirmed as determinants of disease severity, these genetic polymorphisms could aid in the identification of high-risk individuals and in improving the management of COVID-19.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars–Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
21
|
Shree Harini K, Ezhilarasan D. Wnt/beta-catenin signaling and its modulators in nonalcoholic fatty liver diseases. Hepatobiliary Pancreat Dis Int 2023; 22:333-345. [PMID: 36448560 DOI: 10.1016/j.hbpd.2022.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health concern associated with significant morbidity and mortality. NAFLD is a spectrum of diseases originating from simple steatosis, progressing through nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis that may lead to hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is mediated by the triglyceride accumulation followed by proinflammatory cytokines expression leading to inflammation, oxidative stress, and mitochondrial dysfunction denoted as "two-hit hypothesis", advancing with a "third hit" of insufficient hepatocyte proliferation, leading to the increase in hepatic progenitor cells contributing to fibrosis and HCC. Wnt/β-catenin signaling is responsible for normal liver development, regeneration, hepatic metabolic zonation, ammonia and drug detoxification, hepatobiliary development, etc., maintaining the overall liver homeostasis. The key regulators of canonical Wnt signaling such as LRP6, Wnt1, Wnt3a, β-catenin, GSK-3β, and APC are abnormally regulated in NAFLD. Many experimental studies have shown the aberrated Wnt/β-catenin signaling during the NAFLD progression and NASH to hepatic fibrosis and HCC. Therefore, in this review, we have emphasized the role of Wnt/β-catenin signaling and its modulators that can potentially aid in the inhibition of NAFLD.
Collapse
Affiliation(s)
- Karthik Shree Harini
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
22
|
Yamamoto R, Takeshita Y, Tsujiguchi H, Kannon T, Sato T, Hosomichi K, Suzuki K, Kita Y, Tanaka T, Goto H, Nakano Y, Yamashita T, Kaneko S, Tajima A, Nakamura H, Takamura T. Nutrigenetic interaction between apolipoprotein C3 polymorphism and fat intake in people with non-alcoholic fatty liver disease. Curr Dev Nutr 2023. [DOI: 10.1016/j.cdnut.2023.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
23
|
Chen Y, Yan X, Wang T, Deng H, Deng X, Xu F, Liang H. PNPLA3 148M/M Is More Susceptible to Palmitic Acid-Induced Endoplasmic Reticulum Stress-Associated Apoptosis in HepG2 Cells. Int J Endocrinol 2023; 2023:2872408. [PMID: 36825197 PMCID: PMC9943609 DOI: 10.1155/2023/2872408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Patatin-like phospholipase domain-containing 3 (PNPLA3) is a major susceptibility gene for nonalcoholic fatty liver disease (NAFLD), and its rs738409 (I148M) polymorphism is associated with the occurrence and progression of NAFLD. Endoplasmic reticulum (ER) stress-related hepatocyte lipoapoptosis contributes to the progress of NAFLD. PNPLA3 is also known as a member of the calcium-independent phospholipase A2ε family, which can hydrolyze fatty acids to generate lysophosphatidylcholine (LPC) that induces ER stress-related hepatocyte lipoapoptosis. Whether the PNPLA3 risk genotype 148M/M is involved in more severe ER stress-associated lipoapoptosis is unclear. METHODS A PNPLA3148I knock-in HepG2 cell model was constructed based on HepG2 expressing PNPLA3 148M/M using the Cas9/sgRNA system. PNPLA3 148M/M, I/M, and I/I cells were treated with 0.3 mM palmitic acid (PA) for 24 h to induce lipid deposition. Cellular lipid deposition was detected by oil red staining. Apoptosis was observed by TUNEL. LPC was determined by ELISA, and the expression of PNPLA3, the ER stress marker Bip, molecules involved in the ER stress PERK/elF-2a pathway, and its downstream C/EBP homologous protein (CHOP)-mediated apoptotic pathway were detected by western blot. RESULTS The results showed no difference in PNPLA3 basal expression and basal hepatocyte lipid content between the three genotypes of cells. Lipid deposition and apoptosis were more severe in PNPLA3 148M/M and 148I/M cells than in I/I cells after PA treatment. PA-induced upregulation of protein expression of Bip, ER stress-responsive PERK pathway molecules p-PERK, p-eIF2α, CHOP, and CHOP-associated apoptotic molecules PUMA and Bax were more pronounced in PNPLA3 148M/M cells than in PNPLA3 148I/I cells. The basal LPC levels and the PA-treated increase of LPC levels in the cell culture supernatants did not differ between the three genotypic cells. CONCLUSION PNPLA3 148M/M cells were more susceptible to PA-induced lipid deposition and ER stress-related apoptosis than 148I/I cells, and the proapoptotic susceptibility of PNPLA3 148M/M is independent of LPC.
Collapse
Affiliation(s)
- Yunzhi Chen
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Xuemei Yan
- Department of Endocrinology and Metabolism, Joint Service Support Force 903 Hospital, Hangzhou 310005, China
| | - Tian Wang
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Hongrong Deng
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Xiaojie Deng
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Hua Liang
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| |
Collapse
|
24
|
Goyal NP, Rosenthal SB, Nasamran C, Behling CA, Angeles JE, Fishbein MH, Harlow KE, Jain AK, Molleston JP, Newton KP, Ugalde-Nicalo P, Xanthankos SA, Yates K, Schork NJ, Fisch KM, Schwimmer JB. Nonalcoholic fatty liver disease risk and histologic severity are associated with genetic polymorphisms in children. Hepatology 2023; 77:197-212. [PMID: 35560106 PMCID: PMC9653518 DOI: 10.1002/hep.32570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS NAFLD is the most common chronic liver disease in children. Large pediatric studies identifying single nucleotide polymorphisms (SNPs) associated with risk and histologic severity of NAFLD are limited. Study aims included investigating SNPs associated with risk for NAFLD using family trios and association of candidate alleles with histologic severity. APPROACH AND RESULTS Children with biopsy-confirmed NAFLD were enrolled from the NASH Clinical Research Network. The Expert Pathology Committee reviewed liver histology. Genotyping was conducted with allele-specific primers for 60 candidate SNPs. Parents were enrolled for trio analysis. To assess risk for NAFLD, the transmission disequilibrium test was conducted in trios. Among cases, regression analysis assessed associations with histologic severity. A total of 822 children with NAFLD had mean age 13.2 years (SD 2.7) and mean ALT 101 U/L (SD 90). PNPLA3 (rs738409) demonstrated the strongest risk ( p = 2.24 × 10 -14 ) for NAFLD. Among children with NAFLD, stratifying by PNPLA3 s738409 genotype, the variant genotype associated with steatosis ( p = 0.005), lobular ( p = 0.03) and portal inflammation ( p = 0.002). Steatosis grade associated with TM6SF2 ( p = 0.0009), GCKR ( p = 0.0032), PNPLA3 rs738409 ( p = 0.0053), and MTTP ( p = 0.0051). Fibrosis stage associated with PARVB rs6006473 ( p = 0.0001), NR1I2 ( p = 0.0021), ADIPOR2 ( p = 0.0038), and OXTR ( p = 0.0065). PNPLA3 rs738409 ( p = 0.0002) associated with borderline zone 1 NASH. CONCLUSIONS This study demonstrated disease-associated SNPs in children with NAFLD. In particular, rs6006473 was highly associated with severity of fibrosis. These hypothesis-generating results support future mechanistic studies of development of adverse outcomes such as fibrosis and generation of therapeutic targets for NAFLD in children.
Collapse
Affiliation(s)
- Nidhi P. Goyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, California, USA
- Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, California, USA
| | - Sara B. Rosenthal
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, California, USA
| | - Chanod Nasamran
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, California, USA
| | - Cynthia A. Behling
- Department of Pathology, Sharp Memorial Hospital; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego, California, USA
| | - Jorge E. Angeles
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, California, USA
| | - Mark H. Fishbein
- Department of Pediatrics, Feinberg Medical School of Northwestern University, Chicago, Illinois, USA
| | - Kathryn E. Harlow
- Riley Hospital for Children At Indiana University Health, Indianapolis, Indiana, USA
| | - Ajay K. Jain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, St. Louis University, St. Louis, Missouri, USA
| | - Jean P. Molleston
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Riley Hospital for Children, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Kimberly P. Newton
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, California, USA
- Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, California, USA
| | - Patricia Ugalde-Nicalo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, California, USA
| | - Stavra A. Xanthankos
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Katherine Yates
- Department of Epidemiology and Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicholas J. Schork
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
- Department of Molecular and Cell Biology, The City of Hope National Medical Center, Duarte, California, USA
| | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, California, USA
| | - Jeffrey B. Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, California, USA
- Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, California, USA
| | | |
Collapse
|
25
|
Sulaiman SA, Dorairaj V, Adrus MNH. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2022; 11:106. [PMID: 36672614 PMCID: PMC9855725 DOI: 10.3390/biomedicines11010106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease with a wide spectrum of liver conditions ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. The prevalence of NAFLD varies across populations, and different ethnicities have specific risks for the disease. NAFLD is a multi-factorial disease where the genetics, metabolic, and environmental factors interplay and modulate the disease's development and progression. Several genetic polymorphisms have been identified and are associated with the disease risk. This mini-review discussed the NAFLD's genetic polymorphisms and focusing on the differences in the findings between the populations (diversity), including of those reports that did not show any significant association. The challenges of genetic diversity are also summarized. Understanding the genetic contribution of NAFLD will allow for better diagnosis and management explicitly tailored for the various populations.
Collapse
Affiliation(s)
- Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa’cob Latiff, Cheras, Kuala Lumpur 56000, Malaysia; (V.D.); (M.N.H.A.)
| | | | | |
Collapse
|
26
|
Park J, MacLean MT, Lucas AM, Torigian DA, Schneider CV, Cherlin T, Xiao B, Miller JE, Bradford Y, Judy RL, Verma A, Damrauer SM, Ritchie MD, Witschey WR, Rader DJ. Exome-wide association analysis of CT imaging-derived hepatic fat in a medical biobank. Cell Rep Med 2022; 3:100855. [PMID: 36513072 PMCID: PMC9798024 DOI: 10.1016/j.xcrm.2022.100855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/22/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease is common and highly heritable. Genetic studies of hepatic fat have not sufficiently addressed non-European and rare variants. In a medical biobank, we quantitate hepatic fat from clinical computed tomography (CT) scans via deep learning in 10,283 participants with whole-exome sequences available. We conduct exome-wide associations of single variants and rare predicted loss-of-function (pLOF) variants with CT-based hepatic fat and perform cross-modality replication in the UK Biobank (UKB) by linking whole-exome sequences to MRI-based hepatic fat. We confirm single variants previously associated with hepatic fat and identify several additional variants, including two (FGD5 H600Y and CITED2 S198_G199del) that replicated in UKB. A burden of rare pLOF variants in LMF2 is associated with increased hepatic fat and replicates in UKB. Quantitative phenotypes generated from clinical imaging studies and intersected with genomic data in medical biobanks have the potential to identify molecular pathways associated with human traits and disease.
Collapse
Affiliation(s)
- Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew T MacLean
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anastasia M Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew A Torigian
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carolin V Schneider
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tess Cherlin
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brenda Xiao
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason E Miller
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuki Bradford
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renae L Judy
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott M Damrauer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Genetic Variation of SAMM50 Is Not an Independent Risk Factor for Alcoholic Hepatocellular Carcinoma in Caucasian Patients. Int J Mol Sci 2022; 23:ijms232315353. [PMID: 36499681 PMCID: PMC9740343 DOI: 10.3390/ijms232315353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a severe complication of advanced alcoholic liver disease, which is modulated by genetic predisposition. Identifying new genetic loci might improve screening. Genetic variation of SAMM50 was linked to HCC. We aimed to validate this finding in a large cohort of patients with advanced alcoholic liver disease (ALD). A large, well-characterised cohort of patients with alcoholic cirrhosis without (n = 674) and with (n = 386) HCC, as well as controls with HCC due to viral hepatitis (n = 134), controls with heavy alcohol abuse without liver disease (n = 266) and healthy subjects (n = 237), were genotyped for SAMM50 rs3827385 and rs3761472 and for PNPLA3 rs738409. Genotype frequencies were compared between patients with alcohol-associated cirrhosis with and without HCC by uni- and multivariate analysis. Minor variants in both SAMM50 rs3827385 and rs3761472 were significantly more frequent in patients with alcoholic HCC versus alcoholic cirrhosis and versus the control cohorts. An even stronger association was noted for PNPLA3 rs738409. The univariate analysis resulted in an odds ratio (OR) of 1.8 for carriers of at least one minor variant of SAMM50 rs3827385 and rs3761472 (each p < 0.001), but this association was lost in multivariate analysis with age (OR 1.1/year), male sex (OR 3.2), diabetes (OR 1.9) and carriage of PNPLA3 148M (OR 2.1) remaining in the final model. Although minor variants of both SAMM50 loci are strongly associated with alcoholic HCC, this association is not independent of carriage of the well-known risk variant PNPLA3 148M.
Collapse
|
28
|
Chen L, Dong J, Liao S, Wang S, Wu Z, Zuo M, Liu B, Yan C, Chen Y, He H, Meng Q, Song Z. Loss of Sam50 in hepatocytes induces cardiolipin-dependent mitochondrial membrane remodeling to trigger mtDNA release and liver injury. Hepatology 2022; 76:1389-1408. [PMID: 35313046 DOI: 10.1002/hep.32471] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Sam50, a key component of the sorting and assembly machinery (SAM) complex, is also involved in bridging mitochondrial outer-membrane and inner-membrane contacts. However, the physiological and pathological functions of Sam50 remain largely unknown. APPROACH AND RESULTS Here we show that Sam50 interacts with MICOS (mitochondrial contact site and cristae organizing system) and ATAD3 (ATPase family AAA domain-containing protein 3) to form the Sam50-MICOS-ATAD3-mtDNA axis, which maintains mtDNA stability. Loss of Sam50 causes mitochondrial DNA (mtDNA) aggregation. Furthermore, Sam50 cooperates with Mic60 to bind to cardiolipin, maintaining the integrity of mitochondrial membranes. Sam50 depletion leads to cardiolipin externalization, which causes mitochondrial outer-membrane and inner-membrane (including crista membrane) remodeling, triggering Bax mitochondrial recruitment, mtDNA aggregation, and release. Physiologically, acetaminophen (an effective antipyretic and analgesic)-caused Sam50 reduction or Sam50 liver-specific knockout induces mtDNA release, leading to activation of the cGAS-STING pathway and liver inflammation in mice. Moreover, exogenous expression of Sam50 remarkably attenuates APAP-induced liver hepatoxicity. CONCLUSIONS Our findings uncover the critical role of Sam50 in maintaining mitochondrial membrane integrity and mtDNA stability in hepatocytes and reveal that Sam50 depletion-induced cardiolipin externalization is a signal of mtDNA release and controls mtDNA-dependent innate immunity.
Collapse
Affiliation(s)
- Li Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jun Dong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Siyang Liao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Siyou Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Zhida Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Meiling Zuo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Bing Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Chaojun Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - He He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Qingtao Meng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
29
|
Ain U, Firdaus H. Parvin: A hub of intracellular signalling pathways regulating cellular behaviour and disease progression. Acta Histochem 2022; 124:151935. [PMID: 35932544 DOI: 10.1016/j.acthis.2022.151935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
α-actinin superfamily houses the family of parvins, comprising α, β and γ isoforms in the vertebrates and a single orthologue in the invertebrates. Parvin as an adaptor protein is a member of the ternary IPP-complex including Integrin Linked Kinase (ILK) and particularly-interesting-Cys-His-rich protein (PINCH). Each of the complex proteins showed a conserved lineage and was principally used by the evolutionarily primitive integrin-adhesome machinery to regulate cellular behaviour and signalling pathways. Parvin facilitated integrin mediated integration of the extracellular matrix with cytoskeletal framework culminating in regulation of cellular adhesion and spreading, cytoskeleton reorganisation and cell survival. Studies have established role of parvin in pregnancy, lactation, matrix degradation, blood vessel formation and in several diseases such as cancer, NAFLD and cardiac diseases etc. This review narrates the history of parvin discovery, its elaborate gene structure and conservation across phyla including cellular expression, localisation and interacting partners in vertebrates as well as invertebrates. The review further discusses how parvin acts as an epicentre of signalling pathways, its associated mutants and diseased conditions.
Collapse
Affiliation(s)
- Ushashi Ain
- Department of Life Sciences, Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Ranchi 835205, India
| | - Hena Firdaus
- Department of Life Sciences, Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Ranchi 835205, India.
| |
Collapse
|
30
|
Qiao M, Yang JH, Zhu Y, Hu JP. Association of sorting and assembly machinery component 50 homolog gene polymorphisms with nonalcoholic fatty liver disease susceptibility. Medicine (Baltimore) 2022; 101:e29958. [PMID: 35866791 PMCID: PMC9302252 DOI: 10.1097/md.0000000000029958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Sorting and assembly machinery component 50 homolog (SAMM50) gene single-nucleotide polymorphisms (SNPs) have been connected with the susceptibility of nonalcoholic fatty liver disease (NAFLD), but with inconsistent results across the current evidence. The present work was schemed to explore the association between SAMM50 gene SNPs and NAFLD vulnerability via meta-analysis. METHODS PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), and Wanfang were retrieved for eligible literature previous to June 10, 2021. The odds ratios (ORs) of the dichotomic variables and the standardized mean difference of quantitative variables with corresponding 95% confidence intervals (95% CIs) were computed to evaluate the strength of the associations. The quality of included studies was assessed using Newcastle-Ottawa Scale (NOS). RESULTS In total, 8 case-control studies encompassing 6297 NAFLD patients and 7306 disease-free controls in this meta-analysis. Ultimately, this analysis included 8, 6, and 5 studies for rs2143571, rs3761472, and rs738491 polymorphisms respectively. The pooled data revealed that the 3 polymorphisms had conspicuous associations with NAFLD susceptibility: rs2143571, A vs. G, OR=1.51, 95% CI, 1.37-1.66, P < .01; rs3761472, A vs. G, OR=1.50, 95% CI, 1.35-1.67, P < .01; rs738491, A vs. G, OR=1.51, 95% CI, 1.40-1.63, P < .01. CONCLUSION This meta-analysis suggests that rs2143571, rs3761472, and rs738491 polymorphisms of the SAMM50 gene are appreciably associated with augmented risk of NAFLD vulnerability. It will provide the latest evidence to support the susceptibility of SAMM50 gene polymorphisms and NAFLD, and provide strategies for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Ming Qiao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jian-hua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yi Zhu
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jun-ping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- * Correspondence: Jun-ping Hu, College of Pharmacy, Xinjiang Medical University, 137 Liyushan Avenue, Xinshi District, Urumqi, Xinjiang 830017, China (e-mail: )
| |
Collapse
|
31
|
Update on Non-Alcoholic Fatty Liver Disease-Associated Single Nucleotide Polymorphisms and Their Involvement in Liver Steatosis, Inflammation, and Fibrosis: A Narrative Review. IRANIAN BIOMEDICAL JOURNAL 2022; 26:252-68. [PMID: 36000237 PMCID: PMC9432469 DOI: 10.52547/ibj.3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genetic factors are involved in the development, progression, and severity of NAFLD. Polymorphisms in genes regulating liver functions may increase liver susceptibility to NAFLD. Therefore, we conducted this literature study to present recent findings on NAFLD-associated polymorphisms from published articles in PubMed from 2016 to 2021. From 69 selected research articles, 20 genes and 34 SNPs were reported to be associated with NAFLD. These mutated genes affect NAFLD by promoting liver steatosis (PNPLA3, MBOAT7, TM2SF6, PTPRD, FNDC5, IL-1B, PPARGC1A, UCP2, TCF7L2, SAMM50, IL-6, AGTR1, and NNMT), inflammation (PNPLA3, TNF-α, AGTR1, IL-17A, IL-1B, PTPRD, and GATAD2A), and fibrosis (IL-1B, PNPLA3, MBOAT7, TCF7L2, GATAD2A, IL-6, NNMT, UCP, AGTR1, and TM2SF6). The identification of these genetic factors helps to better understand the pathogenesis pathways of NAFLD
Collapse
|
32
|
Czaja AJ. Epigenetic Aspects and Prospects in Autoimmune Hepatitis. Front Immunol 2022; 13:921765. [PMID: 35844554 PMCID: PMC9281562 DOI: 10.3389/fimmu.2022.921765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
The observed risk of autoimmune hepatitis exceeds its genetic risk, and epigenetic factors that alter gene expression without changing nucleotide sequence may help explain the disparity. Key objectives of this review are to describe the epigenetic modifications that affect gene expression, discuss how they can affect autoimmune hepatitis, and indicate prospects for improved management. Multiple hypo-methylated genes have been described in the CD4+ and CD19+ T lymphocytes of patients with autoimmune hepatitis, and the circulating micro-ribonucleic acids, miR-21 and miR-122, have correlated with laboratory and histological features of liver inflammation. Both epigenetic agents have also correlated inversely with the stage of liver fibrosis. The reduced hepatic concentration of miR-122 in cirrhosis suggests that its deficiency may de-repress the pro-fibrotic prolyl-4-hydroxylase subunit alpha-1 gene. Conversely, miR-155 is over-expressed in the liver tissue of patients with autoimmune hepatitis, and it may signify active immune-mediated liver injury. Different epigenetic findings have been described in diverse autoimmune and non-autoimmune liver diseases, and these changes may have disease-specificity. They may also be responses to environmental cues or heritable adaptations that distinguish the diseases. Advances in epigenetic editing and methods for blocking micro-ribonucleic acids have improved opportunities to prove causality and develop site-specific, therapeutic interventions. In conclusion, the role of epigenetics in affecting the risk, clinical phenotype, and outcome of autoimmune hepatitis is under-evaluated. Full definition of the epigenome of autoimmune hepatitis promises to enhance understanding of pathogenic mechanisms and satisfy the unmet clinical need to improve therapy for refractory disease.
Collapse
Affiliation(s)
- Albert J. Czaja
- *Correspondence: Albert J. Czaja, ; orcid.org/0000-0002-5024-3065
| |
Collapse
|
33
|
Kurokawa S, Yoneda M, Ogawa Y, Honda Y, Kessoku T, Imajo K, Saito S, Nakajima A, Hotta K. Two differentially methylated region networks in nonalcoholic fatty liver disease, viral hepatitis, and hepatocellular carcinoma. BMC Gastroenterol 2022; 22:278. [PMID: 35655171 PMCID: PMC9164838 DOI: 10.1186/s12876-022-02360-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background We previously reported that two differentially methylated region (DMR) networks identified by DMR and co-methylation analyses are strongly correlated with the fibrosis stages of nonalcoholic fatty liver disease (NAFLD). In the current study, we examined these DMR networks in viral hepatitis and hepatocellular carcinoma (HCC). Methods We performed co-methylation analysis of DMRs using a normal dataset (GSE48325), two NAFLD datasets (JGAS000059 and GSE31803), and two HCC datasets (GSE89852 and GSE56588). The dataset GSE60753 was used for validation. Results One DMR network was clearly observed in viral hepatitis and two HCC populations. Methylation levels of genes in this network were higher in viral hepatitis and cirrhosis, and lower in HCC. Fatty acid binding protein 1 (FABP1), serum/glucocorticoid regulated kinase 2 (SGK2), and hepatocyte nuclear factor 4 α (HNF4A) were potential hub genes in this network. Increased methylation levels of the FABP1 gene may be correlated with reduced protection of hepatocytes from oxidative metabolites in NAFLD and viral hepatitis. The decreased methylation levels of SGK2 may facilitate the growth and proliferation of HCC cells. Decreased methylation levels of HNF4A in HCC may be associated with tumorigenesis. The other DMR network was observed in NAFLD, but not in viral hepatitis or HCC. This second network included genes involved in transcriptional regulation, cytoskeleton organization, and cellular proliferation, which are specifically related to fibrosis and/or tumorigenesis in NAFLD. Conclusions Our results suggest that one DMR network was associated with fibrosis and tumorigenesis in both NAFLD and viral hepatitis, while the other network was specifically associated with NAFLD progression. Furthermore, FABP1, SGK2, and HNF4A are potential candidate targets for the prevention and treatment of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02360-4.
Collapse
|
34
|
Kawaguchi T, Tsutsumi T, Nakano D, Torimura T. MAFLD: Renovation of clinical practice and disease awareness of fatty liver. Hepatol Res 2022; 52:422-432. [PMID: 34472683 DOI: 10.1111/hepr.13706] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022]
Abstract
Recently, international expert panels have proposed a new definition of fatty liver: metabolic dysfunction-associated fatty liver disease (MAFLD). MAFLD is not just a simple renaming of non-alcoholic fatty liver disease (NAFLD). The unique feature of MAFLD is the inclusion of metabolic dysfunctions, which are high-risk factors for events. In addition, MAFLD is independent of alcohol intake and the co-existing causes of liver disease. This new concept of MAFLD may have a widespread impact on patients, medical doctors, medical staff, and various stakeholders regarding fatty liver. Thus, MAFLD may renovate clinical practice and disease awareness of fatty liver. In this review, we introduce the definition of and rationale for MAFLD. We further describe representative cases showing how the diagnostic processes differ between MAFLD and NAFLD. We also summarize recent studies comparing MAFLD with NAFLD and discuss the impact of MAFLD on clinical trials, Japanese populations, and disease awareness.
Collapse
Affiliation(s)
- Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tsubasa Tsutsumi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Dan Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
35
|
Xu K, Zheng KI, Zhu PW, Liu WY, Ma HL, Li G, Tang LJ, Rios RS, Targher G, Byrne CD, Wang XD, Chen YP, Zheng MH. Interaction of SAMM50-rs738491, PARVB-rs5764455 and PNPLA3-rs738409 Increases Susceptibility to Nonalcoholic Steatohepatitis. J Clin Transl Hepatol 2022; 10:219-229. [PMID: 35528982 PMCID: PMC9039704 DOI: 10.14218/jcth.2021.00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/26/2021] [Accepted: 07/01/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Previous studies have reported that the single nucleotide polymorphisms (SNPs) of SAMM50-rs738491, PARVB-rs5764455 and PNPLA3-rs738409 are associated with nonalcoholic fatty liver disease (NAFLD). However, no studies have examined the effect of interactions between these three genotypes to affect liver disease severity. We assessed the effect of these three SNPs on nonalcoholic steatohepatitis (NASH) and also examined the gene-gene interactions in a Chinese population with biopsy-confirmed NAFLD. METHODS We enrolled 415 consecutive adult individuals with biopsy-proven NAFLD. Multivariable logistic regression analysis was undertaken to test associations between NASH and SNPs in SAMM50-rs738491, PARVB-rs5764455 and PNPLA3-rs738409. Gene-gene interactions were analyzed by performing a generalized multifactor dimensionality reduction (GMDR) analysis. RESULTS The mean ± standard deviation age of these 415 patients was 41.3±12.5 years, and 75.9% were men. Patients with SAMM50-rs738491 TT, PARVB-rs5764455 AA or PNPLA3-rs738409 GG genotypes had a higher risk of NASH, even after adjustment for age, sex and body mass index. GMDR analysis showed that the combination of all three SNPs was the best model for predicting NASH. Additionally, the odds ratio of the haplotype T-A-G for predicting the risk of NASH was nearly three times higher than that of the haplotype G-C-C. CONCLUSIONS NAFLD patients carrying the SAMM50-rs738491 TT, PARVB-rs5764455 AA or PNPLA3-rs738409 GG genotypes are at greater risk of NASH. These three SNPs may synergistically interact to increase susceptibility to NASH.
Collapse
Affiliation(s)
- Ke Xu
- NAFLD Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kenneth I. Zheng
- NAFLD Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Yue Liu
- Department of Endocrinology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Lei Ma
- NAFLD Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gang Li
- NAFLD Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rafael S. Rios
- NAFLD Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D. Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Xiao-Dong Wang
- NAFLD Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yong-Ping Chen
- NAFLD Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China
- Correspondence to: Ming-Hua Zheng, NAFLD Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, Zhejiang 325000, China. ORCID: https://orcid.org/0000-0003-4984-2631. Tel: +86-577-5557-9611, Fax: +86-577-5557-8522, E-mail:
| |
Collapse
|
36
|
Youssef SS, Abbas EAER, Youness RA, Elemeery MN, Nasr AS, Seif S. PNPLA3 and IL 28B signature for predicting susceptibility to chronic hepatitis C infection and fibrosis progression. Arch Physiol Biochem 2022; 128:483-489. [PMID: 31793339 DOI: 10.1080/13813455.2019.1694039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Association studies identified genetic polymorphisms as predictive risk factors of rapid fibrosis progression in chronic hepatitis C (CHC). This study aims to assess the impact of IL28B rs8099917 polymorphism on CHC genotype 4 (G4) susceptibility and liver fibrosis progression individually; and in combination with PNPLA3 rs738409. PATIENTS AND METHODS IL28B rs8099917 and PNPLA3 rs738409 were genotyped in 150 Egyptian CHC patients and 175 healthy controls using real-time PCR. RESULTS IL28B rs8099917 genotype distribution significantly differs in healthy individuals versus CHC patients (p = .018); and in low versus advanced fibrosis IL28B (p = .013). The haplotype CC -GG (PNPLA3-IL28B) is considered a high-risk signature for susceptibility to CHC infection. Similarly, GG-GG (PNPLA3-IL28B) is considered a high-risk signature for higher degree of fibrosis. CONCLUSION IL28B rs8099917 and PNPLA3 rs738409 introduce genetic signature to identify patients at higher risk for CHC susceptibility and fibrosis progression in CHC G4.
Collapse
Affiliation(s)
- Samar Samir Youssef
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Egypt
| | - Eman Abd El Razek Abbas
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Egypt
| | - Rana Ahmed Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Moustafa Nouh Elemeery
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Egypt
- Département de Neurosciences, CRCHUM, Université de Montréal, Montréal, Quebec, Canada
| | - Amal Soliman Nasr
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sameh Seif
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| |
Collapse
|
37
|
Lee KJ, Moon JS, Kim NY, Ko JS. Effects of PNPLA3, TM6SF2 and SAMM50 on the development and severity of non-alcoholic fatty liver disease in children. Pediatr Obes 2022; 17:e12852. [PMID: 34490745 DOI: 10.1111/ijpo.12852] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Although genetic variants of PNPLA3, TM6SF2 and SAMM50 have been reported to increase the risk of non-alcoholic fatty liver disease (NAFLD), no pediatric studies have evaluated the association between SAMM50 and NAFLD. OBJECTIVE This study aimed to investigate the risk factors, including genetic variants, of pediatric NAFLD. METHODS NAFLD was defined as the presence of hepatic steatosis on ultrasound. We included 228 patients with NAFLD (body mass index-Z [BMI-Z] = 2.51 ± 1.01) and 225 controls (BMI-Z = 0.22 ± 1.48). We genotyped four variants of PNPLA3 (rs738409), TM6SF2 (rs58542926) and SAMM50 (rs2073080 and rs3761472) by TaqMan allelic discrimination. The pediatric NAFLD fibrosis score, aspartate transaminase (AST)/platelet ratio index and fibrosis-4 score were used to evaluate the degree of fibrosis. We calculated the genetic risk score for additive effects according to the sum of risk alleles. RESULTS The mean age was 12.6 ± 3.5 years. The four genetic variants, male sex and BMI-Z, independently increased susceptibility to NAFLD. These four variants, in addition to fasting insulin and triglycerides, remained significant risk factors with higher odds ratios in children with overweight. These variants increased the alanine aminotransferase (ALT) level and three fibrosis scores independently. As the genetic risk score increased, AST, ALT and the fibrosis scores increased independently. CONCLUSION PNPLA3, TM6SF2 and SAMM50 are associated with the development and severity of pediatric NAFLD. The impact of genetic variants is greater in children with overweight. The four genetic variants have synergetic effects on the severity of pediatric NAFLD.
Collapse
Affiliation(s)
- Kyung Jae Lee
- Department of Pediatrics, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jin Soo Moon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Nan Young Kim
- Hallym Institute of Translational Genomics & Bioinformatics, Hallym University Medical Center, Anyang, Republic of Korea
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Fairfield CJ, Drake TM, Pius R, Bretherick AD, Campbell A, Clark DW, Fallowfield JA, Hayward C, Henderson NC, Joshi PK, Mills NL, Porteous DJ, Ramachandran P, Semple RK, Shaw CA, Sudlow CL, Timmers PR, Wilson JF, Wigmore SJ, Harrison EM, Spiliopoulou A. Genome-Wide Association Study of NAFLD Using Electronic Health Records. Hepatol Commun 2022; 6:297-308. [PMID: 34535985 PMCID: PMC8793997 DOI: 10.1002/hep4.1805] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified several risk loci for nonalcoholic fatty liver disease (NAFLD). Previous studies have largely relied on small sample sizes and have assessed quantitative traits. We performed a case-control GWAS in the UK Biobank using recorded diagnosis of NAFLD based on diagnostic codes recommended in recent consensus guidelines. We performed a GWAS of 4,761 cases of NAFLD and 373,227 healthy controls without evidence of NAFLD. Sensitivity analyses were performed excluding other co-existing hepatic pathology, adjusting for body mass index (BMI) and adjusting for alcohol intake. A total of 9,723,654 variants were assessed by logistic regression adjusted for age, sex, genetic principal components, and genotyping batch. We performed a GWAS meta-analysis using available summary association statistics. Six risk loci were identified (P < 5*10-8 ) (apolipoprotein E [APOE], patatin-like phospholipase domain containing 3 [PNPLA3, transmembrane 6 superfamily member 2 [TM6SF2], glucokinase regulator [GCKR], mitochondrial amidoxime reducing component 1 [MARC1], and tribbles pseudokinase 1 [TRIB1]). All loci retained significance in sensitivity analyses without co-existent hepatic pathology and after adjustment for BMI. PNPLA3 and TM6SF2 remained significant after adjustment for alcohol (alcohol intake was known in only 158,388 individuals), with others demonstrating consistent direction and magnitude of effect. All six loci were significant on meta-analysis. Rs429358 (P = 2.17*10-11 ) is a missense variant within the APOE gene determining ϵ4 versus ϵ2/ϵ3 alleles. The ϵ4 allele of APOE offered protection against NAFLD (odds ratio for heterozygotes 0.84 [95% confidence interval 0.78-0.90] and homozygotes 0.64 [0.50-0.79]). Conclusion: This GWAS replicates six known NAFLD-susceptibility loci and confirms that the ϵ4 allele of APOE is associated with protection against NAFLD. The results are consistent with published GWAS using histological and radiological measures of NAFLD, confirming that NAFLD identified through diagnostic codes from consensus guidelines is a valid alternative to more invasive and costly approaches.
Collapse
Affiliation(s)
- Cameron J. Fairfield
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Thomas M. Drake
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Riinu Pius
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Andrew D. Bretherick
- MRC Human Genetics UnitInstitute of Genetics and CancerUniversity of EdinburghEdinburghScotland
| | - Archie Campbell
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
- Centre for Genomic and Experimental MedicineInstitute of Genetics & Molecular MedicineUniversity of EdinburghEdinburghScotland
- Health Data Research UKUniversity of EdinburghEdinburghScotland
| | - David W. Clark
- Centre for Global Health ResearchUsher InstituteUniversity of EdinburghEdingburghScotland
| | - Jonathan A. Fallowfield
- Centre for Inflammation ResearchQueen’s Medical Research InstituteUniversity of EdinburghEdingburghScotland
| | - Caroline Hayward
- MRC Human Genetics UnitInstitute of Genetics and CancerUniversity of EdinburghEdinburghScotland
| | - Neil C. Henderson
- Centre for Inflammation ResearchQueen’s Medical Research InstituteUniversity of EdinburghEdingburghScotland
| | - Peter K. Joshi
- Centre for Global Health ResearchUsher InstituteUniversity of EdinburghEdingburghScotland
| | - Nicholas L. Mills
- Centre for Cardiovascular ScienceQueen’s Medical Research InstituteUniversity of EdinburghEdingburghScotland
| | - David J. Porteous
- Centre for Genomic and Experimental MedicineInstitute of Genetics & Molecular MedicineUniversity of EdinburghEdinburghScotland
| | - Prakash Ramachandran
- Centre for Inflammation ResearchQueen’s Medical Research InstituteUniversity of EdinburghEdingburghScotland
| | - Robert K. Semple
- Centre for Cardiovascular ScienceQueen’s Medical Research InstituteUniversity of EdinburghEdingburghScotland
| | - Catherine A. Shaw
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Cathie L.M. Sudlow
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
| | - Paul R.H.J. Timmers
- MRC Human Genetics UnitInstitute of Genetics and CancerUniversity of EdinburghEdinburghScotland
- Centre for Global Health ResearchUsher InstituteUniversity of EdinburghEdingburghScotland
| | - James F. Wilson
- MRC Human Genetics UnitInstitute of Genetics and CancerUniversity of EdinburghEdinburghScotland
- Centre for Global Health ResearchUsher InstituteUniversity of EdinburghEdingburghScotland
| | - Stephen J. Wigmore
- Department of Clinical SurgeryDivision of Health SciencesUniversity of EdinburghEdingburghScotland
| | - Ewen M. Harrison
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghScotland
- Department of Clinical SurgeryDivision of Health SciencesUniversity of EdinburghEdingburghScotland
| | - Athina Spiliopoulou
- Centre for Global Health ResearchUsher InstituteUniversity of EdinburghEdingburghScotland
| |
Collapse
|
39
|
Miao Z, Garske KM, Pan DZ, Koka A, Kaminska D, Männistö V, Sinsheimer JS, Pihlajamäki J, Pajukanta P. Identification of 90 NAFLD GWAS loci and establishment of NAFLD PRS and causal role of NAFLD in coronary artery disease. HGG ADVANCES 2022; 3:100056. [PMID: 35047847 PMCID: PMC8756520 DOI: 10.1016/j.xhgg.2021.100056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD), now also known as metabolic dysfunction-associated fatty liver disease (MAFLD), is rapidly increasing worldwide due to the ongoing obesity epidemic. However, currently the NALFD diagnosis requires non-readily available imaging technologies or liver biopsy, which has drastically limited the sample sizes of NAFLD studies and hampered the discovery of its genetic component. Here we utilized the large UK Biobank (UKB) to accurately estimate the NAFLD status in UKB based on common serum traits and anthropometric measures. Scoring all individuals in UKB for NAFLD risk resulted in 28,396 NAFLD cases and 108,652 healthy individuals at a >90% confidence level. Using this imputed NAFLD status to perform the largest NAFLD genome-wide association study (GWAS) to date, we identified 94 independent (R2 < 0.2) NAFLD GWAS loci, of which 90 have not been identified before; built a polygenic risk score (PRS) model to predict the genetic risk of NAFLD; and used the GWAS variants of imputed NAFLD for a tissue-aware Mendelian randomization analysis that discovered a significant causal effect of NAFLD on coronary artery disease (CAD). In summary, we accurately estimated the NAFLD status in UKB using common serum traits and anthropometric measures, which empowered us to identify 90 GWAS NAFLD loci, build NAFLD PRS, and discover a significant causal effect of NAFLD on CAD.
Collapse
Affiliation(s)
- Zong Miao
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Kristina M Garske
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David Z Pan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Amogha Koka
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dorota Kaminska
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Institute of Public Health and Clinical Nutrition UEF, Kuopio, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Ville Männistö
- Department of Medicine, UEF and Kuopio University Hospital, Kuopio, Finland
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, the Netherlands
| | - Janet S Sinsheimer
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, UCLA, Los Angeles, CA, USA
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition UEF, Kuopio, Finland
- Department of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
40
|
WGCNA-Based Identification of Hub Genes and Key Pathways Involved in Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5633211. [PMID: 34938809 PMCID: PMC8687832 DOI: 10.1155/2021/5633211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
Background The morbidity of nonalcoholic fatty liver disease (NAFLD) has been rising, but the pathogenesis of NAFLD is still elusive. This study is aimed at determining NAFLD-related hub genes based on weighted gene coexpression network analysis (WGCNA). Methods GSE126848 dataset based construction of coexpression networks was performed based on WGCNA. Database for Annotation, Visualization, and Integrated Discovery (DAVID) was utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Hub genes were identified and validated in independent datasets and mouse model. Results We found that the steelblue module was most significantly correlated with NAFLD. Total 15 hub genes (NDUFA9, UQCRQ, NDUFB8, COPS5, RPS17, UBL5, PSMA3, PSMA1, SF3B5, MRPL27, RPL26, PDCD5, PFDN6, SNRPD2, PSMB3) were derived from both the coexpression and PPI networks and considered “true” hub genes. Functional enrichment analysis showed that the hub genes were related to NAFLD pathway and oxidative phosphorylation. Independent dataset-based analysis and the establishment of NAFLD mouse model confirmed the involvement of two hub genes NDUFA9 and UQCRQ in the pathogenesis of NAFLD. Conclusions Oxidative phosphorylation and NAFLD pathway may be crucially involved in the pathogenesis of NAFLD, and two hub genes NDUFA9 and UQCRQ might be diagnostic biomarkers and therapeutic targets for NAFLD.
Collapse
|
41
|
Wang Z, Budhu AS, Shen Y, Wong LL, Hernandez BY, Tiirikainen M, Ma X, Irwin ML, Lu L, Zhao H, Lim JK, Taddei T, Mishra L, Pawlish K, Stroup A, Brown R, Nguyen MH, Koshiol J, Hernandez MO, Forgues M, Yang HI, Lee MH, Huang YH, Iwasaki M, Goto A, Suzuki S, Matsuda K, Tanikawa C, Kamatani Y, Mann D, Guarnera M, Shetty K, Thomas CE, Yuan JM, Khor CC, Koh WP, Risch H, Wang XW, Yu H. Genetic susceptibility to hepatocellular carcinoma in chromosome 22q13.31, findings of a genome-wide association study. JGH Open 2021; 5:1363-1372. [PMID: 34950780 PMCID: PMC8674550 DOI: 10.1002/jgh3.12682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Chronic hepatitis C virus (HCV) infection, long-term alcohol use, cigarette smoking, and obesity are the major risk factors for hepatocellular carcinoma (HCC) in the United States, but the disease risk varies substantially among individuals with these factors, suggesting host susceptibility to and gene-environment interactions in HCC. To address genetic susceptibility to HCC, we conducted a genome-wide association study (GWAS). METHODS Two case-control studies on HCC were conducted in the United States. DNA samples were genotyped using the Illumian microarray chip with over 710 000 single nucleotide polymorphisms (SNPs). We compared these SNPs between 705 HCC cases and 1455 population controls for their associations with HCC and verified our findings in additional studies. RESULTS In this GWAS, we found that two SNPs were associated with HCC at P < 5E-8 and six SNPs at P < 5E-6 after adjusting for age, sex, and the top three principal components (PCs). Five of the SNPs in chromosome 22q13.31, three in PNPLA3 (rs2281135, rs2896019, and rs4823173) and two in SAMM50 (rs3761472, rs3827385), were replicated in a small US case-control study and a cohort study in Singapore. The associations remained significant after adjusting for body mass index and HCV infection. Meta-analysis of multiple datasets indicated that these SNPs were significantly associated with HCC. CONCLUSIONS SNPs in PNPLA3 and SAMM50 are known risk loci for nonalcoholic fatty liver disease (NAFLD) and are suspected to be associated with HCC. Our GWAS demonstrated the associations of these SNPs with HCC in a US population. Biological mechanisms underlying the relationship remain to be elucidated.
Collapse
Affiliation(s)
- Zhanwei Wang
- University of Hawaii Cancer Center Honolulu Hawaii USA
| | - Anuradha S Budhu
- Laboratory of Human Carcinogenesis, Liver Cancer Program, Center for Cancer Research National Cancer Institute Bethesda Maryland USA
| | - Yi Shen
- University of Hawaii Cancer Center Honolulu Hawaii USA
| | | | | | | | - Xiaomei Ma
- Yale School of Public Health New Haven Connecticut USA
| | | | - Lingeng Lu
- Yale School of Public Health New Haven Connecticut USA
| | - Hongyu Zhao
- Yale School of Public Health New Haven Connecticut USA
| | - Joseph K Lim
- Yale School of Medicine New Haven Connecticut USA
| | - Tamar Taddei
- Yale School of Medicine New Haven Connecticut USA
| | - Lopa Mishra
- Center for Translational Medicine, Department of Surgery The George Washington University Washington District of Columbia USA
| | - Karen Pawlish
- New Jersey State Cancer Registry, New Jersey Department of Health Trenton New Jersey USA
| | - Antoinette Stroup
- Rutgers Cancer Institute, and Rutgers School of Public Health New Brunswick New Jersey USA
| | - Robert Brown
- Weill Cornell Medical College, and College of Physicians and Surgeons, Columbia University New York New York USA
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology Stanford University Medical Center Palo Alto California USA
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda Maryland USA
| | - Maria O Hernandez
- Laboratory of Human Carcinogenesis Center for Cancer Research, National Cancer Institute Bethesda Maryland USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis Center for Cancer Research, National Cancer Institute Bethesda Maryland USA
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica Taipei Taiwan.,Institute of Clinical Medicine, National Yang Ming University Taipei Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang Ming University Taipei Taiwan
| | - Yu-Han Huang
- Institute of Clinical Medicine, National Yang Ming University Taipei Taiwan
| | - Motoki Iwasaki
- Division of Epidemiology Center for Public Health Sciences, National Cancer Center Tokyo Japan
| | - Atsushi Goto
- Division of Epidemiology Center for Public Health Sciences, National Cancer Center Tokyo Japan
| | - Shiori Suzuki
- Division of Epidemiology Center for Public Health Sciences, National Cancer Center Tokyo Japan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, and Institute of Medical Science, University of Tokyo Tokyo Japan
| | - Chizu Tanikawa
- Graduate School of Frontier Sciences, and Institute of Medical Science, University of Tokyo Tokyo Japan
| | - Yoichiro Kamatani
- Graduate School of Frontier Sciences, and Institute of Medical Science, University of Tokyo Tokyo Japan
| | - Dean Mann
- Department of Pathology University of Maryland School of Medicine Baltimore Maryland USA
| | - Maria Guarnera
- Department of Pathology University of Maryland School of Medicine Baltimore Maryland USA
| | - Kirti Shetty
- Department of Gastroenterology and Hepatology University of Maryland School of Medicine Baltimore Maryland USA
| | - Claire E Thomas
- Division of Cancer Control and Population Sciences University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center Pittsburgh Pennsylvania USA.,Department of Epidemiology Graduate School of Public Health, University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center Pittsburgh Pennsylvania USA.,Department of Epidemiology Graduate School of Public Health, University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research Singapore Singapore.,Singapore Eye Research Institute Singapore Singapore
| | - Woon-Puay Koh
- Health Systems and Services Research, Duke-NUS Medical School Singapore Singapore Singapore.,Saw Swee Hock School of Public Health, National University of Singapore Singapore Singapore
| | - Harvey Risch
- Yale School of Public Health New Haven Connecticut USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Liver Cancer Program, Center for Cancer Research National Cancer Institute Bethesda Maryland USA
| | - Herbert Yu
- University of Hawaii Cancer Center Honolulu Hawaii USA
| |
Collapse
|
42
|
Nishikawa H, Asai A, Fukunishi S, Nishiguchi S, Higuchi K. Metabolic Syndrome and Sarcopenia. Nutrients 2021; 13:3519. [PMID: 34684520 PMCID: PMC8541622 DOI: 10.3390/nu13103519] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is a major organ of insulin-induced glucose metabolism. In addition, loss of muscle mass is closely linked to insulin resistance (IR) and metabolic syndrome (Met-S). Skeletal muscle loss and accumulation of intramuscular fat are associated with a variety of pathologies through a combination of factors, including oxidative stress, inflammatory cytokines, mitochondrial dysfunction, IR, and inactivity. Sarcopenia, defined by a loss of muscle mass and a decline in muscle quality and muscle function, is common in the elderly and is also often seen in patients with acute or chronic muscle-wasting diseases. The relationship between Met-S and sarcopenia has been attracting a great deal of attention these days. Persistent inflammation, fat deposition, and IR are thought to play a complex role in the association between Met-S and sarcopenia. Met-S and sarcopenia adversely affect QOL and contribute to increased frailty, weakness, dependence, and morbidity and mortality. Patients with Met-S and sarcopenia at the same time have a higher risk of several adverse health events than those with either Met-S or sarcopenia. Met-S can also be associated with sarcopenic obesity. In this review, the relationship between Met-S and sarcopenia will be outlined from the viewpoints of molecular mechanism and clinical impact.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (A.A.); (S.F.); (K.H.)
- Premier Departmental Research of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan
| | - Akira Asai
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (A.A.); (S.F.); (K.H.)
| | - Shinya Fukunishi
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (A.A.); (S.F.); (K.H.)
- Premier Departmental Research of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan
| | | | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (A.A.); (S.F.); (K.H.)
| |
Collapse
|
43
|
Li L, Huang L, Yang A, Feng X, Mo Z, Zhang H, Yang X. Causal Relationship Between Complement C3, C4, and Nonalcoholic Fatty Liver Disease: Bidirectional Mendelian Randomization Analysis. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:211-221. [PMID: 36939807 PMCID: PMC9590569 DOI: 10.1007/s43657-021-00023-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
The complement system is activated during the development of nonalcoholic fatty liver disease (NAFLD). We aimed to evaluate the causal relationship between serum C3 and C4 levels and NAFLD. After exclusion criteria, a total of 1600 Chinese Han men from the Fangchenggang Area Male Health and Examination Survey cohort were enrolled in cross-sectional analysis, while 572 participants were included in the longitudinal analysis (average follow-up of 4 years). We performed a bidirectional Mendelian randomization (MR) analysis using two C3-related, eight C4-related and three NAFLD-related gene loci as instrumental variables to evaluate the causal associations between C3, C4, and NAFLD risk in cross-sectional analysis. Per SD increase in C3 levels was significantly associated with higher risk of NAFLD (OR = 1.65, 95% CI 1.40, 1.94) in cross-sectional analysis while C4 was not (OR = 1.04, 95% CI 0.89, 1.21). Longitudinal analysis produced similar results (HRC3 = 1.20, 95% CI 1.02, 1.42; HRC4 = 1.10, 95% CI 0.94, 1.28). In MR analysis, there were no causal relationships for genetically determined C3 levels and NAFLD risk using unweighted or weighted GRS_C3 (βE_unweighted = -0.019, 95% CI -0.019, -0.019, p = 0.202; βE_weighted = -0.019, 95% CI -0.019, -0.019, p = 0.322). Conversely, serum C3 levels were significantly effected by the genetically determined NAFLD (βE_unweighted = 0.020, 95% CI 0.020, 0.020, p = 0.004; βE_weighted = 0.021, 95% CI 0.020, 0.021, p = 0.004). Neither the direction from C4 to NAFLD nor the one from NAFLD to C4 showed significant association. Our results support that the change in serum C3 levels but not C4 levels might be caused by NAFLD in Chinese Han men. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-021-00023-0.
Collapse
Affiliation(s)
- Longman Li
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- Nanhu Zhuxi Community Healthcare Center, Qingxiu District, Nanning, 530021 Guangxi China
- grid.412594.fDepartment of Urology, Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Lulu Huang
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Aimin Yang
- grid.194645.b0000000121742757School of Public Health, The University of Hong Kong, Hong Kong SAR, 999077 China
| | - Xiuming Feng
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.256607.00000 0004 1798 2653Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Zengnan Mo
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.412594.fDepartment of Urology, Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Haiying Zhang
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.256607.00000 0004 1798 2653Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Xiaobo Yang
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.256607.00000 0004 1798 2653Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.440719.f0000 0004 1800 187XDepartment of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006 Guangxi China
| |
Collapse
|
44
|
Wang J, Conti DV, Bogumil D, Sheng X, Noureddin M, Wilkens LR, Le Marchand L, Rosen HR, Haiman CA, Setiawan VW. Association of Genetic Risk Score With NAFLD in An Ethnically Diverse Cohort. Hepatol Commun 2021; 5:1689-1703. [PMID: 34558842 PMCID: PMC8485887 DOI: 10.1002/hep4.1751] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
Most genetic studies of nonalcoholic fatty liver disease (NAFLD) have been conducted in Whites. In this large and ethnically diverse cohort, we assessed the transportability of previously identified genetic variants for NAFLD, built a genetic risk score (GRS), and examined its association with NAFLD risk in multiple ethnic groups. Thirty previously identified genome-wide association studies (GWAS) variants (P < 5 × 10-8 ) and 17 other variants associated with NAFLD were examined in a nested case-control study of NAFLD (1,448 cases/8,444 controls) in this multi-ethnic cohort study. We then built a GRS using 11 independent single-nucleotide polymorphisms from these prior studies and examined its association with NAFLD by cirrhosis status across multiple ethnic groups. Of the 30 GWAS SNPs, 20 (67%) were replicated (P < 0.05) in the pooled multi-ethnic population. The highest percentage of replication was seen in Latinos (43%), followed by Japanese Americans (37%), Whites (17%), and Native Hawaiians and African Americans (≤10%). Several genetic variants, including those in PNPLA3 (patatin-like phospholipase domain containing 3), HSD17B13 (hydroxysteroid 17-beta dehydrogenase 13), TM6SF2 (transmembrane 6 superfamily member 2), GATAD2A (GATA zinc finger domain containing 2A), GCKR (glucokinase regulator), SUGP1 (SURP and G-patch domain containing 1), MBOAT7 (membrane bound O-acyltransferase domain containing 7), TRIB1 (tribbles pseudokinase 1), SAMM50 (sorting and assembly machinery component), and ERLIN1 (ER lipid raft associated 1)-CHUK (component of inhibitor of nuclear factor kappa B kinase complex)-CWF19L1 (CWF19 like cell cycle control factor 1) gene cluster, were replicated in at least two ethnic groups. An 11-SNP weighted GRS was associated with NAFLD risk in the multi-ethnic population (odds ratio [OR] per SD increase = 1.41; 95% confidence interval [CI] = 1.32-1.50), as well as in each ethnic group (OR ranged from 1.30 in African Americans to 1.52 in Latinos). The GRS-NAFLD association was stronger for NAFLD with cirrhosis (OR = 1.67; 95% CI = 1.46-1.92) compared to NAFLD without cirrhosis (OR = 1.37; 95% CI = 1.28-1.46) (P heterogeneity = 0.003). Conclusion: In this ethnically diverse cohort, we replicated several key genetic variants for NAFLD and showed the utility of GRS based on the risk alleles for NAFLD risk stratification in multiple ethnic groups.
Collapse
Affiliation(s)
- Jun Wang
- Department of Preventive MedicineKeck School of Medicine of University of Southern CaliforniaLos AngelesCAUSA
| | - David V. Conti
- Department of Preventive MedicineKeck School of Medicine of University of Southern CaliforniaLos AngelesCAUSA
- Center for Genetic EpidemiologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Norris Comprehensive Cancer CenterKeck School of Medicine of University of Southern CaliforniaLos AngelesCAUSA
| | - David Bogumil
- Department of Preventive MedicineKeck School of Medicine of University of Southern CaliforniaLos AngelesCAUSA
| | - Xin Sheng
- Department of Preventive MedicineKeck School of Medicine of University of Southern CaliforniaLos AngelesCAUSA
| | - Mazen Noureddin
- Division of Gastroenterology and HepatologyDepartment of MedicineCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Lynne R. Wilkens
- Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHIUSA
| | - Loic Le Marchand
- Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHIUSA
| | - Hugo R. Rosen
- Department of MedicineKeck School of Medicine of University of Southern CaliforniaLos AngelesCAUSA
| | - Christopher A. Haiman
- Department of Preventive MedicineKeck School of Medicine of University of Southern CaliforniaLos AngelesCAUSA
- Center for Genetic EpidemiologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Norris Comprehensive Cancer CenterKeck School of Medicine of University of Southern CaliforniaLos AngelesCAUSA
| | - Veronica Wendy Setiawan
- Department of Preventive MedicineKeck School of Medicine of University of Southern CaliforniaLos AngelesCAUSA
- Center for Genetic EpidemiologyKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Norris Comprehensive Cancer CenterKeck School of Medicine of University of Southern CaliforniaLos AngelesCAUSA
- Department of MedicineKeck School of Medicine of University of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
45
|
Murray JK, Long J, Liu L, Singh S, Pruitt D, Ollmann M, Swearingen E, Hardy M, Homann O, Wu B, Holder JR, Sham K, Herberich B, Lo MC, Dou H, Shkumatov A, Florio M, Rulifson IC. Identification and Optimization of a Minor Allele-Specific Small Interfering RNA to Prevent PNPLA3 I148M-Driven Nonalcoholic Fatty Liver Disease. Nucleic Acid Ther 2021; 31:324-340. [PMID: 34297902 DOI: 10.1089/nat.2021.0026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human genome wide association studies confirm the association of the rs738409 single nucleotide polymorphism (SNP) in the gene encoding protein patatin like phospholipase domain containing 3 (PNPLA3) with nonalcoholic fatty liver disease (NAFLD); the presence of the resulting mutant PNPLA3 I148M protein is a driver of nonalcoholic steatohepatitis (NASH). While Pnpla3-deficient mice do not display an adverse phenotype, the safety of knocking down endogenous wild type PNPLA3 in humans remains unknown. To expand the scope of a potential targeted NAFLD therapeutic to both homozygous and heterozygous PNPLA3 rs738409 populations, we sought to identify a minor allele-specific small interfering RNA (siRNA). Limiting our search to SNP-spanning triggers, a series of chemically modified siRNA were tested in vitro for activity and selectivity toward PNPLA3 rs738409 mRNA. Conjugation of the siRNA to a triantennary N-acetylgalactosamine (GalNAc) ligand enabled in vivo screening using adeno-associated virus to overexpress human PNPLA3I148M versus human PNPLA3I148I in mouse livers. Structure-activity relationship optimization yielded potent and minor allele-specific compounds that achieved high levels of mRNA and protein knockdown of human PNPLA3I148M but not PNPLA3I148I. Testing of the minor allele-specific siRNA in PNPLA3I148M-expressing mice fed a NASH-inducing diet prevented PNPLA3I148M-driven disease phenotypes, thus demonstrating the potential of a precision medicine approach to treating NAFLD.
Collapse
Affiliation(s)
- Justin K Murray
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Jason Long
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Lei Liu
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Shivani Singh
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Danielle Pruitt
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Michael Ollmann
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Elissa Swearingen
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Miki Hardy
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Oliver Homann
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Bin Wu
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Jerry Ryan Holder
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Kelvin Sham
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Brad Herberich
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Mei-Chu Lo
- Therapeutic Discovery, Amgen Research, South San Francisco, California, USA
| | - Hui Dou
- Therapeutic Discovery, Amgen Research, South San Francisco, California, USA
| | - Artem Shkumatov
- Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, California, USA
| | - Monica Florio
- Cardiometabolic Disorders, Amgen Research, Thousand Oaks, California, USA
| | - Ingrid C Rulifson
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| |
Collapse
|
46
|
Li Z, Shen W, Wu G, Qin C, Zhang Y, Wang Y, Song G, Xiao C, Zhang X, Deng G, Wang R, Wang X. The role of SAMM50 in non-alcoholic fatty liver disease: from genetics to mechanisms. FEBS Open Bio 2021; 11:1893-1906. [PMID: 33728819 PMCID: PMC8255833 DOI: 10.1002/2211-5463.13146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation. SAMM50 encodes Sam50, a mitochondrial outer membrane protein involved in the removal of reactive oxygen species, mitochondrial morphology and regulation of mitophagy. Certain single nucleotide polymorphisms of SAMM50 have been reported to be correlated with NAFLD. However, the contribution of SAMM50 polymorphisms to the occurrence and severity of fatty liver in the Chinese Han cohort has rarely been reported. Here, we investigated the association between SAMM50 polymorphisms (rs738491 and rs2073082) and NAFLD in a Chinese Han cohort, as well as the mechanistic basis of this association. Clinical information and blood samples were collected from 380 NAFLD cases and 380 normal subjects for the detection of genotypes and biochemical parameters. Carriers of the rs738491 T allele or rs2073082 G allele of SAMM50 exhibit increased susceptibility to NAFLD [odds ratio (OR) = 1.39; 95% confidence interval (CI) = 1.14–1.71, P = 0.001; OR = 1.31; 95% CI = 1.05–1.62, P = 0.016, respectively] and are correlated with elevated serum triglyceride, alanine aminotransferase and aspartate aminotransferase levels. The presence of the T allele (TT + CT) of rs738491 (P < 0.01) or G allele (AG + GG) of rs2073082 (P = 0.03) is correlated with the severity of fatty liver in the NAFLD cohort. In vitro studies indicated that SAMM50 gene polymorphisms decrease its expression and SAMM50 deficiency results in increased lipid accumulation as a result of a decrease in fatty acid oxidation. Overexpression of SAMM50 enhances fatty acid oxidation and mitigates intracellular lipid accumulation. Our results confirm the association between the SAMM50 rs738491 and rs2073082 polymorphisms and the risk of fatty liver in a Chinese cohort. The underlying mechanism may be related to decreased fatty acid oxidation caused by SAMM50 deficiency.
Collapse
Affiliation(s)
- Zuyin Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Weixing Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Gang Wu
- Department of General Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan, China
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yijie Zhang
- Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yupeng Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Chao Xiao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Guilong Deng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Ruitao Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaoliang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
47
|
Thapa K, Grewal AS, Kanojia N, Rani L, Sharma N, Singh S. Alcoholic and Non-Alcoholic Liver Diseases: Promising Molecular Drug Targets and their Clinical Development. Curr Drug Discov Technol 2021; 18:333-353. [PMID: 31965945 DOI: 10.2174/1570163817666200121143959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
Alcoholic and non-alcoholic fatty liver diseases have become a serious concern worldwide. Both these liver diseases have an identical pathology, starting from simple steatosis to cirrhosis and, ultimately to hepatocellular carcinoma. Treatment options for alcoholic liver disease (ALD) are still the same as they were 50 years ago which include corticosteroids, pentoxifylline, antioxidants, nutritional support and abstinence; and for non-alcoholic fatty liver disease (NAFLD), weight loss, insulin sensitizers, lipid-lowering agents and anti-oxidants are the only treatment options. Despite broad research in understanding the disease pathophysiology, limited treatments are available for clinical use. Some therapeutic strategies based on targeting a specific molecule have been developed to lessen the consequences of disease and are under clinical investigation. Therefore, focus on multiple molecular targets will help develop an efficient therapeutic strategy. This review comprises a brief overview of the pathogenesis of ALD and NAFLD; recent molecular drug targets explored for ALD and NAFLD that may prove to be effective for multiple therapeutic regimens and also the clinical status of these promising drug targets for liver diseases.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lata Rani
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
48
|
Diederichs KA, Buchanan SK, Botos I. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. J Mol Biol 2021; 433:166894. [PMID: 33639212 PMCID: PMC8292188 DOI: 10.1016/j.jmb.2021.166894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Chatterjee A, Basu A, Das K, Chowdhury A, Basu P. Exome-wide scan identifies significant association of rs4788084 in IL27 promoter with increase in hepatic fat content among Indians. Gene 2021; 775:145431. [PMID: 33444683 DOI: 10.1016/j.gene.2021.145431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/23/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a global epidemic that often progresses to liver cirrhosis and hepatocellular carcinoma. In contrast to most world populations where NAFLD is mostly prevalent among obese, NAFLD among Indians and generally among South and South-East Asians is unique and highly prevalent among individuals who are lean. Genetics of NAFLD in Indian populations is understudied. In this study, we have used an exome-wide approach to identify genetic determinants of hepatic fat content (HFC) in India. METHODS HFC was measured in 244 participants using Proton magnetic resonance spectroscopy (H1-MRS). Quantitative trait loci (QTL) mapping was done exome-wide, to identify SNPs associated with HFC. The effects of the interaction between adiposity and QTLs on HFC were studied using a regression model. Association of the significant loci with disease severity was studied in 146 NAFLD patients among 244 participants, who underwent liver biopsy. RESULTS Our study identified 4 significantly associated SNPs (rs738409 and rs2281135 (PNPLA3), rs3761472 (SAMM50), rs17513722 (FAM161A) and rs4788084), with HFC after adjusting for the effects of covariates (p-value < 0.0005). rs738409, rs2281135 (PNPLA3), and rs3761472 (SAMM50) were associated with hepatocyte ballooning, lobular and portal inflammation and non-alcoholic steatohepatitis (NASH) (p-value < 0.05). rs4788048 is an eQTL for IL27 and SULT1A2 genes, both of which are highly expressed in healthy livers and are likely to be involved in NAFLD pathogenesis. CONCLUSIONS Our study identified the novel association of rs4788084 with HFC, which regulates the expression of IL-27, an immune regulatory gene. We further showed that adiposity affected the HFC, irrespective of the genetic predisposition.
Collapse
Affiliation(s)
- Ankita Chatterjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Kausik Das
- Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Abhijit Chowdhury
- Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Priyadarshi Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India.
| |
Collapse
|
50
|
Heyens LJM, Busschots D, Koek GH, Robaeys G, Francque S. Liver Fibrosis in Non-alcoholic Fatty Liver Disease: From Liver Biopsy to Non-invasive Biomarkers in Diagnosis and Treatment. Front Med (Lausanne) 2021; 8:615978. [PMID: 33937277 PMCID: PMC8079659 DOI: 10.3389/fmed.2021.615978] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
An increasing percentage of people have or are at risk to develop non-alcoholic fatty liver disease (NAFLD) worldwide. NAFLD comprises different stadia going from isolated steatosis to non-alcoholic steatohepatitis (NASH). NASH is a chronic state of liver inflammation that leads to the transformation of hepatic stellate cells to myofibroblasts. These cells produce extra-cellular matrix that results in liver fibrosis. In a normal situation, fibrogenesis is a wound healing process that preserves tissue integrity. However, sustained and progressive fibrosis can become pathogenic. This process takes many years and is often asymptomatic. Therefore, patients usually present themselves with end-stage liver disease e.g., liver cirrhosis, decompensated liver disease or even hepatocellular carcinoma. Fibrosis has also been identified as the most important predictor of prognosis in patients with NAFLD. Currently, only a minority of patients with liver fibrosis are identified to be at risk and hence referred for treatment. This is not only because the disease is largely asymptomatic, but also due to the fact that currently liver biopsy is still the golden standard for accurate detection of liver fibrosis. However, performing a liver biopsy harbors some risks and requires resources and expertise, hence is not applicable in every clinical setting and is unsuitable for screening. Consequently, different non-invasive diagnostic tools, mainly based on analysis of blood or other specimens or based on imaging have been developed or are in development. In this review, we will first give an overview of the pathogenic mechanisms of the evolution from isolated steatosis to fibrosis. This serves as the basis for the subsequent discussion of the current and future diagnostic biomarkers and anti-fibrotic drugs.
Collapse
Affiliation(s)
- Leen J. M. Heyens
- Faculty of Health and Life Sciences, Hasselt University, Hasselt, Belgium
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
- Department of Gastro-Enterology and Hepatology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Dana Busschots
- Faculty of Health and Life Sciences, Hasselt University, Hasselt, Belgium
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Ger H. Koek
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Geert Robaeys
- Faculty of Health and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Gastro-Enterology and Hepatology, Ziekenhuis Oost-Limburg, Genk, Belgium
- Department of Gastroenterology and Hepatology, University Hospital Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- *Correspondence: Sven Francque
| |
Collapse
|