1
|
Tom WA, Chandel DS, Jiang C, Krzyzanowski G, Fernando N, Olou A, Fernando MR. Genotype Characterization and MiRNA Expression Profiling in Usher Syndrome Cell Lines. Int J Mol Sci 2024; 25:9993. [PMID: 39337481 PMCID: PMC11432263 DOI: 10.3390/ijms25189993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Usher syndrome (USH) is an inherited disorder characterized by sensorineural hearing loss (SNHL), retinitis pigmentosa (RP)-related vision loss, and vestibular dysfunction. USH presents itself as three distinct clinical types, 1, 2, and 3, with no biomarker for early detection. This study aimed to explore whether microRNA (miRNA) expression in USH cell lines is dysregulated compared to the miRNA expression pattern in a cell line derived from a healthy human subject. Lymphocytes from USH patients and healthy individuals were isolated and transformed into stable cell lines using Epstein-Barr virus (EBV). DNA from these cell lines was sequenced using a targeted panel to identify gene variants associated with USH types 1, 2, and 3. Microarray analysis was performed on RNA from both USH and control cell lines using NanoString miRNA microarray technology. Dysregulated miRNAs identified by the microarray were validated using droplet digital PCR technology. DNA sequencing revealed that two USH patients had USH type 1 with gene variants in USH1B (MYO7A) and USH1D (CDH23), while the other two patients were classified as USH type 2 (USH2A) and USH type 3 (CLRN-1), respectively. The NanoString miRNA microarray detected 92 differentially expressed miRNAs in USH cell lines compared to controls. Significantly altered miRNAs exhibited at least a twofold increase or decrease with a p value below 0.05. Among these miRNAs, 20 were specific to USH1, 14 to USH2, and 5 to USH3. Three miRNAs that are known as miRNA-183 family which are crucial for inner ear and retina development, have been significantly downregulated as compared to control cells. Subsequently, droplet digital PCR assays confirmed the dysregulation of the 12 most prominent miRNAs in USH cell lines. This study identifies several miRNA signatures in USH cell lines which may have potential utility in Usher syndrome identification.
Collapse
Affiliation(s)
- Wesley A Tom
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Dinesh S Chandel
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Chao Jiang
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Gary Krzyzanowski
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Nirmalee Fernando
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Appolinaire Olou
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - M Rohan Fernando
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| |
Collapse
|
2
|
Hiraoka M, Urakawa Y, Kawai K, Yoshida A, Hosakawa J, Takazawa M, Inaba A, Yokota S, Hirami Y, Takahashi M, Ohara O, Kurimoto Y, Maeda A. Copy number variant detection using next-generation sequencing in EYS-associated retinitis pigmentosa. PLoS One 2024; 19:e0305812. [PMID: 38913662 PMCID: PMC11195993 DOI: 10.1371/journal.pone.0305812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy and a major cause of blindness. RP is caused by several variants of multiple genes, and genetic diagnosis by identifying these variants is important for optimizing treatment and estimating patient prognosis. Next-generation sequencing (NGS), which is currently widely used for diagnosis, is considered useful but is known to have limitations in detecting copy number variations (CNVs). In this study, we re-evaluated CNVs in EYS, the main causative gene of RP, identified via NGS using multiplex ligation-dependent probe amplification (MLPA). CNVs were identified in NGS samples of eight patients. To identify potential CNVs, MLPA was also performed on samples from 42 patients who were undiagnosed by NGS but carried one of the five major pathogenic variants reported in Japanese EYS-RP cases. All suspected CNVs based on NGS data in the eight patients were confirmed via MLPA. CNVs were found in 2 of the 42 NGS-undiagnosed RP cases. Furthermore, results showed that 121 of the 661 patients with RP had EYS as the causative gene, and 8.3% (10/121 patients with EYS-RP) had CNVs. Although NGS using the CNV calling criteria utilized in this study failed to identify CNVs in two cases, no false-positive results were detected. Collectively, these findings suggest that NGS is useful for CNV detection during clinical diagnosis of RP.
Collapse
Affiliation(s)
- Masakazu Hiraoka
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
- Department of Ophthalmology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yusaku Urakawa
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Kanako Kawai
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
| | - Akiko Yoshida
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
| | - Junichi Hosakawa
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba, Japan
| | - Masaki Takazawa
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba, Japan
| | - Akira Inaba
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
| | - Satoshi Yokota
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masayo Takahashi
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
- Vision Care Inc., Kobe, Japan
- Research Organization of Science and Technology SR Center, Ritsumeikan University, Shiga, Japan
| | - Osamu Ohara
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba, Japan
| | - Yasuo Kurimoto
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
- Research Organization of Science and Technology SR Center, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
3
|
Lv X, Zheng Z, Zhi X, Zhou Y, Lv J, Zhou Y, Wu B, Liu S, Shi W, Song Z, Xu J, Qu J, Xu D, Gu F. Identification of RPGR ORF15 mutation for X-linked retinitis pigmentosa in a large Chinese family and in vitro correction with prime editor. Gene Ther 2023; 30:160-166. [PMID: 35794468 DOI: 10.1038/s41434-022-00352-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/28/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
X-linked retinitis pigmentosa (XLRP) is the most severe form of Retinitis Pigmentosa (RP) and one of the leading causes of blindness in the world. Currently, there is no effective treatment for RP. In the present study, we recruited a XLRP family and identified a 4 bp deletion mutation (c. 2234_2237del) in RPGR ORF15 with Sanger sequencing, which was located in the exact same region as the missing XES (X chromosome exome sequencing) coverage. Then, we generated cell lines harboring the identified mutation and corrected it via enhanced prime editing system (ePE). Collectively, Sanger sequencing identified a pathogenic mutation in RPGR ORF15 for XLRP which was corrected with ePE. This study provides a valuable insight for genetic counseling of the afflicted family members and prenatal diagnosis, also paves a way for applying prime editing based gene therapy in those patients.
Collapse
Affiliation(s)
- Xiujuan Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, 325027, China
| | - Zheng Zheng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, 325027, China
| | - Xiao Zhi
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, 325027, China
| | - Yilin Zhou
- College of Engineering, Boston University, Boston, MA, USA
| | - Jineng Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, 325027, China
| | - Yue Zhou
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, 325027, China
| | - Binrong Wu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, 325027, China
| | - Sixiu Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, 325027, China
| | - Wei Shi
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, 100054, China
| | - Zongming Song
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Jinling Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, 325027, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, 325027, China
| | - Dan Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, 325027, China.
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
4
|
Mc Clinton B, Corradi Z, McKibbin M, Panneman DM, Roosing S, Boonen EGM, Ali M, Watson CM, Steel DH, Cremers FPM, Inglehearn CF, Hitti-Malin RJ, Toomes C. Effective smMIPs-Based Sequencing of Maculopathy-Associated Genes in Stargardt Disease Cases and Allied Maculopathies from the UK. Genes (Basel) 2023; 14:191. [PMID: 36672932 PMCID: PMC9859292 DOI: 10.3390/genes14010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Macular dystrophies are a group of individually rare but collectively common inherited retinal dystrophies characterised by central vision loss and loss of visual acuity. Single molecule Molecular Inversion Probes (smMIPs) have proved effective in identifying genetic variants causing macular dystrophy. Here, a previously established smMIPs panel tailored for genes associated with macular diseases has been used to examine 57 UK macular dystrophy cases, achieving a high solve rate of 63.2% (36/57). Among 27 bi-allelic STGD1 cases, only three novel ABCA4 variants were identified, illustrating that the majority of ABCA4 variants in Caucasian STGD1 cases are currently known. We examined cases with ABCA4-associated disease in detail, comparing our results with a previously reported variant grading system, and found this model to be accurate and clinically useful. In this study, we showed that ABCA4-associated disease could be distinguished from other forms of macular dystrophy based on clinical evaluation in the majority of cases (34/36).
Collapse
Affiliation(s)
- Benjamin Mc Clinton
- Leeds Institute of Medical Research, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martin McKibbin
- Leeds Institute of Medical Research, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
- Department of Ophthalmology, St. James’s University Hospital, Leeds LS9 7TF, UK
| | - Daan M. Panneman
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Erica G. M. Boonen
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Manir Ali
- Leeds Institute of Medical Research, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Christopher M. Watson
- Leeds Institute of Medical Research, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James’s University Hospital, Leeds LS9 7TF, UK
| | - David H. Steel
- Sunderland Eye Infirmary, Sunderland SR2 9HP, UK
- The Bioscience Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Chris F. Inglehearn
- Leeds Institute of Medical Research, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
| | - Rebekkah J. Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Carmel Toomes
- Leeds Institute of Medical Research, University of Leeds, St James’s University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
5
|
The Diagnostic Yield of Next Generation Sequencing in Inherited Retinal Diseases: A Systematic Review and Meta-analysis. Am J Ophthalmol 2022; 249:57-73. [PMID: 36592879 DOI: 10.1016/j.ajo.2022.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE Accurate genotyping of individuals with inherited retinal diseases (IRD) is essential for patient management and identifying suitable candidates for gene therapies. This study evaluated the diagnostic yield of next generation sequencing (NGS) in IRDs. DESIGN Systematic review and meta-analysis. METHODS This systematic review was prospectively registered (CRD42021293619). Ovid MEDLINE and Ovid Embase were searched on 6 June 2022. Clinical studies evaluating the diagnostic yield of NGS in individuals with IRDs were eligible for inclusion. Risk of bias assessment was performed. Studies were pooled using a random...effects inverse variance model. Sources of heterogeneity were explored using stratified analysis, meta-regression, and sensitivity analysis. RESULTS This study included 105 publications from 28 countries. Most studies (90 studies) used targeted gene panels. The diagnostic yield of NGS was 61.3% (95% confidence interval: 57.8-64.7%; 51 studies) in mixed IRD phenotypes, 58.2% (51.6-64.6%; 41 studies) in rod-cone dystrophies, 57.7% (46.8-68.3%; eight studies) in macular and cone/cone-rod dystrophies, and 47.6% (95% CI: 41.0-54.3%; four studies) in familial exudative vitreoretinopathy. For mixed IRD phenotypes, a higher diagnostic yield was achieved pooling studies published between 2018-2022 (64.2% [59.5-68.7%]), studies using exome sequencing (73.5% [58.9-86.1%]), and studies using the American College of Medical Genetics variant interpretation standards (65.6% [60.8-70.4%]). CONCLUSION The current diagnostic yield of NGS in IRDs is between 52-74%. The certainty of the evidence was judged as low or very low. A key limitation of the current evidence is the significant heterogeneity between studies. Adoption of standardized reporting guidelines could improve confidence in future meta-analyses.
Collapse
|
6
|
Elsayed O, Al‐Shamsi A. Mutation spectrum of non-syndromic hearing loss in the UAE, a retrospective cohort study and literature review. Mol Genet Genomic Med 2022; 10:e2052. [PMID: 36056583 PMCID: PMC9651598 DOI: 10.1002/mgg3.2052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hearing loss (HL) is a heterogeneous condition that causes partial or complete hearing impairment. Hundreds of variants in >60 genes have been reported to be associated with Hereditary HL (HHL), variants of the GJB2 gene are the most common cause of congenital SNHL, with >100 variants reported. The HHL prevalence is thought to be high in the Arab population; however, the genetic epidemiology of HHL among Emirati populations is understudied. AIMS To shed light on the mutational spectrum of NSHL in Emirati patients seen in the genetic clinic over 10 years and to capture founder mutation(s) if any were identified. METHODS Retrospective chart review of all Emirati patients assessed by clinical geneticists due to NSHL during the period between January 2010 to December 2020. Genetic tests were done based on clinical phenotypes of the patient and family history including targeted mutation testing, next-generation sequencing, or whole-exome sequencing (solo or trio). The authors did literature reviews using PubMed for all previously reported articles related to NSHL genes from UAE. RESULTS A total of 162 patients with HL, were evaluated during the period between January 2010 to December 2020. There were 82 patients with NSHL, and only 72 patients who completed the genetic evaluations were included in this retrospective study. Among the studied group, 42 (51.2%) were males and 40 (48.78%) were females. The youngest patient was 2 years old and the oldest patient was 50 years old. Consanguinity was documented in 76 patients (92.68%). A total of 14 mutations reported here are novel (23/72 i.e., 31.9%). Twelve missense mutations, 6 nonsense mutations, 6 frameshift mutations, 2 in-frame deletion mutations, and 1 splice site mutation was found. Variants in the GJB2 gene are the most commonly identified cause of NSHL, with c.35delG being the most followed by c.506G > A. The second commonly found variant is c.934C > G (p.Arg312Gly) in the CDC14A gene, found in 9 patients. This was followed by variants in OTOF and SLC26A4 genes, found in 8 patients, respectively. Chromosomal microdeletions encompassing genes causing NSHL were found in 3 patients. No mitochondrial mutations were found in this study group. A total of 11 previous reports about Emirati patients with NSHL were reviewed, with a total of 35 patients. CONCLUSION Emirati patients with NSHL have several mutations, most notably missense mutations. Novel mutations are worth further testing and represent the area for future researches.
Collapse
Affiliation(s)
- Omnia Elsayed
- Pediatrics DepartmentTawam HospitalAl AinUnited Arab Emirates
| | - Aisha Al‐Shamsi
- Genetic Division, Pediatrics DepartmentTawam HospitalAl AinUnited Arab Emirates
| |
Collapse
|
7
|
Sano Y, Koyanagi Y, Wong JH, Murakami Y, Fujiwara K, Endo M, Aoi T, Hashimoto K, Nakazawa T, Wada Y, Ueno S, Gao D, Murakami A, Hotta Y, Ikeda Y, Nishiguchi KM, Momozawa Y, Sonoda KH, Akiyama M, Fujimoto A. Likely pathogenic structural variants in genetically unsolved patients with retinitis pigmentosa revealed by long-read sequencing. J Med Genet 2022; 59:1133-1138. [PMID: 35710107 PMCID: PMC9613870 DOI: 10.1136/jmedgenet-2022-108428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/14/2022] [Indexed: 11/09/2022]
Abstract
Despite the successful identification of causative genes and genetic variants of retinitis pigmentosa (RP), many patients have not been molecularly diagnosed. Our recent study using targeted short-read sequencing showed that the proportion of carriers of pathogenic variants in EYS, the cause of autosomal recessive RP, was unexpectedly high in Japanese patients with unsolved RP. This result suggested that causative genetic variants, which are difficult to detect by short-read sequencing, exist in such patients. Using long-read sequencing technology (Oxford Nanopore), we analysed the whole genomes of 15 patients with RP with one heterozygous pathogenic variant in EYS detected in our previous study along with structural variants (SVs) in EYS and another 88 RP-associated genes. Two large exon-overlapping deletions involving six exons were identified in EYS in two patients with unsolved RP. An analysis of an independent patient set (n=1189) suggested that these two deletions are not founder mutations. Our results suggest that searching for SVs by long-read sequencing in genetically unsolved cases benefits the molecular diagnosis of RP.
Collapse
Affiliation(s)
- Yusuke Sano
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan.,Department of Human Genetics, The University of Tokyo, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan.,Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Jing Hao Wong
- Department of Human Genetics, The University of Tokyo, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Mikiko Endo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Tomomi Aoi
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Dan Gao
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan .,Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Fujimoto
- Department of Human Genetics, The University of Tokyo, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
8
|
Wonkam A, Adadey SM, Schrauwen I, Aboagye ET, Wonkam-Tingang E, Esoh K, Popel K, Manyisa N, Jonas M, deKock C, Nembaware V, Cornejo Sanchez DM, Bharadwaj T, Nasir A, Everard JL, Kadlubowska MK, Nouel-Saied LM, Acharya A, Quaye O, Amedofu GK, Awandare GA, Leal SM. Exome sequencing of families from Ghana reveals known and candidate hearing impairment genes. Commun Biol 2022; 5:369. [PMID: 35440622 PMCID: PMC9019055 DOI: 10.1038/s42003-022-03326-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
We investigated hearing impairment (HI) in 51 families from Ghana with at least two affected members that were negative for GJB2 pathogenic variants. DNA samples from 184 family members underwent whole-exome sequencing (WES). Variants were found in 14 known non-syndromic HI (NSHI) genes [26/51 (51.0%) families], five genes that can underlie either syndromic HI or NSHI [13/51 (25.5%)], and one syndromic HI gene [1/51 (2.0%)]. Variants in CDH23 and MYO15A contributed the most to HI [31.4% (16/51 families)]. For DSPP, an autosomal recessive mode of inheritance was detected. Post-lingual expression was observed for a family segregating a MARVELD2 variant. To our knowledge, seven novel candidate HI genes were identified (13.7%), with six associated with NSHI (INPP4B, CCDC141, MYO19, DNAH11, POTEI, and SOX9); and one (PAX8) with Waardenburg syndrome. MYO19 and DNAH11 were replicated in unrelated Ghanaian probands. Six of the novel genes were expressed in mouse inner ear. It is known that Pax8-/- mice do not respond to sound, and depletion of Sox9 resulted in defective vestibular structures and abnormal utricle development. Most variants (48/60; 80.0%) have not previously been associated with HI. Identifying seven candidate genes in this study emphasizes the potential of novel HI genes discovery in Africa.
Collapse
Affiliation(s)
- Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
- McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Samuel Mawuli Adadey
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, LG 54, Ghana
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Centre, New York, NY, 10032, USA
| | - Elvis Twumasi Aboagye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, LG 54, Ghana
| | - Edmond Wonkam-Tingang
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Kevin Esoh
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Kalinka Popel
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Noluthando Manyisa
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Mario Jonas
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Carmen deKock
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Victoria Nembaware
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Diana M Cornejo Sanchez
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Centre, New York, NY, 10032, USA
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Centre, New York, NY, 10032, USA
| | - Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon-si, Republic of Korea
| | - Jenna L Everard
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Centre, New York, NY, 10032, USA
| | - Magda K Kadlubowska
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Centre, New York, NY, 10032, USA
| | - Liz M Nouel-Saied
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Centre, New York, NY, 10032, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Centre, New York, NY, 10032, USA
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, LG 54, Ghana
| | - Geoffrey K Amedofu
- Department of Eye, Ear, Nose, and Throat, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, LG 54, Ghana
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Centre, New York, NY, 10032, USA.
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Centre, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Ng KH, Subrayan V, Ramachandran V, Ismail F. Screening of single nucleotide polymorphisms among fuchs’ endothelial corneal dystrophy subjects in Malaysia. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The pathophysiology underlying Fuchs' Endothelial Corneal Dystrophy (FECD), especially in older individuals, remains unclear, with a genetic predisposition being reported as the single best predictor of the disease. Genetic studies have shown that several genes in various loci such as COL8A2, SLC4A11, TCF8/ZEB1 and TCF4 are associated with FECD in different populations and ethnicities. A case–control study was conducted to determine the association between genetic variants and FECD in a tertiary care setting in Malaysia. A total number of 12 patients with clinically diagnosed FECD and 12 age, gender and race matched control subjects were recruited. Extracted genomic DNA were genotyped using Infinium Global Screening Array (GSA)-24 version 1.0 BeadChip with iScan high-throughput system. Illumina GenomeStudio 2.0 Data Analysis and PLINK version 1.9 software were used to perform association tests and determine the distribution of obtained variants among the cases and controls.
Results
A significant novel genetic variant, rs11626651, a variant of the LOC105370676 gene or known as the LINC02320 gene, located at chromosome 14, has been identified as a suggestive association with FECD (p < 5 × 10−6). Further analysis in this study suggested that candidate genes such as COL8A2, ZEB1/TCF8, TCF4 and SLC4A11 had no significant associations with FECD.
Conclusions
The discovery of a novel variant may influence the underlying pathogenic basis of FECD in Malaysia. The current study is the first genetic study on FECD to use Infinium GSA. It is the first comprehensive report in Malaysia to provide genetic information of potential relevance to FECD, which may pave the way for new therapeutic strategies in the future. A detailed analysis with a larger sample size is recommended for further evaluation.
Collapse
|
10
|
Marques JP, Marta A, Geada S, Carvalho AL, Menéres P, Murta J, Saraiva J, Silva R. Clinical/Demographic Functional Testing and Multimodal Imaging Differences between Genetically Solved and Unsolved Retinitis Pigmentosa. Ophthalmologica 2021; 245:134-143. [PMID: 34695833 DOI: 10.1159/000520305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The purpose of this study was to compare clinical/demographic functional testing and multimodal imaging features between genetically solved and genetically unsolved nonsyndromic retinitis pigmentosa (nsRP) patients. METHODS A cross-sectional study was conducted at an inherited retinal dystrophies reference center. Consecutive patients with nsRP and available genetic testing results performed between 2018 and 2020 were included. Genetic testing was clinically oriented, and variants were classified according to the American College of Medical Genetics and Genomics. Only class IV or V variants were considered disease-causing. Clinical/demographic, functional, and imaging features were compared between genetically unsolved (G1) and genetically solved (G2) patients. RESULTS A total of 175 patients (146 families) were included: 68 patients (59 families) in G1 and 107 patients (87 families) in G2. First symptoms <25 years, consanguinity, evidence for a particular inheritance pattern, and the absence of indicators for phenocopies were significantly more prevalent in G2. No significant differences were observed on best-corrected visual acuity. The visual field index and mean central retinal layer thickness were significantly higher in G1. The frequency of atypical features on multimodal imaging did not differ between groups. CONCLUSION Individual clinical/demographic functional testing and multimodal imaging features should be considered when counseling patients about the probability of identifying disease-causing variants.
Collapse
Affiliation(s)
- João Pedro Marques
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Ana Marta
- Department of Ophthalmology, Centro Hospitalar e Universitário do Porto (CHUP), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| | - Sara Geada
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Ana Luísa Carvalho
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Medical Genetics, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,University Clinic of Medical Genetics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Pedro Menéres
- Department of Ophthalmology, Centro Hospitalar e Universitário do Porto (CHUP), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| | - Joaquim Murta
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Jorge Saraiva
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Medical Genetics, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Rufino Silva
- Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| |
Collapse
|
11
|
Hernández-Juárez J, Rodríguez-Uribe G, Borooah S. Toward the Treatment of Inherited Diseases of the Retina Using CRISPR-Based Gene Editing. Front Med (Lausanne) 2021; 8:698521. [PMID: 34660621 PMCID: PMC8517184 DOI: 10.3389/fmed.2021.698521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal dystrophies [IRDs] are a common cause of severe vision loss resulting from pathogenic genetic variants. The eye is an attractive target organ for testing clinical translational approaches in inherited diseases. This has been demonstrated by the approval of the first gene supplementation therapy to treat an autosomal recessive IRD, RPE65-linked Leber congenital amaurosis (type 2), 4 years ago. However, not all diseases are amenable for treatment using gene supplementation therapy, highlighting the need for alternative strategies to overcome the limitations of this supplementation therapeutic modality. Gene editing has become of increasing interest with the discovery of the CRISPR-Cas9 platform. CRISPR-Cas9 offers several advantages over previous gene editing technologies as it facilitates targeted gene editing in an efficient, specific, and modifiable manner. Progress with CRISPR-Cas9 research now means that gene editing is a feasible strategy for the treatment of IRDs. This review will focus on the background of CRISPR-Cas9 and will stress the differences between gene editing using CRISPR-Cas9 and traditional gene supplementation therapy. Additionally, we will review research that has led to the first CRISPR-Cas9 trial for the treatment of CEP290-linked Leber congenital amaurosis (type 10), as well as outline future directions for CRISPR-Cas9 technology in the treatment of IRDs.
Collapse
Affiliation(s)
- Jennifer Hernández-Juárez
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, United States
| | - Genaro Rodríguez-Uribe
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Mexico.,Department of Ocular Genetics and Research, CODET Vision Institute, Tijuana, Mexico
| | - Shyamanga Borooah
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
12
|
Xiao YS, Liang J, Gao M, Sun JR, Liu Y, Chen JQ, Zhao XH, Wang YM, Chen YH, Wang YW, Wan XL, Luo XT, Sun XD. Deletion of prominin-1 in mice results in disrupted photoreceptor outer segment protein homeostasis. Int J Ophthalmol 2021; 14:1334-1344. [PMID: 34540608 PMCID: PMC8403851 DOI: 10.18240/ijo.2021.09.07] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To illustrate the underlying mechanism how prominin-1 (also known as Prom1) mutation contribute to progressive photoreceptor degeneration. METHODS A CRISPR-mediated Prom1 knockout (Prom1-KO) mice model in the C57BL/6 was generated and the photoreceptor degeneration phenotypes by means of structural and functional tests were demonstrated. Immunohistochemistry and immunoblot analysis were performed to reveal the localization and quantity of related outer segment (OS) proteins. RESULTS The Prom1-KO mice developed the photoreceptor degeneration phenotype including the decreased outer nuclear layer (ONL) thickness and compromised electroretinogram amplitude. Immunohistochemistry analysis revealed impaired trafficking of photoreceptor OS proteins. Immunoblot data demonstrated decreased photoreceptor OS proteins. CONCLUSION Prom1 deprivation causes progressive photoreceptor degeneration. Prom1 is essential for maintaining normal trafficking and normal quantity of photoreceptor OS proteins. The new light is shed on the pathogenic mechanism underlying photoreceptor degeneration caused by Prom1 mutation.
Collapse
Affiliation(s)
- Yu-Shu Xiao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Min Gao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Jun-Ran Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Yang Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Jie-Qiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Xiao-Huan Zhao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Yi-Min Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Yu-Hong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Yu-Wei Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Xiao-Ling Wan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Xue-Ting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Xiao-Dong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| |
Collapse
|
13
|
Peeters MHCA, Khan M, Rooijakkers AAMB, Mulders T, Haer-Wigman L, Boon CJF, Klaver CCW, van den Born LI, Hoyng CB, Cremers FPM, den Hollander AI, Dhaenens CM, Collin RWJ. PRPH2 mutation update: In silico assessment of 245 reported and 7 novel variants in patients with retinal disease. Hum Mutat 2021; 42:1521-1547. [PMID: 34411390 PMCID: PMC9290825 DOI: 10.1002/humu.24275] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 01/31/2023]
Abstract
Mutations in PRPH2, encoding peripherin-2, are associated with the development of a wide variety of inherited retinal diseases (IRDs). To determine the causality of the many PRPH2 variants that have been discovered over the last decades, we surveyed all published PRPH2 variants up to July 2020, describing 720 index patients that in total carried 245 unique variants. In addition, we identified seven novel PRPH2 variants in eight additional index patients. The pathogenicity of all variants was determined using the ACMG guidelines. With this, 107 variants were classified as pathogenic, 92 as likely pathogenic, one as benign, and two as likely benign. The remaining 50 variants were classified as variants of uncertain significance. Interestingly, of the total 252 PRPH2 variants, more than half (n = 137) were missense variants. All variants were uploaded into the Leiden Open source Variation and ClinVar databases. Our study underscores the need for experimental assays for variants of unknown significance to improve pathogenicity classification, which would allow us to better understand genotype-phenotype correlations, and in the long-term, hopefully also support the development of therapeutic strategies for patients with PRPH2-associated IRD.
Collapse
Affiliation(s)
- Manon H C A Peeters
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Timo Mulders
- Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - L Ingeborgh van den Born
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands.,Rotterdam Ophthalmic Institute, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Claire-Marie Dhaenens
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Biochemistry and Molecular Biology, Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, Lille, France
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Colombo L, Maltese PE, Castori M, El Shamieh S, Zeitz C, Audo I, Zulian A, Marinelli C, Benedetti S, Costantini A, Bressan S, Percio M, Ferri P, Abeshi A, Bertelli M, Rossetti L. Molecular Epidemiology in 591 Italian Probands With Nonsyndromic Retinitis Pigmentosa and Usher Syndrome. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 33576794 PMCID: PMC7884295 DOI: 10.1167/iovs.62.2.13] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose To describe the molecular epidemiology of nonsyndromic retinitis pigmentosa (RP) and Usher syndrome (US) in Italian patients. Methods A total of 591 probands (315 with family history and 276 sporadics) were analyzed. For 155 of them, we performed a family segregation study, considering a total of 382 relatives. Probands were analyzed by a customized multigene panel approach. Sanger sequencing was used to validate all genetic variants and to perform family segregation studies. Copy number variants of selected genes were analyzed by multiplex ligation-dependent probe amplification. Four patients who tested negative to targeted next-generation sequencing analysis underwent clinical exome sequencing. Results The mean diagnostic yield of molecular testing among patients with a family history of retinal disorders was 55.2% while the diagnostic yield including sporadic cases was 37.4%. We found 468 potentially pathogenic variants, 147 of which were unpublished, in 308 probands and 66 relatives. Mean ages of onset of the different classes of RP were autosomal dominant RP, 19.3 ± 12.6 years; autosomal recessive RP, 23.2 ± 16.6 years; X-linked RP, 13.9 ± 9.9 years; and Usher syndrome, 18.9 ± 9.5 years. We reported potential new genotype-phenotype correlations in three probands, two revealed by TruSight One testing. All three probands showed isolated RP caused by biallelic variants in genes usually associated with syndromes such as PERCHING and Senior-Loken or with retinal dystrophy, iris coloboma, and comedogenic acne syndrome. Conclusions This is the largest molecular study of Italian patients with RP in the literature, thus reflecting the epidemiology of the disease in Italy with reasonable accuracy.
Collapse
Affiliation(s)
- Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | | | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Said El Shamieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.,Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHUSight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHUSight Restore, INSERM-DGOS CIC1423, Paris, France
| | | | | | | | | | | | | | - Paolo Ferri
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| | - Andi Abeshi
- MAGI's Lab s.r.l., Rovereto, Italy.,Department of Otolaryngology, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - Luca Rossetti
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Roshandel D, Thompson JA, Heath Jeffery RC, Zhang D, Lamey TM, McLaren TL, De Roach JN, McLenachan S, Mackey DA, Chen FK. Clinical Evidence for the Importance of the Wild-Type PRPF31 Allele in the Phenotypic Expression of RP11. Genes (Basel) 2021; 12:genes12060915. [PMID: 34198599 PMCID: PMC8232116 DOI: 10.3390/genes12060915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022] Open
Abstract
PRPF31-associated retinopathy (RP11) is a common form of autosomal dominant retinitis pigmentosa (adRP) that exhibits wide variation in phenotype ranging from non-penetrance to early-onset RP. Herein, we report inter-familial and intra-familial variation in the natural history of RP11 using multimodal imaging and microperimetry. Patients were recruited prospectively. The age of symptom onset, best-corrected visual acuity, microperimetry mean sensitivity (MS), residual ellipsoid zone span and hyperautofluorescent ring area were recorded. Genotyping was performed using targeted next-generation and Sanger sequencing and copy number variant analysis. PRPF31 mutations were found in 14 individuals from seven unrelated families. Four disease patterns were observed: (A) childhood onset with rapid progression (N = 4), (B) adult-onset with rapid progression (N = 4), (C) adult-onset with slow progression (N = 4) and (D) non-penetrance (N = 2). Four different patterns were observed in a family harbouring c.267del; patterns B, C and D were observed in a family with c.772_773delins16 and patterns A, B and C were observed in 3 unrelated individuals with large deletions. Our findings suggest that the RP11 phenotype may be related to the wild-type PRPF31 allele rather than the type of mutation. Further studies that correlate in vitro wild-type PRPF31 allele expression level with the disease patterns are required to investigate this association.
Collapse
Affiliation(s)
- Danial Roshandel
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia;
| | - Jennifer A. Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia;
| | - Rachael C. Heath Jeffery
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia;
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Dan Zhang
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia;
| | - Tina M. Lamey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia;
| | - Terri L. McLaren
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia;
| | - John N. De Roach
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia;
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia;
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia;
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia;
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia; (D.R.); (R.C.H.J.); (T.M.L.); (T.L.M.); (J.N.D.R.); (S.M.); (D.A.M.)
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia;
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia;
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia
- Department of Ophthalmology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-08-9381-0777
| |
Collapse
|
16
|
A novel mutation of the RPGR gene in a Chinese X-linked retinitis pigmentosa family and possible involvement of X-chromosome inactivation. Eye (Lond) 2021; 35:1688-1696. [PMID: 32839555 PMCID: PMC8169654 DOI: 10.1038/s41433-020-01150-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/14/2020] [Accepted: 08/13/2020] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES The objective of this study is to investigate the molecular mechanisms and genotype-phenotype correlations of a Chinese family with X-linked retinitis pigmentosa (XLRP). METHODS A four-generation family with a total of 41 individuals including 7 affected males was recruited. All subjects in this pedigree underwent a complete ophthalmic examination. Targeted capture and next-generation sequencing were performed on the proband using a multigene panel containing 57 known causative genes of retinitis pigmentosa (RP), including RP1, RP2, RPGR, RHO, PRPH2, CRB1 among others. All variants were verified in the remaining family members by polymerase chain reaction amplification and Sanger sequencing. Blood DNA was used for X-chromosome inactivation analysis in female carriers. RESULTS All the affected individuals were diagnosed with RP. The affected males showed symptoms from the first decade, while the female carriers had onset in the second decade or later. A frameshift mutation c.345_348delTGAA in the RPGR gene was identified in all affected males and female carriers. By XCI analysis, we found that there was little correlation between their phenotype and the methylation status of their X chromosomes. CONCLUSIONS A novel mutation c.345_348delTGAA of the RPGR gene was identified, expanding the spectrum of RPGR mutations causing XLRP. In this pedigree, the phenotype extended to female carriers, in whom RP was milder and its onset delayed compared to hemizygous males. Although lack of strong correlation between X-inactivation and the severity of the disease, the milder, variable effects in female carriers still could reflect X-inactivation patterns in the retina of each individual.
Collapse
|
17
|
Next-Generation Sequencing Applications for Inherited Retinal Diseases. Int J Mol Sci 2021; 22:ijms22115684. [PMID: 34073611 PMCID: PMC8198572 DOI: 10.3390/ijms22115684] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal diseases (IRDs) represent a collection of phenotypically and genetically diverse conditions. IRDs phenotype(s) can be isolated to the eye or can involve multiple tissues. These conditions are associated with diverse forms of inheritance, and variants within the same gene often can be associated with multiple distinct phenotypes. Such aspects of the IRDs highlight the difficulty met when establishing a genetic diagnosis in patients. Here we provide an overview of cutting-edge next-generation sequencing techniques and strategies currently in use to maximise the effectivity of IRD gene screening. These techniques have helped researchers globally to find elusive causes of IRDs, including copy number variants, structural variants, new IRD genes and deep intronic variants, among others. Resolving a genetic diagnosis with thorough testing enables a more accurate diagnosis and more informed prognosis and should also provide information on inheritance patterns which may be of particular interest to patients of a child-bearing age. Given that IRDs are heritable conditions, genetic counselling may be offered to help inform family planning, carrier testing and prenatal screening. Additionally, a verified genetic diagnosis may enable access to appropriate clinical trials or approved medications that may be available for the condition.
Collapse
|
18
|
Mizobuchi K, Hayashi T, Oishi N, Kubota D, Kameya S, Higasa K, Futami T, Kondo H, Hosono K, Kurata K, Hotta Y, Yoshitake K, Iwata T, Matsuura T, Nakano T. Genotype-Phenotype Correlations in RP1-Associated Retinal Dystrophies: A Multi-Center Cohort Study in JAPAN. J Clin Med 2021; 10:jcm10112265. [PMID: 34073704 PMCID: PMC8197273 DOI: 10.3390/jcm10112265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Little is known about genotype–phenotype correlations of RP1-associated retinal dystrophies in the Japanese population. We aimed to investigate the genetic spectrum of RP1 variants and provide a detailed description of the clinical findings in Japanese patients. Methods: In total, 607 patients with inherited retinal diseases were examined using whole-exome/whole-genome sequencing (WES/WGS). PCR-based screening for an Alu element insertion (c.4052_4053ins328/p.Tyr1352AlafsTer9) was performed in 18 patients with autosomal-recessive (AR)-retinitis pigmentosa (RP) or AR-cone dystrophy (COD)/cone-rod dystrophy (CORD), including seven patients with heterozygous RP1 variants identified by WES/WGS analysis, and 11 early onset AR-RP patients, in whom no pathogenic variant was identified. We clinically examined 25 patients (23 families) with pathogenic RP1 variants, including five patients (five families) with autosomal-dominant (AD)-RP, 13 patients (11 families) with AR-RP, and seven patients (seven families) with AR-COD/CORD. Results: We identified 18 pathogenic RP1 variants, including seven novel variants. Interestingly, the Alu element insertion was the most frequent variant (32.0%, 16/50 alleles). The clinical findings revealed that the age at onset and disease progression occurred significantly earlier and faster in AR-RP patients compared to AD-RP or AR-COD/CORD patients. Conclusions: Our results suggest a genotype–phenotype correlation between variant types/locations and phenotypes (AD-RP, AR-RP, and AR-COD/CORD), and the Alu element insertion was the most major variant in Japanese patients with RP1-associated retinal dystrophies.
Collapse
Affiliation(s)
- Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan; (T.H.); (T.N.)
- Correspondence: ; Tel.: +81-3-3433-1111
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan; (T.H.); (T.N.)
- Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, 6-41-2 Aoto, Katsushika-ku, Tokyo 125-8506, Japan
| | - Noriko Oishi
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba 270-1694, Japan; (N.O.); (D.K.); (S.K.)
| | - Daiki Kubota
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba 270-1694, Japan; (N.O.); (D.K.); (S.K.)
| | - Shuhei Kameya
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba 270-1694, Japan; (N.O.); (D.K.); (S.K.)
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan;
| | - Takuma Futami
- Department of Ophthalmology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fu-kuoka 807-8555, Japan; (T.F.); (H.K.)
| | - Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fu-kuoka 807-8555, Japan; (T.F.); (H.K.)
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Shizuoka, Hamamatsu 431-3192, Japan; (K.H.); (K.K.); (Y.H.)
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Shizuoka, Hamamatsu 431-3192, Japan; (K.H.); (K.K.); (Y.H.)
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Shizuoka, Hamamatsu 431-3192, Japan; (K.H.); (K.K.); (Y.H.)
| | - Kazutoshi Yoshitake
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan; (K.Y.); (T.I.)
| | - Takeshi Iwata
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan; (K.Y.); (T.I.)
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan;
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan; (T.H.); (T.N.)
| |
Collapse
|
19
|
Zou G, Zhang T, Cheng X, Igelman AD, Wang J, Qian X, Fu S, Wang K, Koenekoop RK, Fishman GA, Yang P, Li Y, Pennesi ME, Chen R. Noncoding mutation in RPGRIP1 contributes to inherited retinal degenerations. Mol Vis 2021; 27:95-106. [PMID: 33907365 PMCID: PMC8056464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Despite the extensive use of next-generation sequencing (NGS) technology to identify disease-causing genomic variations, a major gap in our understanding of Mendelian diseases is the unidentified molecular lesion in a significant portion of patients. For inherited retinal degenerations (IRDs), although currently close to 300 disease-associated genes have been identified, the mutations in approximately one-third of patients remain unknown. With mounting evidence that noncoding mutations might contribute significantly to disease burden, we aimed to systematically investigate the contributions of noncoding regions in the genome to IRDs. Methods In this study, we focused on RPGRIP1, which has been linked to various IRD phenotypes, including Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and macular dystrophy (MD). As several noncoding mutant alleles have been reported in RPGRIP1, and we observed that the mutation carrier frequency of RPGRIP1 is higher in patient cohorts with unsolved IRDs, we hypothesized that mutations in the noncoding regions of RPGRIP1 might be a significant contributor to pathogenicity. To test this hypothesis, we performed whole-genome sequencing (WGS) for 25 patients with unassigned IRD who carry a single mutation in RPGRIP1. Results Three noncoding variants in RPGRIP1, including a 2,890 bp deletion and two deep-intronic variants (c.2710+233G>A and c.1468-263G>C), were identified as putative second hits of RPGRIP1 in three patients with LCA. The mutant alleles were validated with direct sequencing or in vitro assays. Conclusions The results highlight the significance of the contribution of noncoding pathogenic variants to unsolved IRD cases.
Collapse
Affiliation(s)
- Gang Zou
- Department of Ophthalmology, Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan, China
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Tao Zhang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Xuesen Cheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Austin D. Igelman
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Xinye Qian
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Robert K. Koenekoop
- Department of Paediatric Surgery, Human Genetics and Adult Ophthalmology, MUHC, Montréal, Quebec, Canada
| | - Gerald A. Fishman
- Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, IL
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Mark E. Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
20
|
Qian X, Wang J, Wang M, Igelman AD, Jones KD, Li Y, Wang K, Goetz KE, Birch DG, Yang P, Pennesi ME, Chen R. Identification of Deep-Intronic Splice Mutations in a Large Cohort of Patients With Inherited Retinal Diseases. Front Genet 2021; 12:647400. [PMID: 33737949 PMCID: PMC7960924 DOI: 10.3389/fgene.2021.647400] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
High throughput sequencing technologies have revolutionized the identification of mutations responsible for a diverse set of Mendelian disorders, including inherited retinal disorders (IRDs). However, the causal mutations remain elusive for a significant proportion of patients. This may be partially due to pathogenic mutations located in non-coding regions, which are largely missed by capture sequencing targeting the coding regions. The advent of whole-genome sequencing (WGS) allows us to systematically detect non-coding variations. However, the interpretation of these variations remains a significant bottleneck. In this study, we investigated the contribution of deep-intronic splice variants to IRDs. WGS was performed for a cohort of 571 IRD patients who lack a confident molecular diagnosis, and potential deep intronic variants that affect proper splicing were identified using SpliceAI. A total of six deleterious deep intronic variants were identified in eight patients. An in vitro minigene system was applied to further validate the effect of these variants on the splicing pattern of the associated genes. The prediction scores assigned to splice-site disruption positively correlated with the impact of mutations on splicing, as those with lower prediction scores demonstrated partial splicing. Through this study, we estimated the contribution of deep-intronic splice mutations to unassigned IRD patients and leveraged in silico and in vitro methods to establish a framework for prioritizing deep intronic variant candidates for mechanistic and functional analyses.
Collapse
Affiliation(s)
- Xinye Qian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Meng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Austin D Igelman
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Kaylie D Jones
- Retina Foundation of the Southwest and Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Kerry E Goetz
- Office of the Director, National Eye Institute/National Institutes of Health, Bethesda, MD, United States
| | - David G Birch
- Retina Foundation of the Southwest and Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Zeitz C, Nassisi M, Laurent-Coriat C, Andrieu C, Boyard F, Condroyer C, Démontant V, Antonio A, Lancelot ME, Frederiksen H, Kloeckener-Gruissem B, El-Shamieh S, Zanlonghi X, Meunier I, Roux AF, Mohand-Saïd S, Sahel JA, Audo I. CHM mutation spectrum and disease: An update at the time of human therapeutic trials. Hum Mutat 2021; 42:323-341. [PMID: 33538369 DOI: 10.1002/humu.24174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Choroideremia is an X-linked inherited retinal disorder (IRD) characterized by the degeneration of retinal pigment epithelium, photoreceptors, choriocapillaris and choroid affecting males with variable phenotypes in female carriers. Unlike other IRD, characterized by a large clinical and genetic heterogeneity, choroideremia shows a specific phenotype with causative mutations in only one gene, CHM. Ongoing gene replacement trials raise further interests in this disorder. We describe here the clinical and genetic data from a French cohort of 45 families, 25 of which carry novel variants, in the context of 822 previously reported choroideremia families. Most of the variants represent loss-of-function mutations with eleven families having large (i.e. ≥6 kb) genomic deletions, 18 small insertions, deletions or insertion deletions, six showing nonsense variants, eight splice site variants and two missense variants likely to affect splicing. Similarly, 822 previously published families carry mostly loss-of-function variants. Recurrent variants are observed worldwide, some of which linked to a common ancestor, others arisen independently in specific CHM regions prone to mutations. Since all exons of CHM may harbor variants, Sanger sequencing combined with quantitative polymerase chain reaction or multiplex ligation-dependent probe amplification experiments are efficient to achieve the molecular diagnosis in patients with typical choroideremia features.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Camille Andrieu
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France
| | - Fiona Boyard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vanessa Démontant
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Barbara Kloeckener-Gruissem
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Said El-Shamieh
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Xavier Zanlonghi
- Clinique Pluridisciplinaire Jules Verne, Institut Ophtalmologique de l'Ouest, Nantes, France
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Saddek Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Académie des Sciences-Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France.,Department of Genetics, UCL-Institute of Ophthalmology, London, UK
| |
Collapse
|
22
|
Genetic characteristics and epidemiology of inherited retinal degeneration in Taiwan. NPJ Genom Med 2021; 6:16. [PMID: 33608557 PMCID: PMC7896090 DOI: 10.1038/s41525-021-00180-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Inherited retinal degenerations (IRDs) are a group of phenotypically and genotypically heterogeneous disorders with substantial socioeconomic impact. In this cohort study, we tried to address the genetic characteristics and epidemiology of IRDs in Taiwan. Totally, 312 families with IRDs were identified and recruited and genetic testing was performed via probe capture-based NGS targeting 212 IRD-related genes. Statistical analysis was based on the proband of each affected family. Disease-causing genotypes were identified in 178 families (57.1%). ABCA4 variants were the most common cause of disease in this cohort (27 families, 15.2%), whereas CYP4V2 variants were the most common cause for the single phenotype—Bietti’s crystalline dystrophy (12 families, 3.8%). Some variants such as ABCA4:c.1804C>T, CYP4V2:c.802-8_810delinsGC, and EYS:c6416G>A were population-specific disease-causing hotspots. Probands affected by ABCA4, RPGR, RP1L1, and CEP290 sought medical help earlier while patients affected by EYS and CYP4V2 visited our clinic at an older age. To evaluate the representativeness of our cohort in the genetic epidemiology of IRDs in Taiwan, our demographic data were compared with that of the total IRD population in Taiwan, obtained from the National Health Insurance Research Database. This is currently the largest-scale, comprehensive study investigating the genetic characteristics and epidemiology of IRD in Taiwan. These data could help patients and caregivers to adopt precision genomic medicine and novel gene therapies in near future.
Collapse
|
23
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
24
|
EYS is a major gene involved in retinitis pigmentosa in Japan: genetic landscapes revealed by stepwise genetic screening. Sci Rep 2020; 10:20770. [PMID: 33247286 PMCID: PMC7695703 DOI: 10.1038/s41598-020-77558-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Next-generation sequencing (NGS) has greatly advanced the studies of causative genes and variants of inherited diseases. While it is sometimes challenging to determine the pathogenicity of identified variants in NGS, the American College of Medical Genetics and Genomics established the guidelines to help the interpretation. However, as to the genetic screenings for patients with retinitis pigmentosa (RP) in Japan, none of the previous studies utilized the guidelines. Considering that EYS is the major causative gene of RP in Japan, we conducted stepwise genetic screening of 220 Japanese patients with RP utilizing the guidelines. Step 1-4 comprised the following, in order: Sanger sequencing for two major EYS founder mutations; targeted sequencing of all coding regions of EYS; whole genome sequencing; Sanger sequencing for Alu element insertion in RP1, a recently determined founder mutation for RP. Among the detected variants, 2, 19, 173, and 1 variant(s) were considered pathogenic and 8, 41, 44, and 5 patients were genetically solved in step 1, 2, 3, and 4, respectively. Totally, 44.5% (98/220) of the patients were genetically solved, and 50 (51.0%) were EYS-associated and 5 (5.1%) were Alu element-associated. Among the unsolved 122 patients, 22 had at least one possible pathogenic variant.
Collapse
|
25
|
Liu X, Tao T, Zhao L, Li G, Yang L. Molecular diagnosis based on comprehensive genetic testing in 800 Chinese families with non-syndromic inherited retinal dystrophies. Clin Exp Ophthalmol 2020; 49:46-59. [PMID: 33090715 DOI: 10.1111/ceo.13875] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Inherited retinal dystrophies (IRDs) are a group of monogenic diseases, one of the leading causes of blindness. BACKGROUND Introducing a comprehensive genetic testing strategy by combining single gene Sanger sequencing, next-generation sequencing (NGS) including whole exome sequencing (WES), and a specific hereditary eye disease enrichment panel (HEDEP) sequencing, to identify the disease-causing variants of 800 Chinese probands affected with non-syndromic IRDs. DESIGN Retrospective analysis. PARTICIPANTS Eight hundred Chinese non-syndromic IRDs probands and their families. METHODS A total of 149 patients were subjected to Sanger sequencing. Of the 651 patients subjected to NGS, 86 patients underwent WES and 565 underwent HEDEP. Patients that likely carried copy number variations (CNVs) detected by HEDEP were further validated by multiplex ligation-dependent probe amplification (MLPA) or quantitative fluorescence PCR (QF-PCR). MAIN OUTCOME MEASURES The diagnostic rate. RESULTS (Likely) pathogenic variants were determined in 481 cases (60.13% detection rate). The detection rates of single gene Sanger sequencing, WES and HEDEP were 86.58%, 31.40% and 56.99%, respectively. Approximately 11.64% of 481 cases carried autosomal dominant variants, 72.97% carried AR variants and 15.39% were found to be X-linked. CNVs were confirmed by MLPA or QF-PCR in 17 families. Fourteen genes that each caused disease in 1% or more of the cohort were detected, and these genes were collectively responsible for disease in almost one half (46.38%) of the families. CONCLUSIONS AND RELEVANCE Sanger sequencing is ideal to detect pathogenic variants of clinical homogeneous diseases, whereas NGS is more appropriate for patients without an explicit clinical diagnosis.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Tianchang Tao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Lin Zhao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Genlin Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
26
|
柳 小, 李 莹, 杨 丽. [Comparison study of whole exome sequencing and targeted panel sequencing in molecular diagnosis of inherited retinal dystrophies]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52:836-844. [PMID: 33047716 PMCID: PMC7653409 DOI: 10.19723/j.issn.1671-167x.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To evaluate and compare whole exome sequencing (WES) and targeted panel sequencing in the clinical molecular diagnosis of the Chinese families affected with inherited retinal dystrophies (IRDs). METHODS The clinical information of 182 probands affected with IRDs was collected, including their family history and the ophthalmic examination results. Blood samples of all probands and their relatives were collected and genomic DNA was extracted by standard protocols. The first 91 cases were subjected to the WES and the other 91 cases were subjected to a specific hereditary eye disease enrichment panel (HEDEP) designed by us. All likely pathogenic and pathogenic variants in the candidate genes were determined by Sanger sequencing and co-segregation analyses were performed in available family members. Copy number variations (CNVs) detected by HEDEP were further validated by multiplex ligation-dependent probe amplification (MLPA). As PRGR ORF15 was difficult to capture by next generation sequencing (NGS), all the samples were subjected to Sanger sequencing for this region. All sequence changes identified by NGS were classified according to the American College of Medical Gene-tics and Genomics and the Association for Molecular Pathology (ACMG/AMP) variant interpretation guidelines. In this study, only variants identified as pathogenic or likely pathogenic were included, while those variants of uncertain significance, likely benign or benign were not included. RESULTS In 91 cases with WES, pathogenic or likely pathogenic variants were determined in 30 cases, obtaining a detection rate of 33.00% (30/91); While in 91 cases with HEDEP sequencing, pathogenic or likely pathogenic variants were determined in 51 cases, achieving the diagnostic rate of 56.04% (51/91), and totally, the diagnostic rate was 44.51%. HEDEP had better sequencing coverage and read depth than WES, therefore HEDEP had higher detection rate. In addition, HEDEP could detect CNVs. In this study, we detected disease-causing variants in 29 distinct IRD-associated genes, USH2A, ABCA4 and RPGR were the three most common disease-causing genes, and the frequency of these genes in Chinese IRDs population was 11.54% (21/182), 6.59% (12/182) and 3.85% (7/182), respectively. We found 43 novel variants and 6 cases carried variants in RPGR ORF15. CONCLUSION NGS in conjunction with Sanger sequencing offers a reliable and effective approach for the genetic diagnosis of IRDs, and after evaluating the pros and cons of the two sequencing methods, we conclude that HEDEP should be used as a first-tier test for IRDs patients, WES can be used as a supplementary molecular diagnostic method due to its merit of detecting novel IRD-associated genes if HEDEP or other methods could not detect disease-causing va-riants in reported genes. In addition, our results enriched the mutational spectra of IRDs genes, and our methods paves the way of genetic counselling, family planning and up-coming gene-based therapies for these families.
Collapse
Affiliation(s)
- 小珍 柳
- />北京大学第三医院眼科,北京 100191Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - 莹莹 李
- />北京大学第三医院眼科,北京 100191Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - 丽萍 杨
- />北京大学第三医院眼科,北京 100191Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
27
|
柳 小, 李 莹, 杨 丽. [Comparison study of whole exome sequencing and targeted panel sequencing in molecular diagnosis of inherited retinal dystrophies]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52:836-844. [PMID: 33047716 PMCID: PMC7653409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 08/11/2024]
Abstract
OBJECTIVE To evaluate and compare whole exome sequencing (WES) and targeted panel sequencing in the clinical molecular diagnosis of the Chinese families affected with inherited retinal dystrophies (IRDs). METHODS The clinical information of 182 probands affected with IRDs was collected, including their family history and the ophthalmic examination results. Blood samples of all probands and their relatives were collected and genomic DNA was extracted by standard protocols. The first 91 cases were subjected to the WES and the other 91 cases were subjected to a specific hereditary eye disease enrichment panel (HEDEP) designed by us. All likely pathogenic and pathogenic variants in the candidate genes were determined by Sanger sequencing and co-segregation analyses were performed in available family members. Copy number variations (CNVs) detected by HEDEP were further validated by multiplex ligation-dependent probe amplification (MLPA). As PRGR ORF15 was difficult to capture by next generation sequencing (NGS), all the samples were subjected to Sanger sequencing for this region. All sequence changes identified by NGS were classified according to the American College of Medical Gene-tics and Genomics and the Association for Molecular Pathology (ACMG/AMP) variant interpretation guidelines. In this study, only variants identified as pathogenic or likely pathogenic were included, while those variants of uncertain significance, likely benign or benign were not included. RESULTS In 91 cases with WES, pathogenic or likely pathogenic variants were determined in 30 cases, obtaining a detection rate of 33.00% (30/91); While in 91 cases with HEDEP sequencing, pathogenic or likely pathogenic variants were determined in 51 cases, achieving the diagnostic rate of 56.04% (51/91), and totally, the diagnostic rate was 44.51%. HEDEP had better sequencing coverage and read depth than WES, therefore HEDEP had higher detection rate. In addition, HEDEP could detect CNVs. In this study, we detected disease-causing variants in 29 distinct IRD-associated genes, USH2A, ABCA4 and RPGR were the three most common disease-causing genes, and the frequency of these genes in Chinese IRDs population was 11.54% (21/182), 6.59% (12/182) and 3.85% (7/182), respectively. We found 43 novel variants and 6 cases carried variants in RPGR ORF15. CONCLUSION NGS in conjunction with Sanger sequencing offers a reliable and effective approach for the genetic diagnosis of IRDs, and after evaluating the pros and cons of the two sequencing methods, we conclude that HEDEP should be used as a first-tier test for IRDs patients, WES can be used as a supplementary molecular diagnostic method due to its merit of detecting novel IRD-associated genes if HEDEP or other methods could not detect disease-causing va-riants in reported genes. In addition, our results enriched the mutational spectra of IRDs genes, and our methods paves the way of genetic counselling, family planning and up-coming gene-based therapies for these families.
Collapse
Affiliation(s)
- 小珍 柳
- />北京大学第三医院眼科,北京 100191Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - 莹莹 李
- />北京大学第三医院眼科,北京 100191Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - 丽萍 杨
- />北京大学第三医院眼科,北京 100191Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
28
|
Fujinami K, Oishi A, Yang L, Arno G, Pontikos N, Yoshitake K, Fujinami-Yokokawa Y, Liu X, Hayashi T, Katagiri S, Mizobuchi K, Mizota A, Shinoda K, Nakamura N, Kurihara T, Tsubota K, Miyake Y, Iwata T, Tsujikawa A, Tsunoda K. Clinical and genetic characteristics of 10 Japanese patients with PROM1-associated retinal disorder: A report of the phenotype spectrum and a literature review in the Japanese population. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:656-674. [PMID: 32820593 DOI: 10.1002/ajmg.c.31826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/14/2023]
Abstract
Variants in the PROM1 gene are associated with cone (-rod) dystrophy, macular dystrophy, and other phenotypes. We describe the clinical and genetic characteristics of 10 patients from eight Japanese families with PROM1-associated retinal disorder (PROM1-RD) in a nationwide cohort. A literature review of PROM1-RD in the Japanese population was also performed. The median age at onset/examination of 10 patients was 31.0 (range, 10-45)/44.5 (22-73) years. All 10 patients showed atrophic macular changes. Seven patients (70.0%) had spared fovea to various degrees, approximately half of whom had maintained visual acuity. Generalized cone (-rod) dysfunction was demonstrated in all nine subjects with available electrophysiological data. Three PROM1 variants were identified in this study: one recurrent disease-causing variant (p.Arg373Cys), one novel putative disease-causing variant (p.Cys112Arg), and one novel variant of uncertain significance (VUS; p.Gly53Asp). Characteristic features of macular atrophy with generalized cone-dominated retinal dysfunction were shared among all 10 subjects with PROM1-RD, and the presence of foveal sparing was crucial in maintaining visual acuity. Together with the three previously reported variants [p.R373C, c.1551+1G>A (pathogenic), p.Asn580His (likely benign)] in the literature of Japanese patients, one prevalent missense variant (p.Arg373Cys, 6/9 families, 66.7%) detected in multiple studies was determined in the Japanese population, which was also frequently detected in the European population.
Collapse
Affiliation(s)
- Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Lizhu Yang
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Gavin Arno
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK.,North East Thames Regional Genetics Service, UCL Great Ormond Street Institute of Child Health, Great Ormond Street NHS Foundation Trust, London, UK
| | - Nikolas Pontikos
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Yu Fujinami-Yokokawa
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan.,Division of Public Health, Yokokawa Clinic, Suita, Japan
| | - Xiao Liu
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Atsushi Mizota
- Department of Ophthalmology, Teikyo University, Tokyo, Japan
| | - Kei Shinoda
- Department of Ophthalmology, Teikyo University, Tokyo, Japan.,Department of Ophthalmology, Saitama Medical University, Saitama, Japan
| | - Natsuko Nakamura
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Teikyo University, Tokyo, Japan.,Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yozo Miyake
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Aichi Medical University, Nagakute, Japan.,Next vision, Kobe Eye Center, Hyogo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazushige Tsunoda
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | | |
Collapse
|
29
|
Salmaninejad A, Motaee J, Farjami M, Alimardani M, Esmaeilie A, Pasdar A. Next-generation sequencing and its application in diagnosis of retinitis pigmentosa. Ophthalmic Genet 2020; 40:393-402. [PMID: 31755340 DOI: 10.1080/13816810.2019.1675178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Retinitis Pigmentosa (RP) is a major cause of heritable human blindness with a high genetic heterogeneity. It is characterized by the initial degeneration of rod photoreceptors followed by cone photoreceptors. RP is also a prominent reason of visual impairment, by a global prevalence of 1:4000. RP is usually specified with nyctalopia in puberty, followed by concentric visual field loss, that reflects the main impairment of rod photoreceptors; later in the life, as disease progresses, because of cone dysfunction, central vision loss also occurs. A precise molecular diagnosis is crucial for disease characterization and clinical prognosis. DNA sequencing is a powerful tool for deciphering various causes of different human diseases. The arrival of next-generation sequencing (NGS) technologies has diminished sequencing cost and considerably augmented the throughput, making whole-genome sequencing (WGS) a conceivable way for obtaining comprehensive genomic data and a more precise clinical decision. Nevertheless, the advantages gained from NGS technologies are among a number of challenges that must be sufficiently addressed before this technique can be altered from an investigation tools to a helpful method in routine clinical practices. This article aims to provide an overview about NGS technology and its related platforms. The challenges in the analysis and choosing an appropriate NGS method likewise their potential applications in clinical diagnosis are also discussed. The merit of such technique has been reflected in some recent studies where it is shown that using NGS and molecular information could help with clinical diagnosis, providing potential treatment options or changes, up-to-date family counseling and management.
Collapse
Affiliation(s)
- Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Motaee
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Farjami
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Alimardani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Alireza Pasdar
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine,Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
30
|
Han JY, Lee IG. Genetic tests by next-generation sequencing in children with developmental delay and/or intellectual disability. Clin Exp Pediatr 2020; 63:195-202. [PMID: 32024334 PMCID: PMC7303420 DOI: 10.3345/kjp.2019.00808] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Developments in next-generation sequencing (NGS) techogies have assisted in clarifying the diagnosis and treatment of developmental delay/intellectual disability (DD/ID) via molecular genetic testing. Advances in DNA sequencing technology have not only allowed the evolution of targeted panels but also, and more currently enabled genome-wide analyses to progress from research era to clinical practice. Broad acceptance of accuracy- guided targeted gene panel, whole-exome sequencing (WES), and whole-genome sequencing (WGS) for DD/ID need prospective analyses of the increasing cost-effectiveness versus conventional genetic testing. Choosing the appropriate sequencing method requires individual planning. Data are required to guide best-practice recommendations for genomic testing, regarding various clinical phenotypes in an etiologic approach. Targeted panel testing may be recommended as a first-tier testing approach for children with DD/ID. Family-based trio testing by WES/WGS can be used as a second test for DD/ ID in undiagnosed children who previously tested negative on a targeted panel. The role of NGS in molecular diagnostics, treatment, prediction of prognosis will continue to increase further in the coming years. Given the rapid pace of changes in the past 10 years, all medical providers should be aware of the changes in the transformative genetics field.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Goo Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
31
|
Copy-number variation contributes 9% of pathogenicity in the inherited retinal degenerations. Genet Med 2020; 22:1079-1087. [PMID: 32037395 PMCID: PMC7272325 DOI: 10.1038/s41436-020-0759-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/27/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Current sequencing strategies can genetically solve 55-60% of inherited retinal degeneration (IRD) cases, despite recent progress in sequencing. This can partially be attributed to elusive pathogenic variants (PVs) in known IRD genes, including copy-number variations (CNVs), which have been shown as major contributors to unsolved IRD cases. METHODS Five hundred IRD patients were analyzed with targeted next-generation sequencing (NGS). The NGS data were used to detect CNVs with ExomeDepth and gCNV and the results were compared with CNV detection with a single-nucleotide polymorphism (SNP) array. Likely causal CNV predictions were validated by quantitative polymerase chain reaction (qPCR). RESULTS Likely disease-causing single-nucleotide variants (SNVs) and small indels were found in 55.6% of subjects. PVs in USH2A (11.6%), RPGR (4%), and EYS (4%) were the most common. Likely causal CNVs were found in an additional 8.8% of patients. Of the three CNV detection methods, gCNV showed the highest accuracy. Approximately 30% of unsolved subjects had a single likely PV in a recessive IRD gene. CONCLUSION CNV detection using NGS-based algorithms is a reliable method that greatly increases the genetic diagnostic rate of IRDs. Experimentally validating CNVs helps estimate the rate at which IRDs might be solved by a CNV plus a more elusive variant.
Collapse
|
32
|
Mutation spectrum of PRPF31, genotype-phenotype correlation in retinitis pigmentosa, and opportunities for therapy. Exp Eye Res 2020; 192:107950. [PMID: 32014492 PMCID: PMC7065041 DOI: 10.1016/j.exer.2020.107950] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Pathogenic variants in pre-messenger RNA (pre-mRNA) splicing factor 31, PRPF31, are the second most common genetic cause of autosomal dominant retinitis pigmentosa (adRP) in most populations. This remains a completely untreatable and incurable form of blindness, and it can be difficult to predict the clinical course of disease. In order to design appropriate targeted therapies, a thorough understanding of the genetics and molecular mechanism of this disease is required. Here, we present the structure of the PRPF31 gene and PRPF31 protein, current understanding of PRPF31 protein function and the full spectrum of all reported clinically relevant variants in PRPF31. We delineate the correlation between specific PRPF31 genotype and RP phenotype, suggesting that, except in cases of complete gene deletion or large-scale deletions, dominant negative effects contribute to phenotype as well as haploinsufficiency. This has important impacts on design of targeted therapies, particularly the feasibility of gene augmentation as a broad approach for treatment of PRPF31-associated RP. We discuss other opportunities for therapy, including antisense oligonucleotide therapy and gene-independent approaches and offer future perspectives on treatment of this form of RP. PRPF31 is the second most common cause of autosomal dominant retinitis pigmentosa and a potential target for gene therapy. We present all reported pathogenic variants in PRPF31 as a resource for clinicians, diagnostic genetics labs, and researchers. Genotype-phenotype correlations suggest that, dominant negative effects contribute to disease in addition to haploinsufficiency. This finding has important impacts on the suitability of gene augmentation approaches across all mutation types. This finding may aid prognosis of disease in PRPF31-associated RP patients.
Collapse
|
33
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
34
|
Zenteno JC, García-Montaño LA, Cruz-Aguilar M, Ronquillo J, Rodas-Serrano A, Aguilar-Castul L, Matsui R, Vencedor-Meraz CI, Arce-González R, Graue-Wiechers F, Gutiérrez-Paz M, Urrea-Victoria T, de Dios Cuadras U, Chacón-Camacho OF. Extensive genic and allelic heterogeneity underlying inherited retinal dystrophies in Mexican patients molecularly analyzed by next-generation sequencing. Mol Genet Genomic Med 2019; 8. [PMID: 31736247 PMCID: PMC6978239 DOI: 10.1002/mgg3.1044] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022] Open
Abstract
Background Retinal dystrophies (RDs) are one of the most genetically heterogeneous monogenic disorders with ~270 associated loci identified by early 2019. The recent application of next‐generation sequencing (NGS) has greatly improved the molecular diagnosis of RD patients. Genetic characterization of RD cohorts from different ethnic groups is justified, as it would improve the knowledge of molecular basis of the disease. Here, we present the results of genetic analysis in a large cohort of 143 unrelated Mexican subjects with a variety of RDs. Methods A targeted NGS approach covering 199 RD genes was employed for molecular screening of 143 unrelated patients. In addition to probands, 258 relatives were genotyped by Sanger sequencing for familial segregation of pathogenic variants. Results A solving rate of 66% (95/143) was achieved, with evidence of extensive loci (44 genes) and allelic (110 pathogenic variants) heterogeneity. Forty‐eight percent of the identified pathogenic variants were novel while ABCA4, CRB1, USH2A, and RPE65 carried the greatest number of alterations. Novel deleterious variants in IDH3B and ARL6 were identified, supporting their involvement in RD. Familial segregation of causal variants allowed the recognition of 124 autosomal or X‐linked carriers. Conclusion Our results illustrate the utility of NGS for genetic diagnosis of RDs of different populations for a better knowledge of the mutational landscape associated with the disease.
Collapse
Affiliation(s)
- Juan C Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico.,Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| | | | - Marisa Cruz-Aguilar
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Josué Ronquillo
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Agustín Rodas-Serrano
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Rodrigo Matsui
- Department of Retina, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Rocío Arce-González
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Mario Gutiérrez-Paz
- Department of Retina, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Tatiana Urrea-Victoria
- Department of Retina, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Ulises de Dios Cuadras
- Department of Retina, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Oscar F Chacón-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| |
Collapse
|
35
|
Del Pozo-Valero M, Martin-Merida I, Jimenez-Rolando B, Arteche A, Avila-Fernandez A, Blanco-Kelly F, Riveiro-Alvarez R, Van Cauwenbergh C, De Baere E, Rivolta C, Garcia-Sandoval B, Corton M, Ayuso C. Expanded Phenotypic Spectrum of Retinopathies Associated with Autosomal Recessive and Dominant Mutations in PROM1. Am J Ophthalmol 2019; 207:204-214. [PMID: 31129250 DOI: 10.1016/j.ajo.2019.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE To describe the genetic and phenotypic characteristics of a cohort of patients with PROM1 variants. DESIGN Case-case study. METHODS We screened a cohort of 2216 families with inherited retinal dystrophies using classical molecular techniques and next-generation sequencing approaches. The clinical histories of 25 patients were reviewed to determine age of onset of symptoms and the results of ophthalmoscopy, best-corrected visual acuity, full-field electroretinography, and visual field studies. Fundus autofluorescence and spectral-domain optical coherence tomography were further assessed in 7 patients. RESULTS PROM1 variants were identified in 32 families. Disease-causing variants were found in 18 autosomal recessive and 4 autosomal dominant families. Monoallelic pathogenic variants or variants of unknown significance were identified in the remaining 10 families. Comprehensive phenotyping of 25 patients from 22 families carrying likely disease-causing variants revealed clinical heterogeneity associated with the PROM1 gene. Most of these patients presented cone-rod dystrophy and some exhibited macular dystrophy or retinitis pigmentosa, while all presented with macular damage. Phenotypic association of a dominant splicing variant with late-onset mild maculopathy was established. This variant is one of the 3 likely founder variants identified in our Spanish cohort. CONCLUSIONS We report the largest cohort of patients with PROM1 variants, describing in detail the phenotype in 25 of them. Interestingly, within the variability of phenotypes related to this gene, macular involvement is a common feature in all patients.
Collapse
Affiliation(s)
- Marta Del Pozo-Valero
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Inmaculada Martin-Merida
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Belen Jimenez-Rolando
- Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Arteche
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Almudena Avila-Fernandez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Riveiro-Alvarez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Caroline Van Cauwenbergh
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium; Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Blanca Garcia-Sandoval
- Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Corton
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
36
|
Charbel Issa P, Reuter P, Kühlewein L, Birtel J, Gliem M, Tropitzsch A, Whitcroft KL, Bolz HJ, Ishihara K, MacLaren RE, Downes SM, Oishi A, Zrenner E, Kohl S, Hummel T. Olfactory Dysfunction in Patients With CNGB1-Associated Retinitis Pigmentosa. JAMA Ophthalmol 2019; 136:761-769. [PMID: 29800053 DOI: 10.1001/jamaophthalmol.2018.1621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Importance Co-occurrence of retinitis pigmentosa (RP) and olfactory dysfunction may have a common genetic cause. Objective To report olfactory function and the retinal phenotype in patients with biallelic mutations in CNGB1, a gene coding for a signal transduction channel subunit expressed in rod photoreceptors and olfactory sensory neurons. Design, Setting, and Participants This case series was conducted from August 2015 through July 2017. The setting was a multicenter study involving 4 tertiary referral centers for inherited retinal dystrophies. Participants were 9 patients with CNGB1-associated RP. Main Outcomes and Measures Results of olfactory testing, ocular phenotyping, and molecular genetic testing using targeted next-generation sequencing. Results Nine patients were included in the study, 3 of whom were female. Their ages ranged between 34 and 79 years. All patients had an early onset of night blindness but were usually not diagnosed as having RP before the fourth decade because of slow retinal degeneration. Retinal features were characteristic of a rod-cone dystrophy. Olfactory testing revealed reduced or absent olfactory function, with all except one patient scoring in the lowest quartile in relation to age-related norms. Brain magnetic resonance imaging and electroencephalography measurements in response to olfactory stimulation were available for 1 patient and revealed no visible olfactory bulbs and reduced responses to odor, respectively. Molecular genetic testing identified 5 novel (c.1312C>T, c.2210G>A, c.2492+1G>A, c.2763C>G, and c.3044_3050delGGAAATC) and 5 previously reported mutations in CNGB1. Conclusions and Relevance Mutations in CNGB1 may cause an autosomal recessive RP-olfactory dysfunction syndrome characterized by a slow progression of retinal degeneration and variable anosmia or hyposmia.
Collapse
Affiliation(s)
- Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Peggy Reuter
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Laura Kühlewein
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Martin Gliem
- Oxford Eye Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom.,Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Anke Tropitzsch
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Katherine L Whitcroft
- University College London (UCL) Ear Institute and Royal National Throat, Nose and Ear Hospital, London, United Kingdom.,Centre for the Study of the Senses, Institute of Philosophy, School of Advanced Study, University of London, London, United Kingdom.,Smell and Taste Clinic, Department of Otorhinolaryngology-Head and Neck Surgery, Technische Universität Dresden, Dresden, Germany
| | - Hanno J Bolz
- Bioscientia Center for Human Genetics, Ingelheim, Germany.,Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Kenji Ishihara
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eberhart Zrenner
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology-Head and Neck Surgery, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
37
|
Lu Z, Hu X, Reilly J, Jia D, Liu F, Yu S, Liu X, Xie S, Qu Z, Qin Y, Huang Y, Lv Y, Li J, Gao P, Wong F, Shu X, Tang Z, Liu M. Deletion of the transmembrane protein Prom1b in zebrafish disrupts outer-segment morphogenesis and causes photoreceptor degeneration. J Biol Chem 2019; 294:13953-13963. [PMID: 31362982 DOI: 10.1074/jbc.ra119.008618] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in human prominin 1 (PROM1), encoding a transmembrane glycoprotein localized mainly to plasma membrane protrusions, have been reported to cause retinitis pigmentosa, macular degeneration, and cone-rod dystrophy. Although the structural role of PROM1 in outer-segment (OS) morphogenesis has been demonstrated in Prom1-knockout mouse, the mechanisms underlying these complex disease phenotypes remain unclear. Here, we utilized a zebrafish model to further investigate PROM1's role in the retina. The Prom1 orthologs in zebrafish include prom1a and prom1b, and our results showed that prom1b, rather than prom1a, plays an important role in zebrafish photoreceptors. Loss of prom1b disrupted OS morphogenesis, with rods and cones exhibiting differences in impairment: cones degenerated at an early age, whereas rods remained viable but with an abnormal OS, even at 9 months postfertilization. Immunofluorescence experiments with WT zebrafish revealed that Prph2, an ortholog of the human transmembrane protein peripherin 2 and also associated with OS formation, is localized to the edge of OS and is more highly expressed in the cone OS than in the rod OS. Moreover, we found that Prom1b deletion causes mislocalization of Prph2 and disrupts its oligomerization. We conclude that the variation in Prph2 levels between cones and rods was one of the reasons for the different PROM1 mutation-induced phenotypes of these retinal structures. These findings expand our understanding of the phenotypes caused by PROM1 mutations and provide critical insights into its function.
Collapse
Affiliation(s)
- Zhaojing Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuebin Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, United Kingdom
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shanglun Xie
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhen Qu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yayun Qin
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fulton Wong
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, United Kingdom
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
38
|
Cehajic-Kapetanovic J, Birtel J, McClements ME, Shanks ME, Clouston P, Downes SM, Charbel Issa P, MacLaren RE. Clinical and Molecular Characterization of PROM1-Related Retinal Degeneration. JAMA Netw Open 2019; 2:e195752. [PMID: 31199449 PMCID: PMC6575153 DOI: 10.1001/jamanetworkopen.2019.5752] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IMPORTANCE The PROM1 gene, commonly associated with cone-rod dystrophies, may have dominant or recessive phenotypes that influence disease onset and severity. OBJECTIVE To characterize the clinical phenotype and molecular genetic variations in patients with PROM1 variants. DESIGN, SETTING, AND PARTICIPANTS This case-series study was conducted at 2 specialist retinal genetics clinics and examined 19 consecutively enrolled patients with PROM1-related retinal degeneration. Data were collected and analyzed from May 2018 to December 2018. MAIN OUTCOMES AND MEASURES Results of ophthalmic examination, retinal imaging, and molecular genetic analysis by next-generation sequencing. RESULTS Of 19 patients, 13 (68%) were women, and age ranged from 11 to 70 years. All patients presented with central visual loss, with or without photophobia. Individuals with recessive variants commonly had severe loss of visual acuity by their 20s, whereas the dominant variant was associated with a milder phenotype, with most patients retaining good vision into late adulthood. The recessive cases were associated with a panretinal dystrophy of cone-rod phenotype with early macular involvement, whereas the dominant variants were associated with a cone-rod phenotype that was restricted to the macula with predominantly cone dysfunction. Next-generation sequencing identified 3 novel and 9 previously reported variants in PROM1. Recessive mutations included 6 truncating variants (3 nonsense and 3 frameshift), 4 splice site variants, and 1 missense variant. All 6 dominant variants were associated with a c.1117C>T missense variant. The variants were distributed throughout the PROM1 genomic sequence with no specific clustering on protein domains. CONCLUSIONS AND RELEVANCE In this case-series study, PROM1 recessive variants were associated with early-onset, severe panretinal degeneration. The similar phenotypes observed in patients with homozygous missense variants and splice site variants compared with similarly aged patients with truncating variants suggests that all recessive variants have a null (or loss of function close to null) outcome on PROM1 function. In contrast, the dominant missense cases were associated with a milder, cone-driven phenotype, suggesting that the dominant disease is preferentially associated with cones. This has implications for the development of treatments for this severely blinding disease, and adeno-associated viral vector-based gene therapy and optogenetics could become successful treatment options.
Collapse
Affiliation(s)
- Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
| | - Morag E. Shanks
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Penny Clouston
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Susan M. Downes
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Peter Charbel Issa
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
39
|
Birtel J, Gliem M, Oishi A, Müller PL, Herrmann P, Holz FG, Mangold E, Knapp M, Bolz HJ, Charbel Issa P. Genetic testing in patients with retinitis pigmentosa: Features of unsolved cases. Clin Exp Ophthalmol 2019; 47:779-786. [PMID: 30977268 DOI: 10.1111/ceo.13516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 01/15/2023]
Abstract
IMPORTANCE Uncommon characteristics in genetically unsolved retinitis pigmentosa (RP) patients may indicate an incorrect clinical diagnosis or as yet unknown genetic causes resulting in specific retinal phenotypes. The diagnostic yield of targeted next-generation sequencing may be increased by a reasonable preselection of RP-patients. BACKGROUND To systematically evaluate and compare features of genetically solved and unsolved RP-patients. DESIGN Retrospective, observational study. PARTICIPANTS One-hundred and twelve consecutive RP-patients who underwent extensive molecular genetic analysis. METHODS Characterization of patients based on multimodal imaging and medical history. MAIN OUTCOME MEASURES Differences between genetically solved and unsolved RP-patients. RESULTS Compared to genetically solved patients (n = 77), genetically unsolved patients (n = 35) more frequently had an age of disease-onset above 30 years (60% vs 8%; P < 0.0001), showed atypical fundus features (49% vs 8%; P < 0. 0001) and indicators for phenocopies (eg, autoimmune diseases) (17% vs 0%; P < 0. 001). Evidence for a particular inheritance pattern was less common (20% vs 49%; P < 0. 01). The diagnostic yield was 84% (71/85) in patients with first symptoms below 30 years-of-age, compared to 69% (77/112) in the overall cohort. The other selection criteria alone or in combination resulted in limited further increase of the diagnostic yield (up to 89%) while excluding considerably more patients (up to 56%) from genetic testing. CONCLUSIONS AND RELEVANCE The medical history and retinal phenotype differ between genetically solved and a subgroup of unsolved RP-patients, which may reflect undetected genotypes or retinal conditions mimicking RP. Patient stratification may inform on the individual likelihood of identifying disease-causing mutations and may impact patient counselling.
Collapse
Affiliation(s)
- Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Martin Gliem
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Akio Oishi
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Philipp L Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | | | - Michael Knapp
- Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany
| | - Hanno J Bolz
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany.,Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Peter Charbel Issa
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Verbakel SK, Fadaie Z, Klevering BJ, van Genderen MM, Feenstra I, Cremers FPM, Hoyng CB, Roosing S. The identification of a RNA splice variant in TULP1 in two siblings with early-onset photoreceptor dystrophy. Mol Genet Genomic Med 2019; 7:e660. [PMID: 30950243 PMCID: PMC6565574 DOI: 10.1002/mgg3.660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/23/2022] Open
Abstract
Background Early‐onset photoreceptor dystrophies are a major cause of irreversible visual impairment in children and young adults. This clinically heterogeneous group of disorders can be caused by mutations in many genes. Nevertheless, to date, 30%–40% of cases remain genetically unexplained. In view of expanding therapeutic options, it is essential to obtain a molecular diagnosis in these patients as well. In this study, we aimed to identify the genetic cause in two siblings with genetically unexplained retinal disease. Methods Whole exome sequencing was performed to identify the causative variants in two siblings in whom a single pathogenic variant in TULP1 was found previously. Patients were clinically evaluated, including assessment of the medical history, slit‐lamp biomicroscopy, and ophthalmoscopy. In addition, a functional analysis of the putative splice variant in TULP1 was performed using a midigene assay. Results Clinical assessment showed a typical early‐onset photoreceptor dystrophy in both the patients. Whole exome sequencing identified two pathogenic variants in TULP1, a c.1445G>A (p.(Arg482Gln)) missense mutation and an intronic c.718+23G>A variant. Segregation analysis confirmed that both siblings were compound heterozygous for the TULP1 c.718+23G>A and c.1445G>A variants, while the unaffected parents were heterozygous. The midigene assay for the c.718+23G>A variant confirmed an elongation of exon 7 leading to a frameshift. Conclusion Here, we report the first near‐exon RNA splice variant that is not present in a consensus splice site sequence in TULP1, which was found in a compound heterozygous manner with a previously described pathogenic TULP1 variant in two patients with an early‐onset photoreceptor dystrophy. We provide proof of pathogenicity for this splice variant by performing an in vitro midigene splice assay, and highlight the importance of analysis of noncoding regions beyond the noncanonical splice sites in patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zeinab Fadaie
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria M van Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands.,Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ilse Feenstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Zeitz C, Michiels C, Neuillé M, Friedburg C, Condroyer C, Boyard F, Antonio A, Bouzidi N, Milicevic D, Veaux R, Tourville A, Zoumba A, Seneina I, Foussard M, Andrieu C, N Preising M, Blanchard S, Saraiva JP, Mesrob L, Le Floch E, Jubin C, Meyer V, Blanché H, Boland A, Deleuze JF, Sharon D, Drumare I, Defoort-Dhellemmes S, De Baere E, Leroy BP, Zanlonghi X, Casteels I, de Ravel TJ, Balikova I, Koenekoop RK, Laffargue F, McLean R, Gottlob I, Bonneau D, Schorderet DF, L Munier F, McKibbin M, Prescott K, Pelletier V, Dollfus H, Perdomo-Trujillo Y, Faure C, Reiff C, Wissinger B, Meunier I, Kohl S, Banin E, Zrenner E, Jurklies B, Lorenz B, Sahel JA, Audo I. Where are the missing gene defects in inherited retinal disorders? Intronic and synonymous variants contribute at least to 4% of CACNA1F-mediated inherited retinal disorders. Hum Mutat 2019; 40:765-787. [PMID: 30825406 DOI: 10.1002/humu.23735] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 12/27/2022]
Abstract
Inherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in ~260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown. These cases may be explained by novel gene defects, by overlooked structural variants, by variants in intronic, promoter or more distant regulatory regions, and represent synonymous variants of known genes contributing to the dysfunction of the respective proteins. Patients with one subgroup of IRD, namely incomplete congenital stationary night blindness (icCSNB), show a very specific phenotype. The major cause of this condition is the presence of a hemizygous pathogenic variant in CACNA1F. A comprehensive study applying direct Sanger sequencing of the gene-coding regions, exome and genome sequencing applied to a large cohort of patients with a clinical diagnosis of icCSNB revealed indeed that seven of the 189 CACNA1F-related cases have intronic and synonymous disease-causing variants leading to missplicing as validated by minigene approaches. These findings highlight that gene-locus sequencing may be a very efficient method in detecting disease-causing variants in clinically well-characterized patients with a diagnosis of IRD, like icCSNB.
Collapse
Affiliation(s)
- Christina Zeitz
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | | | - Marion Neuillé
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | | | | | - Fiona Boyard
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Aline Antonio
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Nassima Bouzidi
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Diana Milicevic
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Robin Veaux
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Aurore Tourville
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Axelle Zoumba
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Imene Seneina
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Marine Foussard
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Camille Andrieu
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Markus N Preising
- Department of Ophthalmology, Justus-Liebig-University Giessen, Germany
| | | | | | - Lilia Mesrob
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France.,INSERM, Sorbonne Université, Paris, France
| | - Edith Le Floch
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Claire Jubin
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Vincent Meyer
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Hélène Blanché
- Fondation Jean Dausset-CEPH (Centre d'Etude du Polymorphisme Humain), Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France.,Fondation Jean Dausset-CEPH (Centre d'Etude du Polymorphisme Humain), Paris, France
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Isabelle Drumare
- Service d'Exploration de la Vision et Neuro-ophtalmologie, CHRU de Lille, Lille, France
| | | | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Xavier Zanlonghi
- Clinique Jules Verne, Centre de Compétence Maladies Rares, Nantes, France
| | - Ingele Casteels
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
| | | | - Irina Balikova
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, Queen Fabiola Children's University Hospital, Brussels, Belgium
| | - Rob K Koenekoop
- Departments of Ophthalmology, Human Genetics, and Pediatric Surgery, Montreal Children's Hospital, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | | - Rebecca McLean
- Department of Neuroscience, Psychology and Behaviour, Ulverscroft Eye Unit, University of Leicester, Leicester, United Kingdom
| | - Irene Gottlob
- Department of Neuroscience, Psychology and Behaviour, Ulverscroft Eye Unit, University of Leicester, Leicester, United Kingdom
| | - Dominique Bonneau
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France.,Mitovasc, UMR CNRS 6015-INSERM 1083, Université d'Angers, France
| | - Daniel F Schorderet
- Department of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland.,IRO-Institute for Research in Ophthalmology, Sion, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Francis L Munier
- Department of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Martin McKibbin
- Department of Ophthalmology, St. James's University Hospital, Leeds, United Kingdom
| | | | - Valerie Pelletier
- Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil, Strasbourg, France.,Service de Génétique Médicale, Hôpital de Hautepierre, Strasbourg, France
| | - Hélène Dollfus
- Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil, Strasbourg, France.,Service de Génétique Médicale, Hôpital de Hautepierre, Strasbourg, France.,Laboratoire de Génétique Médicale, INSERM U1112, Strasbourg, France
| | - Yaumara Perdomo-Trujillo
- Centre de référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil, Strasbourg, France
| | - Céline Faure
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Hôpital Privé Saint Martin, Ramsay Générale de Santé, Caen, France
| | | | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Isabelle Meunier
- Centre de Référence Maladies Sensorielles Génétiques, Hôpital Gui de Chauliac, Montpellier, France.,Institute for Neurosciences of Montpellier, Montpellier University and INSERM U1051, Montpellier, France
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.,Werner Reichardt Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | | | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig-University Giessen, Germany
| | - José-Alain Sahel
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Academie des Sciences, Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Isabelle Audo
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Institute of Ophthalmology, University College of London, London, United Kingdom
| |
Collapse
|
42
|
Kaur P, Porras TB, Ring A, Carpten JD, Lang JE. Comparison of TCGA and GENIE genomic datasets for the detection of clinically actionable alterations in breast cancer. Sci Rep 2019; 9:1482. [PMID: 30728399 PMCID: PMC6365517 DOI: 10.1038/s41598-018-37574-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023] Open
Abstract
Whole exome sequencing (WES), targeted gene panel sequencing and single nucleotide polymorphism (SNP) arrays are increasingly used for the identification of actionable alterations that are critical to cancer care. Here, we compared The Cancer Genome Atlas (TCGA) and the Genomics Evidence Neoplasia Information Exchange (GENIE) breast cancer genomic datasets (array and next generation sequencing (NGS) data) in detecting genomic alterations in clinically relevant genes. We performed an in silico analysis to determine the concordance in the frequencies of actionable mutations and copy number alterations/aberrations (CNAs) in the two most common breast cancer histologies, invasive lobular and invasive ductal carcinoma. We found that targeted sequencing identified a larger number of mutational hotspots and clinically significant amplifications that would have been missed by WES and SNP arrays in many actionable genes such as PIK3CA, EGFR, AKT3, FGFR1, ERBB2, ERBB3 and ESR1. The striking differences between the number of mutational hotspots and CNAs generated from these platforms highlight a number of factors that should be considered in the interpretation of array and NGS-based genomic data for precision medicine. Targeted panel sequencing was preferable to WES to define the full spectrum of somatic mutations present in a tumor.
Collapse
Affiliation(s)
- Pushpinder Kaur
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, United States
| | - Tania B Porras
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, United States
| | - Alexander Ring
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, United States
| | - John D Carpten
- University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, United States
- Department of Translational Genomics, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, United States
| | - Julie E Lang
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States.
- University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, United States.
| |
Collapse
|
43
|
Liang J, She X, Chen J, Zhai Y, Liu Y, Zheng K, Gong Y, Zhu H, Luo X, Sun X. Identification of novel PROM1 mutations responsible for autosomal recessive maculopathy with rod-cone dystrophy. Graefes Arch Clin Exp Ophthalmol 2018; 257:619-628. [PMID: 30588538 DOI: 10.1007/s00417-018-04206-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To characterize two patients with macular and rod-cone dystrophy and identify the genetic basis for disease. METHOD Ophthalmic examinations were performed for the family and the peripheral blood samples were collected for whole exome sequencing. The mutated sequences of PROM1 gene were cloned and expressed in cultured cell lines after transient transfection followed by analysis with confocal microscopy and bridge-PCR. RESULT We reported that two patients, brothers in a family, were diagnosed with macular and rod-cone dystrophy. Phenotypically, both patients experience progressive visual impairment and nyctalopia. The fundus examination showed macular and choroid dystrophy with pigment deposits in the macular region. Functionally, photoreceptor response to electrophysiological stimulation was significantly compromised with more severe decline in rods. Genetic analysis by whole exome sequencing revealed two novel compound heterogeneous point mutations in PROM1 gene that co-segregate with patients in an autosomal recessive manner. Specifically, the c.C1902G(p.Y634X) nonsense mutation results in a truncated, labile, and mislocalized protein, while the c.C1682+3A>G intronic mutation disrupts messenger RNA splicing. CONCLUSION Our findings have identified two novel deleterious mutations in PROM1 gene that are associated with hereditary macular and rod-cone dystrophy in human.
Collapse
Affiliation(s)
- Jian Liang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.,Shanghai Key Laboratory of Fundus Diseases, 100 Haining Road, Shanghai, 200080, China
| | - Xiangjun She
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Yuanqi Zhai
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, 100 Haining Road, Shanghai, 200080, China
| | - Yang Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Kairong Zheng
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Yuanyuan Gong
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, 100 Haining Road, Shanghai, 200080, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China. .,Shanghai Key Laboratory of Fundus Diseases, 100 Haining Road, Shanghai, 200080, China. .,Shanghai Engineering Center for Visual Science and Photomedicine, 100 Haining Road, Shanghai, 200080, China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.,Shanghai Key Laboratory of Fundus Diseases, 100 Haining Road, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, 100 Haining Road, Shanghai, 200080, China
| |
Collapse
|
44
|
Birtel J, Gliem M, Mangold E, Müller PL, Holz FG, Neuhaus C, Lenzner S, Zahnleiter D, Betz C, Eisenberger T, Bolz HJ, Charbel Issa P. Next-generation sequencing identifies unexpected genotype-phenotype correlations in patients with retinitis pigmentosa. PLoS One 2018; 13:e0207958. [PMID: 30543658 PMCID: PMC6292620 DOI: 10.1371/journal.pone.0207958] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited degenerative disease causing severe retinal dystrophy and visual impairment mainly with onset in infancy or adolescence. Targeted next-generation sequencing (NGS) has become an efficient tool to encounter the enormous genetic heterogeneity of diverse retinal dystrophies, including RP. To identify disease-causing mutations in unselected, consecutive RP patients, we conducted Sanger sequencing of genes commonly involved in the suspected genetic RP subtype, followed by targeted large-panel NGS if no mutation was identified, or NGS as primary analysis. A high (70%) detection rate of disease-causing mutations was achieved in a large cohort of 116 unrelated patients. About half (48%) of the solved RP cases were explained by mutations in four genes: RPGR, EYS, PRPF31 and USH2A. Overall, 110 different mutations distributed across 30 different genes were detected, and 46 of these mutations were novel. A molecular diagnosis was achieved in the majority (82–100%) of patients if the family history was suggestive for a particular mode of inheritance, but only in 60% in cases of sporadic RP. The diagnostic potential of extensive molecular analysis in a routine setting is also illustrated by the identification of unexpected genotype-phenotype correlations for RP patients with mutations in CRX, CEP290, RPGRIP1, MFSD8. Furthermore, we identified numerous mutations in autosomal dominant (PRPF31, PRPH2, CRX) and X-linked (RPGR) RP genes in patients with sporadic RP. Variants in RP2 and RPGR were also found in female RP patients with apparently sporadic or dominant disease. In summary, this study demonstrates that massively parallel sequencing of all known retinal dystrophy genes is a valuable diagnostic approach for RP patients.
Collapse
Affiliation(s)
- Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Martin Gliem
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | | | - Philipp L. Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | | | | | | | - Christian Betz
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | | | - Hanno J. Bolz
- Bioscientia Center for Human Genetics, Ingelheim, Germany
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Peter Charbel Issa
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Wang J, Zhao L, Wang X, Chen Y, Xu M, Soens ZT, Ge Z, Wang PR, Wang F, Chen R. GRIPT: a novel case-control analysis method for Mendelian disease gene discovery. Genome Biol 2018; 19:203. [PMID: 30477545 PMCID: PMC6258408 DOI: 10.1186/s13059-018-1579-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/02/2018] [Indexed: 11/10/2022] Open
Abstract
Despite rapid progress of next-generation sequencing (NGS) technologies, the disease-causing genes underpinning about half of all Mendelian diseases remain elusive. One main challenge is the high genetic heterogeneity of Mendelian diseases in which similar phenotypes are caused by different genes and each gene only accounts for a small proportion of the patients. To overcome this gap, we developed a novel method, the Gene Ranking, Identification and Prediction Tool (GRIPT), for performing case-control analysis of NGS data. Analyses of simulated and real datasets show that GRIPT is well-powered for disease gene discovery, especially for diseases with high locus heterogeneity.
Collapse
Affiliation(s)
- Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Li Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX 77030 USA
| | - Xia Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Miraca Genetics Laboratories, Houston, TX 77030 USA
| | - Yong Chen
- Shanghai Key Lab of Intelligent Information Processing, School of Computer Science and Technology, Fudan University, Shanghai, China
| | - Mingchu Xu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Zachry T. Soens
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Zhongqi Ge
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Peter Ronghan Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Fei Wang
- Shanghai Key Lab of Intelligent Information Processing, School of Computer Science and Technology, Fudan University, Shanghai, China
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
46
|
Pearce WA, Chen R, Jain N. Pigmentary Maculopathy Associated with Chronic Exposure to Pentosan Polysulfate Sodium. Ophthalmology 2018; 125:1793-1802. [DOI: 10.1016/j.ophtha.2018.04.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/03/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022] Open
|
47
|
Pérez-Carro R, Blanco-Kelly F, Galbis-Martínez L, García-García G, Aller E, García-Sandoval B, Mínguez P, Corton M, Mahíllo-Fernández I, Martín-Mérida I, Avila-Fernández A, Millán JM, Ayuso C. Unravelling the pathogenic role and genotype-phenotype correlation of the USH2A p.(Cys759Phe) variant among Spanish families. PLoS One 2018; 13:e0199048. [PMID: 29912909 PMCID: PMC6005481 DOI: 10.1371/journal.pone.0199048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/30/2018] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Mutations in USH2A cause both isolated Retinitis Pigmentosa (RP) and Usher syndrome (that implies RP and hearing impairment). One of the most frequent variants identified in this gene and among these patients is the p.(Cys759Phe) change. However, the pathogenic role of this allele has been questioned since it was found in homozygosity in two healthy siblings of a Spanish family. To assess the causative role of USH2A p.(Cys759Phe) in autosomal recessive RP (ARRP) and Usher syndrome type II (USH2) and to establish possible genotype-phenotype correlations associated with p.(Cys759Phe), we performed a comprehensive genetic and clinical study in patients suffering from any of the two above-mentioned diseases and carrying at least one p.(Cys759Phe) allele. MATERIALS AND METHODS Diagnosis was set according to previously reported protocols. Genetic analyses were performed by using classical molecular and Next-Generation Sequencing approaches. Probands of 57 unrelated families were molecularly studied and 63 patients belonging to these families were phenotypically evaluated. RESULTS Molecular analysis characterized 100% of the cases, identifying: 11 homozygous patients for USH2A p.(Cys759Phe), 42 compound heterozygous patients (12 of them with another missense USH2A pathogenic variant and 30 with a truncating USH2A variant), and 4 patients carrying the p.(Cys759Phe) allele and a pathogenic variant in another RP gene (PROM1, CNGB1 or RP1). No additional causative variants were identified in symptomatic homozygous patients. Statistical analysis of clinical differences between zygosity states yielded differences (p≤0.05) in age at diagnosis of RP and hypoacusis, and progression of visual field loss. Homozygosity of p.(Cys759Phe) and compound heterozygosity with another USH2A missense variant is associated with ARRP or ARRP plus late onset hypoacusis (OR = 20.62, CI = 95%, p = 0.041). CONCLUSIONS The present study supports the role of USH2A p.(Cys759Phe) in ARRP and USH2 pathogenesis, and demonstrates the clinical differences between different zygosity states. Phenotype-genotype correlations may guide the genetic characterization based upon specific clinical signs and may advise on the clinical management and prognosis based upon a specific genotype.
Collapse
Affiliation(s)
- Raquel Pérez-Carro
- Department of Genetics, Instituto de Investigación Sanitaria–Fundación Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics, Instituto de Investigación Sanitaria–Fundación Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Lilián Galbis-Martínez
- Department of Genetics, Instituto de Investigación Sanitaria–Fundación Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Gema García-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Research group on Molecular, Cellular and Genomic Biomedicine, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Elena Aller
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Research group on Molecular, Cellular and Genomic Biomedicine, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Blanca García-Sandoval
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Department of Ophthalmology, Instituto de Investigación Sanitaria–Fundación Jimenez Diaz University Hospital–Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics, Instituto de Investigación Sanitaria–Fundación Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Marta Corton
- Department of Genetics, Instituto de Investigación Sanitaria–Fundación Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ignacio Mahíllo-Fernández
- Department of Epidemiology and Biostatistics, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Inmaculada Martín-Mérida
- Department of Genetics, Instituto de Investigación Sanitaria–Fundación Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Almudena Avila-Fernández
- Department of Genetics, Instituto de Investigación Sanitaria–Fundación Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - José M. Millán
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Research group on Molecular, Cellular and Genomic Biomedicine, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Carmen Ayuso
- Department of Genetics, Instituto de Investigación Sanitaria–Fundación Jimenez Diaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
48
|
Farrar GJ, Carrigan M, Dockery A, Millington-Ward S, Palfi A, Chadderton N, Humphries M, Kiang AS, Kenna PF, Humphries P. Toward an elucidation of the molecular genetics of inherited retinal degenerations. Hum Mol Genet 2017; 26:R2-R11. [PMID: 28510639 PMCID: PMC5886474 DOI: 10.1093/hmg/ddx185] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
While individually classed as rare diseases, hereditary retinal degenerations (IRDs) are the major cause of registered visual handicap in the developed world. Given their hereditary nature, some degree of intergenic heterogeneity was expected, with genes segregating in autosomal dominant, recessive, X-linked recessive, and more rarely in digenic or mitochondrial modes. Today, it is recognized that IRDs, as a group, represent one of the most genetically diverse of hereditary conditions - at least 260 genes having been implicated, with 70 genes identified in the most common IRD, retinitis pigmentosa (RP). However, targeted sequencing studies of exons from known IRD genes have resulted in the identification of candidate mutations in only approximately 60% of IRD cases. Given recent advances in the development of gene-based medicines, characterization of IRD patient cohorts for known IRD genes and elucidation of the molecular pathologies of disease in those remaining unresolved cases has become an endeavor of the highest priority. Here, we provide an outline of progress in this area.
Collapse
Affiliation(s)
- G Jane Farrar
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Matthew Carrigan
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Adrian Dockery
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Sophia Millington-Ward
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Arpad Palfi
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Naomi Chadderton
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Marian Humphries
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Anna Sophia Kiang
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Paul F Kenna
- Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Pete Humphries
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| |
Collapse
|
49
|
Veleri S, Nellissery J, Mishra B, Manjunath SH, Brooks MJ, Dong L, Nagashima K, Qian H, Gao C, Sergeev YV, Huang XF, Qu J, Lu F, Cideciyan AV, Li T, Jin ZB, Fariss RN, Ratnapriya R, Jacobson SG, Swaroop A. REEP6 mediates trafficking of a subset of Clathrin-coated vesicles and is critical for rod photoreceptor function and survival. Hum Mol Genet 2017; 26:2218-2230. [PMID: 28369466 PMCID: PMC5458339 DOI: 10.1093/hmg/ddx111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/16/2017] [Indexed: 01/20/2023] Open
Abstract
In retinal photoreceptors, vectorial transport of cargo is critical for transduction of visual signals, and defects in intracellular trafficking can lead to photoreceptor degeneration and vision impairment. Molecular signatures associated with routing of transport vesicles in photoreceptors are poorly understood. We previously reported the identification of a novel rod photoreceptor specific isoform of Receptor Expression Enhancing Protein (REEP) 6, which belongs to a family of proteins involved in intracellular transport of receptors to the plasma membrane. Here we show that loss of REEP6 in mice (Reep6−/−) results in progressive retinal degeneration. Rod photoreceptor dysfunction is observed in Reep6−/− mice as early as one month of age and associated with aberrant accumulation of vacuole-like structures at the apical inner segment and reduction in selected rod phototransduction proteins. We demonstrate that REEP6 is detected in a subset of Clathrin-coated vesicles and interacts with the t-SNARE, Syntaxin3. In concordance with the rod degeneration phenotype in Reep6−/− mice, whole exome sequencing identified homozygous REEP6-E75K mutation in two retinitis pigmentosa families of different ethnicities. Our studies suggest a critical function of REEP6 in trafficking of cargo via a subset of Clathrin-coated vesicles to selected membrane sites in retinal rod photoreceptors.
Collapse
Affiliation(s)
- Shobi Veleri
- Neurobiology Neurodegeneration and Repair Laboratory
| | | | | | | | | | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunio Nagashima
- Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Haohua Qian
- Visual Function Core, 5Biological Imaging Core
| | - Chun Gao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuri V Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiu-Feng Huang
- The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and
| | - Jia Qu
- The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and
| | - Fan Lu
- The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiansen Li
- Neurobiology Neurodegeneration and Repair Laboratory
| | - Zi-Bing Jin
- The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and
| | - Robert N Fariss
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration and Repair Laboratory
| |
Collapse
|
50
|
Soens ZT, Branch J, Wu S, Yuan Z, Li Y, Li H, Wang K, Xu M, Rajan L, Motta FL, Simões RT, Lopez-Solache I, Ajlan R, Birch DG, Zhao P, Porto FB, Sallum J, Koenekoop RK, Sui R, Chen R. Leveraging splice-affecting variant predictors and a minigene validation system to identify Mendelian disease-causing variants among exon-captured variants of uncertain significance. Hum Mutat 2017; 38:1521-1533. [PMID: 28714225 DOI: 10.1002/humu.23294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Abstract
The genetic heterogeneity of Mendelian disorders results in a significant proportion of patients that are unable to be assigned a confident molecular diagnosis after conventional exon sequencing and variant interpretation. Here, we evaluated how many patients with an inherited retinal disease (IRD) have variants of uncertain significance (VUS) that are disrupting splicing in a known IRD gene by means other than affecting the canonical dinucleotide splice site. Three in silico splice-affecting variant predictors were leveraged to annotate and prioritize variants for splicing functional validation. An in vitro minigene system was used to assay each variant's effect on splicing. Starting with 745 IRD patients lacking a confident molecular diagnosis, we validated 23 VUS as splicing variants that likely explain disease in 26 patients. Using our results, we optimized in silico score cutoffs to guide future variant interpretation. Variants that alter base pairs other than the canonical GT-AG dinucleotide are often not considered for their potential effect on RNA splicing but in silico tools and a minigene system can be utilized for the prioritization and validation of such splice-disrupting variants. These variants can be overlooked causes of human disease but can be identified using conventional exon sequencing with proper interpretation guidelines.
Collapse
Affiliation(s)
- Zachry T Soens
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Justin Branch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhisheng Yuan
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Keqing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Mingchu Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Lavan Rajan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Fabiana L Motta
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Renata T Simões
- Department of Retina and Vitreous, Ophthalmologic Center of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte Hospital - IEP/SCBH, Belo Horizonte, Minas Gerais, Brazil
| | - Irma Lopez-Solache
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Radwan Ajlan
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, Montreal, Quebec, Canada
| | - David G Birch
- Retina Foundation of the Southwest and Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fernanda B Porto
- Department of Retina and Vitreous, Ophthalmologic Center of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte Hospital - IEP/SCBH, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Sallum
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.,Department of Structural and Computational Biology & Molecular Biophysics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|