1
|
Halim MA, Bieser JMH, Thomas SC. Large, sustained soil CO 2 efflux but rapid recovery of CH 4 oxidation in post-harvest and post-fire stands in a mixedwood boreal forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172666. [PMID: 38653415 DOI: 10.1016/j.scitotenv.2024.172666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The net effect of forest disturbances, such as fires and harvesting, on soil greenhouse gas fluxes is determined by their impacts on both biological and physical factors, as well as the temporal dynamics of these effects post-disturbance. Although harvesting and fire may have distinct effects on soil carbon (C) dynamics, the temporal patterns in soil CO2 and CH4 fluxes and the potential differences between types of disturbances, remain poorly characterized in boreal forests. In this study, we measured soil CO2 and CH4 fluxes using a off-axis integrated cavity output spectroscopy system in snow-free seasons over two years in post-harvest and post-fire chronosequence sites within a mixedwood boreal forest in northwestern Ontario, Canada. Soil CO2 efflux showed a post-disturbance peak, with differing dynamics depending on the disturbance type: post-harvest stands exhibited a nearly tenfold increase (from ∼1 to ∼11 μmol CO2.m-2.s-1) from 1 to 9-10 years post-disturbance, followed by a steep decline; post-fire stands showed a more gradual increase, peaking at ∼6-7.2 μmol CO2.m-2.s-1 after ∼12-15 years. The youngest post-harvest stands were net sources of CH4,whereas post-fire stands were never net CH4 sources. In both disturbance types, the strength of the CH4 sink increased with stand age, approaching ∼2.4 nmol.m-2.s-1 by 15 years post-disturbance. Volumetric water content, bulk density, litter depth, and pH were significant predictors of CO2 fluxes; for CH4 fluxes, litter depth, pH, and the interaction of VWC and soil temperature were significant predictors in both disturbance types, with EC also showing a relationship in post-harvest stands. Our findings indicate that while soil CH4 oxidation rapidly recovers following disturbance, both post-harvest and post-fire stands show a multi-decade release of soil CO2 that is too large to be offset by C gains over this period.
Collapse
Affiliation(s)
- Md Abdul Halim
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks Street, M5S 3B3 Toronto, Canada; Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Jillian M H Bieser
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks Street, M5S 3B3 Toronto, Canada
| | - Sean C Thomas
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks Street, M5S 3B3 Toronto, Canada
| |
Collapse
|
2
|
Levasseur PA, Aherne J, Basiliko N, Emilson EJS, Preston MD, Sager EPS, Watmough SA. Soil carbon pools and fluxes following the regreening of a mining and smelting degraded landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166734. [PMID: 37673266 DOI: 10.1016/j.scitotenv.2023.166734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Increasing forest cover by regreening mining and smelting degraded landscapes provides an opportunity for global carbon (C) sequestration, however, the reported effects of regreening on soil C processes are mixed. One of the world's largest regreening programs is in the City of Greater Sudbury, Canada and has been ongoing since 1978. Prior to regreening, soils in the City of Greater Sudbury area were highly eroded, acidic, rich in metals, and poor in nutrients. This study used a chronosequence approach to investigate how forest soil C pools and fluxes have changed with stand age in highly "eroded" sites with minimal soil cover (n = 6) and "stable" sites covered by soil (n = 6). Encouragingly, the relationship between stand age and soil C processes (litterfall, litter decomposition, soil respiration, fine root growth) at both stable and eroded sites were comparable to observations reported for jack pine (Pinus banksiana Lamb.) and red pine (Pinus resinosa Ait.) plantations that have not been subject to over a century of industrial impacts. There was a strong "home-field advantage" for local decomposers, where litter decomposition rates were higher using a site-specific pine litter compared with a common pine litter. Higher soil respiration at eroded sites was linked to higher soil temperature, likely because of a more open tree canopy. Forest floor C pools increased with stand age while mineral soil C and aggregate C concentrations decreased with stand age. This loss of soil C is small relative to the substantial increases in aboveground tree and forest floor C pools, leading to a sizeable increase in total ecosystem C pools following regreening.
Collapse
Affiliation(s)
- Patrick A Levasseur
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Dr., Peterborough, ON K9J 7B8, Canada.
| | - Julian Aherne
- Trent School of the Environment, Trent University, 1600 West Bank Dr., Peterborough, ON K9J 7B8, Canada
| | - Nathan Basiliko
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada
| | - Erik J S Emilson
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. East, Sault Ste. Marie, ON P6A 2E5, Canada
| | - Michael D Preston
- Faculty of Environment, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| | - Eric P S Sager
- Trent School of the Environment, Trent University, 1600 West Bank Dr., Peterborough, ON K9J 7B8, Canada
| | - Shaun A Watmough
- Trent School of the Environment, Trent University, 1600 West Bank Dr., Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
3
|
Jílková V, Adámek M, Angst G, Tůmová M, Devetter M. Post-fire forest floor succession in a Central European temperate forest depends on organic matter input from recovering vegetation rather than on pyrogenic carbon input from fire. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160659. [PMID: 36473654 DOI: 10.1016/j.scitotenv.2022.160659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The predicted global increase in the frequency, severity, and intensity of forest fires includes Central Europe, which is not currently considered as a wildfire hotspot. Because of this, a detailed knowledge of long-term post-fire forest floor succession is essential for understanding the role of wildfires in Central European temperate forests. In this study, we used a space-for-time substitution approach and exploited a unique opportunity to observe successional changes in the physical, chemical, and microbial properties of the forest floor in coniferous forest stands on a chronosequence up to 110 years after fire. In addition, we assessed whether the depletion of organic matter (OM) and input of pyrogenic carbon (pyC) have significant effects on the post-fire forest floor succession. The bulk density (+174 %), pH (+4 %), and dissolved phosphorus content (+500 %) increased, whereas the water holding capacity (-51 %), content of total organic carbon and total nitrogen (-50 %), total phosphorus (-40 %), dissolved organic carbon (-23 %), microbial respiration and biomass (-60 %), and the abundance of fungi (-65 %) and bacteria (-45 %) decreased shortly after the fire event and then gradually decreased or increased, respectively, relative to the pre-disturbance state. The post-fire forest floor succession was largely dependent on changes in the OM content rather than the pyC content, and thus was dependent on vegetation recovery. The time needed to recover to the pre-disturbance state was <110 years for physical and chemical properties and < 45 years for microbial properties. These times closely correspond to previous studies focusing on the recovery of forest floor properties in different climate zones, suggesting that the times needed for forest vegetation and forest floor properties to recover to the pre-disturbance state are similar across climate zones.
Collapse
Affiliation(s)
- Veronika Jílková
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and SoWa RI, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic.
| | - Martin Adámek
- Charles University, Faculty of Science, Department of Botany, Benátská 2, Praha 2 CZ-12801, Czech Republic
| | - Gerrit Angst
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and SoWa RI, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstaße 4, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Michala Tůmová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and SoWa RI, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and SoWa RI, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic
| |
Collapse
|
4
|
Albert-Belda E, Hinojosa MB, Laudicina VA, Moreno JM. Soil biogeochemistry and microbial community dynamics in Pinus pinaster Ait. forests subjected to increased fire frequency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159912. [PMID: 36336047 DOI: 10.1016/j.scitotenv.2022.159912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/29/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Fire frequency might increase in many fire-dominated ecosystems of the world due to the combined effects of global warming, land-use change and increased human pressures. Understanding how changes in fire frequency can affect the main soil biogeochemical dynamics, as well as the microbial community, in the long term is utmost important. Here we determined the effect of changes in fire frequency and other fire history characteristics on soil C and N dynamics and the main microbial groups (using soil fatty acid profiles), in Pinus pinaster forests from central Spain. Stands were chosen to differ in the number of fires (1 to 3) occurred between 1976 and 2018, in the time elapsed since the last fire and the interval undergone between the last two consecutive fires. We found that, in general, most of the studied biogeochemical and microbial variables showed clear differences between unburned and burned stands. The time elapsed since the last fire was the most important fire history covariable and governed the main soil nutrient dynamics and microbial groups. Recovery to pre-fire values took 30-40 years. Increased wildfire frequency only modified total C and nitrification rate, but results were not consistent between stands burned twice and thrice. The time interval (years) between the last two fires was not a significant covariable. The fact that some stands burnt up to thrice in a period of 43 years supports the strong capacity of this ecosystem to recover, even under an increased fire frequency.
Collapse
Affiliation(s)
- Enrique Albert-Belda
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, E-45071 Toledo, Spain.
| | - M Belén Hinojosa
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, E-45071 Toledo, Spain.
| | - Vito Armando Laudicina
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Viale delle Scienze, bulding 4, 90128 Palermo, Italy
| | - José M Moreno
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, E-45071 Toledo, Spain
| |
Collapse
|
5
|
Regeneration in the Understory of Declining Overstory Trees Contributes to Soil Respiration Homeostasis along Succession in a Sub-Mediterranean Beech Forest. FORESTS 2019. [DOI: 10.3390/f10090727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: Tree decline can alter soil carbon cycling, given the close relationship between primary production and the activity of roots and soil microbes. Background and Objectives: We studied how tree decline associated to old age and accelerated by land-use change and increased drought in the last decades, affects soil properties and soil respiration (Rs). Materials and Methods: We measured Rs over two years around centennial European beech (Fagus sylvatica L.) trees representing a gradient of decline in a sub-Mediterranean forest stand, where the number of centennial beech trees has decreased by 54% in the last century. Four replicate plots were established around trees (i) with no apparent crown dieback, (ii) less than 40% crown dieback, (iii) more than 50% crown dieback, and (iv) dead. Results: Temporal variations in Rs were controlled by soil temperature (Ts) and soil water content (SWC). The increase in Rs with Ts depended on SWC. The temperature-normalized Rs exhibited a parabolic relationship with SWC, suggesting a reduced root and microbial respiration associated to drought and waterlogging. The response of Rs to SWC did not vary among tree-decline classes. However, the sensitivity of Rs to Ts was higher around vigorous trees than around those with early symptoms of decline. Spatial variations in Rs were governed by soil carbon to nitrogen ratio, which had a negative effect on Rs, and SWC during summer, when drier plots had lower Rs than wetter plots. These variations were independent of the tree vigor. The basal area of recruits, which was three times (although non-significantly) higher under declining and dead trees than under vigorous trees, had a positive effect on Rs. However, the mean Rs did not change among tree-decline classes. These results indicate that Rs and related soil physico-chemical variables are resilient to the decline and death of dominant centennial trees. Conclusions: The development of advanced regeneration as overstory beech trees decline and die contribute to the Rs homeostasis along forest succession.
Collapse
|
6
|
Parro K, Köster K, Jõgiste K, Seglinš K, Sims A, Stanturf JA, Metslaid M. Impact of post-fire management on soil respiration, carbon and nitrogen content in a managed hemiboreal forest. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:371-377. [PMID: 30590266 DOI: 10.1016/j.jenvman.2018.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Boreal forests are an important carbon (C) sink and fire is the main natural disturbance, directly affecting the C-cycle via emissions from combustion of biomass and organic matter and indirectly through long-term changes in C-dynamics including soil respiration. Carbon dioxide (CO2) emission from soil (soil respiration) is one of the largest fluxes in the global C-cycle. Recovery of vegetation, organic matter and soil respiration may be influenced by the intensity of post-fire management such as salvage logging. To study the impact of forest fire, fire and salvage, and recovery time on soil respiration and soil C and N content, we sampled two permanent research areas in north-western Estonia that were damaged by fire: Vihterpalu (59°13' N 23°49' E) in 1992 and Nõva (59°10' N 23°45' E) in 2008. Three types of sample plots were established: 1) unburned control with no harvesting (CO); 2) burned and uncleared (BU); and 3) burned and cleared (BC). Measurements were made in 2013, 21 years after wildfire in Vihterpalu and 5 years after wildfire in Nõva. Soil respiration ranged from 0.00 to 1.38 g CO2 m-2 h-1. Soil respiration in the burned and cleared areas (BC) was not reduced compared to burned and uncleared (BU) areas but the average soil respiration in unburned control areas was more than twice the value in burned areas (average soil respiration in CO areas was 0.34 CO2 m-2 h-1, versus 0.16 CO2 m-2 h-1, the average soil respiration of BC and BU combined). Recovery over 20 years was mixed; respiration was insignificantly lower on younger than older burned sites (when BC and BU values were combined, the average values were 0.15 vs. 0.17 g CO2 m-2 h-1, respectively); soil-C was greater in the older burned plots than the younger (when BC and BU values were combined, the average values were 9.71 vs. 5.99 kg m-2, respectively); but root biomass in older and recently burned areas was essentially the same (average 2.23 and 2.11 kg m-2, respectively); soil-N was highest on burned areas 20 years after fire. Twenty years post-fire may be insufficient time for carbon dynamics to fully recover on these low productivity sandy sites.
Collapse
Affiliation(s)
- Kristi Parro
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Kajar Köster
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research / Forest Sciences, University of Helsinki, Latokartanonkaari 7, 00014, Helsinki, Finland
| | - Kalev Jõgiste
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Katrin Seglinš
- Luua Forestry School, Luua, Jõgeva Parish, 49203, Jõgeva County, Estonia
| | - Allan Sims
- Environment Agency, Rõõmu tee 2, 50705, Tartu, Estonia
| | - John A Stanturf
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia; Center for Forest Disturbance Science, US Forest Service, 320 Green Street, Athens, GA 30602, USA
| | - Marek Metslaid
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia; Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway.
| |
Collapse
|
7
|
Francos M, Úbeda X, Pereira P, Alcañiz M. Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:664-671. [PMID: 28992493 DOI: 10.1016/j.scitotenv.2017.09.311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Wildfires affect ecosystems depending on the fire regime. Long-term studies are needed to understand the ecological role played by fire, especially as regards its impact on soils. The aim of this study is to monitor the long-term effects (18years) of a wildfire on soil properties in two areas affected by low and high fire severity regimes. The properties studied were total nitrogen (TN), total carbon (TC), C/N ratio, soil organic matter (SOM) and extractable calcium (Ca), magnesium (Mg), sodium (Na) and potassium (K). The study was carried out in three phases: short- (immediately after the wildfire), medium- (seven years after the wildfire) and long-term (18years after the wildfire). The results showed that in both fire regimes TN decreased with time, TC and SOM were significantly lower in the burned plots than they were in the control in the medium- and long-terms. C/N ratio was significantly lower at short-term in low wildfire severity area. Extractable Ca and Mg were significantly higher in control plot than in the burned plots in the medium-term. In the long-term, extractable Ca and Mg were significantly lower in the area exposed to a high severity burning. No differences were identified in the case of extractable Na between plots on any of the sampling dates, while extractable K was significantly higher in the plot exposed to low wildfire than it was in the control. Some restoration measures may be required after the wildfire, especially in areas affected by high severity burning, to avoid the long-term impacts on the essential soil nutrients of TC, SOM, extractable Ca and Mg. This long-term nutrient depletion is attributable to vegetation removal, erosion, leaching and post-fire vegetation consumption. Soils clearly need more time to recover from wildfire disturbance, especially in areas affected by high severity fire regimes.
Collapse
Affiliation(s)
- Marcos Francos
- GRAM (Grup de Recerca Ambiental Mediterrània), Department of Geography, University of Barcelona, Montalegre, 6, 08001 Barcelona, Spain.
| | - Xavier Úbeda
- GRAM (Grup de Recerca Ambiental Mediterrània), Department of Geography, University of Barcelona, Montalegre, 6, 08001 Barcelona, Spain
| | - Paulo Pereira
- Environmental Management Centre, Mykolas Romeris University, Vilnius, Lithuania
| | - Meritxell Alcañiz
- GRAM (Grup de Recerca Ambiental Mediterrània), Department of Geography, University of Barcelona, Montalegre, 6, 08001 Barcelona, Spain
| |
Collapse
|
8
|
Larjavaara M, Berninger F, Palviainen M, Prokushkin A, Wallenius T. Post-fire carbon and nitrogen accumulation and succession in Central Siberia. Sci Rep 2017; 7:12776. [PMID: 28986589 PMCID: PMC5630608 DOI: 10.1038/s41598-017-13039-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/15/2017] [Indexed: 11/09/2022] Open
Abstract
Improved understanding of carbon (C) accumulation after a boreal fire enables more accurate quantification of the C implications caused by potential fire regime shifts. We coupled results from a fire history study with biomass and soil sampling in a remote and little-studied region that represents a vast area of boreal taiga. We used an inventory approach based on predefined plot locations, thus avoiding problems potentially causing bias related to the standard chronosequence approach. The disadvantage of our inventory approach is that more plots are needed to expose trends. Because of this we could not expose clear trends, despite laborious sampling. We found some support for increasing C and nitrogen (N) stored in living trees and dead wood with increasing time since the previous fire or time since the previous stand-replacing fire. Surprisingly, we did not gain support for the well-established paradigm on successional patterns, beginning with angiosperms and leading, if fires are absent, to dominance of Picea. Despite the lack of clear trends in our data, we encourage fire historians and ecosystem scientists to join forces and use even larger data sets to study C accumulation since fire in the complex Eurasian boreal landscapes.
Collapse
Affiliation(s)
- Markku Larjavaara
- VITRI, Viikki Tropical Resources Institute, Department of Forest Sciences, PO Box 27, 00014 University of Helsinki, Helsinki, Finland.
| | - Frank Berninger
- Department of Silviculture and Biotechnology, Zhejiang A&F University, Lin'an, Zhejiang, China.,Department of Forest Sciences, PO Box 27, 00014 University of Helsinki, Helsinki, Finland
| | - Marjo Palviainen
- Department of Forest Sciences, PO Box 27, 00014 University of Helsinki, Helsinki, Finland
| | - Anatoly Prokushkin
- V.N. Sukachev Institute of Forest SB RAS, Akademgorodok 50/28, Krasnoyarsk, 660036, Russia
| | - Tuomo Wallenius
- Department of Forest Sciences, PO Box 27, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Palviainen M, Pumpanen J, Berninger F, Ritala K, Duan B, Heinonsalo J, Sun H, Köster E, Köster K. Nitrogen balance along a northern boreal forest fire chronosequence. PLoS One 2017; 12:e0174720. [PMID: 28358884 PMCID: PMC5373610 DOI: 10.1371/journal.pone.0174720] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/14/2017] [Indexed: 12/02/2022] Open
Abstract
Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests.
Collapse
Affiliation(s)
- Marjo Palviainen
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Frank Berninger
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Kaisa Ritala
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Baoli Duan
- Institute of Mountain Hazards and Environment, Chengdu, China
| | - Jussi Heinonsalo
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hui Sun
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Egle Köster
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Kajar Köster
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Kurth VJ, Hart SC, Ross CS, Kaye JP, Fulé PZ. Stand-replacing wildfires increase nitrification for decades in southwestern ponderosa pine forests. Oecologia 2014; 175:395-407. [PMID: 24549939 DOI: 10.1007/s00442-014-2906-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
Stand-replacing wildfires are a novel disturbance within ponderosa pine (Pinus ponderosa) forests of the southwestern United States, and they can convert forests to grasslands or shrublands for decades. While most research shows that soil inorganic N pools and fluxes return to pre-fire levels within a few years, we wondered if vegetation conversion (ponderosa pine to bunchgrass) following stand-replacing fires might be accompanied by a long-term shift in N cycling processes. Using a 34-year stand-replacing wildfire chronosequence with paired, adjacent unburned patches, we examined the long-term dynamics of net and gross nitrogen (N) transformations. We hypothesized that N availability in burned patches would become more similar to those in unburned patches over time after fire as these areas become re-vegetated. Burned patches had higher net and gross nitrification rates than unburned patches (P < 0.01 for both), and nitrification accounted for a greater proportion of N mineralization in burned patches for both net (P < 0.01) and gross (P < 0.04) N transformation measurements. However, trends with time-after-fire were not observed for any other variables. Our findings contrast with previous work, which suggested that high nitrification rates are a short-term response to disturbance. Furthermore, high nitrification rates at our site were not simply correlated with the presence of herbaceous vegetation. Instead, we suggest that stand-replacing wildfire triggers a shift in N cycling that is maintained for at least three decades by various factors, including a shift from a woody to an herbaceous ecosystem and the presence of fire-deposited charcoal.
Collapse
Affiliation(s)
- Valerie J Kurth
- School of Forestry, Northern Arizona University, Flagstaff, AZ, 86011-5018, USA,
| | | | | | | | | |
Collapse
|
11
|
Wang W, Zeng W, Chen W, Yang Y, Zeng H. Effects of forest age on soil autotrophic and heterotrophic respiration differ between evergreen and deciduous forests. PLoS One 2013; 8:e80937. [PMID: 24282560 PMCID: PMC3839927 DOI: 10.1371/journal.pone.0080937] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/07/2013] [Indexed: 11/18/2022] Open
Abstract
We examined the effects of forest stand age on soil respiration (SR) including the heterotrophic respiration (HR) and autotrophic respiration (AR) of two forest types. We measured soil respiration and partitioned the HR and AR components across three age classes ~15, ~25, and ~35-year-old Pinus sylvestris var. mongolica (Mongolia pine) and Larix principis-rupprechtii (larch) in a forest-steppe ecotone, northern China (June 2006 to October 2009). We analyzed the relationship between seasonal dynamics of SR, HR, AR and soil temperature (ST), soil water content (SWC) and normalized difference vegetation index (NDVI, a plant greenness and net primary productivity indicator). Our results showed that ST and SWC were driving factors for the seasonal dynamics of SR rather than plant greenness, irrespective of stand age and forest type. For ~15-year-old stands, the seasonal dynamics of both AR and HR were dependent on ST. Higher Q10 of HR compared with AR occurred in larch. However, in Mongolia pine a similar Q10 occurred between HR and AR. With stand age, Q10 of both HR and AR increased in larch. For Mongolia pine, Q10 of HR increased with stand age, but AR showed no significant relationship with ST. As stand age increased, HR was correlated with SWC in Mongolia pine, but for larch AR correlated with SWC. The dependence of AR on NDVI occurred in ~35-year-old Mongolia pine. Our study demonstrated the importance of separating autotrophic and heterotrophic respiration components of SR when stimulating the response of soil carbon efflux to environmental changes. When estimating the response of autotrophic and heterotrophic respiration to environmental changes, the effect of forest type on age-related trends is required.
Collapse
Affiliation(s)
- Wei Wang
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- * E-mail:
| | - Wenjing Zeng
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Weile Chen
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Yuanhe Yang
- Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Hui Zeng
- Shenzhen Graduate School, Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University, Shenzhen, China
| |
Collapse
|
12
|
Fire Effects on Soils in Lake States Forests: A Compilation of Published Research to Facilitate Long-Term Investigations. FORESTS 2012. [DOI: 10.3390/f3041034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
LeDuc SD, Lilleskov EA, Horton TR, Rothstein DE. Ectomycorrhizal fungal succession coincides with shifts in organic nitrogen availability and canopy closure in post-wildfire jack pine forests. Oecologia 2012; 172:257-69. [PMID: 23053232 DOI: 10.1007/s00442-012-2471-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
Successional changes in belowground ectomycorrhizal fungal (EMF) communities have been observed with increasing forest stand age; however, mechanisms behind this change remain unclear. It has been hypothesized that declines of inorganic nitrogen (N) and increases of organic N influence changes in EMF taxa over forest development. In a post-wildfire chronosequence of six jack pine (Pinus banksiana) stands ranging in age from 5 to 56 years, we investigated EMF community composition and compared shifts in taxa with detailed soluble inorganic and organic N data. Taxa were identified by internal transcribed spacer rDNA sequencing, and changes in community composition evaluated with non-metric multi-dimensional scaling (NMDS). Dissimilarities in the community data were tested for correlations with N variables. We observed a successional shift along NMDS axis 1 from such taxa as Suillus brevipes and Thelephora terrestris in sites age 5 and 11 to species of Cortinarius and Russula, among others, in the four older sites. This change was positively correlated with soluble organic N (SON) (r(2) = 0.902, P = 0.033) and free amino-acid N (r(2) = 0.945, P = 0.021), but not inorganic N. Overall, our results show a successional shift of EMF communities occurring between stand initiation and canopy closure without a change in species of the dominant plant-host, and associated with SON and free amino-acid N in soil. It is uncertain whether EMF taxa are responding to these organic N forms directly, affecting their availability, or are ultimately responding to changes in other site variables, such as belowground productivity.
Collapse
Affiliation(s)
- Stephen D LeDuc
- Department of Forestry and the Ecology, Evolutionary Biology and Behavior Program, Michigan State University, 126 Natural Resources, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
14
|
Variation in Aboveground Cover Influences Soil Nitrogen Availability at Fine Spatial Scales Following Severe Fire in Subalpine Conifer Forests. Ecosystems 2011. [DOI: 10.1007/s10021-011-9465-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Abstract
Disturbance regimes are changing rapidly, and the consequences of such changes for ecosystems and linked social-ecological systems will be profound. This paper synthesizes current understanding of disturbance with an emphasis on fundamental contributions to contemporary landscape and ecosystem ecology, then identifies future research priorities. Studies of disturbance led to insights about heterogeneity, scale, and thresholds in space and time and catalyzed new paradigms in ecology. Because they create vegetation patterns, disturbances also establish spatial patterns of many ecosystem processes on the landscape. Drivers of global change will produce new spatial patterns, altered disturbance regimes, novel trajectories of change, and surprises. Future disturbances will continue to provide valuable opportunities for studying pattern-process interactions. Changing disturbance regimes will produce acute changes in ecosystems and ecosystem services over the short (years to decades) and long-term (centuries and beyond). Future research should address questions related to (1) disturbances as catalysts of rapid ecological change, (2) interactions among disturbances, (3) relationships between disturbance and society, especially the intersection of land use and disturbance, and (4) feedbacks from disturbance to other global drivers. Ecologists should make a renewed and concerted effort to understand and anticipate the causes and consequences of changing disturbance regimes.
Collapse
Affiliation(s)
- Monica G Turner
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
16
|
|
17
|
Kaye JP, Romanyà J, Vallejo VR. Plant and soil carbon accumulation following fire in Mediterranean woodlands in Spain. Oecologia 2010; 164:533-43. [DOI: 10.1007/s00442-010-1659-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
|
18
|
LeDuc SD, Rothstein DE. Plant-available organic and mineral nitrogen shift in dominance with forest stand age. Ecology 2010; 91:708-20. [DOI: 10.1890/09-0140.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Smithwick EAH, Kashian DM, Ryan MG, Turner MG. Long-Term Nitrogen Storage and Soil Nitrogen Availability in Post-Fire Lodgepole Pine Ecosystems. Ecosystems 2009. [DOI: 10.1007/s10021-009-9257-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Qian Y, Miao SL, Gu B, Li YC. Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades. JOURNAL OF ENVIRONMENTAL QUALITY 2009; 38:451-464. [PMID: 19202015 DOI: 10.2134/jeq2008.0126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant ash derived from fire plays an important role in nutrient balance and cycling in ecosystems. Factors that determine the composition and availability of ash nutrients include fire intensity (burn temperature and duration), plant species, habitat nutrient enrichment, and leaf type (live or dead leaf). We used laboratory simulation methods to evaluate temperature effects on nutrient composition and metals in the residual ash of sawgrass (Cladium jamaicense) and cattail (Typha domingensis), particularly on post-fire phosphorus (P) availability in plant ash. Live and dead leaf samples were collected from Water Conservation Area 2A in the northern Everglades along a soil P gradient, where prescribed fire may be used to accelerate recovery of this unique ecosystem. Significant decreases in total carbon and total nitrogen were detected with increasing fire temperature. Organic matter combustion was nearly complete at temperatures > or = 450 degrees C. HCl-extractable P (average, 50% of total P in the ash) and NH(4)Cl-extractable P (average, 33% of total P in the ash) were the predominant P fractions for laboratory-burned ash. Although a low-intensity fire could induce an elevation of P availability, an intense fire generally resulted in decreased water-soluble P. Significant differences in nutrient compositions were observed between species, habitat nutrient status, and leaf types. More labile inorganic P remained in sawgrass ash than in cattail ash; hence, sawgrass ash has a greater potential to release available P than cattail. Fire intensity affected plant ash nutrient composition, particularly P availability, and the effects varied with plant species and leaf type. Therefore, it is important to consider fire intensity and vegetation community when using a prescribed fire for ecosystem management.
Collapse
Affiliation(s)
- Y Qian
- Tropical Research & Education Center, Soil and Water Science Dep., IFAS, Univ. of Florida, 18905 SW 280th St., Homestead, FL 33031, USA
| | | | | | | |
Collapse
|
21
|
|
22
|
Turner MG, Smithwick EAH, Metzger KL, Tinker DB, Romme WH. Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem. Proc Natl Acad Sci U S A 2007; 104:4782-9. [PMID: 17360349 PMCID: PMC1829215 DOI: 10.1073/pnas.0700180104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Indexed: 11/18/2022] Open
Abstract
Understanding ecosystem processes as they relate to wildfire and vegetation dynamics is of growing importance as fire frequency and extent increase throughout the western United States. However, the effects of severe, stand-replacing wildfires are poorly understood. We studied inorganic nitrogen pools and mineralization rates after stand-replacing wildfires in the Greater Yellowstone Ecosystem, Wyoming. After fires that burned in summer 2000, soil ammonium concentration peaked in 2001 (33 mg NH(4)-N x kg(soil)(-1)); soil nitrate increased subsequently (2.7 mg NO(3)-N.kg(soil)(-1) in 2003) but was still low. However, annual net ammonification rates were largely negative from 2001 to 2004, indicating ammonium depletion. Thus, although net nitrification rates were positive, annual net nitrogen mineralization (net ammonification plus net nitrification) remained low. Aboveground net primary production (ANPP) increased from 0.25 to 1.6 Mg x ha(-1) x yr(-1) from 2001 to 2004, but variation in ANPP among stands was not related to net nitrogen mineralization rates. Across a broader temporal gradient (stand age zero to >250 yr), negative rates of net annual ammonification were especially pronounced in the first postfire year. Laboratory incubations using (15)N isotope pool dilution revealed that gross production of ammonium was reduced and ammonium consumption greatly exceeded gross production during the initial postfire years. Our results suggest a microbial nitrogen sink for several years after severe, stand-replacing fire, confirming earlier hypotheses about postdisturbance succession and nutrient cycling in cold, fire-dominated coniferous forests. Postfire forests in Yellowstone seem to be highly conservative for nitrogen, and microbial immobilization of ammonium plays a key role during early succession.
Collapse
Affiliation(s)
- Monica G Turner
- Department of Zoology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|