1
|
Dash BP, Freischmidt A, Weishaupt JH, Hermann A. An integrative miRNA-mRNA expression analysis identifies miRNA signatures associated with SOD1 and TARDBP patient-derived motor neurons. Hum Mol Genet 2024; 33:1300-1314. [PMID: 38676626 DOI: 10.1093/hmg/ddae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
MicroRNAs (miRNAs) are a subset of small non-coding single-stranded RNA molecules involved in the regulation of post-transcriptional gene expression of a variety of transcript targets. Therefore altered miRNA expression may result in the dysregulation of key genes and biological pathways that has been reported with the onset and progression of neurodegenerative diseases, such as Amyotrophic lateral sclerosis (ALS). ALS is marked by a progressive degeneration of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Although the pathomechanism underlying molecular interactions of ALS remains poorly understood, alterations in RNA metabolism, including dysregulation of miRNA expression in familial as well as sporadic forms are still scarcely studied. In this study, we performed combined transcriptomic data and miRNA profiling in MN samples of the same samples of iPSC-derived MNs from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls. We report a global upregulation of mature miRNAs, and suggest that differentially expressed (DE) miRNAs have a significant impact on mRNA-level in SOD1-, but not in TARDBP-linked ALS. Furthermore, in SOD1-ALS we identified dysregulated miRNAs such as miR-124-3p, miR-19b-3p and miR-218 and their potential targets previously implicated in important functional process and pathogenic pathways underlying ALS. These miRNAs may play key roles in the neuronal development and cell survival related functions in SOD1-ALS. Altogether, we provide evidence of miRNA regulated genes expression mainly in SOD1 rather than TDP43-ALS.
Collapse
Affiliation(s)
- Banaja P Dash
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Gehlsheimer Str. 20, Rostock 18147, Germany
| | - Axel Freischmidt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Jochen H Weishaupt
- Division of Neurodegeneration, Department of Neurology, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Gehlsheimer Str. 20, Rostock 18147, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, Gehlsheimer Str. 20, Rostock 18147, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Gehlsheimer Str. 20, Rostock 18147, Germany
| |
Collapse
|
2
|
Burbach KF, Yoo AS. Notch Inhibition Enhances Morphological Reprogramming of microRNA-Induced Human Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575384. [PMID: 38260259 PMCID: PMC10802628 DOI: 10.1101/2024.01.12.575384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Although the importance of Notch signaling in brain development is well-known, its specific contribution to cellular reprogramming remains less defined. Here, we use microRNA-induced neurons that are directly reprogrammed from human fibroblasts to determine how Notch signaling contributes to neuronal identity. We found that inhibiting Notch signaling led to an increase in neurite extension, while activating Notch signaling had the opposite effect. Surprisingly, Notch inhibition during the first week of reprogramming was both necessary and sufficient to enhance neurite outgrowth at a later timepoint. This timeframe is when the reprogramming miRNAs, miR-9/9* and miR-124, primarily induce a post-mitotic state and erase fibroblast identity. Accordingly, transcriptomic analysis showed that the effect of Notch inhibition was likely due to improvements in fibroblast fate erasure and silencing of anti-neuronal genes. To this effect, we identify MYLIP , whose downregulation in response to Notch inhibition significantly promoted neurite outgrowth. Moreover, Notch inhibition resulted in cells with neuronal transcriptome signature defined by expressing long genes at a faster rate than the control, demonstrating the effect of accelerated fate erasure on neuronal fate acquisition. Our results demonstrate the critical role of Notch signaling in mediating morphological changes in miRNA-based neuronal reprogramming of human adult fibroblasts.
Collapse
|
3
|
Kołosowska KA, Schratt G, Winterer J. microRNA-dependent regulation of gene expression in GABAergic interneurons. Front Cell Neurosci 2023; 17:1188574. [PMID: 37213213 PMCID: PMC10196030 DOI: 10.3389/fncel.2023.1188574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Information processing within neuronal circuits relies on their proper development and a balanced interplay between principal and local inhibitory interneurons within those circuits. Gamma-aminobutyric acid (GABA)ergic inhibitory interneurons are a remarkably heterogeneous population, comprising subclasses based on their morphological, electrophysiological, and molecular features, with differential connectivity and activity patterns. microRNA (miRNA)-dependent post-transcriptional control of gene expression represents an important regulatory mechanism for neuronal development and plasticity. miRNAs are a large group of small non-coding RNAs (21-24 nucleotides) acting as negative regulators of mRNA translation and stability. However, while miRNA-dependent gene regulation in principal neurons has been described heretofore in several studies, an understanding of the role of miRNAs in inhibitory interneurons is only beginning to emerge. Recent research demonstrated that miRNAs are differentially expressed in interneuron subclasses, are vitally important for migration, maturation, and survival of interneurons during embryonic development and are crucial for cognitive function and memory formation. In this review, we discuss recent progress in understanding miRNA-dependent regulation of gene expression in interneuron development and function. We aim to shed light onto mechanisms by which miRNAs in GABAergic interneurons contribute to sculpting neuronal circuits, and how their dysregulation may underlie the emergence of numerous neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| |
Collapse
|
4
|
Fedorova V, Amruz Cerna K, Oppelt J, Pospisilova V, Barta T, Mraz M, Bohaciakova D. MicroRNA Profiling of Self-Renewing Human Neural Stem Cells Reveals Novel Sets of Differentially Expressed microRNAs During Neural Differentiation In Vitro. Stem Cell Rev Rep 2023:10.1007/s12015-023-10524-2. [PMID: 36918496 PMCID: PMC10366325 DOI: 10.1007/s12015-023-10524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
The involvement of microRNAs (miRNAs) in orchestrating self-renewal and differentiation of stem cells has been revealed in a number of recent studies. And while in human pluripotent stem cells, miRNAs have been directly linked to the core pluripotency network, including the cell cycle regulation and the maintenance of the self-renewing capacity, their role in the onset of differentiation in other contexts, such as determination of neural cell fate, remains poorly described. To bridge this gap, we used three model cell types to study miRNA expression patterns: human embryonic stem cells (hESCs), hESCs-derived self-renewing neural stem cells (NSCs), and differentiating NSCs. The comprehensive miRNA profiling presented here reveals novel sets of miRNAs differentially expressed during human neural cell fate determination in vitro. Furthermore, we report a miRNA expression profile of self-renewing human NSCs, which has been lacking to this date. Our data also indicates that miRNA clusters enriched in NSCs share the target-determining seed sequence with cell cycle regulatory miRNAs expressed in pluripotent hESCs. Lastly, our mechanistic experiments confirmed that cluster miR-17-92, one of the NSCs-enriched clusters, is directly transcriptionally regulated by transcription factor c-MYC.
Collapse
Affiliation(s)
- Veronika Fedorova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Amruz Cerna
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. .,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
5
|
A Proposed Role for Interactions between Argonautes, miRISC, and RNA Binding Proteins in the Regulation of Local Translation in Neurons and Glia. J Neurosci 2022; 42:3291-3301. [PMID: 35444007 PMCID: PMC9034781 DOI: 10.1523/jneurosci.2391-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
The first evidence of local translation in the CNS appeared nearly 40 years ago, when electron microscopic studies showed polyribosomes localized to the base of dendritic spines. Since then, local translation has been established as an important regulatory mechanism for gene expression in polarized or functionally compartmentalized cells. While much attention has been placed on characterizing the local transcriptome and regulatory "grammar" directing mRNA localization in neurons and glia, less is understood about how these cells subsequently de-repress mRNA translation in their peripheral processes to produce a rapid translational response to stimuli. MicroRNA-mediated translation regulation offers a possible solution to this question. Not only do miRNAs provide the specificity needed for targeted gene regulation, but association and dynamic interactions between Argonaute (AGO) with sequence-specific RNA-binding proteins may provide a molecular switch to allow for de-repression of target mRNAs. Here, we review the expression and activity of different AGO proteins in miRNA-induced silencing complexes in neurons and glia and discuss known pathways of miRNA-mediated regulation, including activity-dependent pre-miRNA maturation in dendrites. We further detail work on AGO and RNA-binding protein interactions that allow for the reversal of miRNA-mediated translational silencing, and we propose a model for how intercellular communication may play a role in the regulation of local translation.
Collapse
|
6
|
Gao S, Ge LH, Zhao YM, Li P, Li YY, Zhao W. Hsa-miRNA-143-3p regulates the odontogenic differentiation of human stem cells from the apical papilla by targeting NFIC. Int Endod J 2021; 55:263-274. [PMID: 34807471 DOI: 10.1111/iej.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023]
Abstract
AIM To evaluate the effects of hsa-miRNA-143-3p on the cytodifferentiation of human stem cells from the apical papilla (hSCAPs) and the post-transcriptional regulation of Nuclear factor I-C (NFIC). METHODOLOGY miRNA expression profiles in human immature permanent teeth and during hSCAP differentiation were examined. hSCAPs were treated with miR-143-3p overexpression or silencing viruses, and the proliferation and odontogenic and osteogenic differentiation of these stem cells, and the involvement of the NFIC pathway, were investigated. Luciferase reporter and NFIC mutant plasmids were used to confirm NFIC mRNA as a direct target of miR-143-3p. NFIC expression analysis in the miR-143-3p overexpressing hSCAPs was used to investigate whether miR-143-3p functioned by targeting NFIC. Student's t-test and chi-square tests were used for statistical analysis. RESULTS miR-143-3p expression was screened by microarray profiling and was found to be significantly reduced during hSCAP differentiation (p < .05). Overexpression of miR-143-3p inhibited the mineralization of hSCAPs significantly (p < .05) and downregulated the levels of odontogenic differentiation markers (NFIC [p < .05], DSP [p < .01] and KLF4 [p < .01]), whereas silencing of miR-143-3p had the opposite effect. The luciferase reporter gene detection and bioinformatic approaches identified NFIC mRNA as a potential target of miR-143-3p. NFIC overexpression reversed the inhibitory effect of miR-143-3p on the odontogenic differentiation of hSCAPs. CONCLUSIONS miR-143-3p maintained the stemness of hSCAPs and modulated their differentiation negatively by directly targeting NFIC. Thus, inhibition of this miRNA represents a potential strategy to promote the regeneration of damaged tooth roots.
Collapse
Affiliation(s)
- Shuo Gao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li-Hong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Peking University Health Science Center, Peking University, Beijing, China
| | - Yu-Ming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Peking University Health Science Center, Peking University, Beijing, China
| | - Pei Li
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yao-Yin Li
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Wei Zhao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Potential of different cells-derived exosomal microRNA cargos for treating spinal cord injury. J Orthop Translat 2021; 31:33-40. [PMID: 34760623 PMCID: PMC8560648 DOI: 10.1016/j.jot.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a disastrous situation that affects many patients worldwide. A profound understanding of the pathology and etiology of SCI is of great importance in inspiring new therapeutic concepts and treatment. In recent years, exosomes, which are complex lipid membrane structures secreted nearly by all kinds of plants and animal cells, can transport their valuable cargoes (e.g., proteins, lipids, RNAs) to the targeted cells and exert their communication and regulation functions, which open up a new field of treatment of SCI. Notably, the exosome's advantage is transporting the carried material to the target cells across the blood-brain barrier and exerting regulatory functions. Among the cargoes of exosomes, microRNAs, through the modulation of their mRNA targets, emerges with great potentiality in the pathological process, diagnosis and treatment of SCI. In this review, we discuss the role of miRNAs transported by different cell-derived exosomes in SCI that are poised to enhance SCI-specific therapeutic capabilities of exosomes.
Collapse
|
8
|
Zeidler M, Kummer KK, Schöpf CL, Kalpachidou T, Kern G, Cader MZ, Kress M. NOCICEPTRA: Gene and microRNA Signatures and Their Trajectories Characterizing Human iPSC-Derived Nociceptor Maturation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102354. [PMID: 34486248 PMCID: PMC8564443 DOI: 10.1002/advs.202102354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/07/2023]
Abstract
Nociceptors are primary afferent neurons serving the reception of acute pain but also the transit into maladaptive pain disorders. Since native human nociceptors are hardly available for mechanistic functional research, and rodent models do not necessarily mirror human pathologies in all aspects, human induced pluripotent stem cell-derived nociceptors (iDN) offer superior advantages as a human model system. Unbiased mRNA::microRNA co-sequencing, immunofluorescence staining, and qPCR validations, reveal expression trajectories as well as miRNA target spaces throughout the transition of pluripotent cells into iDNs. mRNA and miRNA candidates emerge as regulatory hubs for neurite outgrowth, synapse development, and ion channel expression. The exploratory data analysis tool NOCICEPTRA is provided as a containerized platform to retrieve experimentally determined expression trajectories, and to query custom gene sets for pathway and disease enrichments. Querying NOCICEPTRA for marker genes of cortical neurogenesis reveals distinct similarities and differences for cortical and peripheral neurons. The platform provides a public domain neuroresource to exploit the entire data sets and explore miRNA and mRNA as hubs regulating human nociceptor differentiation and function.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | - Kai K. Kummer
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | - Clemens L. Schöpf
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | | | - Georg Kern
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | - M. Zameel Cader
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordOX3 9DSUK
| | - Michaela Kress
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| |
Collapse
|
9
|
Rajool Dezfuly A, Safaee A, Salehi H. Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles' miRNAs on retinal regeneration: a review. Stem Cell Res Ther 2021; 12:530. [PMID: 34620234 PMCID: PMC8499475 DOI: 10.1186/s13287-021-02588-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), which consist of microvesicles and exosomes, are secreted from all cells to transform vital information in the form of lipids, proteins, mRNAs and small RNAs such as microRNAs (miRNAs). Many studies demonstrated that EVs' miRNAs have effects on target cells. Numerous people suffer from the blindness caused by retinal degenerations. The death of retinal neurons is irreversible and creates permanent damage to the retina. In the absence of acceptable cures for retinal degenerative diseases, stem cells and their paracrine agents including EVs have become a promising therapeutic approach. Several studies showed that the therapeutic effects of stem cells are due to the miRNAs of their EVs. Considering the effects of microRNAs in retinal cells development and function and studies which provide the possible roles of mesenchymal stem cells-derived EVs miRNA content on retinal diseases, we focused on the similarities between these two groups of miRNAs that could be helpful for promoting new therapeutic techniques for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ali Rajool Dezfuly
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Safaee
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
10
|
Colussi C, Grassi C. Epigenetic regulation of neural stem cells: The emerging role of nucleoporins. STEM CELLS (DAYTON, OHIO) 2021; 39:1601-1614. [PMID: 34399020 PMCID: PMC9290943 DOI: 10.1002/stem.3444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/28/2021] [Indexed: 11/06/2022]
Abstract
Nucleoporins (Nups) are components of the nuclear pore complex that, besides regulating nucleus-cytoplasmic transport, emerged as a hub for chromatin interaction and gene expression modulation. Specifically, Nups act in a dynamic manner both at specific gene level and in the topological organization of chromatin domains. As such, they play a fundamental role during development and determination of stemness/differentiation balance in stem cells. An increasing number of reports indicate the implication of Nups in many central nervous system functions with great impact on neurogenesis, neurophysiology, and neurological disorders. Nevertheless, the role of Nup-mediated epigenetic regulation in embryonic and adult neural stem cells (NSCs) is a field largely unexplored and the comprehension of their mechanisms of action is only beginning to be unveiled. After a brief overview of epigenetic mechanisms, we will present and discuss the emerging role of Nups as new effectors of neuroepigenetics and as dynamic platform for chromatin function with specific reference to the biology of NSCs.
Collapse
Affiliation(s)
- Claudia Colussi
- Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti" (IASI)-CNR, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
11
|
Sachana M, Willett C, Pistollato F, Bal-Price A. The potential of mechanistic information organised within the AOP framework to increase regulatory uptake of the developmental neurotoxicity (DNT) in vitro battery of assays. Reprod Toxicol 2021; 103:159-170. [PMID: 34147625 PMCID: PMC8279093 DOI: 10.1016/j.reprotox.2021.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022]
Abstract
Current in vivo DNT testing for regulatory purposes is not effective. In vitro assays anchored to key neurodevelopmental processes are available. Development of Adverse Outcome Pathways is required to increase mechanistic understanding of DNT effects. DNT Integrated Approaches to Testing and Assessment for various regulatory purposes should be developed. The OECD Guidance Document on use of in vitro DNT battery of assays is currently under development.
A major challenge in regulatory developmental neurotoxicity (DNT) assessment is lack of toxicological information for many compounds. Therefore, the Test Guidelines programme of the Organisation for Economic Cooperation and Development (OECD) took the initiative to coordinate an international collaboration between diverse stakeholders to consider integration of alternative approaches towards improving the current chemical DNT testing. During the past few years, a series of workshops was organized during which a consensus was reached that incorporation of a DNT testing battery that relies on in vitro assays anchored to key neurodevelopmental processes should be developed. These key developmental processes include neural progenitor cell proliferation, neuronal and oligodendrocyte differentiation, neural cell migration, neurite outgrowth, synaptogenesis and neuronal network formation, as well key events identified in the existing Adverse Outcome Pathways (AOPs). AOPs deliver mechanistic information on the causal links between molecular initiating event, intermediate key events and an adverse outcome of regulatory concern, providing the biological context to facilitate development of Integrated Approaches to Testing and Assessment (IATA) for various regulatory purposes. Developing IATA case studies, using mechanistic information derived from AOPs, is expected to increase scientific confidence for the use of in vitro methods within an IATA, thereby facilitating regulatory uptake. This manuscript summarizes the current state of international efforts to enhance DNT testing by using an in vitro battery of assays focusing on the role of AOPs in informing the development of IATA for different regulatory purposes, aiming to deliver an OECD guidance document on use of in vitro DNT battery of assays that include in vitro data interpretation.
Collapse
Affiliation(s)
- Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-Operation and Development (OECD), 75775, Paris Cedex 16, France
| | - Catherine Willett
- Humane Society International, 1255 23rd Street NW, Washington, DC, 20037, USA
| | | | - Anna Bal-Price
- European Commission Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
12
|
Yuan P, Ding L, Chen H, Wang Y, Li C, Zhao S, Yang X, Ma Y, Zhu J, Qi X, Zhang Y, Xia X, Zheng JC. Neural Stem Cell-Derived Exosomes Regulate Neural Stem Cell Differentiation Through miR-9-Hes1 Axis. Front Cell Dev Biol 2021; 9:601600. [PMID: 34055767 PMCID: PMC8155619 DOI: 10.3389/fcell.2021.601600] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
Exosomes, a key element of the central nervous system microenvironment, mediate intercellular communication via horizontally transferring bioactive molecules. Emerging evidence has implicated exosomes in the regulation of neurogenesis. Recently, we compared the neurogenic potential of exosomes released from primary mouse embryonic neural stem cells (NSCs) and astrocyte-reprogrammed NSCs, and observed diverse neurogenic potential of those two exosome populations in vitro. However, the roles of NSC-derived exosomes on NSC differentiation and the underlying mechanisms remain largely unknown. In this study, we firstly demonstrated that NSC-derived exosomes facilitate the differentiation of NSCs and the maturation of both neuronal and glial cells in defined conditions. We then identified miR-9, a pro-neural miRNA, as the most abundantly expressed miRNA in NSC-derived exosomes. The silencing of miR-9 in exosomes abrogates the positive effects of NSC-derived exosomes on the differentiation of NSCs. We further identified Hes1 as miR-9 downstream target, as the transfection of Hes1 siRNA restored the differentiation promoting potential of NSC-derived exosomes after knocking down exosomal miR-9. Thus, our data indicate that NSC-derived exosomes facilitate the differentiation of NSCs via transferring miR-9, which sheds light on the development of cell-free therapeutic strategies for treating neurodegeneration.
Collapse
Affiliation(s)
- Ping Yuan
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China.,Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Huili Chen
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Chunhong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Shu Zhao
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiaoyu Yang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yizhao Ma
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xinrui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yanyan Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M. SOX Transcription Factors as Important Regulators of Neuronal and Glial Differentiation During Nervous System Development and Adult Neurogenesis. Front Mol Neurosci 2021; 14:654031. [PMID: 33867936 PMCID: PMC8044450 DOI: 10.3389/fnmol.2021.654031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The SOX proteins belong to the superfamily of transcription factors (TFs) that display properties of both classical TFs and architectural components of chromatin. Since the cloning of the Sox/SOX genes, remarkable progress has been made in illuminating their roles as key players in the regulation of multiple developmental and physiological processes. SOX TFs govern diverse cellular processes during development, such as maintaining the pluripotency of stem cells, cell proliferation, cell fate decisions/germ layer formation as well as terminal cell differentiation into tissues and organs. However, their roles are not limited to development since SOX proteins influence survival, regeneration, cell death and control homeostasis in adult tissues. This review summarized current knowledge of the roles of SOX proteins in control of central nervous system development. Some SOX TFs suspend neural progenitors in proliferative, stem-like state and prevent their differentiation. SOX proteins function as pioneer factors that occupy silenced target genes and keep them in a poised state for activation at subsequent stages of differentiation. At appropriate stage of development, SOX members that maintain stemness are down-regulated in cells that are competent to differentiate, while other SOX members take over their functions and govern the process of differentiation. Distinct SOX members determine down-stream processes of neuronal and glial differentiation. Thus, sequentially acting SOX TFs orchestrate neural lineage development defining neuronal and glial phenotypes. In line with their crucial roles in the nervous system development, deregulation of specific SOX proteins activities is associated with neurodevelopmental disorders (NDDs). The overview of the current knowledge about the link between SOX gene variants and NDDs is presented. We outline the roles of SOX TFs in adult neurogenesis and brain homeostasis and discuss whether impaired adult neurogenesis, detected in neurodegenerative diseases, could be associated with deregulation of SOX proteins activities. We present the current data regarding the interaction between SOX proteins and signaling pathways and microRNAs that play roles in nervous system development. Finally, future research directions that will improve the knowledge about distinct and various roles of SOX TFs in health and diseases are presented and discussed.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Jia J, Cui Y, Tan Z, Liu M, Jiang Y. Transcriptional factor FoxM1-activated microRNA-335-3p maintains the self-renewal of neural stem cells by inhibiting p53 signaling pathway via Fmr1. Stem Cell Res Ther 2021; 12:169. [PMID: 33691791 PMCID: PMC7945216 DOI: 10.1186/s13287-021-02191-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/26/2021] [Indexed: 12/03/2022] Open
Abstract
Background New mechanistic insights into the self-renewal ability and multipotent properties of neural stem cells (NSCs) are currently under active investigation for potential use in the treatment of neurological diseases. In this study, NSCs were isolated from the forebrain of fetal rats and cultured to induce NSC differentiation, which was associated with low expression of the non-coding RNA microRNA-335-3p (miR-335-3p). Methods Loss- and gain-of-function experiments were performed in NSCs after induction of differentiation. Results Overexpression of miR-335-3p or FoxM1 and inhibition of the Fmr1 or p53 signaling pathways facilitated neurosphere formation, enhanced proliferation and cell cycle entry of NSCs, but restricted NSC differentiation. Mechanistically, FoxM1 positively regulated miR-335-3p by binding to its promoter region, while miR-335-3p targeted and negatively regulated Fmr1. Additionally, the promotive effect of miR-335-3p on NSC self-renewal occurred via p53 signaling pathway inactivation. Conclusion Taken together, miR-335-3p activated by FoxM1 could suppress NSC differentiation and promote NSC self-renewal by inactivating the p53 signaling pathway via Fmr1.
Collapse
Affiliation(s)
- Jiaoying Jia
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China
| | - Zhigang Tan
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China
| | - Min Liu
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
15
|
Mustafin RN, Kazantseva AV, Enikeeva RF, Malykh SB, Khusnutdinova EK. Longitudinal genetic studies of cognitive characteristics. Vavilovskii Zhurnal Genet Selektsii 2021; 24:87-95. [PMID: 33659785 PMCID: PMC7716536 DOI: 10.18699/vj20.599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The present review describes longitudinal studies of cognitive traits and functions determining the causes of their variations and their possible correction to prevent cognitive impairment. The present study reviews the involvement of such environmental factors as nutrition, prenatal maternal stress, social isolation and others in cognitive functioning. The role of epigenetic factors in the implementation of environmental effects in cognitive characteristics is revealed. Considering the epigenome significance, several studies were focused on the design of substances affecting methylation and histone modification, which can be used for the treatment of cognitive disorders. The appropriate correction of epigenetic factors related to environmental differences in cognitive abilities requires to determine the mechanisms of chromatin modifications and variations in DNA methylation. Transposons representing stress-sensitive DNA elements appeared to mediate the environmental influence on epigenetic modifications. They can explain the mechanism of transgenerational transfer of information on cognitive abilities. Recently, large-scale meta-analyses based on the results of studies, which identified genetic associations with various cognitive traits, were carried out. As a result, the role of genes actively expressed in the brain, such as BDNF, COMT, CADM2, CYP2D6, APBA1, CHRNA7, PDE1C, PDE4B, and PDE4D in cognitive abilities was revealed. The association between cognitive functioning and genes, which have been previously involved in developing psychiatric disorders (MEF2C, CYP2D6, FAM109B, SEPT3, NAGA, TCF20, NDUFA6 genes), was revealed, thus indicating the role of the similar mechanisms of genetic and neural networks in both normal cognition and cognitive impairment. An important role in both processes belongs to common epigenetic factors. The genes involved in DNA methylation (DNMT1, DNMT3B, and FTO), histone modifications (CREBBP, CUL4B, EHMT1, EP300, EZH2, HLCS, HUWE1, KAT6B, KMT2A, KMT2D, KMT2C, NSD1, WHSC1, and UBE2A) and chromatin remodeling (ACTB, ARID1A, ARID1B, ATRX, CHD2, CHD7, CHD8, SMARCA2, SMARCA4, SMARCB1, SMARCE1, SRCAP, and SS18L1) are associated with increased risk of psychiatric diseases with cognitive deficiency together with normal cognitive functioning. The data on the correlation between transgenerational epigenetic inheritance of cognitive abilities and the insert of transposable elements in intergenic regions is discussed. Transposons regulate genes functioning in the brain due to the processing of their transcripts into non-coding RNAs. The content, quantity and arrangement of transposable elements in human genome, which do not affect changes in nucleotide sequences of protein encoding genes, but affect their expression, can be transmitted to the next generation.
Collapse
Affiliation(s)
| | - A V Kazantseva
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - R F Enikeeva
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - S B Malykh
- Psychological Institute of the Russian Academy of Education, Moscow, Russia M.V. Lomonosov Moscow State University, Laboratory of psychology of professions and conflicts, Moscow, Russia
| | - E K Khusnutdinova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia M.V. Lomonosov Moscow State University, Laboratory of psychology of professions and conflicts, Moscow, Russia
| |
Collapse
|
16
|
Mustafin RN, Khusnutdinova EK. Involvement of transposable elements in neurogenesis. Vavilovskii Zhurnal Genet Selektsii 2021; 24:209-218. [PMID: 33659801 PMCID: PMC7893149 DOI: 10.18699/vj20.613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The article is about the role of transposons in the regulation of functioning of neuronal stem cells and mature neurons of the human brain. Starting from the first division of the zygote, embryonic development is governed by regular activations of transposable elements, which are necessary for the sequential regulation of the expression of genes specific for each cell type. These processes include differentiation of neuronal stem cells, which requires the finest tuning of expression of neuron genes in various regions of the brain. Therefore, in the hippocampus, the center of human neurogenesis, the highest transposon activity has been identified, which causes somatic mosaicism of cells during the formation of specific brain structures. Similar data were obtained in studies on experimental animals. Mobile genetic elements are the most important sources of long non-coding RNAs that are coexpressed with important brain protein-coding genes. Significant activity of long non-coding RNA was detected in the hippocampus, which confirms the role of transposons in the regulation of brain function. MicroRNAs, many of which arise from transposon transcripts, also play an important role in regulating the differentiation of neuronal stem cells. Therefore, transposons, through their own processed transcripts, take an active part in the epigenetic regulation of differentiation of neurons. The global regulatory role of transposons in the human brain is due to the emergence of protein-coding genes in evolution by their exonization, duplication and domestication. These genes are involved in an epigenetic regulatory network with the participation of transposons, since they contain nucleotide sequences complementary to miRNA and long non-coding RNA formed from transposons. In the memory formation, the role of the exchange of virus-like mRNA with the help of the Arc protein of endogenous retroviruses HERV between neurons has been revealed. A possible mechanism for the implementation of this mechanism may be reverse transcription of mRNA and site-specific insertion into the genome with a regulatory effect on the genes involved in the memory.
Collapse
Affiliation(s)
| | - E K Khusnutdinova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
17
|
Deng Z, Wei Y, Yao Y, Gao S, Wang X. Let-7f promotes the differentiation of neural stem cells in rats. Am J Transl Res 2020; 12:5752-5761. [PMID: 33042454 PMCID: PMC7540113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) is the major recognized perinatal cause of neurological morbidity in full-term new borns. Neural stem cells (NSCs) have been extensively studied because of their clinical applications in treating neuro degenerative diseases and brain injuries, including HIBD, while microRNAs (miRNAs) are deemed critical regulators of the proliferation and differentiation of NSCs. However, the role of let-7f in NSC differentiation remains unknown. Our study aims to investigate the role of let-7f in the differentiation of NSCs and brain development in rats and hence to explore the therapeutic potential of let-7f in the treatment of HIBD. The quantitative real-time polymerase chain reaction (qRT-PCR) was applied to assess the expressions of let-7f, and western blot was performed to detect GFAP, Tuj1 and Nestin in rat brains at postnatal day 1, 8 and 14 (n=12 per time point). The NSCs isolated from the brains of rat fetuses at gestational day 15 were transduced with lenti virus expressing let-7f or let-7f inhibitor so as to observe altered expressions of let-7f, GFAP, Tuj1 and Nestin. A gradually-increasing expression of let-7f was detected by qRT-PCR in rat brain tissues during postnatal brain development. Increased levels of GFAP and Tuj1, while a decreased level of Nestin, were detected by western blot in let-7f-overexpressing NSCs. In contrast, the cells expressing the let-7f inhibitor exhibited lower levels of GFAP and Tuj1, while a higher level of Nestin, compared with control cells. Therefore, let-7f is involved in brain development and promotes the differentiation of NSCs in rats.
Collapse
Affiliation(s)
- Zhenhan Deng
- Department of Pediatrics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Sports Medicine, Department of Sports Medicine, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| | - Yujia Wei
- Department of Pediatrics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Pediatrics, The First Affiliated Hospital of South China UniversityHengyang 421001, Hunan, China
| | - Yue Yao
- Department of Pediatrics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Shanshan Gao
- Department of Cardiology, University of Colorado Anschutz Medical CampusAurora 800045, CO, USA
| | - Xia Wang
- Department of Pediatrics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|
18
|
Mustafin RN, Kazantseva AV, Malykh SB, Khusnutdinova EK. Genetic Mechanisms of Cognitive Development. RUSS J GENET+ 2020. [DOI: 10.1134/s102279542007011x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Functional omics analyses reveal only minor effects of microRNAs on human somatic stem cell differentiation. Sci Rep 2020; 10:3284. [PMID: 32094412 PMCID: PMC7040006 DOI: 10.1038/s41598-020-60065-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/30/2020] [Indexed: 01/12/2023] Open
Abstract
The contribution of microRNA-mediated posttranscriptional regulation on the final proteome in differentiating cells remains elusive. Here, we evaluated the impact of microRNAs (miRNAs) on the proteome of human umbilical cord blood-derived unrestricted somatic stem cells (USSC) during retinoic acid (RA) differentiation by a systemic approach using next generation sequencing analysing mRNA and miRNA expression and quantitative mass spectrometry-based proteome analyses. Interestingly, regulation of mRNAs and their dedicated proteins highly correlated during RA-incubation. Additionally, RA-induced USSC demonstrated a clear separation from native USSC thereby shifting from a proliferating to a metabolic phenotype. Bioinformatic integration of up- and downregulated miRNAs and proteins initially implied a strong impact of the miRNome on the XXL-USSC proteome. However, quantitative proteome analysis of the miRNA contribution on the final proteome after ectopic overexpression of downregulated miR-27a-5p and miR-221-5p or inhibition of upregulated miR-34a-5p, respectively, followed by RA-induction revealed only minor proportions of differentially abundant proteins. In addition, only small overlaps of these regulated proteins with inversely abundant proteins in non-transfected RA-treated USSC were observed. Hence, mRNA transcription rather than miRNA-mediated regulation is the driving force for protein regulation upon RA-incubation, strongly suggesting that miRNAs are fine-tuning regulators rather than active primary switches during RA-induction of USSC.
Collapse
|
20
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
21
|
Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:25-42. [PMID: 32958178 DOI: 10.1016/b978-0-444-64150-2.00004-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of the central nervous system (CNS) is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical factors from early embryonic stages to postnatal life. Duringthe past decade, great strides have been made to unravel mechanisms underlying human CNS development through the employment of modern genetic techniques and experimental approaches. In this chapter, we review the current knowledge regarding the main developmental processes and signaling mechanisms of (i) neurogenesis, (ii) neuronal migration, and (iii) axon guidance. We discuss mechanisms related to neural stem cells proliferation, migration, terminal translocation of neuronal progenitors, and axon guidance and pathfinding. For each section, we also provide a comprehensive overview of the underlying regulatory processes, including transcriptional, posttranscriptional, and epigenetic factors, and a myriad of signaling pathways that are pivotal to determine the fate of neuronal progenitors and newly formed migrating neurons. We further highlight how impairment of this complex regulating system, such as mutations in its core components, may cause cortical malformation, epilepsy, intellectual disability, and autism in humans. A thorough understanding of normal human CNS development is thus crucial to decipher mechanisms responsible for neurodevelopmental disorders and in turn guide the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Accogli
- Unit of Medical Genetics, Istituto Giannina Gaslini Pediatric Hospital, Genova, Italy; Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Science, Università degli Studi di Genova, Genova, Italy
| | | | - Myriam Srour
- Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Ahmad I, Teotia P, Erickson H, Xia X. Recapitulating developmental mechanisms for retinal regeneration. Prog Retin Eye Res 2019; 76:100824. [PMID: 31843569 DOI: 10.1016/j.preteyeres.2019.100824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Degeneration of specific retinal neurons in diseases like glaucoma, age-related macular degeneration, and retinitis pigmentosa is the leading cause of irreversible blindness. Currently, there is no therapy to modify the disease-associated degenerative changes. With the advancement in our knowledge about the mechanisms that regulate the development of the vertebrate retina, the approach to treat blinding diseases through regenerative medicine appears a near possibility. Recapitulation of developmental mechanisms is critical for reproducibly generating cells in either 2D or 3D culture of pluripotent stem cells for retinal repair and disease modeling. It is the key for unlocking the neurogenic potential of Müller glia in the adult retina for therapeutic regeneration. Here, we examine the current status and potential of the regenerative medicine approach for the retina in the backdrop of developmental mechanisms.
Collapse
Affiliation(s)
- Iqbal Ahmad
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Pooja Teotia
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Helen Erickson
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
23
|
Liu N, Wang ZZ, Zhao M, Zhang Y, Chen NH. Role of non-coding RNA in the pathogenesis of depression. Gene 2019; 735:144276. [PMID: 31816363 DOI: 10.1016/j.gene.2019.144276] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
Depression is increasingly threatening human health as a serious psychological problem. However, it is remarkable that the precise mechanism underlying depression remains unelucidated. Recent studies have clarified that non-coding RNA, including but not limited to microRNA, long non-coding RNA, and circular RNA, plays an important role in the pathogenesis of depression. The research results cited in this paper reveal the origin, expression, distribution, function, and mechanism of microRNA in the nervous system. MicroRNA is involved in regulation of life activities, including growth, immune reaction, haematopoiesis, and metabolism, which are significant for maintaining normal physiological functions. Moreover, microRNA plays an important role in cell death and proliferation, development of cancer, and disease prognosis. Here, we also introduce the general research status of long non-coding RNA and circular RNA. Next, descriptive study methods, including fluorescence quantitative polymerase chain reaction, northern blot, microarray technology, RNA-seq, and fluorescent in situ hybridization are discussed. Functional study methods are also summarized and divided into gain- and loss-of-function studies. Moreover, the roles of non-coding RNA in the pathogenesis of depression, including neurogenesis, synaptic plasticity, brain-derived neurotrophic factor expression, HPA axis regulation, neurotransmission, neuropeptide expression, neuro-inflammation, and polyamine synthesis are discussed. Nevertheless, many unknown associations between non-coding RNA and depression remain to be clarified.
Collapse
Affiliation(s)
- Nuo Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Zhao
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
24
|
Kang MJ, Park SY, Han JS. MicroRNA-24-3p regulates neuronal differentiation by controlling hippocalcin expression. Cell Mol Life Sci 2019; 76:4569-4580. [PMID: 31486848 PMCID: PMC6841749 DOI: 10.1007/s00018-019-03290-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Hippocalcin (HPCA) is a neuron-specific calcium-binding protein predominantly expressed in the nervous system. In the present study, we demonstrate that HPCA regulates neuronal differentiation in SH-SY5Y cells. We observed that the expression level of HPCA was increased during neuronal differentiation. Depletion of HPCA inhibited both neurite outgrowth and synaptophysin (SYP) expression, whereas overexpression of HPCA enhanced neuronal differentiation. Interestingly, we also found that the expression of HPCA mRNA was modulated by miR-24-3p. Using a dual-luciferase assay, we showed that co-transfection of a plasmid containing the miR-24-3p binding site from the 3'-untranslated region (3'UTR) of the HPCA gene and an miR-24-3p mimic effectively reduced luminescence activity. This effect was abolished when miR-24-3p seed sequences in the 3'UTR of the HPCA gene were mutated. miR-24-3p expression was decreased during differentiation, suggesting that the decreased expression level of miR-24-3p might have upregulated mRNA expression of HPCA. As expected, upregulation of miR-24-3p by an miRNA mimic led to reduced HPCA expression, accompanied by diminished neuronal differentiation. In contrast, downregulation of miR-24-3p by an antisense inhibitor promoted neurite outgrowth as well as levels of SYP expression. Taken together, these results suggest that miR-24-3p is an important miRNA that regulates neuronal differentiation by controlling HPCA expression.
Collapse
Affiliation(s)
- Min-Jeong Kang
- Department of Biomedical Sciences, Graduate School for Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Shin-Young Park
- Biomedical Research Institute, Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School for Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.
- Biomedical Research Institute, Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Sunohara T, Morizane A, Matsuura S, Miyamoto S, Saito H, Takahashi J. MicroRNA-Based Separation of Cortico-Fugal Projection Neuron-Like Cells Derived From Embryonic Stem Cells. Front Neurosci 2019; 13:1141. [PMID: 31708734 PMCID: PMC6819314 DOI: 10.3389/fnins.2019.01141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
The purification of pluripotent stem cell-derived cortico-fugal projection neurons (PSC-CFuPNs) is useful for disease modeling and cell therapies related to the dysfunction of cortical motor neurons, such as amyotrophic lateral sclerosis (ALS) or stroke. However, no CFuPN-specific surface markers for the purification are known. Recently, microRNAs (miRNAs) have been reported as alternatives to surface markers. Here, we investigated this possibility by applying the miRNA switch, an mRNA technology, to enrich PSC-CFuPNs. An array study of miRNAs in mouse fetal brain tissue revealed that CFuPNs highly express miRNA-124-3p at E14.5 and E16.5. In response, we designed a miRNA switched that responds to miRNA-124-3p and applied it to mouse embryonic stem cell (ESC)-derived cortical neurons. Flow cytometry and quantitative polymerase chain reaction (qPCR) analyses showed the miRNA-124-3p switch enriched CFuPN-like cells from this population. Immunocytechemical analysis confirmed vGlut1/Emx1/Bcl11b triple positive CFuPN-like cells were increased from 6.5 to 42%. Thus, our miRNA-124-3p switch can uniquely enrich live CFuPN-like cells from mouse ESC-derived cortical neurons.
Collapse
Affiliation(s)
- Tadashi Sunohara
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Satoshi Matsuura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
26
|
Liu Y, Salai A, He D, Gao S, Zeng W. Effect and mechanism of microRNA-10b on proliferation and invasion of esophageal cancer cells. Exp Ther Med 2019; 18:3622-3630. [PMID: 31602239 DOI: 10.3892/etm.2019.7940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 06/13/2019] [Indexed: 11/05/2022] Open
Abstract
MicroRNA (miR)-10b is highly expressed in esophageal cancer tissues and is associated with poor prognosis of esophageal cancer. However, the role and mechanism of miR-10b in esophageal cancer cells remains unclear, therefore, the present study aimed to investigate this. Esophageal cancer cells, TE-1 and EC9706, were transfected with miR-10b mimic, miR-10b inhibitor or incubated with transforming growth factor-β (TGF-β). MTT and EdU assays were used to detect cell proliferation. Flow cytometry was used to determine cell cycle analysis and apoptosis. Cell migration and invasion were also analyzed. Western blot analysis was used to detect protein levels and reverse transcription-quantitative PCR was used to analyze miR-10b expression. The present results demonstrated that, compared with the control group, miR-10b significantly promoted TE-1 and EC9706 cell proliferation. Compared with miR-10b inhibitor group and control group, miR-10b mimic promoted esophageal cancer cell cycle progression, inhibited apoptosis of esophageal cancer cells and promoted the migration and invasion of cells. The proliferation of esophageal cancer cells increased in a dose-dependent manner with TGF-β concentration. TGF-β treatment induced high expression of miR-10b in both cell lines. The miR-10b mimic + TGF-β group further promoted the migration and invasion of esophageal cancer cells. Western blot analysis determined that, compared with the control group, miR-10b mimic increased TGF-β expression. miR-10b mimic also inhibited the expression of phosphatase and tensin homolog (PTEN) in tumor cells. Compared with the control group, TGF-β inhibited the expression of PTEN with the miR-10b mimic + TGF-β group further inhibiting the PTEN. miR-10b inhibitor + TGF-β reversed the effect of TGF-β and miR-10b on PTEN. In conclusion, miR-10b promoted cell cycle progression, inhibited apoptosis and promoted the migration and invasion of esophageal cancer cells. The mechanism may be related to the upregulation of TGF-β and the downregulation of PTEN. The present findings suggested that miR-10b might be a potential therapeutic target for esophageal cancer.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cardiothoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Adili Salai
- Department of Thoracic Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Dan He
- Department of Thoracic Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Shengli Gao
- Department of Thoracic Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Wei Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
27
|
Stanisavljevic D, Popovic J, Petrovic I, Davidovic S, Atkinson MJ, Anastasov N, Stevanovic M. Radiation effects on early phase of NT2/D1 neural differentiation in vitro. Int J Radiat Biol 2019; 95:1627-1639. [PMID: 31509479 DOI: 10.1080/09553002.2019.1665207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Purpose: Widespread medical use of radiation in diagnosis, imaging and treatment of different central nervous system malignancies lead to various consequences. Aim of this study was to further elucidate mechanism of cell response to radiation and possible consequence on neural differentiation.Materials and methods: NT2/D1 cells that resemble neural progenitors were used as a model system. Undifferentiated NT2/D1 cells and NT2/D1 cells in the early phase of neural differentiation were irradiated with low (0.2 Gy) and moderate (2 Gy) doses of γ radiation. The effect was analyzed on apoptosis, cell cycle, senescence, spheroid formation and the expression of genes and miRNAs involved in the regulation of pluripotency or neural differentiation.Results: Two grays of irradiation induced apoptosis, senescence and cell cycle arrest of NT2/D1 cells, accompanied with altered expression of several genes (SOX2, OCT4, SOX3, PAX6) and miRNAs (miR-219, miR-21, miR124-a). Presented results show that 2 Gy of radiation significantly affected early phase of neural differentiation in vitro.Conclusions: These results suggest that 2 Gy of radiation significantly affected early phase of neural differentiation and affect the population of neural progenitors. These findings might help in better understanding of side effects of radiotherapy in treatments of central nervous system malignancies.
Collapse
Affiliation(s)
- Danijela Stanisavljevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Jelena Popovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Isidora Petrovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Slobodan Davidovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Michael J Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany.,Chair of Radiation Biology, Technical University of Munich, Munich, Germany
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Milena Stevanovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia.,University of Belgrade, Faculty of Biology, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
28
|
Chen G, Yao Y, Xu G, Zhang X. Regional difference in microRNA regulation in the skull vault. Dev Dyn 2019; 248:1009-1019. [PMID: 31397024 DOI: 10.1002/dvdy.97] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The murine calvaria has several membrane bones with different tissue origins (e.g., neural crest-derived frontal bone vs. mesoderm-derived parietal bone). Neural crest-derived frontal bone exhibits superior osteogenic activities and bone regeneration. MicroRNA (miRNA) has been emerged as a crucial regulator during organogenesis and is involved in a range of developmental processes. However, the underlying roles of miRNA regulation in frontal bone and parietal bone is unknown. RESULTS Total of 83 significantly expressed known miRNAs were identified in frontal bones versus parietal bones. The significantly enriched gene ontology and KEGG pathway that were predicted by the enrichment miRNAs were involved in several biological processes (cell differentiation, cell adhesion, and transcription), and multiple osteogenic pathways (e.g., focal adhesion, MAPK, VEGF, Wnt, and insulin signaling pathway. Focal adhesion and insulin signaling pathway were selected for target verification and functional analysis, and several genes were predicted to be targets genes by the differentially expressed miRNAs, and these targets genes were tested with significant expressions. CONCLUSIONS Our results revealed a novel pattern of miRNAs in murine calvaria with dual tissue origins, and explorations of these miRNAs will be valuable for the translational studies to enhance osteogenic potential and bone regeneration in the clinic.
Collapse
Affiliation(s)
- Guiqian Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Yifeng Yao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Guangtao Xu
- Department of Pathology and Molecular Medicine, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Xingen Zhang
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
29
|
Mirfazeli ES, Arefian E, Nadri S, Rezazadeh Valojerdi R, Kehtari M, Zeynali B. DKK1 expression is suppressed by miR-9 during induced dopaminergic differentiation of human trabecular meshwork mesenchymal stem cells. Neurosci Lett 2019; 707:134250. [DOI: 10.1016/j.neulet.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022]
|
30
|
MicroRNA Profiling During Neural Differentiation of Induced Pluripotent Stem Cells. Int J Mol Sci 2019; 20:ijms20153651. [PMID: 31357387 PMCID: PMC6696086 DOI: 10.3390/ijms20153651] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNA) play an essential role in the regulation of gene expression and influence signaling networks responsible for several cellular processes like differentiation of pluripotent stem cells. Despite several studies on the neurogenesis process, no global analysis of microRNA expression during differentiation of induced pluripotent stem cells (iPSC) to neuronal stem cells (NSC) has been done. Therefore, we compared the profile of microRNA expression in iPSC lines and in NSC lines derived from them, using microarray-based analysis. Two different protocols for NSC formation were used: Direct and two-step via neural rosette formation. We confirmed the new associations of previously described miRNAs in regulation of NSC differentiation from iPSC. We discovered upregulation of miR-10 family, miR-30 family and miR-9 family and downregulation of miR-302 and miR-515 family expression. Moreover, we showed that miR-10 family play a crucial role in the negative regulation of genes expression belonging to signaling pathways involved in neural differentiation: WNT signaling pathway, focal adhesion, and signaling pathways regulating pluripotency of stem cells.
Collapse
|
31
|
Baker EW, Kinder HA, West FD. Neural stem cell therapy for stroke: A multimechanistic approach to restoring neurological function. Brain Behav 2019; 9:e01214. [PMID: 30747485 PMCID: PMC6422715 DOI: 10.1002/brb3.1214] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/02/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Neural stem cells (NSCs) have demonstrated multimodal therapeutic function for stroke, which is the leading cause of long-term disability and the second leading cause of death worldwide. In preclinical stroke models, NSCs have been shown to modulate inflammation, foster neuroplasticity and neural reorganization, promote angiogenesis, and act as a cellular replacement by differentiating into mature neural cell types. However, there are several key technical questions to address before NSC therapy can be applied to the clinical setting on a large scale. PURPOSE OF REVIEW In this review, we will discuss the various sources of NSCs, their therapeutic modes of action to enhance stroke recovery, and considerations for the clinical translation of NSC therapies. Understanding the key factors involved in NSC-mediated tissue recovery and addressing the current translational barriers may lead to clinical success of NSC therapy and a first-in-class restorative therapy for stroke patients.
Collapse
Affiliation(s)
- Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
32
|
Grassi E, Santoro R, Umbach A, Grosso A, Oliviero S, Neri F, Conti L, Ala U, Provero P, DiCunto F, Merlo GR. Choice of Alternative Polyadenylation Sites, Mediated by the RNA-Binding Protein Elavl3, Plays a Role in Differentiation of Inhibitory Neuronal Progenitors. Front Cell Neurosci 2019; 12:518. [PMID: 30687010 PMCID: PMC6338052 DOI: 10.3389/fncel.2018.00518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Alternative polyadenylation (APA) is a widespread mechanism involving about half of the expressed genes, resulting in varying lengths of the 3′ untranslated region (3′UTR). Variations in length and sequence of the 3′UTR may underlie changes of post-transcriptional processing, localization, miRNA targeting and stability of mRNAs. During embryonic development a large array of mRNAs exhibit APA, with a prevalence of the longer 3′UTR versions in differentiating cells. Little is known about polyA+ site usage during differentiation of mammalian neural progenitors. Here we exploit a model of adherent neural stem (ANS) cells, which homogeneously and efficiently differentiate into GABAergic neurons. RNAseq data shows a global trend towards lengthening of the 3′UTRs during differentiation. Enriched expression of the longer 3′UTR variants of Pes1 and Gng2 was detected in the mouse brain in areas of cortical and subcortical neuronal differentiation, respectively, by two-probes fluorescent in situ hybridization (FISH). Among the coding genes upregulated during differentiation of ANS cells we found Elavl3, a neural-specific RNA-binding protein homologous to Drosophila Elav. In the insect, Elav regulates polyA+ site choice while interacting with paused Pol-II promoters. We tested the role of Elavl3 in ANS cells, by silencing Elavl3 and observed consistent changes in 3′UTR length and delayed neuronal differentiation. These results indicate that choice of the polyA+ site and lengthening of 3′UTRs is a possible additional mechanism of posttranscriptional RNA modification involved in neuronal differentiation.
Collapse
Affiliation(s)
- Elena Grassi
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Roberto Santoro
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Alessandro Umbach
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Anna Grosso
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Salvatore Oliviero
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Francesco Neri
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Luciano Conti
- Centre for Integrative Biology-CIBIO, University of Trento, Povo, Italy
| | - Ugo Ala
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| | - Ferdinando DiCunto
- Department of Molecular Biotechnology, University of Turin, Turin, Italy.,Department of Neurosciences, University of Turin, Turin, Italy
| | - Giorgio R Merlo
- Department of Molecular Biotechnology, University of Turin, Turin, Italy
| |
Collapse
|
33
|
Mokabber H, Najafzadeh N, Mohammadzadeh Vardin M. miR‐124
promotes neural differentiation in mouse bulge stem cells by repressing
Ptbp1
and
Sox9. J Cell Physiol 2018; 234:8941-8950. [DOI: 10.1002/jcp.27563] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Haleh Mokabber
- Department of Anatomical Sciences and Pathology Research Laboratory for Embryology and Stem Cells, Ardabil University of Medical Sciences Ardabil Iran
- Department of Biology Fars Science and Research Branch, Islamic Azad University Fars Iran
| | - Nowruz Najafzadeh
- Department of Anatomical Sciences and Pathology Research Laboratory for Embryology and Stem Cells, Ardabil University of Medical Sciences Ardabil Iran
| | - Mohammad Mohammadzadeh Vardin
- Department of Anatomical Sciences and Pathology Research Laboratory for Embryology and Stem Cells, Ardabil University of Medical Sciences Ardabil Iran
| |
Collapse
|
34
|
Stappert L, Klaus F, Brüstle O. MicroRNAs Engage in Complex Circuits Regulating Adult Neurogenesis. Front Neurosci 2018; 12:707. [PMID: 30455620 PMCID: PMC6230569 DOI: 10.3389/fnins.2018.00707] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
The finding that the adult mammalian brain is still capable of producing neurons has ignited a new field of research aiming to identify the molecular mechanisms regulating adult neurogenesis. An improved understanding of these mechanisms could lead to the development of novel approaches to delay cognitive decline and facilitate neuroregeneration in the adult human brain. Accumulating evidence suggest microRNAs (miRNAs), which represent a class of post-transcriptional gene expression regulators, as crucial part of the gene regulatory networks governing adult neurogenesis. This review attempts to illustrate how miRNAs modulate key processes in the adult neurogenic niche by interacting with each other and with transcriptional regulators. We discuss the function of miRNAs in adult neurogenesis following the life-journey of an adult-born neuron from the adult neural stem cell (NSCs) compartment to its final target site. We first survey how miRNAs control the initial step of adult neurogenesis, that is the transition of quiescent to activated proliferative adult NSCs, and then go on to discuss the role of miRNAs to regulate neuronal differentiation, survival, and functional integration of the newborn neurons. In this context, we highlight miRNAs that converge on functionally related targets or act within cross talking gene regulatory networks. The cooperative manner of miRNA action and the broad target repertoire of each individual miRNA could make the miRNA system a promising tool to gain control on adult NSCs in the context of therapeutic approaches.
Collapse
Affiliation(s)
- Laura Stappert
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| | - Frederike Klaus
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
35
|
Wu X, Zhao X, Miao X. MicroRNA-374b promotes the proliferation and differentiation of neural stem cells through targeting Hes1. Biochem Biophys Res Commun 2018; 503:593-599. [DOI: 10.1016/j.bbrc.2018.06.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/10/2018] [Indexed: 02/07/2023]
|
36
|
Directing neuronal cell fate in vitro : Achievements and challenges. Prog Neurobiol 2018; 168:42-68. [DOI: 10.1016/j.pneurobio.2018.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
|
37
|
MicroRNA expression analysis identifies a subset of downregulated miRNAs in ALS motor neuron progenitors. Sci Rep 2018; 8:10105. [PMID: 29973608 PMCID: PMC6031650 DOI: 10.1038/s41598-018-28366-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder that is characterized by a progressive degeneration of motor neurons (MNs). The pathomechanism underlying the disease is largely unknown, even though increasing evidence suggests that RNA metabolism, including microRNAs (miRNAs) may play an important role. In this study, human ALS induced pluripotent stem cells were differentiated into MN progenitors and their miRNA expression profiles were compared to those of healthy control cells. We identified 15 downregulated miRNAs in patients’ cells. Gene ontology and molecular pathway enrichment analysis indicated that the predicted target genes of the differentially expressed miRNAs were involved in neurodegeneration-related pathways. Among the 15 examined miRNAs, miR-34a and miR504 appeared particularly relevant due to their involvement in the p53 pathway, synaptic vesicle regulation and general involvement in neurodegenerative diseases. Taken together our results demonstrate that the neurodegenerative phenotype in ALS can be associated with a dysregulation of miRNAs involved in the control of disease-relevant genetic pathways, suggesting that targeting entire gene networks can be a potential strategy to treat complex diseases such as ALS.
Collapse
|
38
|
Shi Z, Zhou H, Lu L, Pan B, Wei Z, Liu J, Li J, Yuan S, Kang Y, Liu L, Yao X, Kong X, Feng S. MicroRNA‐29a regulates neural stem cell neuronal differentiation by targeting PTEN. J Cell Biochem 2018; 119:5813-5820. [DOI: 10.1002/jcb.26768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 02/02/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Zhongju Shi
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Hengxing Zhou
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Lu Lu
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Bin Pan
- Department of OrthopaedicsThe Affiliated Hospital of XuzhouMedical UniversityXuzhouJiangsuP. R. China
| | - Zhijian Wei
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Jun Liu
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Jiahe Li
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Shiyang Yuan
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Yi Kang
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Lu Liu
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Xue Yao
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| | - Xiaohong Kong
- 221 LaboratorySchool of MedicineNankai UniversityTianjinP. R. China
| | - Shiqing Feng
- Department of OrthopaedicsTianjin Medical University General HospitalTianjinP. R. China
| |
Collapse
|
39
|
He H, Li W, Peng M, Qin J, Shi J, Li H, Tian M, Zhang X, Lv G, Jin G. MicroRNA expression profiles of neural stem cells following valproate inducement. J Cell Biochem 2018; 119:6204-6215. [PMID: 29575035 DOI: 10.1002/jcb.26831] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/28/2018] [Indexed: 12/18/2022]
Abstract
Neural stem cells (NSCs) possess self-renewal and multilineage differentiation ability, thus are considered to be a potential source for cell replacement therapy of many nervous system diseases, such as neurodegenerative diseases. Valproate (VPA), a member of histone deacetylase inhibitor family, is an epigenetic regulator and can promote NSCs to differentiate into neurons, nevertheless, the underlying mechanisms of the process remain unclear. MicroRNAs (miRNAs) exert a crucial part in the posttranscriptional regulation of gene expression. Epigenetic mechanisms involve in the regulation of miRNAs expression. Therefore we speculated that miRNAs may be important factors during the promotion of neuronal differentiation by VPA. Here, after selecting appropriate concentration and treatment time of VPA, we conducted microRNA arrays at 24 h on the treatment of 1 mM VPA or vehicle. After validation, we obtained 5 significantly upregulated miRNAs (miR-29a-5p, miR-674-5p, miR-155-5p, miR-652-3p, and miR-210-3p) in VPA group compared with control. We predicted the target genes of these miRNAs on the website. Through gene ontology (GO) and pathway analyses, we obtained preliminary comprehension of the function of these genes. The bioinformatics analyses indicated the involvement of them during neurogenesis. In addition, we observed high expression of miR-210-3p, miR-29a-5p, and miR-674-5p in central nervous system, which suggested that they were likely to play crucial roles in neuronal differentiation. We then defined the upregulation of Map2 by transfecting mimic of miR-674-5p, which indicated the promotion of miR-674-5p on NSCs differentiation. The present study explored the miRNAs potentially mediated the function of VPA on promoting NSCs to differentiate into neurons.
Collapse
Affiliation(s)
- Hui He
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Wen Li
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Min Peng
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Jianbing Qin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Jinhong Shi
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Haoming Li
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Meiling Tian
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Xinhua Zhang
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Guangming Lv
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China.,Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China
| | - Guohua Jin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China.,Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China
| |
Collapse
|
40
|
Gillet V, Hunting DJ, Takser L. Turing Revisited: Decoding the microRNA Messages in Brain Extracellular Vesicles for Early Detection of Neurodevelopmental Disorders. Curr Environ Health Rep 2018; 3:188-201. [PMID: 27301443 DOI: 10.1007/s40572-016-0093-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prevention of neurodevelopmental disorders (NDD) of prenatal origin suffers from the lack of objective tools for early detection of susceptible individuals and the long time lag, usually in years, between the neurotoxic exposure and the diagnosis of mental dysfunction. Human data on the effects of alcohol, lead, and mercury and experimental data from animals on developmental neurotoxins and their long-term behavioral effects have achieved a critical mass, leading to the concept of the Developmental Origin of Health and Disease (DOHaD). However, there is currently no way to evaluate the degree of brain damage early after birth. We propose that extracellular vesicles (EVs) and particularly exosomes, released by brain cells into the fetal blood, may offer us a non-invasive means of assessing brain damage by neurotoxins. We are inspired by the strategy applied by Alan Turing (a cryptanalyst working for the British government), who created a first computer to decrypt German intelligence communications during World War II. Given the growing evidence that microRNAs (miRNAs), which are among the molecules carried by EVs, are involved in cell-cell communication, we propose that decrypting messages from EVs can allow us to detect damage thus offering an opportunity to cure, reverse, or prevent the development of NDD. This review summarizes recent findings on miRNAs associated with selected environmental toxicants known to be involved in the pathophysiology of NDD.
Collapse
Affiliation(s)
- Virginie Gillet
- Département Pédiatrie, Faculté de Médecine et Sciences de la Santé de l'Université de Sherbrooke, 3001, 12ème avenue Nord, Sherbrooke, Québec, Canada, J1H 5N4
| | - Darel John Hunting
- Département Radiobiologie, Faculté de Médecine et Sciences de la Santé de l'Université de Sherbrooke, 3001, 12ème avenue Nord, Sherbrooke, Québec, Canada, J1H 5N4
| | - Larissa Takser
- Département Pédiatrie, Faculté de Médecine et Sciences de la Santé de l'Université de Sherbrooke, 3001, 12ème avenue Nord, Sherbrooke, Québec, Canada, J1H 5N4.
| |
Collapse
|
41
|
Watanabe K, Yamaji R, Ohtsuki T. MicroRNA-664a-5p promotes neuronal differentiation of SH-SY5Y cells. Genes Cells 2018; 23:225-233. [PMID: 29341475 DOI: 10.1111/gtc.12559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/09/2017] [Indexed: 01/06/2023]
Abstract
MicroRNAs (miRNAs) belong to a class of small noncoding RNAs that play important roles in the translational regulation of gene expression. A number of miRNAs are known to act as key regulators of diverse processes such as neuronal differentiation. In this study, we have attempted to identify novel miRNAs related to neuronal differentiation via microarray analysis in the human neuronal differentiation model neuroblastoma SH-SY5Y cells. We identified 15 up-regulated and eight down-regulated miRNAs in SH-SY5Y cells treated with all-trans retinoic acid to induce differentiation. We further showed that one of the up-regulated miRNAs, miR-664a-5p, promoted neuronal differentiation of SH-SY5Y cells. These findings enhance our understanding of the miRNAs involved in the process of neurogenesis and, in particular, highlight an important role of miR-664a-5p in SH-SY5Y cell neuronal differentiation. Further studies will be required to confirm the function of miR-664-5p in neuronal development and disease and to identify its relevant target genes.
Collapse
Affiliation(s)
- Kazunori Watanabe
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Ryuhei Yamaji
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Takashi Ohtsuki
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
42
|
Zammit V, Baron B, Ayers D. MiRNA Influences in Neuroblast Modulation: An Introspective Analysis. Genes (Basel) 2018; 9:genes9010026. [PMID: 29315268 PMCID: PMC5793179 DOI: 10.3390/genes9010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the most common occurring solid paediatric cancer in children under the age of five years. Whether of familial or sporadic origin, chromosome abnormalities contribute to the development of NB and cause dysregulation of microRNAs (miRNAs). MiRNAs are small non-coding, single stranded RNAs that target messenger RNAs at the post-transcriptional levels by repressing translation within all facets of human physiology. Such gene 'silencing' activities by miRNAs allows the development of regulatory feedback loops affecting multiple functions within the cell, including the possible differentiation of neural stem cell (NSC) lineage selection. Neurogenesis includes stages of self-renewal and fate specification of NSCs, migration and maturation of young neurones, and functional integration of new neurones into the neural circuitry, all of which are regulated by miRNAs. The role of miRNAs and their interaction in cellular processes are recognised aspects of cancer genetics, and miRNAs are currently employed as biomarkers for prognosis and tumour characterisation in multiple cancer models. Consequently, thorough understanding of the mechanisms of how these miRNAs interplay at the transcriptomic level will definitely lead to the development of novel, bespoke and efficient therapeutic measures, with this review focusing on the influences of miRNAs on neuroblast modulations leading to neuroblastoma.
Collapse
Affiliation(s)
- Vanessa Zammit
- National Blood Transfusion Service, St. Luke's Hospital, PTA1010 G'Mangia, Malta.
- School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
43
|
Extracellular microRNAs as messengers in the central and peripheral nervous system. Neuronal Signal 2017; 1:NS20170112. [PMID: 32714581 PMCID: PMC7373247 DOI: 10.1042/ns20170112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs are small post-transcriptional regulators that play an important role in nervous system development, function and disease. More recently, microRNAs have been detected extracellularly and circulating in blood and other body fluids, where they are protected from degradation by encapsulation in vesicles, such as exosomes, or by association with proteins. These microRNAs are thought to be released from cells selectively through active processes and taken up by specific target cells within the same or in remote tissues where they are able to exert their repressive function. These characteristics make extracellular microRNAs ideal candidates for intercellular communication over short and long distances. This review aims to explore the potential mechanisms underlying microRNA communication within the nervous system and between the nervous system and other tissues. The suggested roles of extracellular microRNAs in the healthy and the diseased nervous system will be reviewed.
Collapse
|
44
|
Quintero H, Lamas M. microRNA expression in the neural retina: Focus on Müller glia. J Neurosci Res 2017; 96:362-370. [DOI: 10.1002/jnr.24181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Heberto Quintero
- Departamento de Farmacobiología; Cinvestav Sede Sur; Mexico City Mexico
- Department of Neuroscience; University of Montreal Hospital Research Centre (CRCHUM); Montreal Quebec Canada
| | - Mónica Lamas
- Departamento de Farmacobiología; Cinvestav Sede Sur; Mexico City Mexico
| |
Collapse
|
45
|
Luarte A, Cisternas P, Caviedes A, Batiz LF, Lafourcade C, Wyneken U, Henzi R. Astrocytes at the Hub of the Stress Response: Potential Modulation of Neurogenesis by miRNAs in Astrocyte-Derived Exosomes. Stem Cells Int 2017; 2017:1719050. [PMID: 29081809 PMCID: PMC5610870 DOI: 10.1155/2017/1719050] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/16/2017] [Indexed: 01/24/2023] Open
Abstract
Repetitive stress negatively affects several brain functions and neuronal networks. Moreover, adult neurogenesis is consistently impaired in chronic stress models and in associated human diseases such as unipolar depression and bipolar disorder, while it is restored by effective antidepressant treatments. The adult neurogenic niche contains neural progenitor cells in addition to amplifying progenitors, neuroblasts, immature and mature neurons, pericytes, astrocytes, and microglial cells. Because of their particular and crucial position, with their end feet enwrapping endothelial cells and their close communication with the cells of the niche, astrocytes might constitute a nodal point to bridge or transduce systemic stress signals from peripheral blood, such as glucocorticoids, to the cells involved in the neurogenic process. It has been proposed that communication between astrocytes and niche cells depends on direct cell-cell contacts and soluble mediators. In addition, new evidence suggests that this communication might be mediated by extracellular vesicles such as exosomes, and in particular, by their miRNA cargo. Here, we address some of the latest findings regarding the impact of stress in the biology of the neurogenic niche, and postulate how astrocytic exosomes (and miRNAs) may play a fundamental role in such phenomenon.
Collapse
Affiliation(s)
- Alejandro Luarte
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Pablo Cisternas
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Ariel Caviedes
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Luis Federico Batiz
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Carlos Lafourcade
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ursula Wyneken
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Roberto Henzi
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
46
|
Cabana-Domínguez J, Roncero C, Pineda-Cirera L, Palma-Álvarez RF, Ros-Cucurull E, Grau-López L, Esojo A, Casas M, Arenas C, Ramos-Quiroga JA, Ribasés M, Fernàndez-Castillo N, Cormand B. Association of the PLCB1 gene with drug dependence. Sci Rep 2017; 7:10110. [PMID: 28860459 PMCID: PMC5579249 DOI: 10.1038/s41598-017-10207-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/04/2017] [Indexed: 12/27/2022] Open
Abstract
Genetic factors involved in the susceptibility to drug addiction still remain largely unknown. MiRNAs seem to play key roles in the drug-induced plasticity of the brain that likely drives the emergence of addiction. In this work we explored the role of miRNAs in drug addiction. With this aim, we selected 62 SNPs located in the 3'UTR of target genes that are predicted to alter the binding of miRNA molecules and performed a case-control association study in a Spanish sample of 735 cases (mainly cocaine-dependent subjects with multiple drug dependencies) and 739 controls. We found an association between rs1047383 in the PLCB1 gene and drug dependence that was replicated in an independent sample (663 cases and 667 controls). Then we selected 9 miRNAs predicted to bind the rs1047383 region, but none of them showed any effect on PLCB1 expression. We also assessed two miRNAs binding a region that contains a SNP in linkage disequilibrium with rs1047383, but although one of them, hsa-miR-582, was found to downregulate PLCB1, no differences were observed between alleles. Finally, we explored the possibility that PLCB1 expression is altered by cocaine and we observed a significant upregulation of the gene in the nucleus accumbens of cocaine abusers and in human dopaminergic-like neurons after cocaine treatment. Our results, together with previous studies, suggest that PLCB1 participates in the susceptibility to drug dependence.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Carlos Roncero
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Laura Pineda-Cirera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - R Felipe Palma-Álvarez
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Elena Ros-Cucurull
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Lara Grau-López
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Abderaman Esojo
- Addiction and Dual Diagnosis Unit Vall Hebron, Psychiatric Services, Hospital Universitari Vall d'Hebron-ASPB, Barcelona, Catalonia, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Miquel Casas
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Concepció Arenas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Ribasés
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
47
|
Lamadrid-Romero M, Solís KH, Cruz-Reséndiz MS, Pérez JE, Díaz NF, Flores-Herrera H, García-López G, Perichart O, Reyes-Muñoz E, Arenas-Huertero F, Eguía-Aguilar P, Molina-Hernández A. Central nervous system development-related microRNAs levels increase in the serum of gestational diabetic women during the first trimester of pregnancy. Neurosci Res 2017; 130:8-22. [PMID: 28803788 DOI: 10.1016/j.neures.2017.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/14/2023]
Abstract
MicroRNAs are heterochronic molecules important during brain development, which could be altered by gestational diabetes mellitus (GDM). To explore these molecules in maternal serum, we performed an RT-qPCR analysis. Our results revealed the heterochronic character of some neural development-related microRNA in serum samples of pregnant women. In relation to the first trimester, higher levels of miR-183-5p, -200b-3p, and -125-5p in the second trimester, and higher levels of miR-137 in the third trimester, were found. Furthermore, an insult such as GDM led to higher levels of miR-183-5p, -200b-3p, -125-5p, and -1290 relative to the control in the first trimester, which might be related to changes in neurogenesis and cell proliferation. An in silico analysis suggested that increased microRNAs in the second trimester in the control contributed to cell proliferation and neuron differentiation and that the rise in miR-137 in the third trimester led to neuron maturation. In the diabetic, higher levels of the microRNAs in the first trimester suggested alterations in cell proliferation and neuron differentiation. In conclusion, we showed that fetal-related microRNAs can be detected in the serum of pregnant woman and exhibit temporary regulation during pregnancy and that microRNAs involved in cell proliferation and neuron differentiation are upregulated under GDM.
Collapse
Affiliation(s)
- M Lamadrid-Romero
- Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Departamento de Fisiología y Desarrollo Celular (Laboratorio de Investigación en Células Troncales y Biología del Desarrollo), Mexico; Posgrado en Ciencias Biológicas, Facultad de Ciencias-UNAM, Ciudad de México, Mexico
| | - K H Solís
- Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Departamento de Fisiología y Desarrollo Celular (Laboratorio de Investigación en Células Troncales y Biología del Desarrollo), Mexico
| | - M S Cruz-Reséndiz
- Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Departamento de Fisiología y Desarrollo Celular (Laboratorio de Investigación en Células Troncales y Biología del Desarrollo), Mexico; Posgrado en Ciencias Biológicas, Facultad de Ciencias-UNAM, Ciudad de México, Mexico
| | - J E Pérez
- Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Departamento de Fisiología y Desarrollo Celular (Laboratorio de Investigación en Células Troncales y Biología del Desarrollo), Mexico
| | - N F Díaz
- Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Departamento de Fisiología y Desarrollo Celular (Laboratorio de Investigación en Células Troncales y Biología del Desarrollo), Mexico
| | - H Flores-Herrera
- Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes", Departamento de Inmunobioquímica, Mexico
| | - G García-López
- Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Departamento de Fisiología y Desarrollo Celular (Laboratorio de Investigación en Células Troncales y Biología del Desarrollo), Mexico
| | - O Perichart
- Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes", Departamento de Nutrición, Mexico
| | - E Reyes-Muñoz
- Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes", Departamento de Endocrionología, Mexico
| | - F Arenas-Huertero
- Hospital Infantil de México "Federico Gómez", Laboratorio de Investigación en Patología Experimental, Mexico
| | - P Eguía-Aguilar
- Hospital Infantil de México "Federico Gómez", Departamento de Patología, Mexico
| | - A Molina-Hernández
- Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Departamento de Fisiología y Desarrollo Celular (Laboratorio de Investigación en Células Troncales y Biología del Desarrollo), Mexico.
| |
Collapse
|
48
|
Abstract
Preconditioning is a paradigm in which sublethal stress-prior to a more injurious insult-induces protection against injury. In the central nervous system (CNS), preconditioning against ischemic stroke is induced by short durations of ischemia, brief seizures, exposure to anesthetics, and other stresses. Increasing evidence supports the contribution of microRNAs (miRNAs) to the pathogenesis of cerebral ischemia and ischemic tolerance induced by preconditioning. Studies investigating miRNA changes induced by preconditioning have to date identified 562 miRNAs that change expression levels after preconditioning, and 15% of these changes were reproduced in at least one additional study. Of miRNAs assessed as changed by preconditioning in more than one study, about 40% changed in the same direction in more than one study. Most of the studies to assess the role of specific miRNAs in the neuroprotective mechanism of preconditioning were performed in vitro, with fewer studies manipulating individual miRNAs in vivo. Thus, while many miRNAs change in response to preconditioning stimuli, the mechanisms underlying their effects are not well understood. The data does suggest that miRNAs may play significant roles in preconditioning-induced neuroprotection. This review focuses on the current state of knowledge of the possible role of miRNAs in preconditioning-induced cerebral protection.
Collapse
Affiliation(s)
- Josh D Bell
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Jang-Eun Cho
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Rona G Giffard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
49
|
Hao Y, Ge Y, Li J, Hu Y, Wu B, Fang F. Identification of MicroRNAs by Microarray Analysis and Prediction of Target Genes Involved in Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. J Periodontol 2017; 88:1105-1113. [PMID: 28598283 DOI: 10.1902/jop.2017.170079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The roles of microRNAs (miRNAs) in osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) remain largely unexplored. In this study, the underlying molecular mechanism of osteogenic differentiation in hPDLSCs is investigated using miRNA profiling. METHODS The miRNA expression profile during osteogenic differentiation was analyzed using a microarray. Target genes of miRNAs with at least two-fold change in expression (P <0.05) were predicted by bioinformatics. Six miRNAs with osteogenesis-related target genes were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS Expression of 116 miRNAs was found to be altered after osteoinduction, with 30 upregulated and 86 downregulated. Thirty-one of these miRNAs (26.7%) had osteogenesis-related target genes. Changes in expression levels of six of the 31 miRNAs (miR-654-3p, miR-4288, miR-34c-5p, miR-218-5p, miR-663a, and miR-874-3p) were validated by qRT-PCR. CONCLUSIONS Significant alterations in miRNA expression profiles were observed during osteogenic differentiation of hPDLSCs. These results imply that miRNAs may have regulatory effects on this process by targeting osteogenesis-related genes.
Collapse
Affiliation(s)
- Yilin Hao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihong Ge
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjia Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanwei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
Cross-Kingdom Regulation of Putative miRNAs Derived from Happy Tree in Cancer Pathway: A Systems Biology Approach. Int J Mol Sci 2017; 18:ijms18061191. [PMID: 28587194 PMCID: PMC5486014 DOI: 10.3390/ijms18061191] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/17/2017] [Accepted: 05/27/2017] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known key regulators of gene expression primarily at the post-transcriptional level. Plant-derived miRNAs may pass through the gastrointestinal tract, entering into the body fluid and regulate the expression of endogenous mRNAs. Camptotheca acuminata, a highly important medicinal plant known for its anti-cancer potential was selected to investigate cross-kingdom regulatory mechanism and involvement of miRNAs derived from this plant in cancer-associated pathways through in silico systems biology approach. In this study, total 33 highly stable putative novel miRNAs were predicted from the publically available 53,294 ESTs of C. acuminata, out of which 14 miRNAs were found to be regulating 152 target genes in human. Functional enrichment, gene-disease associations and network analysis of these target genes were carried out and the results revealed their association with prominent types of cancers like breast cancer, leukemia and lung cancer. Pathways like focal adhesion, regulation of lipolysis in adipocytes and mTOR signaling pathways were found significantly associated with the target genes. The regulatory network analysis showed the association of some important hub proteins like GSK3B, NUMB, PEG3, ITGA2 and DLG2 with cancer-associated pathways. Based on the analysis results, it can be suggested that the ingestion of the C. acuminata miRNAs may have a functional impact on tumorigenesis in a cross-kingdom way and may affect the physiological condition at genetic level. Thus, the predicted miRNAs seem to hold potentially significant role in cancer pathway regulation and therefore, may be further validated using in vivo experiments for a better insight into their mechanism of epigenetic action of miRNA.
Collapse
|