1
|
Zou X, Nie Q, Li W, Chen Y, Song T, Zhang P. Genetic variation and phylogenetic analysis of 23 STR in Chinese Han population from Hainan, Southern China. Medicine (Baltimore) 2024; 103:e38428. [PMID: 39259071 PMCID: PMC11142786 DOI: 10.1097/md.0000000000038428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 09/12/2024] Open
Abstract
The forensic characteristics and genetic relationships of Hainan Han population are still not fully understood. The aim of this study was to investigate the forensic features and genetic variations of 23 short tandem repeat (STR) included in the HuaxiaTM Platinum system in Hainan Han and analyze the population genetic relationships between Hainan Han and other adjacent Chinese populations. The genetic polymorphisms of 23 STR loci included in the HuaxiaTM Platinum kit were evaluated from 2971 Hainan Han individuals. Comprehensive comparisons were conducted based on genetic distance, phylogenetic tree, multidimensional scaling and principal component analysis (PCA) to explore inter-population genetic relationship. The combined power of discrimination (CPD) and the combined power of exclusion (CPE) of the 23 STR loci was 0.999 999 999 999 999 999 999 999 999 819 and 0.999 999 999 625 408, respectively. The investigated Hainan Han population has high genetic similarity with geographically close Han populations, while great genetic difference with other ethnic minorities, prominently in Yunnan Miao, Xinjiang Uygurs, Xinjiang Kazakh, and Tibetans. Our study found the 23 STR loci were highly polymorphic and suitable for forensic personal identification and paternity testing in Hainan Han population. Genetic similarity widely existed among Han populations from different regions, and significant genetic divergence existed between Han populations and some ethnic minorities. The populations genetic diversity and similarity were closely associated with ethnic origin and geographical distribution.
Collapse
Affiliation(s)
- Xing Zou
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| | - Qianyun Nie
- Department of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenhui Li
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| | - Yinyu Chen
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| | - Tao Song
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Wang Z, Wang M, Hu L, He G, Nie S. Evolutionary profiles and complex admixture landscape in East Asia: New insights from modern and ancient Y chromosome variation perspectives. Heliyon 2024; 10:e30067. [PMID: 38756579 PMCID: PMC11096704 DOI: 10.1016/j.heliyon.2024.e30067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Human Y-chromosomes are characterized by nonrecombination and uniparental inheritance, carrying traces of human history evolution and admixture. Large-scale population-specific genomic sources based on advanced sequencing technologies have revolutionized our understanding of human Y chromosome diversity and its anthropological and forensic applications. Here, we reviewed and meta-analyzed the Y chromosome genetic diversity of modern and ancient people from China and summarized the patterns of founding lineages of spatiotemporally different populations associated with their origin, expansion, and admixture. We emphasized the strong association between our identified founding lineages and language-related human dispersal events correlated with the Sino-Tibetan, Altaic, and southern Chinese multiple-language families related to the Hmong-Mien, Tai-Kadai, Austronesian, and Austro-Asiatic languages. We subsequently summarize the recent advances in translational applications in forensic and anthropological science, including paternal biogeographical ancestry inference (PBGAI), surname investigation, and paternal history reconstruction. Whole-Y sequencing or high-resolution panels with high coverage of terminal Y chromosome lineages are essential for capturing the genomic diversity of ethnolinguistically diverse East Asians. Generally, we emphasized the importance of including more ethnolinguistically diverse, underrepresented modern and spatiotemporally different ancient East Asians in human genetic research for a comprehensive understanding of the paternal genetic landscape of East Asians with a detailed time series and for the reconstruction of a reference database in the PBGAI, even including new technology innovations of Telomere-to-Telomere (T2T) for new genetic variation discovery.
Collapse
Affiliation(s)
- Zhiyong Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
3
|
Zhong H, Tong Q. An Anthropometric Study of the Morphologic Facial Index of Tibetan Youth in Tibet. J Craniofac Surg 2024; 35:490-494. [PMID: 39445908 PMCID: PMC10880939 DOI: 10.1097/scs.0000000000009766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/12/2023] [Indexed: 10/25/2024] Open
Abstract
The purpose of this study was to understand sex differences and variations in facial indices among Tibetans and to create and evaluate anthropometric data on facial morphology. The study population consisted of 476 native Tibetans (241 males and 235 females) aged 18 to 24 years. The means and SD facial width was 133.53±7.31 mm for males and 133.95±8.10 mm for females; the difference between the sexes was not statistically significant. The means and SD facial height was 107.68±5.76 mm for males and 111.95±14.28 mm for females; the difference between the sexes was statistically significant (u=-8.394, P=0.000). The morphologic facial index was 80.86±5.82 (means±SD) for males and 83.91±11.90 (means±SD) for females; the difference between the sexes was statistically significant (u=-6.581, P=0.000). The proportion of the Tibetan male facial shape was hypereuryprosopic (45.6%) > euryprosopic (31.1%) > mesoprosopic (18.7%) > leptoprosopic (3.3%) > hyperleptoprosopic (1.2%). The proportion of the Tibetan female facial shape was hypereuryprosopic (25.5%) > mesoprosopic (22.6%) > euryprosopic (21.7%) > leptoprosopic (17.4%) > hyperleptoprosopic (12.8%). Facial width was positively correlated with height (male r=0.306, P=0.000; female r=0.144, P=0.027), weight (r=0.470, P=0.000 for males; r=0.337, P=0.000 for females), and BMI (r=0.378, P=0.000 for males; r=0.291, P=0.000 for females). Facial height was positively correlated with height (r=0.329, P=0.000 for males; r=0.137, P=0.035 for females) and weight (r=0.391, P=0.000 for males; r=0.170, P=0.009 for females). Facial height was positively correlated with BMI in Tibetan males (r=0.293, P=0.000), but no significant correlation was found in Tibetan females. The morphologic facial index of Tibetans was positively correlated with age (r=0.183, P=0.004 for males; r=0.171, P=0.009 for females). The results indicated that Tibetan youth in Tibet have a predominantly hypereuryprosopic facial shape and that facial features are related to age, height, and weight. Some common facial morphology features exist among the Tibet Tibetans, northeastern Indians, and Nepalese in the 3 different regions of the Sino-Tibetan language family. The data from this study provide basic information for the study of Tibetans in the fields of physical anthropology, forensic medicine, maxillofacial surgery, and plastic surgery.
Collapse
Affiliation(s)
- Hua Zhong
- Department of Anatomy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinghua Tong
- General Hospital of Tibet Military Region, Chinese People’s Liberation Army, Lhasa, China
| |
Collapse
|
4
|
He Y, Guo Y, Zheng W, Yue T, Zhang H, Wang B, Feng Z, Ouzhuluobu, Cui C, Liu K, Zhou B, Zeng X, Li L, Wang T, Wang Y, Zhang C, Xu S, Qi X, Su B. Polygenic adaptation leads to a higher reproductive fitness of native Tibetans at high altitude. Curr Biol 2023; 33:4037-4051.e5. [PMID: 37643619 DOI: 10.1016/j.cub.2023.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
The adaptation of Tibetans to high-altitude environments has been studied extensively. However, the direct assessment of evolutionary adaptation, i.e., the reproductive fitness of Tibetans and its genetic basis, remains elusive. Here, we conduct systematic phenotyping and genome-wide association analysis of 2,252 mother-newborn pairs of indigenous Tibetans, covering 12 reproductive traits and 76 maternal physiological traits. Compared with the lowland immigrants living at high altitudes, indigenous Tibetans show better reproductive outcomes, reflected by their lower abortion rate, higher birth weight, and better fetal development. The results of genome-wide association analyses indicate a polygenic adaptation of reproduction in Tibetans, attributed to the genomic backgrounds of both the mothers and the newborns. Furthermore, the EPAS1-edited mice display higher reproductive fitness under chronic hypoxia, mirroring the situation in Tibetans. Collectively, these results shed new light on the phenotypic pattern and the genetic mechanism of human reproductive fitness in extreme environments.
Collapse
Affiliation(s)
- Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China
| | - Bin Wang
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Zhanying Feng
- CEMS, NCMIS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100080, China
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China; High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Chaoying Cui
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China; High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Bin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Liya Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100080, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Chao Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
5
|
Zhang G, Cui C, Wangdue S, Lu H, Chen H, Xi L, He W, Yuan H, Tsring T, Chen Z, Yang F, Tsering T, Li S, Tashi N, Yang T, Tong Y, Wu X, Li L, He Y, Cao P, Dai Q, Liu F, Feng X, Wang T, Yang R, Ping W, Zhang M, Gao X, Liu Y, Wang W, Fu Q. Maternal genetic history of ancient Tibetans over the past 4000 years. J Genet Genomics 2023; 50:765-775. [PMID: 36933795 DOI: 10.1016/j.jgg.2023.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The settlement of the Tibetan Plateau epitomizes human adaptation to a high-altitude environment that poses great challenges to human activity. Here, we reconstruct a 4000-year maternal genetic history of Tibetans using 128 ancient mitochondrial genome data from 37 sites in Tibet. The phylogeny of haplotypes M9a1a, M9a1b, D4g2, G2a'c, and D4i show that ancient Tibetans share the most recent common ancestor with ancient Middle and Upper Yellow River populations around the Early and Middle Holocene. In addition, the connections between Tibetans and Northeastern Asians vary over the past 4000 years, with a stronger matrilineal connection between the two during 4000 BP-3000 BP, and a weakened connection after 3000 BP, that are coincident with climate change, followed by a reinforced connection after the Tubo period (1400 BP-1100 BP). Besides, an over 4000-year matrilineal continuity is observed in some of the maternal lineages. We also find the maternal genetic structure of ancient Tibetans is correlated to the geography and interactions between ancient Tibetans and ancient Nepal and Pakistan populations. Overall, the maternal genetic history of Tibetans can be characterized as a long-term matrilineal continuity with frequent internal and external population interactions that are dynamically shaped by geography, climate changes, as well as historical events.
Collapse
Affiliation(s)
- Ganyu Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Cui
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Hongliang Lu
- Center for Archaeological Science, School of Archaeology and Museology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Honghai Chen
- School of Cultural Heritage, Northwest University, Xi'an, Shaanxi 710069, China
| | - Lin Xi
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Haibing Yuan
- Center for Archaeological Science, School of Archaeology and Museology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Tinley Tsring
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Zujun Chen
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Feng Yang
- Center for Archaeological Science, School of Archaeology and Museology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Tashi Tsering
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Shuai Li
- Center for Archaeological Science, School of Archaeology and Museology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Norbu Tashi
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Tsho Yang
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Linhui Li
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, Tibet 850000, China
| | - Yuanhong He
- Center for Archaeological Science, School of Archaeology and Museology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Zhang
- School of Cultural Heritage, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xing Gao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Science and Technology Archaeology, National Centre for Archaeology, Beijing 100013, China.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Qi Zhi Institute, Shanghai 200232, China.
| |
Collapse
|
6
|
Luis JR, Palencia-Madrid L, Deshpande K, Alfonso-Sanchez MA, Peña JA, de Pancorbo MM, Garcia-Bertrand R, Herrera RJ. On the Y chromosome of Chennai, Tamil Nadu and the Indian subcontinent. Gene 2023; 859:147175. [PMID: 36632908 DOI: 10.1016/j.gene.2023.147175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Several migratory waves from various origins along with cultural practices restricting marriages between people of different castes and tribes as well as continued endogamy have led to a complex and diverse society in the Indian subcontinent. Despite being widely represented in genetic studies, several interrogatives remain with regards to India's current genetic constituents and distributions, source populations and population relationships. To identify the forces that may have shaped Indian population's genetic relationships, we undertook a comprehensive comparative study of the Y-chromosomes across India utilizing Y-STR and Y-SNP chromosomal markers using the general population of Chennai in the state of Tamil Nadu as a point of reference. Our analyses identify differences in source populations for different regions within India, unique linguistic characteristics as well as demographic and cultural forces that may have shaped population structure.
Collapse
Affiliation(s)
- Javier Rodriguez Luis
- Area de Antropología, Facultad de Biología, Universidad de Santiago de Compostela, Campus Sur s/n, 15782, Santiago de Compostela, Spain
| | - Leire Palencia-Madrid
- BIOMICs Research Group, Dpto. Z. y Biologia Celular A., Lascaray Research Centre, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - Ketaki Deshpande
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA
| | - Miguel A Alfonso-Sanchez
- Departamento de Genética y Antropología Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Bilbao, Spain
| | - Jose A Peña
- Departamento de Genética y Antropología Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Bilbao, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Dpto. Z. y Biologia Celular A., Lascaray Research Centre, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | | | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA.
| |
Collapse
|
7
|
He G, Adnan A, Al-Qahtani WS, Safhi FA, Yeh HY, Hadi S, Wang CC, Wang M, Liu C, Yao J. Genetic admixture history and forensic characteristics of Tibeto-Burman-speaking Qiang people explored via the newly developed Y-STR panel and genome-wide SNP data. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.939659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fine-scale patterns of population genetic structure and diversity of ethnolinguistically diverse populations are important for biogeographical ancestry inference, kinship testing, and development and validation of new kits focused on forensic personal identification. Analyses focused on forensic markers and genome-wide single nucleotide polymorphism (SNP) data can provide new insights into the origin, admixture processes, and forensic characteristics of targeted populations. Qiang people had a large sample size among Tibeto-Burmanspeaking populations, which widely resided in the middle latitude of the Tibetan Plateau. However, their genetic structure and forensic features have remained uncharacterized because of the paucity of comprehensive genetic analyses. Here, we first developed and validated the forensic performance of the AGCU-Y30 Y-short tandem repeats (STR) panel, which contains slowly and moderately mutating Y-STRs, and then we conducted comprehensive population genetic analyses based on Y-STRs and genome-wide SNPs to explore the admixture history of Qiang people and their neighbors. The validated results of this panel showed that the new Y-STR kit was sensitive and robust enough for forensic applications. Haplotype diversity (HD) ranging from 0.9932 to 0.9996 and allelic frequencies ranging from 0.001946 to 0.8326 in 514 Qiang people demonstrated that all included markers were highly polymorphic in Tibeto-Burman people. Population genetic analyses based on Y-STRs [RST, FST, multidimensional scaling (MDS) analysis, neighboring-joining (NJ) tree, principal component analysis (PCA), and median-joining network (MJN)] revealed that the Qiang people harbored a paternally close relationship with lowland Tibetan-Yi corridor populations. Furthermore, we conducted a comprehensive population admixture analysis among modern and ancient Eurasian populations based on genome-wide shared SNPs. We found that the Qiang people were a genetically admixed population and showed closest relationship with Tibetan and Neolithic Yellow River farmers. Admixture modeling showed that Qiang people shared the primary ancestry related to Tibetan, supporting the hypothesis of common origin between Tibetan and Qiang people from North China.
Collapse
|
8
|
Tagore D, Majumder PP, Chatterjee A, Basu A. Multiple migrations from East Asia led to linguistic transformation in NorthEast India and mainland Southeast Asia. Front Genet 2022; 13:1023870. [PMID: 36303544 PMCID: PMC9592996 DOI: 10.3389/fgene.2022.1023870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
NorthEast India, with its unique geographic location in the midst of the Himalayas and Bay of Bengal, has served as a passage for the movement of modern humans across the Indian subcontinent and East/Southeast Asia. In this study we look into the population genetics of a unique population called the Khasi, speaking a language (also known as the Khasi language) belonging to the Austroasiatic language family and residing amidst the Tibeto-Burman speakers as an isolated population. The Khasi language belongs to one of the three major broad classifications or phyla of the Austroasiatic language and the speakers of the three sub-groups are separated from each other by large geographical distances. The Khasi speakers are separated from their nearest Austroasiatic language-speaking sub-groups: the “Mundari” sub-family from East and peninsular India and the “Mon-Khmers” in Mainland Southeast Asia. We found the Khasi population to be genetically distinct from other Austroasiatic speakers, i.e. Mundaris and Mon-Khmers, but relatively similar to the geographically proximal Tibeto Burmans. The possible reasons for this genetic-linguistic discordance lie in the admixture history of different migration events that originated from East Asia and proceeded possibly towards Southeast Asia. We found at least two distinct migration events from East Asia. While the ancestors of today’s Tibeto-Burman speakers were affected by both, the ancestors of Khasis were insulated from the second migration event. Correlating the linguistic similarity of Tibeto-Burman and Sino-Tibetan languages of today’s East Asians, we infer that the second wave of migration resulted in a linguistic transition while the Khasis could preserve their linguistic identity.
Collapse
Affiliation(s)
| | - Partha P. Majumder
- National Institute of Biomedical Genomics, Kalyani, India
- Indian Statistical Institute, Kolkata, India
| | - Anupam Chatterjee
- Department of Biotechnology, North-Eastern Hill University, Shillong, India
- School of Biosciences, Royal Global University, Guwahati, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, India
- *Correspondence: Analabha Basu,
| |
Collapse
|
9
|
Pojar T, Langstieh BT, Hemphill BE. An initial investigation of dental morphology variation among three southern Naga ethnic groups of Northeast India. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:184-210. [PMID: 36790681 DOI: 10.1002/ajpa.24605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 04/29/2022] [Accepted: 07/28/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES This study examines dental morphology trait prevalence among three southern Naga groups and compares them to 10 ethnic groups from other regions of South Asia to accomplish two objectives: assess the biological relationship of these Tibeto-Burman-speakers to speakers of non-Tibeto-Burman languages in other South Asian regions, and determine which traits distinguish northeast Indians from other South Asians. METHODS Dental morphology traits were scored with the Arizona State University Dental Anthropology System. Tooth-trait combinations were evaluated for significant inter-trait correlation and intra-trait correspondence within dental fields. Comparisons were based on simple trait prevalence and with Smith's MMD. Affinities based on the former were accomplished with correspondence analysis and principal components analysis. Affinities based on the latter were undertaken with neighbor-joining cluster analysis and multidimensional scaling. RESULTS After elimination due to inter-trait correlations and uniform prevalence, biodistances based on the remaining 17 tooth-trait combinations identify significant differences between northeast Indians and other South Asian ethnic groups due to high frequencies of shoveling on the maxillary incisors and Cusp 6 on the mandibular molars coupled with low frequencies of Carabelli's trait and Cusp 5 on UM1 and UM2, respectively. CONCLUSIONS Patterns of biodistances obtained from dental morphology are consilient with those obtained from DNA indicating statistically significant differences between northeast Indians from members of ethnic groups of other regions of South Asia. Researchers should explore the sex-specific patterns. Biodistances should not be limited to "key" teeth within dental fields, for in almost every case traits present on mesial and distal teeth yield non-redundant information.
Collapse
Affiliation(s)
- Tsiapisa Pojar
- Department of Anthropology, North-Eastern Hill University, Shillong, India
| | | | - Brian E Hemphill
- Department of Anthropology, University of Alaska, Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
10
|
Yang Z, Chen H, Lu Y, Gao Y, Sun H, Wang J, Jin L, Chu J, Xu S. Genetic evidence of tri-genealogy hypothesis on the origin of ethnic minorities in Yunnan. BMC Biol 2022; 20:166. [PMID: 35864541 PMCID: PMC9306206 DOI: 10.1186/s12915-022-01367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Yunnan is located in Southwest China and consists of great cultural, linguistic, and genetic diversity. However, the genomic diversity of ethnic minorities in Yunnan is largely under-investigated. To gain insights into population history and local adaptation of Yunnan minorities, we analyzed 242 whole-exome sequencing data with high coverage (~ 100-150 ×) of Yunnan minorities representing Achang, Jingpo, Dai, and Deang, who were linguistically assumed to be derived from three ancient lineages (the tri-genealogy hypothesis), i.e., Di-Qiang, Bai-Yue, and Bai-Pu. RESULTS Yunnan minorities show considerable genetic differences. Di-Qiang populations likely migrated from the Tibetan area about 6700 years ago. Genetic divergence between Bai-Yue and Di-Qiang was estimated to be 7000 years, and that between Bai-Yue and Bai-Pu was estimated to be 5500 years. Bai-Pu is relatively isolated, but gene flow from surrounding Di-Qiang and Bai-Yue populations was also found. Furthermore, we identified genetic variants that are differentiated within Yunnan minorities possibly due to the living circumstances and habits. Notably, we found that adaptive variants related to malaria and glucose metabolism suggest the adaptation to thalassemia and G6PD deficiency resulting from malaria resistance in the Dai population. CONCLUSIONS We provided genetic evidence of the tri-genealogy hypothesis as well as new insights into the genetic history and local adaptation of the Yunnan minorities.
Collapse
Affiliation(s)
- Zhaoqing Yang
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yang Gao
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Hao Sun
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Jiayou Chu
- Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650118, China.
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China.
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
11
|
Zhou X, Yu J, Li J, Li S, Zhang D, Wu D, Pan S, Chen W. Spatial correlation among cultivated land intensive use and carbon emission efficiency: A case study in the Yellow River Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43341-43360. [PMID: 35094255 DOI: 10.1007/s11356-022-18908-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Considering the current global goal of carbon neutrality, the relationship between cultivated land intensive use (CLIU) and carbon emission efficiency (CEE) should be explored to address the global climate crisis and move toward a low-carbon future. However, previous work in this has been conducted at provincial/regional scales and few have identified the spatial correlation between CLIU and CEE at the scale of large river basins. Therefore, this study explored the spatiotemporal characteristics of CLIU, cultivated land carbon emissions (CLCE), and CEE, as well as the spatial correlation between CLIU and CEE in the Yellow River Basin (YRB), China. A comprehensive evaluation model, the Intergovernmental Panel on Climate Change (IPCC) coefficient methodology, existing data envelopment analysis model, and bivariate spatial autocorrelation models were used to analyze statistical data from 2005 to 2017. We found that the overall CLIU and CLCE values in the YRB exhibited a continuous increase; the average carbon emission total efficiency and carbon emission scale efficiency first decreased and then increased, and the average carbon emission pure technical efficiency gradually decreased. Areas of high CLCE were concentrated in eastern areas of the YRB, whereas those of high CLIU, carbon emission total efficiency, carbon emission scale efficiency, and carbon emission pure technical efficiency predominantly appeared in the eastern areas, followed by central and western areas of the YRB. Spatial analysis revealed a significant spatial dependence of CLIU on CEE. From a global perspective, the spatial correlations between CLIU and CEE changed from positive to negative with time. Moreover, the aggregation degree between CLIU and CEE gradually decreases with time, while the dispersion degree increases with time, and the spatial correlation gradually weakens. The local spatial autocorrelation further demonstrates that the number of high-low and low-high clusters between CLIU and CEE gradually increases over time, while the number of high-high and low-low clusters gradually decreased over time. Collectively, these findings can help policymakers formulate feasible low-carbon and efficient CLIU policies to promote win-win cooperation among regions.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Land Resources Management, School of Public Administration, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Rule of Law Research, Ministry of Natural Resources, Wuhan, 430074, China
| | - Juan Yu
- Department of Land Resources Management, School of Public Administration, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Rule of Law Research, Ministry of Natural Resources, Wuhan, 430074, China
| | - Jiangfeng Li
- Department of Land Resources Management, School of Public Administration, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Rule of Law Research, Ministry of Natural Resources, Wuhan, 430074, China
| | - Shicheng Li
- Department of Land Resources Management, School of Public Administration, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Rule of Law Research, Ministry of Natural Resources, Wuhan, 430074, China
| | - Dou Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Di Wu
- Department of Land Resources Management, School of Public Administration, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Rule of Law Research, Ministry of Natural Resources, Wuhan, 430074, China
| | - Sipei Pan
- Department of Land Resources Management, School of Public Administration, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Rule of Law Research, Ministry of Natural Resources, Wuhan, 430074, China
| | - Wanxu Chen
- Department of Geography, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China.
- Research Center for Spatial Planning and Human-Environmental System Simulation, China University of Geosciences, Wuhan, 430074, China.
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China.
- School of Geography and Information Engineering, East Lake New Technology Development Zone, China University of Geosciences, No. 68, Jincheng Street, Wuhan, Hubei Province, 430078, People's Republic of China.
| |
Collapse
|
12
|
Wu D, Liu Y, Chen W, Shao J, Zhuoma P, Zhao D, Yu Y, Liu T, Yu R, Gan Y, Yuzheng B, Huang Y, Zhang H, Bi X, Tao C, Lai S, Luo Q, Zhang D, Wang H, Zhaxi P, Zhang J, Qiao J, Zeng C. How placenta promotes the successful reproduction in high-altitude populations: a transcriptome comparison between adaptation and acclimatization. Mol Biol Evol 2022; 39:6596365. [PMID: 35642306 PMCID: PMC9206416 DOI: 10.1093/molbev/msac120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
As the best adapted high altitude population, Tibetans feature a relatively high offspring survival rate. Genome-wide studies have identified hundreds of candidate SNPs related to high altitude adaptation of Tibetans, although most of them have unknown functional relevance. To explore the mechanisms behind successful reproduction at high altitudes, we compared the placental transcriptomes of Tibetans, sea level Hans (SLHan), and Han immigrants (ImHan). Among the three populations, placentas from ImHan showed a hyperactive gene expression pattern. Their increased activation demonstrates a hypoxic stress response similar to sea level individuals experiencing hypoxic conditions. Unlike ImHan, Tibetan placentas were characterized by the significant up-regulation of placenta-specific genes, and the activation of autophagy and the tricarboxylic acid (TCA) cycle. Certain conserved hypoxia response functions, including the antioxidant system and angiogenesis, were activated in both ImHan and Tibetans, but mediated by different genes. The coherence of specific transcriptome features linked to possible genetic contribution was observed in Tibetans. Furthermore, we identified a novel Tibetan-specific EPAS1 isoform with a partial deletion at exon six, which may be involved in the adaption to hypoxia through the EPAS1-centred gene network in the placenta. Overall, our results show that the placenta grants successful pregnancies in Tibetans by strengthening the natural functions of the placenta itself. On the other hand, the placenta of ImHan was in an inhabiting time-dependent acclimatization process representing a common hypoxic stress response pattern.
Collapse
Affiliation(s)
- Deng Wu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Yunao Liu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jianming Shao
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Pubu Zhuoma
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Dexiong Zhao
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, Qinghai China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tianzi Liu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Ruoxuan Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongna Gan
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, Qinghai China
| | - Baima Yuzheng
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Yongshu Huang
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Haikun Zhang
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoman Bi
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Tao
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Shujuan Lai
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoxia Luo
- The Third People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Dake Zhang
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pingcuo Zhaxi
- The Third People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Jianqing Zhang
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Changqing Zeng
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Conservation genetics of Firmiana major, a threatened tree species with potential for afforestation of hot, arid climates. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Cui W, Jin X, Fang Y, Lan Q, Lan J, Chen M, Mei S, Xie T, Zhu B. An interpretation of the genetic polymorphism and population genetic background of Ankang Han population via a novel InDel panel. Forensic Sci Res 2021; 7:694-701. [PMID: 36817236 PMCID: PMC9930792 DOI: 10.1080/20961790.2021.1997368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In this research, genotyping data of 43 InDel loci in 311 Han individuals in Ankang City, Shaanxi Province, China were detected using a self-developed five-dye multiplex amplification panel. The allelic frequencies and forensic parameters of all InDel loci were calculated. The combined power of discrimination and probability of exclusion values were 0.999 999 999 999 999 998 827 39 and 0.999 887 424, respectively, which demonstrated that this 43-InDel panel was powerful for individual identifications in Ankang Han population. Moreover, genetic distances, pairwise FST values, principal component analyses, phylogenetic trees and STRUCTURE analyses were performed to investigate the genetic affinities between Ankang Han and reference groups. Population genetic investigations indicated that Ankang Han population had a close genetic relationship with Southern Han population compared with other reference groups.
Collapse
Affiliation(s)
- Wei Cui
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoye Jin
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yating Fang
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qiong Lan
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiangwei Lan
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Man Chen
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Shuyan Mei
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Tong Xie
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China,CONTACT Tong Xie ;
| | - Bofeng Zhu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China,Bofeng Zhu
| |
Collapse
|
15
|
何 传锦, 张 荣芳, 邹 磊, 郑 冰洁, 宋 丹璐, 黄 景峰, 兰 江维. [Not Available]. FA YI XUE ZA ZHI 2021; 37:699-703. [PMID: 35191237 DOI: 10.12116/j.issn.1004-5619.2020.500901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
16
|
Wilsterman K, Cheviron ZA. Fetal growth, high altitude, and evolutionary adaptation: a new perspective. Am J Physiol Regul Integr Comp Physiol 2021; 321:R279-R294. [PMID: 34259046 DOI: 10.1152/ajpregu.00067.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Residence at high altitude is consistently associated with low birthweight among placental mammals. This reduction in birthweight influences long-term health trajectories for both the offspring and mother. However, the physiological processes that contribute to fetal growth restriction at altitude are still poorly understood, and thus our ability to safely intervene remains limited. One approach to identify the factors that mitigate altitude-dependent fetal growth restriction is to study populations that are protected from fetal growth restriction through evolutionary adaptations (e.g., high altitude-adapted populations). Here, we examine human gestational physiology at high altitude from a novel evolutionary perspective that focuses on patterns of physiological plasticity, allowing us to identify 1) the contribution of specific physiological systems to fetal growth restriction and 2) the mechanisms that confer protection in highland-adapted populations. Using this perspective, our review highlights two general findings: first, that the beneficial value of plasticity in maternal physiology is often dependent on factors more proximate to the fetus; and second, that our ability to understand the contributions of these proximate factors is currently limited by thin data from altitude-adapted populations. Expanding the comparative scope of studies on gestational physiology at high altitude and integrating studies of both maternal and fetal physiology are needed to clarify the mechanisms by which physiological responses to altitude contribute to fetal growth outcomes. The relevance of these questions to clinical, agricultural, and basic research combined with the breadth of the unknown highlight gestational physiology at high altitude as an exciting niche for continued work.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Division of Biological Sciences, University of Montana, Missoula, Montana
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
17
|
Yu X, Li H. Origin of ethnic groups, linguistic families, and civilizations in China viewed from the Y chromosome. Mol Genet Genomics 2021; 296:783-797. [PMID: 34037863 DOI: 10.1007/s00438-021-01794-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
East Asia, geographically extending to the Pamir Plateau in the west, to the Himalayan Mountains in the southwest, to Lake Baikal in the north and to the South China Sea in the south, harbors a variety of people, cultures, and languages. To reconstruct the natural history of East Asians is a mission of multiple disciplines, including genetics, archaeology, linguistics, and ethnology. Geneticists confirm the recent African origin of modern East Asians. Anatomically modern humans arose in Africa and immigrated into East Asia via a southern route approximately 50,000 years ago. Following the end of the Last Glacial Maximum approximately 12,000 years ago, rice and millet were domesticated in the south and north of East Asia, respectively, which allowed human populations to expand and linguistic families and ethnic groups to develop. These Neolithic populations produced a strong relation between the present genetic structures and linguistic families. The expansion of the Hongshan people from northeastern China relocated most of the ethnic populations on a large scale approximately 5300 years ago. Most of the ethnic groups migrated to remote regions, producing genetic structure differences between the edge and center of East Asia. In central China, pronounced population admixture occurred and accelerated over time, which subsequently formed the Han Chinese population and eventually the Chinese civilization. Population migration between the north and the south throughout history has left a smooth gradient in north-south changes in genetic structure. Observation of the process of shaping the genetic structure of East Asians may help in understanding the global natural history of modern humans.
Collapse
Affiliation(s)
- Xueer Yu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanxi Academy of Advanced Research and Innovation, Fudan-Datong Institute of Chinese Origin, Datong, 037006, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Shanxi Academy of Advanced Research and Innovation, Fudan-Datong Institute of Chinese Origin, Datong, 037006, China.
| |
Collapse
|
18
|
Yang X, Wang XX, He G, Guo J, Zhao J, Sun J, Li Y, Cheng HZ, Hu R, Wei LH, Chen G, Wang CC. Genomic insight into the population history of Central Han Chinese. Ann Hum Biol 2021; 48:49-55. [PMID: 33191788 DOI: 10.1080/03014460.2020.1851396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND In recent decades, considerable attention has been paid to exploring the population genetic characteristics of Han Chinese, mainly documenting a north-south genetic substructure. However, the central Han Chinese have been largely underrepresented in previous studies. AIM To infer a comprehensive understanding of the homogenisation process and population history of Han Chinese. SUBJECTS AND METHODS We collected samples from 122 Han Chinese from seven counties of Hubei province in central China and genotyped 534,000 genome-wide SNPs. We compared Hubei Han with both ancient and present-day Eurasian populations using Principal Component Analysis, ADMIXTURE, f statistics, qpWave and qpAdm. RESULTS We observed Hubei Han Chinese are at a genetically intermediate position on the north-south Han Chinese cline. We have not detected any significant genetic substructure in the studied groups from seven different counties. Hubei Han show significant evidence of genetic admixture deriving about 63% of ancestry from Tai-Kadai or Austronesian-speaking southern indigenous groups and 37% from Tungusic or Mongolic related northern populations. CONCLUSIONS The formation of Han Chinese has involved extensive admixture with Tai-Kadai or Austronesian-speaking populations in the south and Tungusic or Mongolic speaking populations in the north. The convenient transportation and central location of Hubei make it the key region for the homogenisation of Han Chinese.
Collapse
Affiliation(s)
- Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, and School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Xun Wang
- Department of Medical Laboratory, Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, China
| | - Guanglin He
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, and School of Life Sciences, Xiamen University, Xiamen, China.,Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine Sichuan University, Chengdu, China
| | - Jianxin Guo
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, and School of Life Sciences, Xiamen University, Xiamen, China
| | - Jing Zhao
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, and School of Life Sciences, Xiamen University, Xiamen, China
| | - Jin Sun
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, and School of Life Sciences, Xiamen University, Xiamen, China
| | - Yingxiang Li
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, and School of Life Sciences, Xiamen University, Xiamen, China
| | - Hui-Zhen Cheng
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, and School of Life Sciences, Xiamen University, Xiamen, China
| | - Rong Hu
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, and School of Life Sciences, Xiamen University, Xiamen, China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, and School of Life Sciences, Xiamen University, Xiamen, China
| | | | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, and School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
19
|
Sun J, Li YX, Ma PC, Yan S, Cheng HZ, Fan ZQ, Deng XH, Ru K, Wang CC, Chen G, Wei LH. Shared paternal ancestry of Han, Tai-Kadai-speaking, and Austronesian-speaking populations as revealed by the high resolution phylogeny of O1a-M119 and distribution of its sub-lineages within China. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:686-700. [PMID: 33555039 DOI: 10.1002/ajpa.24240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this research was to explore the origin, diversification, and demographic history of O1a-M119 over the past 10,000 years, as well as its role during the formation of East Asian and Southeast Asian populations, particularly the Han, Tai-Kadai-speaking, and Austronesian-speaking populations. MATERIALS AND METHODS Y-chromosome sequences (n = 141) of the O1a-M119 lineage, including 17 newly generated in this study, were used to reconstruct a revised phylogenetic tree with age estimates, and identify sub-lineages. The geographic distribution of 12 O1a-M119 sub-lineages was summarized, based on 7325 O1a-M119 individuals identified among 60,009 Chinese males. RESULTS A revised phylogenetic tree, age estimation, and distribution maps indicated continuous expansion of haplogroup O1a-M119 over the past 10,000 years, and differences in demographic history across geographic regions. We propose several sub-lineages of O1a-M119 as founding paternal lineages of Han, Tai-Kadai-speaking, and Austronesian-speaking populations. The sharing of several young O1a-M119 sub-lineages with expansion times less than 6000 years between these three population groups supports a partial common ancestry for them in the Neolithic Age; however, the paternal genetic divergence pattern is much more complex than previous hypotheses based on ethnology, archeology, and linguistics. DISCUSSION Our analyses contribute to a better understanding of the demographic history of O1a-M119 sub-lineages over the past 10,000 years during the emergence of Han, Austronesians, Tai-Kadai-speaking populations. The data described in this study will assist in understanding of the history of Han, Tai-Kadai-speaking, and Austronesian-speaking populations from ethnology, archeology, and linguistic perspectives in the future.
Collapse
Affiliation(s)
- Jin Sun
- Xingyi Normal University for Nationalities, Xingyi, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Ying-Xiang Li
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Peng-Cheng Ma
- School of Life Sciences, Jilin University, Changchun, China
| | - Shi Yan
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Hui-Zhen Cheng
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Zhi-Quan Fan
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Xiao-Hua Deng
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- Center for collation and studies of Fujian local literature, Fujian University of Technology, Fuzhou, China
| | - Kai Ru
- Enlighten Co., Ltd., Shanghai, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Gang Chen
- Hunan Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Ding J, Fan H, Zhou Y, Wang Z, Wang X, Song X, Zhu B, Qiu P. Genetic polymorphisms and phylogenetic analyses of the Ü-Tsang Tibetan from Lhasa based on 30 slowly and moderately mutated Y-STR loci. Forensic Sci Res 2020; 7:181-188. [PMID: 35784414 PMCID: PMC9245999 DOI: 10.1080/20961790.2020.1810882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
As a result of the expansion of old Tibet on the Qinghai-Tibet Plateau, Tibetans diverged into three main branches, Ü-Tsang, Amdo, and Kham Tibetan. Ü-Tsang Tibetans are geographically distributed across the wide central and western portions of the Qinghai-Tibet Plateau while Lhasa is the central gathering place for Tibetan culture. The AGCU Y30, a 6-dye fluorescence kit including 30 slowly and moderately mutated Y-STR loci, has been validated for its stability and sensitivity in different biomaterials and diverse Chinese populations (Han and other minorities), and widely used in the practical work of forensic science. However, the 30 Y-STR profiling of Tibetan, especially for Ü-Tsang Tibetan, were insufficient. We utilized the AGCU Y30 to genotype 577 Ü-Tsang Tibetan unrelated males from Lhasa in the Tibet Autonomous Region of China to fill up the full and accurate Y-STR profiles. A total of 552 haplotypes were observed, 536 (97.10%) of which were unique. One hundred and ninety-four alleles were observed at 26 single copy loci and the allelic frequencies ranged from 0.0017 to 0.8180. For the two multi-copy loci DYS385a/b and DYS527a/b, 64 and 36 allelic combinations were observed, respectively. The gene diversity (GD) values ranged from 0.3079 at DYS391 to 0.9142 at DYS385a/b and the overall haplotype diversity (HD) was 0.9998, and its discrimination capacity (DC) was 0.9567. The population genetic analyses demonstrated that Lhasa Ü-Tsang Tibetan had close relationships with other Tibetan populations from Tibet and Qinghai, especially with Ü-Tsang Tibetan. From the perspective of Y haplogroups, the admixture of the southward Qiang people with dominant haplogroup O-M122 and the northward migrations of the initial settlers of East Asia with haplogroup D-M175 hinted the Sino-Tibetan homologous, thus, we could not ignore the gene flows with other Sino-Tibetan populations, especially for Han Chinese, to characterize the forensic genetic landscape of Tibetan.
Collapse
Affiliation(s)
- Jiuyang Ding
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yongsong Zhou
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Zhuo Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Wang
- Department of Psychiatry, The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xuheng Song
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bofeng Zhu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
De Novo Transcriptomic and Metabolomic Analyses Reveal the Ecological Adaptation of High-Altitude Bombus pyrosoma. INSECTS 2020; 11:insects11090631. [PMID: 32937786 PMCID: PMC7563474 DOI: 10.3390/insects11090631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022]
Abstract
Bombus pyrosoma is one of the most abundant bumblebee species in China, with a distribution range of very varied geomorphology and vegetation, which makes it an ideal pollinator species for research into high-altitude adaptation. Here, we sequenced and assembled transcriptomes of B. pyrosoma from the low-altitude North China Plain and the high-altitude Tibet Plateau. Subsequent comparative analysis of de novo transcriptomes from the high- and low-altitude groups identified 675 common upregulated genes (DEGs) in the high-altitude B. pyrosoma. These genes were enriched in metabolic pathways and corresponded to enzyme activities involved in energy metabolism. Furthermore, according to joint analysis with comparative metabolomics, we suggest that the metabolism of coenzyme A (CoA) and the metabolism and transport of energy resources contribute to the adaptation of high-altitude B. pyrosoma. Meanwhile, we found many common upregulated genes enriched in the Toll and immune deficiency (Imd)signaling pathways that act as important immune defenses in insects, and hypoxia and cold temperatures could induce the upregulation of immune genes in insects. Therefore, we suppose that the Toll and Imd signaling pathways also participated in the high-altitude adaptation of B. pyrosoma. Like other organisms, we suggest that the high-altitude adaptation of B. pyrosoma is controlled by diverse mechanisms.
Collapse
|
22
|
Kutanan W, Shoocongdej R, Srikummool M, Hübner A, Suttipai T, Srithawong S, Kampuansai J, Stoneking M. Cultural variation impacts paternal and maternal genetic lineages of the Hmong-Mien and Sino-Tibetan groups from Thailand. Eur J Hum Genet 2020; 28:1563-1579. [PMID: 32690935 PMCID: PMC7576213 DOI: 10.1038/s41431-020-0693-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 11/09/2022] Open
Abstract
The Hmong-Mien (HM) and Sino-Tibetan (ST) speaking groups are known as hill tribes in Thailand; they were the subject of the first studies to show an impact of patrilocality vs. matrilocality on patterns of mitochondrial (mt) DNA vs. male-specific portion of the Y chromosome (MSY) variation. However, HM and ST groups have not been studied in as much detail as other Thai groups; here we report and analyze 234 partial MSY sequences (∼2.3 mB) and 416 complete mtDNA sequences from 14 populations that, when combined with our previous published data, provides the largest dataset yet for the hill tribes. We find a striking difference between Hmong and IuMien (Mien-speaking) groups: the Hmong are genetically different from both the IuMien and all other Thai groups, whereas the IuMien are genetically more similar to other linguistic groups than to the Hmong. In general, we find less of an impact of patrilocality vs. matrilocality on patterns of mtDNA vs. MSY variation than previous studies. However, there is a dramatic difference in the frequency of MSY and mtDNA lineages of Northeast Asian (NEA) origin vs. Southeast Asian (SEA) origin in HM vs. ST groups: HM groups have high frequencies of NEA MSY lineages but lower frequencies of NEA mtDNA lineages, while ST groups show the opposite. A potential explanation is that the ancestors of Thai HM groups were patrilocal, while the ancestors of Thai ST groups were matrilocal. Overall, these results attest to the impact of cultural practices on patterns of mtDNA vs. MSY variation.
Collapse
Affiliation(s)
- Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| | - Rasmi Shoocongdej
- Department of Archaeology, Faculty of Archaeology, Silpakorn University, Bangkok, 10200, Thailand
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Thanatip Suttipai
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Suparat Srithawong
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50202, Thailand.,Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, 50202, Thailand
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| |
Collapse
|
23
|
Branco C, Ray N, Currat M, Arenas M. Influence of Paleolithic range contraction, admixture and long-distance dispersal on genetic gradients of modern humans in Asia. Mol Ecol 2020; 29:2150-2159. [PMID: 32436243 DOI: 10.1111/mec.15479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Cavalli-Sforza and coauthors originally explored the genetic variation of modern humans throughout the world and observed an overall east-west genetic gradient in Asia. However, the specific environmental and population genetics processes causing this gradient were not formally investigated and promoted discussion in recent studies. Here we studied the influence of diverse environmental and population genetics processes on Asian genetic gradients and identified which could have produced the observed gradient. To do so, we performed extensive spatially-explicit computer simulations of genetic data under the following scenarios: (a) variable levels of admixture between Paleolithic and Neolithic populations, (b) migration through long-distance dispersal (LDD), (c) Paleolithic range contraction induced by the last glacial maximum (LGM), and (d) Neolithic range expansions from one or two geographic origins (the Fertile Crescent and the Yangzi and Yellow River Basins). Next, we estimated genetic gradients from the simulated data and we found that they were sensible to the analysed processes, especially to the range contraction induced by LGM and to the number of Neolithic expansions. Some scenarios were compatible with the observed east-west genetic gradient, such as the Paleolithic expansion with a range contraction induced by the LGM or two Neolithic range expansions from both the east and the west. In general, LDD increased the variance of genetic gradients among simulations. We interpreted the obtained gradients as a consequence of both allele surfing caused by range expansions and isolation by distance along the vast east-west geographic axis of this continent.
Collapse
Affiliation(s)
- Catarina Branco
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Nicolas Ray
- GeoHealth Group, Institute of Global Health, University of Geneva, Geneva, Switzerland.,Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Mathias Currat
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| |
Collapse
|
24
|
Guo J, Xu B, Li L, He G, Zhang H, Cheng HZ, Ba J, Yang X, Wei L, Hu R, Wang CC. Paternal Y chromosomal genotyping reveals multiple large-scale admixtures in the formation of Lolo-Burmese-speaking populations in southwest China. Ann Hum Biol 2019; 46:581-588. [PMID: 31825250 DOI: 10.1080/03014460.2019.1698655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Bai and Yi people are two Tibeto-Burman speaking ethnic groups in Yunnan, southwest China. The genetic structure and history of these two groups are largely unknown due to a lack of available genetic data.Aim: To investigate the paternal genetic structure and population relationship of the Yi and Bai people.Subjects and methods: We collected samples from 278 Bai individuals and 283 Yi individuals from Yunnan and subsequently genotyped 43 phylogenetically relevant Y-SNPs in those samples. We estimated haplogroup frequencies and merged our data with a reference database including 46 representative worldwide populations to infer genetic relationships.Results: Y chromosomal haplogroup O-M175 is the dominant lineage in both Bai and Yi people. The Bai and Yi show a close genetic relationship with other Tibeto-Burman-speaking populations with high frequencies of haplogroup O2a2b1a1-Page23, which is also confirmed by PCA. The frequencies of the Tai-Kadai specific lineage O1a-M119, the southern China widespread lineage O1b-P31 and the eastern China enriched lineage O2a1b-002611, are also relatively high in our studied populations.Conclusions: The paternal Y chromosomal affinity of the Bai and Yi with Tibeto-Burman groups is consistent with the language classification. During the formation of the Bai and Yi populations, there were multiple large-scale admixtures, including the expansion of Neolithic farming populations from northern China, the assimilation of Tai-Kadai-speaking populations in southwest China, the demographic expansion driven by Neolithic agricultural revolution from southern China, and the admixture with populations of military immigration from northern and eastern China.
Collapse
Affiliation(s)
- Jianxin Guo
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Bingying Xu
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Lanjiang Li
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Guanglin He
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hui-Zhen Cheng
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jinxing Ba
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Lanhai Wei
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Rong Hu
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Chuan-Chao Wang
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Xu B, Guo J, Huang Y, Chen X, Deng X, Wang CC. The paternal genetic structure of Jingpo and Dai in southwest China. Ann Hum Biol 2019; 46:279-283. [PMID: 31179767 DOI: 10.1080/03014460.2019.1624821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Yunnan province harbours substantial genetic, cultural and linguistic diversity, with the largest number of Aborigines in China, but the relationship among these Aborigines remains enigmatic. This study genotyped 45 Y chromosomal single nucleotide polymorphisms (SNPs) of 500 males from two aboriginal cross-border populations, Jingpo and Dai, from Dehong, Yunnan. It is reported that Haplogroup O2a2b1a1-M117 is the dominant lineage in both Jingpo and Dai. The Jingpo people show affinity with Tibeto-Burman speaking populations with a relatively high frequency of Haplogroup D-M174, and the Dai people are generally genetically similar with Tai-Kadai speaking populations with high frequencies of Haplogroup O1a-M119 and O1b1a1a-M95, which is consistent with their language classification.
Collapse
Affiliation(s)
- Bingying Xu
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, PR China
| | - Jianxin Guo
- Department of History, Xiamen University, Xiamen, PR China.,Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, PR China
| | - Ying Huang
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, PR China
| | - Xueyun Chen
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, PR China
| | - Xiaohua Deng
- Fujian University of Technology, Fuzhou, PR China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, PR China
| |
Collapse
|
26
|
Li YC, Tian JY, Liu FW, Yang BY, Gu KSY, Rahman ZU, Yang LQ, Chen FH, Dong GH, Kong QP. Neolithic millet farmers contributed to the permanent settlement of the Tibetan Plateau by adopting barley agriculture. Natl Sci Rev 2019; 6:1005-1013. [PMID: 34691962 PMCID: PMC8291429 DOI: 10.1093/nsr/nwz080] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/17/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022] Open
Abstract
The permanent human settlement of the Tibetan Plateau (TP) has been suggested to have been facilitated by the introduction of barley agriculture ∼3.6 kilo-years ago (ka). However, how barley agriculture spread onto the TP remains unknown. Given that the lower altitudes in the northeastern TP were occupied by millet cultivators from 5.2 ka, who also adopted barley farming ∼4 ka, it is highly possible that it was millet farmers who brought barley agriculture onto the TP ∼3.6 ka. To test this hypothesis, we analyzed mitochondrial DNA (mtDNA) from 8277 Tibetans and 58 514 individuals from surrounding populations, including 682 newly sequenced whole mitogenomes. Multiple lines of evidence, together with radiocarbon dating of cereal remains at different elevations, supports the scenario that two haplogroups (M9a1a1c1b1a and A11a1a), which are common in contemporary Tibetans (20.9%) and were probably even more common (40–50%) in early Tibetans prior to historical immigrations to the TP, represent the genetic legacy of the Neolithic millet farmers. Both haplogroups originated in northern China between 10.0–6.0 ka and differentiated in the ancestors of modern Tibetans ∼5.2–4.0 ka, matching the dispersal history of millet farming. By showing that substantial genetic components in contemporary Tibetans can trace their ancestry back to the Neolithic millet farmers, our study reveals that millet farmers adopted and brought barley agriculture to the TP ∼3.6–3.3 ka, and made an important contribution to the Tibetan gene pool.
Collapse
Affiliation(s)
- Yu-Chun Li
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
| | - Jiao-Yang Tian
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
| | - Feng-Wen Liu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China
| | - Bin-Yu Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
| | - Kang-Shu-Yun Gu
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Zia Ur Rahman
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
| | - Fa-Hu Chen
- CAS Center for Excellence in Tibetan Plateau Earth Sciences and Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China
| | - Guang-Hui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences and Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Kunming Key Laboratory of Healthy Aging Study, Kunming 650223, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
| |
Collapse
|
27
|
Zhang M, Yan S, Pan W, Jin L. Phylogenetic evidence for Sino-Tibetan origin in northern China in the Late Neolithic. Nature 2019; 569:112-115. [PMID: 31019300 DOI: 10.1038/s41586-019-1153-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/28/2019] [Indexed: 11/09/2022]
Abstract
The study of language origin and divergence is important for understanding the history of human populations and their cultures. The Sino-Tibetan language family is the second largest in the world after Indo-European, and there is a long-running debate about its phylogeny and the time depth of its original divergence1. Here we perform a Bayesian phylogenetic analysis to examine two competing hypotheses of the origin of the Sino-Tibetan language family: the 'northern-origin hypothesis' and the 'southwestern-origin hypothesis'. The northern-origin hypothesis states that the initial expansion of Sino-Tibetan languages occurred approximately 4,000-6,000 years before present (BP; taken as AD 1950) in the Yellow River basin of northern China2-4, and that this expansion is associated with the development of the Yangshao and/or Majiayao Neolithic cultures. The southwestern-origin hypothesis states that an early expansion of Sino-Tibetan languages occurred before 9,000 years BP from a region in southwest Sichuan province in China5 or in northeast India6, where a high diversity of Tibeto-Burman languages exists today. Consistent with the northern-origin hypothesis, our Bayesian phylogenetic analysis of 109 languages with 949 lexical root-meanings produced an estimated time depth for the divergence of Sino-Tibetan languages of approximately 4,200-7,800 years BP, with an average value of approximately 5,900 years BP. In addition, the phylogeny supported a dichotomy between Sinitic and Tibeto-Burman languages. Our results are compatible with the archaeological records, and with the farming and language dispersal hypothesis7 of agricultural expansion in China. Our findings provide a linguistic foothold for further interdisciplinary studies of prehistoric human activity in East Asia.
Collapse
Affiliation(s)
- Menghan Zhang
- State Key Laboratory of Genetic Engineering, and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China
| | - Shi Yan
- Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Wuyun Pan
- Institute for Humanities and Social Science Data, School of Data Science, Fudan University, Shanghai, China.,Institute of Linguistics, College of Humanities and Communications, Shanghai Normal University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China. .,Human Phenome Institute, Fudan University, Shanghai, China. .,Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, China.
| |
Collapse
|
28
|
Xia X, Yao Y, Li C, Zhang F, Qu K, Chen H, Huang B, Lei C. Genetic diversity of Chinese cattle revealed by Y-SNP and Y-STR markers. Anim Genet 2018; 50:64-69. [PMID: 30421442 DOI: 10.1111/age.12742] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2018] [Indexed: 11/29/2022]
Abstract
With its vast territory and complex natural environment, China boasts rich cattle genetic resources. To gain the further insight into the genetic diversity and paternal origins of Chinese cattle, we analyzed the polymorphism of Y-SNPs (UTY19 and ZFY10) and Y-STRs (INRA189 and BM861) in 34 Chinese cattle breeds/populations, including 606 males representative of 24 cattle breeds/populations collected in this study as well as previously published data for 302 bulls. Combined genotypic data identified 14 Y-chromosome haplotypes that represented three haplogroups. Y2-104-158 and Y2-102-158 were the most common taurine haplotypes detected mainly in northern and central China, whereas the indicine haplotype Y3-88-156 predominates in southern China. Haplotypes Y2-108-158, Y2-110-158, Y2-112-158 and Y3-92-156 were private to Chinese cattle. The population structure revealed by multidimensional scaling analysis differentiated Tibetan cattle from the other three groups of cattle. Analysis of molecular variance showed that the majority of the genetic variation was explained by the genetic differences among groups. Overall, our study indicates that Chinese cattle retain high paternal diversity (H = 0.607 ± 0.016) and probably much of the original lineages that derived from the domestication center in the Near East without strong admixture from commercial cattle carrying Y1 haplotypes.
Collapse
Affiliation(s)
- X Xia
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Y Yao
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - C Li
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - F Zhang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - K Qu
- Yunnan Academy of Grassland and Animal Science, Kunming, Yunnan, 650212, China
| | - H Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - B Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, Yunnan, 650212, China
| | - C Lei
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
29
|
Rowold DJ, Gayden T, Luis JR, Alfonso-Sanchez MA, Garcia-Bertrand R, Herrera RJ. Investigating the genetic diversity and affinities of historical populations of Tibet. Gene 2018; 682:81-91. [PMID: 30266503 DOI: 10.1016/j.gene.2018.09.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/22/2018] [Indexed: 11/30/2022]
Abstract
This study elucidates Y chromosome distribution patterns in the three general provincial populations of historical Tibet, Amdo (n = 88), Dotoe (n = 109) and U-Tsang (n = 153) against the backdrop of 37 Asian reference populations. The central aim of this study is to investigate the genetic affinities of the three historical Tibetan populations among themselves and to neighboring populations. Y-SNP and Y-STR profiles were assessed in these historical populations. Correspondence analyses (CA) were generated with Y-SNP haplogroup data. Y-STR haplotypes were determined and employed to generate multidimensional scaling (MDS) plots based on Rst distances. Frequency contour maps of informative Y haplogroups were constructed to visualize the distributions of specific chromosome types. Network analyses based on Y-STR profiles of individuals under specific Y haplogroups were generated to examine the genetic heterogeneity among populations. Average gene diversity values and other parameters of population genetics interest were estimated to characterize the populations. The Y chromosomal results generated in this study indicate that using two sets of markers (Y-SNP, and Y-STR) the three Tibetan populations are genetically distinct. In addition, U-Tsang displays the highest gene diversity, followed by Amdo and Dotoe. The results of this transcontinental biogeographical investigation also indicate various degrees of paternal genetic affinities among these three Tibetan populations depending on the type of loci (Y-SNP or Y-STR) analyzed. The CA generated with Y-SNP haplogroup data demonstrates that Amdo and U-Tsang are closer to each other than to any neighboring non-Tibetan group. In contrast, the MDS plot based on Y-STR haplotypes displays Rst distances that are much shorter between U-Tsang and its geographic nearby populations of Ladakh, Punjab, Kathmandu and Newar than between it and Amdo. Moreover, although Dotoe is isolated from all other groups using both types of marker systems, it lies nearer to the other Tibetan collections in the Y-SNP CA than in the Y-STR MDS plot. High resolution and shallow evolutionary time frames engendered by Y-STR based analyses may reflect a more recent demographic history than that delineated by the more conserved Y-SNP markers.
Collapse
Affiliation(s)
- Diane J Rowold
- Foundation for Applied Molecular Evolution, Gainesville, FL 32601, USA
| | - Tenzin Gayden
- PRecision Oncology For Young PeopLE (PROFYLE), Montreal Node, Canada
| | - Javier Rodriguez Luis
- Area de Antropología, Facultad de Biología, Universidad de Santiago de Compostela, Campus Sur s/n, 15782 Santiago de Compostela, Spain
| | - Miguel A Alfonso-Sanchez
- Departamento de Genetica y Antropologia Fisica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco (UPV/EHU), Bilbao, Spain
| | | | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA
| |
Collapse
|
30
|
Cabrera VM, Marrero P, Abu-Amero KK, Larruga JM. Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago. BMC Evol Biol 2018; 18:98. [PMID: 29921229 PMCID: PMC6009813 DOI: 10.1186/s12862-018-1211-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/05/2018] [Indexed: 11/15/2022] Open
Abstract
Background The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya. Results The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. Inside Africa, frequency distributions of maternal L3 and paternal E lineages are positively correlated. This correlation is not fully explained by geographic or ethnic affinities. This correlation rather seems to be the result of a joint and global replacement of the old autochthonous male and female African lineages by the new Eurasian incomers. Conclusions These results are congruent with a model proposing an out-of-Africa migration into Asia, following a northern route, of early anatomically modern humans carrying pre-L3 mtDNA lineages around 125 kya, subsequent diversification of pre-L3 into the basal lineages of L3, a return to Africa of Eurasian fully modern humans around 70 kya carrying the basal L3 lineages and the subsequent diversification of Eurasian-remaining L3 lineages into the M and N lineages in the outside-of-Africa context, and a second Eurasian global expansion by 60 kya, most probably, out of southeast Asia. Climatic conditions and the presence of Neanderthals and other hominins might have played significant roles in these human movements. Moreover, recent studies based on ancient DNA and whole-genome sequencing are also compatible with this hypothesis. Electronic supplementary material The online version of this article (10.1186/s12862-018-1211-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| | - Patricia Marrero
- Research Support General Service, E-38271, La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| |
Collapse
|
31
|
Wang LX, Lu Y, Zhang C, Wei LH, Yan S, Huang YZ, Wang CC, Mallick S, Wen SQ, Jin L, Xu SH, Li H. Reconstruction of Y-chromosome phylogeny reveals two neolithic expansions of Tibeto-Burman populations. Mol Genet Genomics 2018; 293:1293-1300. [DOI: 10.1007/s00438-018-1461-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/11/2018] [Indexed: 11/30/2022]
|
32
|
Huang YZ, Pamjav H, Flegontov P, Stenzl V, Wen SQ, Tong XZ, Wang CC, Wang LX, Wei LH, Gao JY, Jin L, Li H. Dispersals of the Siberian Y-chromosome haplogroup Q in Eurasia. Mol Genet Genomics 2018; 293:107-117. [PMID: 28884289 PMCID: PMC5846874 DOI: 10.1007/s00438-017-1363-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/27/2017] [Indexed: 12/17/2022]
Abstract
The human Y-chromosome has proven to be a powerful tool for tracing the paternal history of human populations and genealogical ancestors. The human Y-chromosome haplogroup Q is the most frequent haplogroup in the Americas. Previous studies have traced the origin of haplogroup Q to the region around Central Asia and Southern Siberia. Although the diversity of haplogroup Q in the Americas has been studied in detail, investigations on the diffusion of haplogroup Q in Eurasia and Africa are still limited. In this study, we collected 39 samples from China and Russia, investigated 432 samples from previous studies of haplogroup Q, and analyzed the single nucleotide polymorphism (SNP) subclades Q1a1a1-M120, Q1a2a1-L54, Q1a1b-M25, Q1a2-M346, Q1a2a1a2-L804, Q1a2b2-F1161, Q1b1a-M378, and Q1b1a1-L245. Through NETWORK and BATWING analyses, we found that the subclades of haplogroup Q continued to disperse from Central Asia and Southern Siberia during the past 10,000 years. Apart from its migration through the Beringia to the Americas, haplogroup Q also moved from Asia to the south and to the west during the Neolithic period, and subsequently to the whole of Eurasia and part of Africa.
Collapse
Affiliation(s)
- Yun-Zhi Huang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Horolma Pamjav
- National Center of Forensic Experts and Research, Budapest, 1087, Hungary
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000, Ostrava, Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russian Federation
| | - Vlastimil Stenzl
- Institute of Criminalistics, Police of the Czech Republic, 17089, Prague, Czech Republic
| | - Shao-Qing Wen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xin-Zhu Tong
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Xiamen University, Xiamen, 361005, China
| | - Ling-Xiang Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lan-Hai Wei
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institut National des Langues et Civilisations Orientales, 75013, Paris, France
| | - Jing-Yi Gao
- Faculty of Arts and Humanities, University of Tartu, 50090, Tartu, Estonia
- Faculty of Central European Studies, Beijing International Studies University, Beijing, 100024, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hui Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
33
|
Reconstructing the demographic history of the Himalayan and adjoining populations. Hum Genet 2018; 137:129-139. [PMID: 29356938 DOI: 10.1007/s00439-018-1867-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/06/2018] [Indexed: 12/19/2022]
Abstract
The rugged topography of the Himalayan region has hindered large-scale human migrations, population admixture and assimilation. Such complexity in geographical structure might have facilitated the existence of several small isolated communities in this region. We have genotyped about 850,000 autosomal markers among 35 individuals belonging to the four major populations inhabiting the Himalaya and adjoining regions. In addition, we have genotyped 794 individuals belonging to 16 ethnic groups from the same region, for uniparental (mitochondrial and Y chromosomal DNA) markers. Our results in the light of various statistical analyses suggest a closer link of the Himalayan and adjoining populations to East Asia than their immediate geographical neighbours in South Asia. Allele frequency-based analyses likely support the existence of a specific ancestry component in the Himalayan and adjoining populations. The admixture time estimate suggests a recent westward migration of populations living to the East of the Himalaya. Furthermore, the uniparental marker analysis among the Himalayan and adjoining populations reveal the presence of East, Southeast and South Asian genetic signatures. Interestingly, we observed an antagonistic association of Y chromosomal haplogroups O3 and D clines with the longitudinal distance. Thus, we summarise that studying the Himalayan and adjoining populations is essential for a comprehensive reconstruction of the human evolutionary and ethnolinguistic history of eastern Eurasia.
Collapse
|
34
|
Li J, Zeng W, Zhang Y, Ko AMS, Li C, Zhu H, Fu Q, Zhou H. Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese. BMC Evol Biol 2017; 17:239. [PMID: 29202706 PMCID: PMC5716020 DOI: 10.1186/s12862-017-1082-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 11/17/2017] [Indexed: 12/04/2022] Open
Abstract
Background Ancient Di-Qiang people once resided in the Ganqing region of China, adjacent to the Central Plain area from where Han Chinese originated. While gene flow between the Di-Qiang and Han Chinese has been proposed, there is no evidence to support this view. Here we analyzed the human remains from an early Di-Qiang site (Mogou site dated ~4000 years old) and compared them to other ancient DNA across China, including an early Han-related site (Hengbei site dated ~3000 years old) to establish the underlying genetic relationship between the Di-Qiang and ancestors of Han Chinese. Results We found Mogou mtDNA haplogroups were highly diverse, comprising 14 haplogroups: A, B, C, D (D*, D4, D5), F, G, M7, M8, M10, M13, M25, N*, N9a, and Z. In contrast, Mogou males were all Y-DNA haplogroup O3a2/P201; specifically one male was further assigned to O3a2c1a/M117 using targeted unique regions on the non-recombining region of the Y-chromosome. We compared Mogou to 7 other ancient and 38 modern Chinese groups, in a total of 1793 individuals, and found that Mogou shared close genetic distances with Taojiazhai (a more recent Di-Qiang population), Hengbei, and Northern Han. We modeled their interactions using Approximate Bayesian Computation, and support was given to a potential admixture of ~13-18% between the Mogou and Northern Han around 3300–3800 years ago. Conclusions Mogou harbors the earliest genetically identifiable Di-Qiang, ancestral to the Taojiazhai, and up to ~33% paternal and ~70% of its maternal haplogroups could be found in present-day Northern Han Chinese. Electronic supplementary material The online version of this article (10.1186/s12862-017-1082-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiawei Li
- College of Life Science, Jilin University, Changchun, 130023, People's Republic of China
| | - Wen Zeng
- Ancient DNA Laboratory, Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China
| | - Ye Zhang
- College of Life Science, Jilin University, Changchun, 130023, People's Republic of China
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, 100044, People's Republic of China
| | - Chunxiang Li
- College of Life Science, Jilin University, Changchun, 130023, People's Republic of China
| | - Hong Zhu
- Ancient DNA Laboratory, Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, 100044, People's Republic of China.
| | - Hui Zhou
- College of Life Science, Jilin University, Changchun, 130023, People's Republic of China. .,Ancient DNA Laboratory, Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
35
|
The genomic landscape of Nepalese Tibeto-Burmans reveals new insights into the recent peopling of Southern Himalayas. Sci Rep 2017; 7:15512. [PMID: 29138459 PMCID: PMC5686152 DOI: 10.1038/s41598-017-15862-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
While much research attention has focused on demographic processes that enabled human diffusion on the Tibetan plateau, little is known about more recent colonization of Southern Himalayas. In particular, the history of migrations, admixture and/or isolation of populations speaking Tibeto-Burman languages, which is supposed to be quite complex and to have reshaped patterns of genetic variation on both sides of the Himalayan arc, remains only partially elucidated. We thus described the genomic landscape of previously unsurveyed Tibeto-Burman (i.e. Sherpa and Tamang) and Indo-Aryan communities from remote Nepalese valleys. Exploration of their genomic relationships with South/East Asian populations provided evidence for Tibetan admixture with low-altitude East Asians and for Sherpa isolation. We also showed that the other Southern Himalayan Tibeto-Burmans derived East Asian ancestry not from the Tibetan/Sherpa lineage, but from low-altitude ancestors who migrated from China plausibly across Northern India/Myanmar, having experienced extensive admixture that reshuffled the ancestral Tibeto-Burman gene pool. These findings improved the understanding of the impact of gene flow/drift on the evolution of high-altitude Himalayan peoples and shed light on migration events that drove colonization of the southern Himalayan slopes, as well as on the role played by different Tibeto-Burman groups in such a complex demographic scenario.
Collapse
|
36
|
Yao HB, Tang S, Yao X, Yeh HY, Zhang W, Xie Z, Du Q, Ma L, Wei S, Gong X, Zhang Z, Li Q, Xu B, Zhang HQ, Chen G, Wang CC. The genetic admixture in Tibetan-Yi Corridor. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:522-532. [DOI: 10.1002/ajpa.23291] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Hong-Bing Yao
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | | | | | - Hui-Yuan Yeh
- School of Humanities and School of Medicine; Nanyang Technological University; 639798 Singapore
| | - Wanhu Zhang
- People's Hospital of Gaotai; Gaotai Gansu Province 734300 China
| | - Zhiyan Xie
- People's Hospital of Gaotai; Gaotai Gansu Province 734300 China
| | - Qiajun Du
- Lanzhou University Second Hospital Clinical Laboratory; Lanzhou Gansu Province 730000 China
| | - Liying Ma
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Shuoyun Wei
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Xue Gong
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Zilong Zhang
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Quanfang Li
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Bingying Xu
- School of Forensic Medicine; Kunming Medical University; Kunming 650500 China
| | - Hu-Qin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology, Xi'an Jiaotong University; Xi'an 710049 China
| | | | - Chuan-Chao Wang
- Department of Anthropology and Ethnology; Xiamen University; Xiamen 361005 China
- Department of Archaeogenetics and Eurasia3angle research group; Max Planck Institute for the Science of Human History; Jena D-07745 Germany
- Department of Genetics; Harvard Medical School; Boston Massachusetts 02115
| |
Collapse
|
37
|
Buroker NE, Ning XH, Zhou ZN, Li K, Cen WJ, Wu XF, Zhu WZ, Scott CR, Chen SH. SNPs, linkage disequilibrium, and chronic mountain sickness in Tibetan Chinese. HYPOXIA 2017; 5:67-74. [PMID: 28770234 PMCID: PMC5529112 DOI: 10.2147/hp.s117967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic mountain sickness (CMS) is estimated at 1.2% in Tibetans living at the Qinghai-Tibetan Plateau. Eighteen single-nucleotide polymorphisms (SNPs) from nine nuclear genes that have an association with CMS in Tibetans have been analyzed by using pairwise linkage disequilibrium (LD). The SNPs included are the angiotensin-converting enzyme (rs4340), the angiotensinogen (rs699), and the angiotensin II type 1 receptor (AGTR1) (rs5186) from the renin-angiotensin system. A low-density lipoprotein apolipoprotein B (rs693) SNP was also included. From the hypoxia-inducible factor oxygen signaling pathway, the endothetal Per-Arnt-Sim domain protein 1 (EPAS1) and the egl nine homolog 1 (ENGL1) (rs480902) SNPs were included in the study. SNPs from the vascular endothelial growth factor (VEGF) signaling pathway included are the v-akt murine thymoma viral oncogene homolog 3 (rs4590656 and rs2291409), the endothelial cell nitric oxide synthase 3 (rs1007311 and rs1799983), and the (VEGFA) (rs699947, rs34357231, rs79469752, rs13207351, rs28357093, rs1570360, rs2010963, and rs3025039). An increase in LD occurred in 40 pairwise comparisons, whereas a decrease in LD was found in 55 pairwise comparisons between the controls and CMS patients. These changes were found to occur within and between signaling pathways, which suggests that there is an interaction between SNP alleles from different areas of the genome that affect CMS.
Collapse
Affiliation(s)
| | - Xue-Han Ning
- Department of Pediatrics, University of Washington.,Division of Cardiology, Seattle Children's Hospital Research Foundation, Seattle, WA, USA
| | - Zhao-Nian Zhou
- Laboratory of Hypoxia Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kui Li
- Lhasa People Hospital, Lhasa, Tibet
| | | | - Xiu-Feng Wu
- Laboratory of Hypoxia Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Zhong Zhu
- Center for Cardiovascular Biology and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Shi-Han Chen
- Department of Pediatrics, University of Washington
| |
Collapse
|
38
|
Rej PH, Deka R, Norton HL. Understanding influences of culture and history on mtDNA variation and population structure in three populations from Assam, Northeast India. Am J Hum Biol 2017; 29. [PMID: 28121389 DOI: 10.1002/ajhb.22955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Positioned at the nexus of India, China, and Southeast Asia, Northeast India is presumed to have served as a channel for land-based human migration since the Upper Pleistocene. Assam is the largest state in the Northeast. We characterized the genetic background of three populations and examined the ways in which their population histories and cultural practices have influenced levels of intrasample and intersample variation. METHODS We examined sequence data from the mtDNA hypervariable control region and selected diagnostic mutations from the coding region in 128 individuals from three ethnic groups currently living in Assam: two Scheduled tribes (Sonowal Kachari and Rabha), and the non-Scheduled Tai Ahom. RESULTS The populations of Assam sampled here express mtDNA lineages indicative of South Asian, Southeast Asian, and East Asian ancestry. We discovered two completely novel haplogroups in Assam that accounted for 6.2% of the lineages in our sample. We also identified a new subhaplogroup of M9a that is prevalent in the Sonowal Kachari of Assam (19.1%), but not present in neighboring Arunachal Pradesh, indicating substantial regional population structuring. Employing a large comparative dataset into a series of multidimensional scaling (MDS) analyses, we saw the Rabha cluster with populations sampled from Yunnan Province, indicating that the historical matrilineality of the Rabha has maintained lineages from Southern China. CONCLUSION Assam has undergone multiple colonization events in the time since the initial peopling event, with populations from Southern China and Southeast Asia having the greatest influence on maternal lineages in the region.
Collapse
Affiliation(s)
- Peter H Rej
- Department of Anthropology, University of Florida, Gainesville, Florida, 32611.,Genetics Institute, University of Florida, Gainesville, Florida, 32610
| | - Ranjan Deka
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267
| | - Heather L Norton
- Department of Anthropology, University of Cincinnati, Ohio, 45221
| |
Collapse
|
39
|
Improved phylogenetic resolution for Y-chromosome Haplogroup O2a1c-002611. Sci Rep 2017; 7:1146. [PMID: 28442769 PMCID: PMC5430735 DOI: 10.1038/s41598-017-01340-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/28/2017] [Indexed: 11/25/2022] Open
Abstract
Y-chromosome Haplogroup O2a1c-002611 is one of the dominant lineages of East Asians and Southeast Asians. However, its internal phylogeny remains insufficiently investigated. In this study, we genotyped 89 new highly informative single nucleotide polymorphisms (SNPs) in 305 individuals with Haplogroup O2a1c-002611 identified from 2139 Han Chinese males. Two major branches were identified, O2a1c1-F18 and O2a1c2-L133.2 and the first was further divided into two main subclades, O2a1c1a-F11 and O2a1c1b-F449, accounting for 11.13% and 2.20% of Han Chinese, respectively. In Haplogroup O2a1c1a-F11, we also determined seven sublineages with quite different frequency distributions in Han Chinese ranging from 0.187% to 3.553%, implying they might have different demographic history. The reconstructed haplogroup tree for all the major clades within Haplogroup O2a1c-002611 permits better resolution of male lineages in population studies of East Asia and Southeast Asia. The dataset generated in the present study are also valuable for forensic identification and paternity tests in China.
Collapse
|
40
|
Habitat Variability and Ethnic Diversity in Northern Tibetan Plateau. Sci Rep 2017; 7:918. [PMID: 28428559 PMCID: PMC5430525 DOI: 10.1038/s41598-017-01008-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/20/2017] [Indexed: 01/17/2023] Open
Abstract
There are 56 officially-recognized ethnic groups in China. However, the distinct geographic patterns of various ethnic groups in relation to the physical environment in China have rarely been investigated. Based on the geo-referenced physical environmental parameters of 455 Han, Tu, Hui, Salar, Mongolian, and Tibetan communities in Qinghai, we found that the communities could be statistically demarcated by temperature and aridity threshold according to their ethnicity, implying that the geographic distribution of each ethnic group is mediated by the physical environment. We also observed that the habitat of each ethnic group is ecologically compatible with current subsistence strategies. Tibetans settle in cold and humid high-altitude regions owing to the cultivation of highland barley and the breeding of yak, dzo, Tibetan sheep and Tibetan goat. Mongolians survive by animal husbandry in cold and dry grassland areas. Han and Tu people settle in the Huangshui River Valley, which offers relatively humid climate and flat land for agriculture. Hui and Salar people occupy the Yellow River Valley with its relatively arid environment and grassland vegetation suitable for animal breeding. Our findings offer a new perspective in explaining the geographic patterns and the varieties of ethnic groups in China and elsewhere.
Collapse
|
41
|
Wei LH, Yan S, Teo YY, Huang YZ, Wang LX, Yu G, Saw WY, Ong RTH, Lu Y, Zhang C, Xu SH, Jin L, Li H. Phylogeography of Y-chromosome haplogroup O3a2b2-N6 reveals patrilineal traces of Austronesian populations on the eastern coastal regions of Asia. PLoS One 2017; 12:e0175080. [PMID: 28380021 PMCID: PMC5381892 DOI: 10.1371/journal.pone.0175080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/20/2017] [Indexed: 12/31/2022] Open
Abstract
Austronesian diffusion is considered one of the greatest dispersals in human history; it led to the peopling of an extremely vast region, ranging from Madagascar in the Indian Ocean to Easter Island in Remote Oceania. The Y-chromosome haplogroup O3a2b*-P164(xM134), a predominant paternal lineage of Austronesian populations, is found at high frequencies in Polynesian populations. However, the internal phylogeny of this haplogroup remains poorly investigated. In this study, we analyzed -seventeen Y-chromosome sequences of haplogroup O3a2b*-P164(xM134) and generated a revised phylogenetic tree of this lineage based on 310 non-private Y-chromosome polymorphisms. We discovered that all available O3a2b*-P164(xM134) samples belong to the newly defined haplogroup O3a2b2-N6 and samples from Austronesian populations belong to the sublineage O3a2b2a2-F706. Additionally, we genotyped a series of Y-chromosome polymorphisms in a large collection of samples from China. We confirmed that the sublineage O3a2b2a2b-B451 is unique to Austronesian populations. We found that O3a2b2-N6 samples are widely distributed on the eastern coastal regions of Asia, from Korea to Vietnam. Furthermore, we propose- that the O3a2b2a2b-B451 lineage represents a genetic connection between ancestors of Austronesian populations and ancient populations in North China, where foxtail millet was domesticated about 11,000 years ago. The large number of newly defined Y-chromosome polymorphisms and the revised phylogenetic tree of O3a2b2-N6 will be helpful to explore the origin of proto-Austronesians and the early diffusion process of Austronesian populations.
Collapse
Affiliation(s)
- Lan-Hai Wei
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Institut National des Langues et Civilisations Orientales, Paris, France
| | - Shi Yan
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yun-Zhi Huang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ling-Xiang Wang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ge Yu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Woei-Yuh Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yan Lu
- Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Zhang
- Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Hua Xu
- Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Li Jin
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
42
|
Padhy G, Gangwar A, Sharma M, Bhargava K, Sethy NK. Plasma Proteomics of Ladakhi Natives Reveal Functional Regulation Between Renin–Angiotensin System and eNOS–cGMP Pathway. High Alt Med Biol 2017; 18:27-36. [DOI: 10.1089/ham.2016.0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Gayatri Padhy
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization, Timarpur, Delhi, India
| | - Anamika Gangwar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization, Timarpur, Delhi, India
| | - Manish Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization, Timarpur, Delhi, India
| | - Kalpana Bhargava
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization, Timarpur, Delhi, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization, Timarpur, Delhi, India
| |
Collapse
|
43
|
Ancestral Origins and Genetic History of Tibetan Highlanders. Am J Hum Genet 2016; 99:580-594. [PMID: 27569548 DOI: 10.1016/j.ajhg.2016.07.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/01/2016] [Indexed: 12/30/2022] Open
Abstract
The origin of Tibetans remains one of the most contentious puzzles in history, anthropology, and genetics. Analyses of deeply sequenced (30×-60×) genomes of 38 Tibetan highlanders and 39 Han Chinese lowlanders, together with available data on archaic and modern humans, allow us to comprehensively characterize the ancestral makeup of Tibetans and uncover their origins. Non-modern human sequences compose ∼6% of the Tibetan gene pool and form unique haplotypes in some genomic regions, where Denisovan-like, Neanderthal-like, ancient-Siberian-like, and unknown ancestries are entangled and elevated. The shared ancestry of Tibetan-enriched sequences dates back to ∼62,000-38,000 years ago, predating the Last Glacial Maximum (LGM) and representing early colonization of the plateau. Nonetheless, most of the Tibetan gene pool is of modern human origin and diverged from that of Han Chinese ∼15,000 to ∼9,000 years ago, which can be largely attributed to post-LGM arrivals. Analysis of ∼200 contemporary populations showed that Tibetans share ancestry with populations from East Asia (∼82%), Central Asia and Siberia (∼11%), South Asia (∼6%), and western Eurasia and Oceania (∼1%). Our results support that Tibetans arose from a mixture of multiple ancestral gene pools but that their origins are much more complicated and ancient than previously suspected. We provide compelling evidence of the co-existence of Paleolithic and Neolithic ancestries in the Tibetan gene pool, indicating a genetic continuity between pre-historical highland-foragers and present-day Tibetans. In particular, highly differentiated sequences harbored in highlanders' genomes were most likely inherited from pre-LGM settlers of multiple ancestral origins (SUNDer) and maintained in high frequency by natural selection.
Collapse
|
44
|
Rare Helicobacter pylori Virulence Genotypes in Bhutan. Sci Rep 2016; 6:22584. [PMID: 26931643 PMCID: PMC4773856 DOI: 10.1038/srep22584] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
Both the prevalence of Helicobacter pylori infection and the incidence of gastric cancer are high in Bhutan. The high incidence of atrophic gastritis and gastric cancer suggest the phylogeographic origin of an infection with a more virulent strain of H. pylori. More than 90% of Bhutanese strains possessed the highly virulent East Asian-type CagA and all strains had the most virulent type of vacA (s1 type). More than half also had multiple repeats in East Asian-type CagA, which are rare in other countries and are reported characteristictly found in assciation with atrophic gastritis and gastric cancer consistent with Bhutanese strains having multiple H. pylori virulence factors associated with an increase in gastric cancer risk. Phylogeographic analyses showed that most Bhutanese strains belonged to the East Asian population type with some strains (17.5%) sharing East Asian and Amerindian components. Only 9.5% belonged to the European type consistant with H. pylori in Bhutan representing an intermediate evolutionary stage between H. pylori from European and East Asian countries.
Collapse
|
45
|
Ethnically distinct populations of historical Tibet exhibit distinct autosomal STR compositions. Gene 2016; 578:74-84. [DOI: 10.1016/j.gene.2015.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022]
|
46
|
Bhandari S, Zhang X, Cui C, Bianba, Liao S, Peng Y, Zhang H, Xiang K, Shi H, Ouzhuluobu, Baimakongzhuo, Gonggalanzi, Liu S, Gengdeng, Wu T, Qi X, Su B. Genetic evidence of a recent Tibetan ancestry to Sherpas in the Himalayan region. Sci Rep 2015; 5:16249. [PMID: 26538459 PMCID: PMC4633682 DOI: 10.1038/srep16249] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/12/2015] [Indexed: 01/13/2023] Open
Abstract
Sherpas living around the Himalayas are renowned as high-altitude mountain climbers but when and where the Sherpa people originated from remains contentious. In this study, we collected DNA samples from 582 Sherpas living in Nepal and Tibet Autonomous Region of China to study the genetic diversity of both their maternal (mitochondrial DNA) and paternal (Y chromosome) lineages. Analysis showed that Sherpas share most of their paternal and maternal lineages with indigenous Tibetans, representing a recently derived sub-lineage. The estimated ages of two Sherpa-specific mtDNA sub-haplogroups (C4a3b1 and A15c1) indicate a shallow genetic divergence between Sherpas and Tibetans less than 1,500 years ago. These findings reject the previous theory that Sherpa and Han Chinese served as dual ancestral populations of Tibetans, and conversely suggest that Tibetans are the ancestral populations of the Sherpas, whose adaptive traits for high altitude were recently inherited from their ancestors in Tibet.
Collapse
Affiliation(s)
- Sushil Bhandari
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Bianba
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Shiyu Liao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yi Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Kun Xiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Baimakongzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Gonggalanzi
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Shimin Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining 810012, China
| | - Gengdeng
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining 810012, China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining 810012, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
47
|
Guha P, Das A, Dutta S, Bhattacharjee S, Chaudhuri TK. Study of genetic diversity of KIR and TLR in the Rabhas, an endogamous primitive tribe of India. Hum Immunol 2015; 76:789-94. [PMID: 26429322 DOI: 10.1016/j.humimm.2015.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 07/13/2015] [Accepted: 09/27/2015] [Indexed: 12/18/2022]
Abstract
The Rabha tribe is a little known small endogamous population belonging to Indo-mongoloid group of north-eastern India. We have analyzed 16 KIR and 5 TLR gene polymorphisms in the Rabha population of northern West Bengal, India for the first time. The observed frequencies of the KIR genes (except framework and pseudogene loci) ranged between 0.26 (KIR2DS3) and 0.96 (KIR2DL1). Comparisons based on KIR polymorphism have revealed that although the Rabhas are of Indian origin the presence of mongoloid component in their gene pool cannot be denied. The frequencies of the 5 TLR genes ranged between 0.90 (TLR4) and 0.46 (TLR5). TLR variations found in the Rabhas may play a synergistic role in fighting against the bacterial invasions. Our results may contribute to the understanding of (1) genetic background and extent of genetic admixture in the Rabhas, (2) population migration events and (3) KIR-disease-TLR interactions.
Collapse
Affiliation(s)
- Pokhraj Guha
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Siliguri, West Bengal 734013, India
| | - Avishek Das
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Siliguri, West Bengal 734013, India
| | - Somit Dutta
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Siliguri, West Bengal 734013, India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Siliguri, West Bengal 734013, India
| | - Tapas Kumar Chaudhuri
- Cellular Immunology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, Siliguri, West Bengal 734013, India.
| |
Collapse
|
48
|
Ning C, Yan S, Hu K, Cui YQ, Jin L. Refined phylogenetic structure of an abundant East Asian Y-chromosomal haplogroup O*-M134. Eur J Hum Genet 2015; 24:307-9. [PMID: 26306641 DOI: 10.1038/ejhg.2015.183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 07/02/2015] [Accepted: 07/05/2015] [Indexed: 11/09/2022] Open
Abstract
The human Y-chromosome haplogroup O-M134 is one of the most abundant paternal lineages in East Asian populations, comprising ~13% of Han Chinese males, and also common in Kazakh, Korean, Japanese, Thai and so on. Despite its considerable prevalence, its current substructure is poorly resolved with only one downstream marker (M117) previously investigated. Here we address this deficiency by investigating some single-nucleotide polymorphisms (SNPs) previously reported being potentially associated with O-M134 based on high-throughput DNA-sequencing data. Using a panel of 1301 Chinese males we first identified 154 haplogroup O-M134 subjects. We then investigated the phylogenetic structure within this haplogroup using 10 SNPs (F444, F629, F3451, F46, F48, F209, F2887, F3386, F1739 and F152). Two major branches were identified, O-M117 and O-F444 and the latter was further divided into two main subclades, O-F629 and O-F3451, accounting for 10.84 and 0.92% of the Han Chinese, respectively. This update of O-M134 diversification permits better resolution of male lineages in population studies of East Asia.
Collapse
Affiliation(s)
- Chao Ning
- School of Life Sciences, Jilin University, Changchun, China
| | - Shi Yan
- Ministry of Education, Key Laboratory of Contemporary Anthropology and Center for Evolutionary Biology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kang Hu
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, Tibet University for Nationalities, Xianyang, China
| | - Yin-Qiu Cui
- School of Life Sciences, Jilin University, Changchun, China
| | - Li Jin
- Ministry of Education, Key Laboratory of Contemporary Anthropology and Center for Evolutionary Biology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Chinese Academy of Sciences Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, China
| |
Collapse
|
49
|
Ancient DNA reveals that the genetic structure of the northern Han Chinese was shaped prior to 3,000 years ago. PLoS One 2015; 10:e0125676. [PMID: 25938511 PMCID: PMC4418768 DOI: 10.1371/journal.pone.0125676] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/21/2015] [Indexed: 11/29/2022] Open
Abstract
The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area.
Collapse
|
50
|
Olofsson JK, Pereira V, Børsting C, Morling N. Peopling of the North Circumpolar Region--insights from Y chromosome STR and SNP typing of Greenlanders. PLoS One 2015; 10:e0116573. [PMID: 25635810 PMCID: PMC4312058 DOI: 10.1371/journal.pone.0116573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/04/2014] [Indexed: 11/18/2022] Open
Abstract
The human population in Greenland is characterized by migration events of Paleo- and Neo-Eskimos, as well as admixture with Europeans. In this study, the Y-chromosomal variation in male Greenlanders was investigated in detail by typing 73 Y-chromosomal single nucleotide polymorphisms (Y-SNPs) and 17 Y-chromosomal short tandem repeats (Y-STRs). Approximately 40% of the analyzed Greenlandic Y chromosomes were of European origin (I-M170, R1a-M513 and R1b-M343). Y chromosomes of European origin were mainly found in individuals from the west and south coasts of Greenland, which is in agreement with the historic records of the geographic placements of European settlements in Greenland. Two Inuit Y-chromosomal lineages, Q-M3 (xM19, M194, L663, SA01 and L766) and Q-NWT01 (xM265) were found in 23% and 31% of the male Greenlanders, respectively. The time to the most recent common ancestor (TMRCA) of the Q-M3 lineage of the Greenlanders was estimated to be between 4,400 and 10,900 years ago (y. a.) using two different methods. This is in agreement with the theory that the North Circumpolar Region was populated via a second expansion of humans in the North American continent. The TMRCA of the Q-NWT01 (xM265) lineage in Greenland was estimated to be between 7,000 and 14,300 y. a. using two different methods, which is older than the previously reported TMRCA of this lineage in other Inuit populations. Our results indicate that Inuit individuals carrying the Q-NWT01 (xM265) lineage may have their origin in the northeastern parts of North America and could be descendants of the Dorset culture. This in turn points to the possibility that the current Inuit population in Greenland is comprised of individuals of both Thule and Dorset descent.
Collapse
Affiliation(s)
- Jill Katharina Olofsson
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Vania Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|