1
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2024:10.1007/s12035-024-04246-w. [PMID: 38816676 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
2
|
Gao Y, Syed M, Zhao X. Mechanisms underlying the effect of voluntary running on adult hippocampal neurogenesis. Hippocampus 2023; 33:373-390. [PMID: 36892196 PMCID: PMC10566571 DOI: 10.1002/hipo.23520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
Adult hippocampal neurogenesis is important for preserving learning and memory-related cognitive functions. Physical exercise, especially voluntary running, is one of the strongest stimuli to promote neurogenesis and has beneficial effects on cognitive functions. Voluntary running promotes exit of neural stem cells (NSCs) from the quiescent stage, proliferation of NSCs and progenitors, survival of newborn cells, morphological development of immature neuron, and integration of new neurons into the hippocampal circuitry. However, the detailed mechanisms driving these changes remain unclear. In this review, we will summarize current knowledge with respect to molecular mechanisms underlying voluntary running-induced neurogenesis, highlighting recent genome-wide gene expression analyses. In addition, we will discuss new approaches and future directions for dissecting the complex cellular mechanisms driving change in adult-born new neurons in response to physical exercise.
Collapse
Affiliation(s)
- Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Moosa Syed
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
Javadi S, Li Y, Sheng J, Zhao L, Fu Y, Wang D, Zhao X. Sustained correction of hippocampal neurogenic and cognitive deficits after a brief treatment by Nutlin-3 in a mouse model of fragile X syndrome. BMC Med 2022; 20:163. [PMID: 35549943 PMCID: PMC9103116 DOI: 10.1186/s12916-022-02370-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS), the most prevalent inherited intellectual disability and one of the most common monogenic forms of autism, is caused by a loss of fragile X messenger ribonucleoprotein 1 (FMR1). We have previously shown that FMR1 represses the levels and activities of ubiquitin ligase MDM2 in young adult FMR1-deficient mice, and treatment by a MDM2 inhibitor Nutlin-3 rescues both hippocampal neurogenic and cognitive deficits in FMR1-deficient mice when analyzed shortly after the administration. However, it is unknown whether Nutlin-3 treatment can have long-lasting therapeutic effects. METHODS We treated 2-month-old young adult FMR1-deficient mice with Nutlin-3 for 10 days and then assessed the persistent effect of Nutlin-3 on both cognitive functions and adult neurogenesis when mice were 6-month-old mature adults. To investigate the mechanisms underlying the persistent effects of Nutlin-3, we analyzed the proliferation and differentiation of neural stem/progenitor cells isolated from these mice and assessed the transcriptome of the hippocampal tissues of treated mice. RESULTS We found that transient treatment with Nutlin-3 of 2-month-old young adult FMR1-deficient mice prevents the emergence of neurogenic and cognitive deficits in mature adult FXS mice at 6 months of age. We further found that the long-lasting restoration of neurogenesis and cognitive function might not be mediated by changing intrinsic properties of adult neural stem cells. Transcriptomic analysis of the hippocampal tissue demonstrated that transient Nultin-3 treatment leads to significant expression changes in genes related to the extracellular matrix, secreted factors, and cell membrane proteins in the FMR1-deficient hippocampus. CONCLUSIONS Our data indicates that transient Nutlin-3 treatment in young adults leads to long-lasting neurogenic and behavioral changes likely through modulating adult neurogenic niche that impact adult neural stem cells. Our results demonstrate that cognitive impairments in FXS may be prevented by an early intervention through Nutlin-3 treatment.
Collapse
Affiliation(s)
- Sahar Javadi
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Department of Animal Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yue Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Present address: Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jie Sheng
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lucy Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yao Fu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA. .,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
5
|
Speranza L, Pulcrano S, Perrone-Capano C, di Porzio U, Volpicelli F. Music affects functional brain connectivity and is effective in the treatment of neurological disorders. Rev Neurosci 2022; 33:789-801. [PMID: 35325516 DOI: 10.1515/revneuro-2021-0135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/25/2022] [Indexed: 11/15/2022]
Abstract
In a million years, under the pressure of natural selection, hominins have acquired the abilities for vocal learning, music, and language. Music is a relevant human activity, highly effective in enhancing sociality, is a universal experience common to all known human cultures, although it varies in rhythmic and melodic complexity. It has been part of human life since the beginning of our history, or almost, and it strengthens the mother-baby relation even within the mother's womb. Music engages multiple cognitive functions, and promotes attention, concentration, imagination, creativity, elicits memories and emotions, and stimulates imagination, and harmony of movement. It changes the chemistry of the brain, by inducing the release of neurotransmitters and hormones (dopamine, serotonin, and oxytocin) and activates the reward and prosocial systems. In addition, music is also used to develop new therapies necessary to alleviate severe illness, especially neurological disorders, and brain injuries.
Collapse
Affiliation(s)
- Luisa Speranza
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Salvatore Pulcrano
- Institute of Genetics and Biophysics, "Adriano Buzzati-Traverso", C.N.R., 80131 Naples, Italy.,Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Carla Perrone-Capano
- Institute of Genetics and Biophysics, "Adriano Buzzati-Traverso", C.N.R., 80131 Naples, Italy.,Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Umberto di Porzio
- Institute of Genetics and Biophysics, "Adriano Buzzati-Traverso", C.N.R., 80131 Naples, Italy
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
6
|
Zorzin S, Corsi A, Ciarpella F, Bottani E, Dolci S, Malpeli G, Pino A, Amenta A, Fumagalli GF, Chiamulera C, Bifari F, Decimo I. Environmental Enrichment Induces Meningeal Niche Remodeling through TrkB-Mediated Signaling. Int J Mol Sci 2021; 22:ijms221910657. [PMID: 34638999 PMCID: PMC8508649 DOI: 10.3390/ijms221910657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Neural precursors (NPs) present in the hippocampus can be modulated by several neurogenic stimuli, including environmental enrichment (EE) acting through BDNF-TrkB signaling. We have recently identified NPs in meninges; however, the meningeal niche response to pro-neurogenic stimuli has never been investigated. To this aim, we analyzed the effects of EE exposure on NP distribution in mouse brain meninges. Following neurogenic stimuli, although we did not detect modification of the meningeal cell number and proliferation, we observed an increased number of neural precursors in the meninges. A lineage tracing experiment suggested that EE-induced β3-Tubulin+ immature neuronal cells present in the meninges originated, at least in part, from GLAST+ radial glia cells. To investigate the molecular mechanism responsible for meningeal reaction to EE exposure, we studied the BDNF-TrkB interaction. Treatment with ANA-12, a TrkB non-competitive inhibitor, abolished the EE-induced meningeal niche changes. Overall, these data showed, for the first time, that EE exposure induced meningeal niche remodeling through TrkB-mediated signaling. Fluoxetine treatment further confirmed the meningeal niche response, suggesting it may also respond to other pharmacological neurogenic stimuli. A better understanding of the neurogenic stimuli modulation for meninges may be useful to improve the effectiveness of neurodegenerative and neuropsychiatric treatments.
Collapse
Affiliation(s)
- Stefania Zorzin
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Andrea Corsi
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Francesca Ciarpella
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Emanuela Bottani
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Sissi Dolci
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy;
| | - Annachiara Pino
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Alessia Amenta
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy; (A.A.); (F.B.)
| | - Guido Franceso Fumagalli
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy; (A.A.); (F.B.)
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
- Correspondence: ; Tel.: +39-045-802-7509; Fax: +39-045-802-7452
| |
Collapse
|
7
|
Bicker F, Nardi L, Maier J, Vasic V, Schmeisser MJ. Criss-crossing autism spectrum disorder and adult neurogenesis. J Neurochem 2021; 159:452-478. [PMID: 34478569 DOI: 10.1111/jnc.15501] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) comprises a group of multifactorial neurodevelopmental disorders primarily characterized by deficits in social interaction and repetitive behavior. Although the onset is typically in early childhood, ASD poses a lifelong challenge for both patients and caretakers. Adult neurogenesis (AN) is the process by which new functional neurons are created from neural stem cells existing in the post-natal brain. The entire event is based on a sequence of cellular processes, such as proliferation, specification of cell fate, maturation, and ultimately, synaptic integration into the existing neural circuits. Hence, AN is implicated in structural and functional brain plasticity throughout life. Accumulating evidence shows that impaired AN may underlie some of the abnormal behavioral phenotypes seen in ASD. In this review, we approach the interconnections between the molecular pathways related to AN and ASD. We also discuss existing therapeutic approaches targeting such pathways both in preclinical and clinical studies. A deeper understanding of how ASD and AN reciprocally affect one another could reveal important converging pathways leading to the emergence of psychiatric disorders.
Collapse
Affiliation(s)
- Frank Bicker
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jannik Maier
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
8
|
Ohgomori T, Jinno S. Signal Transducer and Activator of Transcription 3 Activation in Hippocampal Neural Stem Cells and Cognitive Deficits in Mice Following Short-term Cuprizone Exposure. Neuroscience 2021; 472:90-102. [PMID: 34358632 DOI: 10.1016/j.neuroscience.2021.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Recent studies have emphasized that adult hippocampal neurogenesis impairment may be associated with cognitive problems. Because cuprizone (CPZ), a copper-chelating reagent, was shown to decrease the production of new neurons, we aimed to further understand the involvement of adult hippocampal neurogenesis impairment in cognitive function by using a short-term (2-week) CPZ exposure paradigm. The CPZ-fed mice showed cognitive deficits, i.e., impaired sensorimotor gating and reduced social novelty preference, compared to normal-fed mice. Although a long-term (e.g., 5-week) CPZ exposure paradigm was found to cause demyelination, we encountered that the labeling for myelin in the hippocampus was unaffected by 2-week CPZ exposure. The densities of neuronal progenitor cells (NPCs) and newborn granule cells (NGCs) were lower in CPZ-fed mice than in normal-fed mice, while those of neural stem cells (NSCs) were comparable between groups. We then examined whether short-term CPZ exposure might induce activation of signal transducer and activator of transcription 3 (STAT3), which plays a major role in cytokine receptor signaling. The densities of phosphorylated STAT3-positive (pSTAT3+) NSCs were higher in CPZ-fed mice than in normal-fed mice, while those of pSTAT3+ NPCs/NGCs were very low in both groups. Interestingly, the densities of bromodeoxyuridine-positive (BrdU+) NSCs were higher in CPZ-fed mice than in normal-fed mice 2 weeks after BrdU injection, while those of BrdU+ NPCs/NGCs were lower in CPZ-fed mice than in normal-fed mice. These findings suggest that short-term CPZ exposure inhibits differentiation of NSCs into NPCs via activation of STAT3, which may in part underlie cognitive deficits.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
9
|
Rico-Barrio I, Peñasco S, Lekunberri L, Serrano M, Egaña-Huguet J, Mimenza A, Soria-Gomez E, Ramos A, Buceta I, Gerrikagoitia I, Mendizabal-Zubiaga J, Elezgarai I, Puente N, Grandes P. Environmental Enrichment Rescues Endocannabinoid-Dependent Synaptic Plasticity Lost in Young Adult Male Mice after Ethanol Exposure during Adolescence. Biomedicines 2021; 9:825. [PMID: 34356889 PMCID: PMC8301393 DOI: 10.3390/biomedicines9070825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Binge drinking (BD) is a serious health concern in adolescents as high ethanol (EtOH) consumption can have cognitive sequelae later in life. Remarkably, an enriched environment (EE) in adulthood significantly recovers memory in mice after adolescent BD, and the endocannabinoid, 2-arachydonoyl-glycerol (2-AG), rescues synaptic plasticity and memory impaired in adult rodents upon adolescent EtOH intake. However, the mechanisms by which EE improves memory are unknown. We investigated this in adolescent male C57BL/6J mice exposed to a drinking in the dark (DID) procedure four days per week for a duration of 4 weeks. After DID, the mice were nurtured under an EE for 2 weeks and were subjected to the Barnes Maze Test performed the last 5 days of withdrawal. The EE rescued memory and restored the EtOH-disrupted endocannabinoid (eCB)-dependent excitatory long-term depression at the dentate medial perforant path synapses (MPP-LTD). This recovery was dependent on both the cannabinoid CB1 receptor and group I metabotropic glutamate receptors (mGluRs) and required 2-AG. Also, the EE had a positive effect on mice exposed to water through the transient receptor potential vanilloid 1 (TRPV1) and anandamide (AEA)-dependent MPP long-term potentiation (MPP-LTP). Taken together, EE positively impacts different forms of excitatory synaptic plasticity in water- and EtOH-exposed brains.
Collapse
Affiliation(s)
- Irantzu Rico-Barrio
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Sara Peñasco
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Leire Lekunberri
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Maitane Serrano
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Jon Egaña-Huguet
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Amaia Mimenza
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Edgar Soria-Gomez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Almudena Ramos
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Ianire Buceta
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Juan Mendizabal-Zubiaga
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (I.R.-B.); (L.L.); (M.S.); (J.E.-H.); (A.M.); (E.S.-G.); (A.R.); (I.B.); (I.G.); (J.M.-Z.); (I.E.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
10
|
Gao Y, Shen M, Gonzalez JC, Dong Q, Kannan S, Hoang JT, Eisinger BE, Pandey J, Javadi S, Chang Q, Wang D, Overstreet-Wadiche L, Zhao X. RGS6 Mediates Effects of Voluntary Running on Adult Hippocampal Neurogenesis. Cell Rep 2021; 32:107997. [PMID: 32755589 DOI: 10.1016/j.celrep.2020.107997] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 01/17/2023] Open
Abstract
Voluntary running enhances adult hippocampal neurogenesis, with consequences for hippocampal-dependent learning ability and mood regulation. However, the underlying mechanism remains unclear. Here, we show that voluntary running induces unique and dynamic gene expression changes specifically within the adult-born hippocampal neurons, with significant impact on genes involved in neuronal maturation and human diseases. We identify the regulator of G protein signaling 6 (RGS6) as a key factor that mediates running impact on adult-born neurons. RGS6 overexpression mimics the positive effects of voluntary running on morphological and physiological maturation of adult new neurons and reduced sensitivity of adult-born neurons to the inhibitory effect of GABAB (γ-Aminobutyric acid B) receptor activation. Knocking down RGS6 abolishes running-enhanced neuronal maturation and hippocampal neurogenesis-dependent learning and anxiolytic effect. Our study provides a data resource showing genome-wide intrinsic molecular changes in adult-born hippocampal neurons that contribute to voluntary running-induced neurogenesis.
Collapse
Affiliation(s)
- Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jose Carlos Gonzalez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qiping Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sudharsan Kannan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Johnson T Hoang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Brian E Eisinger
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jyotsna Pandey
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sahar Javadi
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
11
|
Smail MA, Smith BL, Nawreen N, Herman JP. Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacol Biochem Behav 2020; 197:172993. [PMID: 32659243 PMCID: PMC7484282 DOI: 10.1016/j.pbb.2020.172993] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Stress exposure can produce profound changes in physiology and behavior that can impair health and well-being. Of note, stress exposure is linked to anxiety disorders and depression in humans. The widespread impact of these disorders warrants investigation into treatments to mitigate the harmful effects of stress. Pharmacological treatments fail to help many with these disorders, so recent work has focused on non-pharmacological alternatives. One of the most promising of these alternatives is environmental enrichment (EE). In rodents, EE includes social, physical, and cognitive stimulation for the animal, in the form of larger cages, running wheels, and toys. EE successfully reduces the maladaptive effects of various stressors, both as treatment and prophylaxis. While we know that EE can have beneficial effects under stress conditions, the morphological and molecular mechanisms underlying these behavioral effects are still not well understood. EE is known to alter neurogenesis, dendrite development, and expression of neurotrophic growth factors, effects that vary by type of enrichment, age, and sex. To add to this complexity, EE has differential effects in different brain regions. Understanding how EE exerts its protective effects on morphological and molecular levels could hold the key to developing more targeted pharmacological treatments. In this review, we summarize the literature on the morphological and molecular consequences of EE and stress in key emotional regulatory pathways in the brain, the hippocampus, prefrontal cortex, and amygdala. The similarities and differences among these regions provide some insight into stress-EE interaction that may be exploited in future efforts toward prevention of, and intervention in, stress-related diseases.
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.
| | - Brittany L Smith
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Nawshaba Nawreen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Veterans Affairs Medical Center, Cincinnati, OH, United States; Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
12
|
Zhao X, van Praag H. Steps towards standardized quantification of adult neurogenesis. Nat Commun 2020; 11:4275. [PMID: 32848155 PMCID: PMC7450090 DOI: 10.1038/s41467-020-18046-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
New neurons are generated in adult mammals. Adult hippocampal neurogenesis is considered to play an important role in cognition and mental health. The number and properties of newly born neurons are regulatable by a broad range of physiological and pathological conditions. To begin to understand the underlying cellular mechanisms and functional relevance of adult neurogenesis, many studies rely on quantification of adult-born neurons. However, lack of standardized methods to quantify new neurons is impeding research reproducibility across laboratories. Here, we review the importance of stereology, and propose why and how it should be applied to the study of adult neurogenesis.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center and University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Henriette van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
13
|
Taha E, Patil S, Barrera I, Panov J, Khamaisy M, Proud CG, Bramham CR, Rosenblum K. eEF2/eEF2K Pathway in the Mature Dentate Gyrus Determines Neurogenesis Level and Cognition. Curr Biol 2020; 30:3507-3521.e7. [PMID: 32707059 DOI: 10.1016/j.cub.2020.06.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Levels of adult neurogenesis in the dentate gyrus (DG) of the hippocampus are correlated with unique cognitive functions. However, the molecular pathways controlling it are poorly understood. Here, we found that the known physiological ways to enhance neurogenesis converged on the eEF2/eEF2K pathway via AMPK in the DG. Enhancing the elongation phase of mRNA translation in eEF2K-knockout (eEF2K-KO) mice induced the expression of neurogenesis-related proteins in the hippocampus. We thus tested the hypothesis that inducing eEF2K-KO in mature neurons of the DG controls neurogenesis. Indeed, both general eEF2K-KO and targeted KO in DG excitatory mature neurons resulted in enhanced neurogenesis levels and upregulation of neurogenesis-related proteins. Increased neurogenesis was correlated with enhanced performance in DG-dependent learning. Moreover, general and local eEF2K-KO in old mice rejuvenated the DG, paving the way for better mechanistic understanding of how neurogenesis is controlled in the mature DG and possible treatments for incurable aging-associated diseases.
Collapse
Affiliation(s)
- Elham Taha
- Sagol Department of Neurobiology, 199 Aba Khoushy Avenue Mount Carmel, University of Haifa, 3498838 Haifa, Israel
| | - Sudarshan Patil
- Department of Biomedicine and KG Jebsen Centre for Research on Neuropsychiatric Disorders, Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Iliana Barrera
- Sagol Department of Neurobiology, 199 Aba Khoushy Avenue Mount Carmel, University of Haifa, 3498838 Haifa, Israel
| | - Julia Panov
- Sagol Department of Neurobiology, 199 Aba Khoushy Avenue Mount Carmel, University of Haifa, 3498838 Haifa, Israel
| | - Mohammad Khamaisy
- Sagol Department of Neurobiology, 199 Aba Khoushy Avenue Mount Carmel, University of Haifa, 3498838 Haifa, Israel
| | - Christopher G Proud
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute, PO Box 11060, 5001 Adelaide, SA, Australia
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Centre for Research on Neuropsychiatric Disorders, Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, 199 Aba Khoushy Avenue Mount Carmel, University of Haifa, 3498838 Haifa, Israel; Center for Gene Manipulation in the Brain, 199 Aba Khoushy Avenue Mount Carmel, University of Haifa, 3498838 Haifa, Israel.
| |
Collapse
|
14
|
Abstract
'Enriched environments' are a key experimental paradigm to decipher how interactions between genes and environment change the structure and function of the brain across the lifespan of an animal. The regulation of adult hippocampal neurogenesis by environmental enrichment is a prime example of this complex interaction. As each animal in an enriched environment will have a slightly different set of experiences that results in downstream differences between individuals, enrichment can be considered not only as an external source of rich stimuli but also to provide the room for individual behaviour that shapes individual patterns of brain plasticity and thus function.
Collapse
|
15
|
Running-Activated Neural Stem Cells Enhance Subventricular Neurogenesis and Improve Olfactory Behavior in p21 Knockout Mice. Mol Neurobiol 2019; 56:7534-7556. [DOI: 10.1007/s12035-019-1590-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
|
16
|
Abstract
The development of regenerative medicine has provided new perspectives in many scientific fields, including psychiatry. Stem cell research is getting us closer to discovering the biological foundation of mental disorders. In this chapter, we consider the information relating to stem cells and factors involved in their trafficking in peripheral blood in some psychiatric disorders (major depressive disorder, bipolar disorder, schizophrenia, anxiety disorder, and alcohol dependence). The authors also include the implementation of current research regarding neurogenesis in adult brain and induced pluripotent stem cells in investigating concerns in etiopathogenesis of mental disorders as well as the implication of research for treatment of these disorders.
Collapse
|
17
|
Moon HY, Javadi S, Stremlau M, Yoon KJ, Becker B, Kang SU, Zhao X, van Praag H. Conditioned media from AICAR-treated skeletal muscle cells increases neuronal differentiation of adult neural progenitor cells. Neuropharmacology 2018; 145:123-130. [PMID: 30391731 DOI: 10.1016/j.neuropharm.2018.10.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
Exercise has profound benefits for brain function in animals and humans. In rodents, voluntary wheel running increases the production of new neurons and upregulates neurotrophin levels in the hippocampus, as well as improving synaptic plasticity, memory function and mood. The underlying cellular mechanisms, however, remain unresolved. Recent research indicates that peripheral organs such as skeletal muscle, liver and adipose tissue secrete factors during physical activity that may influence neuronal function. Here we used an in vitro cell assay and proteomic analysis to investigate the effects of proteins secreted from skeletal muscle cells on adult hippocampal neural progenitor cell (aNPC) differentiation. We also sought to identify the relevant molecules driving these effects. Specifically, we treated rat L6 skeletal muscle cells with the AMP-kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or vehicle (distilled water). We then collected the conditioned media (CM) and fractionated it using high-performance liquid chromatography (HPLC). Treatment of aNPCs with a specific fraction of the AICAR-CM upregulated expression of doublecortin (DCX) and Tuj1, markers of immature neurons. Proteomic analysis of this fraction identified proteins known to be involved in energy metabolism, cell migration, adhesion and neurogenesis. Culturing differentiating aNPCs in the presence of one of the factors, glycolytic enzyme glucose-6-phosphate isomerase (GPI), or AICAR-CM, increased the proportion of neuronal (Tuj1+) and astrocytic, glial fibrillary acidic protein (GFAP+) cells. Our study provides further evidence that proteins secreted from skeletal muscle cells may serve as a critical communication link to the brain through factors that enhance neural differentiation.
Collapse
Affiliation(s)
- Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA; Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sahar Javadi
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Matthew Stremlau
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kyeong Jin Yoon
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Benjamin Becker
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinyu Zhao
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA; Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
18
|
Li Y, Shen M, Stockton ME, Zhao X. Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem 2018; 165:106945. [PMID: 30321651 DOI: 10.1016/j.nlm.2018.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders result from impaired development or maturation of the central nervous system. Both genetic and environmental factors can contribute to the pathogenesis of these disorders; however, the exact causes are frequently complex and unclear. Individuals with neurodevelopmental disorders may have deficits with diverse manifestations, including challenges with sensory function, motor function, learning, memory, executive function, emotion, anxiety, and social ability. Although these functions are mediated by multiple brain regions, many of them are dependent on the hippocampus. Extensive research supports important roles of the mammalian hippocampus in learning and cognition. In addition, with its high levels of activity-dependent synaptic plasticity and lifelong neurogenesis, the hippocampus is sensitive to experience and exposure and susceptible to disease and injury. In this review, we first summarize hippocampal deficits seen in several human neurodevelopmental disorders, and then discuss hippocampal impairment including hippocampus-dependent behavioral deficits found in animal models of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael E Stockton
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
19
|
Delezie J, Handschin C. Endocrine Crosstalk Between Skeletal Muscle and the Brain. Front Neurol 2018; 9:698. [PMID: 30197620 PMCID: PMC6117390 DOI: 10.3389/fneur.2018.00698] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle is an essential regulator of energy homeostasis and a potent coordinator of exercise-induced adaptations in other organs including the liver, fat or the brain. Skeletal muscle-initiated crosstalk with other tissues is accomplished though the secretion of myokines, protein hormones which can exert autocrine, paracrine and long-distance endocrine effects. In addition, the enhanced release or uptake of metabolites from and into contracting muscle cells, respectively, likewise can act as a powerful mediator of tissue interactions, in particular in regard to the central nervous system. The present review will discuss the current stage of knowledge regarding how exercise and the muscle secretome improve a broad range of brain functions related to vascularization, neuroplasticity, memory, sleep and mood. Even though the molecular and cellular mechanisms underlying the communication between muscle and brain is still poorly understood, physical activity represents one of the most effective strategies to reduce the prevalence and incidence of depression, cognitive, metabolic or degenerative neuronal disorders, and thus warrants further study.
Collapse
|
20
|
Increased Synthesis of Chondroitin Sulfate Proteoglycan Promotes Adult Hippocampal Neurogenesis in Response to Enriched Environment. J Neurosci 2018; 38:8496-8513. [PMID: 30126967 DOI: 10.1523/jneurosci.0632-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chondroitin sulfate proteoglycan (CSPG) is a candidate regulator of embryonic neurogenesis. The aim of this study was to specify the functional significance of CSPG in adult hippocampal neurogenesis using male mice. Here, we showed that neural stem cells and neuronal progenitors in the dentate gyrus were covered in part by CSPG. Pharmacological depletion of CSPG in the dentate gyrus reduced the densities of neuronal progenitors and newborn granule cells. 3D reconstruction of newborn granule cells showed that their maturation was inhibited by CSPG digestion. The novel object recognition test revealed that CSPG digestion caused cognitive memory impairment. Western blot analysis showed that expression of β-catenin in the dentate gyrus was decreased by CSPG digestion. The amount of CSPG in the dentate gyrus was increased by enriched environment (EE) and was decreased by forced swim stress. In addition, EE accelerated the recovery of CSPG expression in the dentate gyrus from the pharmacological depletion and promoted the restoration of granule cell production. Conversely, the densities of newborn granule cells were also decreased in mice that lacked chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGalNAcT1), a key enzyme for CSPG synthesis (T1KO mice). The capacity of EE to promote granule cell production and improve cognitive memory was impaired in T1KO mice. These findings indicate that CSPG is involved in the regulation of adult hippocampal neurogenesis and suggest that increased synthesis of CSPG by CSGalNacT1 may mediate promotion of granule cell production and improvement of cognitive memory in response to EE.SIGNIFICANCE STATEMENT Chondroitin sulfate proteoglycan (CSPG) is a candidate regulator of embryonic neurogenesis. Here, we specified the role of CSPG in adult neurogenesis in the mouse hippocampus. Digestion of CSPG in the dentate gyrus impaired granule cell production and cognitive memory. Enriched environment (EE) promoted the recovery of CSPG expression and granule cell production from the CSPG digestion. Additionally, adult neurogenesis was impaired in mice that lacked a key enzyme for CSPG synthesis (T1KO mice). The capacity of EE to promote granule cell production and cognitive memory was impaired in T1KO mice. Altogether, these findings indicate that CSPG underlies adult hippocampal neurogenesis and suggest that increased synthesis of CSPG may mediate promotion of granule cell production in response to EE.
Collapse
|
21
|
|
22
|
Patzlaff NE, Shen M, Zhao X. Regulation of Adult Neurogenesis by the Fragile X Family of RNA Binding Proteins. Brain Plast 2018; 3:205-223. [PMID: 30151344 PMCID: PMC6091053 DOI: 10.3233/bpl-170061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fragile X mental retardation protein (FMRP) has an important role in neural development. Functional loss of FMRP in humans leads to fragile X syndrome, and it is the most common monogenetic contributor to intellectual disability and autism. FMRP is part of a larger family of RNA-binding proteins known as FXRs, which also includes fragile X related protein 1 (FXR1P) and fragile X related protein 2 (FXR2P). Despite the similarities of the family members, the functions of FXR1P and FXR2P in human diseases remain unclear. Although most studies focus on FMRP's role in mature neurons, all three FXRs regulate adult neurogenesis. Extensive studies have demonstrated important roles of adult neurogenesis in neuroplasticity, learning, and cognition. Impaired adult neurogenesis is implicated in neuropsychiatric disorders, neurodegenerative diseases, and neurodevelopmental disorders. Interventions aimed at regulating adult neurogenesis are thus being evaluated as potential therapeutic strategies. Here, we review and discuss the functions of FXRs in adult neurogenesis and their known similarities and differences. Understanding the overlapping regulatory functions of FXRs in adult neurogenesis can give us insights into the adult brain and fragile X syndrome.
Collapse
Affiliation(s)
- Natalie E. Patzlaff
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|