1
|
Mohammadi Dargah M, Pedram P, Cabrera-Barjas G, Delattre C, Nesic A, Santagata G, Cerruti P, Moeini A. Biomimetic synthesis of nanoparticles: A comprehensive review on green synthesis of nanoparticles with a focus on Prosopis farcta plant extracts and biomedical applications. Adv Colloid Interface Sci 2024; 332:103277. [PMID: 39173272 DOI: 10.1016/j.cis.2024.103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
The synthesis of nanoparticles (NPs) using environmentally friendly methods has garnered significant attention in response to concerns about the environmental impact of various nanomaterial manufacturing techniques. To address this issue, natural resources like extracts from plants, fungi, and bacteria are employed as a green alternative for nanoparticle synthesis. Plant extracts, which contain active components such as terpenoids, alkaloids, phenols, tannins, and vitamins, operate as coating and reducing agents. Bacteria and fungi, on the other hand, rely on internal enzymes, sugar molecules, membrane proteins, nicotinamide adenine dinucleotide (NADH), and nicotinamide adenine dinucleotide phosphate (NADPH) dependent enzymes to play critical roles as reducing agents. This review collects recent advancements in biomimetic methods for nanoparticle synthesis, critically discussing the preparation approaches, the type of particles obtained, and their envisaged applications. A specific focus is given on using Prosopis fractal plant extracts to synthesize nanoparticles tailored for biomedical applications. The applications of this plant and its role in the biomimetic manufacturing of nanoparticles have not been reported yet, making this review a pioneering and valuable contribution to the field.
Collapse
Affiliation(s)
- Maryam Mohammadi Dargah
- Department of Pharmaceutical Chemistry, Faculty of Medicinal Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parisa Pedram
- Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastian, Campus Las Tres Pascualas, Lientur 1457, 4080871 Concepción, Chile
| | - Cedric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - Aleksandra Nesic
- University of Belgrade, Vinca Institute for Nuclear Sciences, National Institute of Republic of Serbia, Mike Petrovica Alasa 12-14, Belgrade 11000, Serbia
| | - Gabriella Santagata
- Institute of Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Pierfrancesco Cerruti
- Institute of Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Arash Moeini
- Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
2
|
Yang L, Zhang L, Zhang Q, Wei J, Zhao X, Zheng Z, Chen B, Xu Z. Nanopriming boost seed vigor: Deeper insights into the effect mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108895. [PMID: 38976940 DOI: 10.1016/j.plaphy.2024.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Nanopriming, an advanced seed priming technology, is highly praised for its environmental friendliness, safety, and effectiveness in promoting sustainable agriculture. Studies have shown that nanopriming can enhance seed germination by stimulating the expression of aquaporins and increasing amylase production. By applying an appropriate concentration of nanoparticles, seeds can generate reactive oxygen species (ROS), enhance their antioxidant capacity, improve their response to oxidative stress, and enhance their tolerance to both biotic and abiotic stresses. This positive impact extends beyond the seed germination and seedling growth stages, persisting throughout the entire life cycle. This review offers a comprehensive overview of recent research progress in seed priming using various nanoparticles, while also addressing current challenges and future opportunities for sustainable agriculture.
Collapse
Affiliation(s)
- Le Yang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Laitong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jinpeng Wei
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xueming Zhao
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zian Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Bingxian Chen
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zhenjiang Xu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
3
|
Azeem M, Siddique MH, Imran M, Zubair M, Mumtaz R, Younas M, Abdel-Maksoud MA, El-Tayeb MA, Rizwan M, Yong JWH. Assessing anticancer, antidiabetic, and antioxidant capacities in green-synthesized zinc oxide nanoparticles and solvent-based plant extracts. Heliyon 2024; 10:e34073. [PMID: 39092244 PMCID: PMC11292250 DOI: 10.1016/j.heliyon.2024.e34073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer and diabetes represent significant challenges in the field of biomedicine, with major and global impacts on public health. Acacia nilotica, commonly called 'gum arabic tree,' is recognized for its unique biomedical properties. The current study aimed to investigate the pharmacological potential of A. nilotica-based zinc-oxide nanoparticles (ZnO-NPs) in comparison to the ethanol and methanol-based extracts against cancer, diabetes, and oxidative stress. Green synthesis of ZnO-NPs was performed using barks of Acacia nilotica. Different techniques for the characterization of ZnO-NPs, including UV-Visible spectroscopy, Scanning Electron Microscopy, Fourier Transmission Infrared (FT-IR) spectroscopy, and X-ray Diffraction (XRD), were utilized. The morphological analysis of ZnO-NPs revealed that the fine NPs have mean particle sizes of 15 ± 1.5 nm. For the solvent based-extraction, leaves and barks were utilized and dissolved into ethanol and methanol for further processing. The MTT assay revealed that the optimum concentration of ZnO-NPs to inhibit the proliferation of liver cancer cell line HepG2 was 100 μg/mL where 67.0 % inhibition was observed; and both ethanol- and methanol-based extracts showed optimum inhibition at 100 μg/mL. The DPPH assay further demonstrated that 250 μg/mL of ZnO-NPs and 1000 μg/mL of both ethanol- and methanol-based extracts, as the optimum concentration for antioxidant activity (with 73.1 %, 68.9 % and 68.2 % inhibition respectively). The α-Glucosidase inhibition assay revealed that 250 μg/mL of ZnO-NPs and 10 μg/mL of both ethanol- and methanol-based extracts as the optimum concentration for antidiabetic activity (with 95 %, 93.7 % and 93.4 % inhibition respectively). The study provided interesting insights into the efficacy and reliability of ZnO-NPs for potential pharmacological application. Further research should be focused on examining specific pathways and the safety of ZnO-NPs in comparison to solvent-based extracts.
Collapse
Affiliation(s)
- Muhammad Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Hussnain Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 – 233, Gdansk, Poland
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rabia Mumtaz
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Madiha Younas
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | | | - Mohamed A. El-Tayeb
- Botany and Microbiology Department, College of Science, King Saud University, Saudi Arabia
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| |
Collapse
|
4
|
Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, Ramniwas S, Singh S, Negi R, Sharma B, Devi T, Kumari C, Kour H, Kaur M, Rai AK, Singh S, Rasool S, Yadav AN. Microbial Nanotechnology for Precision Nanobiosynthesis: Innovations, Current Opportunities and Future Perspectives for Industrial Sustainability. Curr Microbiol 2024; 81:251. [PMID: 38954017 DOI: 10.1007/s00284-024-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
Collapse
Affiliation(s)
- Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Anjali Sharma
- Department of Biotechnology and Genetics, Jain University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpa Kumari
- Department of Physics, Rayat Bahra University, Mohali, 140105, Punjab, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Shaveta Singh
- Dolphin PG College of Life Sciences, Chunni Kalan, Fatehgarh Sahib, Punjab, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tishu Devi
- Government College for Women, Parade, Jammu, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol, Solan, 173229, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, Solan, 174103, Himachal Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Shafaq Rasool
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
5
|
Amir M, Raheem A, Yadav P, Kumar V, Tewari RK, Jalil SU, Danish M, Ansari MI. Phytofabricated gold nanoparticles as modulators of salt stress responses in spinach: implications for redox homeostasis, biochemical and physiological adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1408642. [PMID: 38957605 PMCID: PMC11217327 DOI: 10.3389/fpls.2024.1408642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Introduction The utilization of plant material for synthesizing nanoparticles effectively triggers physiological and biochemical responses in plants to combat abiotic stresses. Salt stress, particularly caused by NaCl, significantly affects plant morphology and physiology, leading to reduced crop yields. Understanding the mechanisms of salt tolerance is crucial for maintaining crop productivity. Methods In this study, we examined the effects of 150 μM spinach-assisted gold nanoparticles (S-AuNPs) on various parameters related to seed germination, growth attributes, photosynthetic pigments, stomatal traits, ion concentrations, stress markers, antioxidants, metabolites, and nutritional contents of spinach plants irrigated with 50 mM NaCl. Results Results showed that S-AuNPs enhanced chlorophyll levels, leading to improved light absorption, increased photosynthates production, higher sugar content, and stimulated plant growth under NaCl stress. Stomatal traits were improved, and partially closed stomata were reopened with S-AuNPs treatment, possibly due to K+/Na+ modulation, resulting in enhanced relative water content and stomatal conductance. ABA content decreased under S-AuNPs application, possibly due to K+ ion accumulation. S-AuNPs supplementation increased proline and flavonoid contents while reducing ROS accumulation and lipid peroxidation via activation of both non-enzymatic and enzymatic antioxidants. S-AuNPs also regulated the ionic ratio of K+/Na+, leading to decreased Na+ accumulation and increased levels of essential ions in spinach plants under NaCl irrigation. Discussion Overall, these findings suggest that S-AuNPs significantly contribute to salt stress endurance in spinach plants by modulating various physiological attributes.
Collapse
Affiliation(s)
- Mohammad Amir
- Department of Botany, University of Lucknow, Lucknow, India
| | - Abdul Raheem
- Department of Botany, University of Lucknow, Lucknow, India
| | | | - Vijay Kumar
- Department of Botany, University of Lucknow, Lucknow, India
| | | | - Syed Uzma Jalil
- Amity Institutes of Biotechnology, Amity University, Lucknow, India
| | - Mohammad Danish
- Botany section, Maulana Azad National Urdu University, Hydrabad, India
| | | |
Collapse
|
6
|
Nushiba Naser PT, Thoppil JE. Biochemical Screening, Fabrication of Green Nanoparticles and Its Antimicrobial, and Antioxidant Studies of Endophytic Fungus Phlebia Species. Indian J Microbiol 2023; 63:447-460. [PMID: 38031598 PMCID: PMC10682321 DOI: 10.1007/s12088-023-01094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/13/2023] [Indexed: 12/01/2023] Open
Abstract
Endophytes are organism dwelling totally dynamic and novel biotopes this makes them able to produce novel biochemicals that may become assets to the future. This study aims at understanding the biochemical components of the endophytic fungus Phlebia sp. synthesis of gold and silver nanoparticles from it, and the antimicrobial as well as antioxidant ability of these green synthesised nanoparticles. Aqueous fungal extract was subjected for HRLCMS analysis which revealed 34 biochemicals within the extract. Silver and gold nanoparticles were also produced from the fungal extract. UV-vis analysis revealed a peak at 450 nm for silver nanoparticle and 550 nm for gold nanoparticles. FESEM analysis confirmed the presence of these nanoparticles with its spherical shape. Both of these nanoparticles were able to produce a conspicuous zone of inhibition in the antimicrobial tests against Escherichia coli, Salmonella paratyphi. For both of the organisms under study, a concentration-dependent expansion of the zone of inhibition was discovered in the nanoparticles. However, with silver nanoparticles, a relatively high zone of inhibition and vulnerability of the organism was discovered. Four in vitro free radical scavenging assays, including the DPPH, Hydroxyl, Superoxide, and Nitric oxide radical scavenging assays, were used for antioxidant analysis. The results of every test demonstrated that green synthesised silver nanoparticles had higher activity than gold nanoparticles. All of the tests showed that silver nanoparticles were more active than gold nanoparticles with the maximum value of 86.254 ± 0.296% being discovered at the greatest concentration of superoxide radical scavenging assay.
Collapse
Affiliation(s)
| | - John E. Thoppil
- Department of Botany, University of Calicut, Thenhipalam, Kerala India
| |
Collapse
|
7
|
Shah ZM, Naz R, Naz S, Zahoor S, Nosheen A, Shahid M, Anwar Z, Keyani R. Incorporation of zinc sulfide nanoparticles, Acinetobacter pittii and Bacillus velezensis to improve tomato plant growth, biochemical attributes and resistance against Rhizoctoniasolani. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107909. [PMID: 37632995 DOI: 10.1016/j.plaphy.2023.107909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/05/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023]
Abstract
Green nanobiotechnology and beneficial bacterial strains as biofertilizers are crucial in agriculture to achieve food security. Both these strategies have been individually studied in improving plant resistance against phytopathogens along with enhancing plant productivity. Therefore, objective of this study was to explore the eco-friendly and cost-effective approach of utilizing plant growth promoting and disease suppressing bacterial strains and nanoparticles, individually as well as in combination, as bio-stimulants to improve plant growth, antioxidant defense system, nutrition and yield of tomato. A pot experiment was conducted to investigate the zinc sulfide nanoparticles (ZnS NPs) synthesized by using Jacaranda mimosifolia flower extracts (JFE), Acinetobacter pittii and Bacillus velezensis either individually or in combinations to check their potential against Rhizoctonia solani in tomato to suppress root rot infection and improve growth and yield. Among all the combinations the JFE-ZnS NPs + B. velezensis compared to untreated infected plants showed minimum disease incidence and maximum significant protection (66%) against R. solani instigated root rot that was followed by JFE-ZnS NPs + A. pittii and individual application of JFE-ZnS NPs by 58%. The same treatment showed maximum significant increase in plant fresh and dry biomass. B. velezensis significantly increased the photosynthetic pigments when applied individually. However, JFE-ZnS NPs alone and in mixed treatments with B. velezensis efficiently improved total soluble protein, sugar and phenolic contents. The same interactive application of JFE-ZnS NPs + B. velezensis improved the tomato plant nutrition (silicon (Si), magnesium (Mg), calcium (Ca) and potassium (K)) and redox quenching status by improving the activity of antioxidant defense enzymes. Overall, the interactive use of JFE-ZnS NPs with A. pittii and B. velezensis very appropriately prepared the host plant to fight against the negative effects of root rot pathogen in tomato. Advancements in interactively investigating the nanoparticles with beneficial plant growth promoting bacterial strains importantly can contribute in resolving the challenges of food security. According to our information, this is a pioneer report for implying JFE-ZnS NPs in synergism with A. pittii and B. velezensis to hinder the root rot in tomatoes.
Collapse
Affiliation(s)
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad, Pakistan.
| | - Sidra Naz
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Sidra Zahoor
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Zahid Anwar
- Department of Computer Science, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| |
Collapse
|
8
|
Nushiba Naser PT, Thoppil JE. Synthesis, Characterisation, and Antimicrobial Efficacy of Gold and Silver Nanoparticles from Fruit Extracts of Ficus drupacea Thunb. var. pubescens. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
9
|
In Vitro Antibacterial and Wound Healing Activities Evoked by Silver Nanoparticles Synthesized through Probiotic Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12010141. [PMID: 36671342 PMCID: PMC9854575 DOI: 10.3390/antibiotics12010141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The prospective application of probiotics is an adjuvant for the advancement of novel antimicrobial and wound-healing agents. Currently, probiotic bacteria are utilized for the biosynthesis of nanoparticles in the development of innovative therapeutics. The present study aimed at using nanoparticle-conjugated probiotic bacteria for enhanced antibacterial and wound-healing activity. In the present investigation, the probiotic bacteria were isolated from a dairy source (milk from domestic herbivores). They screened for antibacterial activity against infection-causing Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Bacillus subtilis and Staphylococcus aureus) pathogens. Further, the probiotic strain with higher bactericidal activity was used to synthesize silver, selenium, and copper nanoparticles. The isolated strain was found to be Lactiplantibacillus plantarum and it only has the ability to synthesize silver nanoparticles. This was verified using Ultra violet-Visible (UV-Vis) spectroscopy, where the test solution turned brown and the greatest UV-Vis absorptions peaked at 425 nm. Optimization studies on the synthesis of AgNPs (silver nanoparticles) are presented and the results show that stable synthesis was obtained by using a concentration of 1mM silver nitrate (AgNO3) at a temperature of 37 °C with pH 8. The FTIR (Fourier transform infrared spectroscopy) study confirmed the involvement of functional groups from the cell biomass that were involved in the reduction process. Additionally, biosynthesized AgNPs showed increased antioxidant and antibacterial activities. The nano silver had a size distribution of 14 nm and was recorded with HR-TEM (high-resolution transmission electron microscopy) examination. The EDX (energy dispersive X-ray) analysis revealed 57% of silver groups found in the nanoparticle production. The biosynthesized AgNPs show significant wound-healing capabilities with 96% of wound closure (fibroblast cells) being observed through an in vitro scratch-wound assay. The cytotoxic experiments demonstrated that the biosynthesized AgNPs are not extremely hazardous to the fibroblast cells. The present study provides a new platform for the green synthesis of AgNPs using probiotic bacteria, showing significant antibacterial and wound-healing potentials against infectious pathogens.
Collapse
|
10
|
Alavi N, Maghami P, Pakdel AF, Rezaei M, Avan A. Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment. Curr Pharm Des 2023; 29:3103-3122. [PMID: 37990429 DOI: 10.2174/0113816128265544231102065515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/03/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) is an innovative, non-invasive method of treating cancer that uses light-activated photosensitizers to create reactive oxygen species (ROS). However, challenges associated with the limited penetration depth of light and the need for precise control over photosensitizer activation have hindered its clinical translation. Nanomedicine, particularly gold nanobiostructures, offers promising solutions to overcome these limitations. This paper reviews the advancements in PDT and nanomedicine, focusing on applying antibody-modified gold nanobiostructures as multifunctional platforms for enhanced PDT efficacy and improved cancer treatment outcomes. The size, shape, and composition of gold nanobiostructures can significantly influence their PDT efficacy, making synthetic procedures crucial. Functionalizing the surface of gold nanobiostructures with various molecules, such as antibodies or targeting agents, bonding agents, PDT agents, photothermal therapy (PTT) agents, chemo-agents, immunotherapy agents, and imaging agents, allows composition modification. Integrating gold nanobiostructures with PDT holds immense potential for targeted cancer therapy. Antibody-modified gold nanobiostructures, in particular, have gained significant attention due to their tunable plasmonic characteristics, biocompatibility, and surface functionalization capabilities. These multifunctional nanosystems possess unique properties that enhance the efficacy of PDT, including improved light absorption, targeted delivery, and enhanced ROS generation. Passive and active targeting of gold nanobiostructures can enhance their localization near cancer cells, leading to efficient eradication of tumor tissues upon light irradiation. Future research and clinical studies will continue to explore the potential of gold nanobiostructures in PDT for personalized and effective cancer therapy. The synthesis, functionalization, and characterization of gold nanobiostructures, their interaction with light, and their impact on photosensitizers' photophysical and photochemical properties, are important areas of investigation. Strategies to enhance targeting efficiency and the evaluation of gold nanobiostructures in vitro and in vivo studies will further advance their application in PDT. The integrating antibody-modified gold nanobiostructures in PDT represents a promising strategy for targeted cancer therapy. These multifunctional nanosystems possess unique properties that enhance PDT efficacy, including improved light absorption, targeted delivery, and enhanced ROS generation. Continued research and development in this field will contribute to the advancement of personalized and effective cancer treatment approaches.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
11
|
Tabasum H, Bhat BA, Sheikh BA, Mehta VN, Rohit JV. Emerging perspectives of plant-derived nanoparticles as effective antimicrobial agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Al-Gheethi A, Sundram N, Crane R, Alburihi A, Mohamed RMSR, Al-Shaibani MM, Noman EA, Ponnusamy SK, Kamil NAFM. Metronidazole photocatalytic degradation by zinc oxide nanoparticles synthesized in watermelon peel extract; Advanced optimization, simulation and numerical models using machine learning applications. ENVIRONMENTAL RESEARCH 2022; 212:113537. [PMID: 35671799 DOI: 10.1016/j.envres.2022.113537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics in water systems and wastewater are among the greatest major public health problem and it is global environmental issues. Herein a novel approach for the photocatalytic degradation of metronidazole (MTZ) by using eco-green zinc oxide nanoparticles (EG-ZnO NPs) which biosynthesised using watermelon peels extracts has been investigated. Mathematical prediction models using an adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANN) and response surface methodology (RSM) were used to determine the optimal conditions for the degradation process. The FESEM analysis revealed that EG-ZnO NPs was white with a spherical shape and size between 40 and 88 nm. The simulation process for the mathematical prediction model revealed that the best validation performance was 55.35 recorded at epoch 2, the coefficient (R2) was 0.9967 for training data, as detected using ANN analysis. The best operating parameters for MTZ degradation was predicted using RSM to be: 170 mg L-1 of EG-ZnO NPs, 20.61 mg 100 mL-1 of MTZ, 10 min exposure time, and a pH of 5, with 77.48 vs 78.14% corresponding to the predicted and empirically measured respectively. The photocatalytic degradation of MTZ was fitted with pseudo-first-order kinetic (R2 > 0.90). MTZ lost the antimicrobial activity against Bacillus cereus (B. cereus) and Escherichia coli (E. coli) after degradation with EG-ZnO NPs at the optimal conditions as determined in the optimization process. These findings reflect the important role ANFIS and ANN in predicting and optimising the efficacy of engineered nanomaterials, including EG-ZnO NPs, for antibiotic degradation.
Collapse
Affiliation(s)
- Adel Al-Gheethi
- Department of Civil Engineering, Faculty of Civil Engineering and Build Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - Narmatha Sundram
- Department of Civil Engineering, Faculty of Civil Engineering and Build Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Rich Crane
- Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Abdullah Alburihi
- Department of Civil Engineering, Faculty of Civil Engineering and Build Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Radin Maya Saphira Radin Mohamed
- Department of Civil Engineering, Faculty of Civil Engineering and Build Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Muhanna Mohammed Al-Shaibani
- Department of Civil Engineering, Faculty of Civil Engineering and Build Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Efaq Ali Noman
- Department of Civil Engineering, Faculty of Civil Engineering and Build Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Department of Applied Microbiology, Faculty of Applied Sciences, Taiz University, Taiz, Yemen.
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Nor Amani Filzah Mohd Kamil
- Department of Civil Engineering, Faculty of Civil Engineering and Build Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia; Micropollutant Research Centre (MPRC), Institute of Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
13
|
Sastri KT, Gupta NV, M S, Chakraborty S, Kumar H, Chand P, Balamuralidhara V, Gowda D. Nanocarrier facilitated drug delivery to the brain through intranasal route: A promising approach to transcend bio-obstacles and alleviate neurodegenerative conditions. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Dalavi PA, V. AJ, Thomas S, Prabhu A, Anil S, Seong GH, Venkatesan J. Microwave-Assisted Biosynthesized Gold Nanoparticles Using Saussurea obvallata: Biocompatibility and Antioxidant Activity Assessment. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Liu L, Jing Y, Guo A, Li X, Li Q, Liu W, Zhang X. Biosynthesis of Platinum Nanoparticles with Cordyceps Flower Extract: Characterization, Antioxidant Activity and Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1904. [PMID: 35683759 PMCID: PMC9182170 DOI: 10.3390/nano12111904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
The aim of this work is to develop a green route for platinum nanoparticles (PtNPs) biosynthesized using Cordyceps flower extract and to evaluate their antioxidant activity and antibacterial activity. Different characterization techniques were utilized to characterize the biosynthetic PtNPs. The results showed that PtNPs were spherical particles covered with Cordyceps flower extract. The average particle size of PtNPs in Dynamic Light Scattering was 84.67 ± 5.28 nm, while that of PtNPs in Transmission Electron Microscope was 13.34 ± 4.06 nm. Antioxidant activity of PtNPs was evaluated by DPPH free radical scavenging ability test. The results showed that the antioxidant activity was positively correlated with the concentration of PtNPs, the DPPH scavenging efficiency of PtNPs (0.50-125.00 μg/mL) was 27.77-44.00%. In addition, the morphological changes of four kinds of bacteria (Escherichia coli, Salmonella typhimurium, Bacillus subtilis, Staphylococcus aureus) exposed to PtNPs were observed by scanning electron microscope. The results showed that the antibacterial activity of PtNPs against Gram-negative bacteria was stronger than that of Gram-positive bacteria.
Collapse
Affiliation(s)
- Ling Liu
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China; (L.L.); (Q.L.); (W.L.); (X.Z.)
| | - Yun Jing
- Kaibei Technology (Suzhou) Co., Ltd., Suzhou 215000, China; (Y.J.); (X.L.)
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China; (L.L.); (Q.L.); (W.L.); (X.Z.)
| | - Xiaojing Li
- Kaibei Technology (Suzhou) Co., Ltd., Suzhou 215000, China; (Y.J.); (X.L.)
| | - Qun Li
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China; (L.L.); (Q.L.); (W.L.); (X.Z.)
| | - Wukang Liu
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China; (L.L.); (Q.L.); (W.L.); (X.Z.)
| | - Xinshuai Zhang
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, China; (L.L.); (Q.L.); (W.L.); (X.Z.)
| |
Collapse
|
16
|
Mohandoss S, Pandimurugan R, Lee YR, Palanisamy S, Senthilkumar M. In situ synthesis and characterization of colloidal AuNPs capped nano-chitosan containing poly( 2,5-dimethoxyaniline) nanocomposites for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1083-1101. [PMID: 35138236 DOI: 10.1080/09205063.2022.2040407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, we have successfully synthesized a novel nCS-PDMA/AuNPs nanocomposite based on nano-chitosan containing poly(2,5-dimethoxyaniline) capped gold nanoparticle in situ synthesis is reported. The AuNPs were synthesized using the green method without using any harmful chemicals, reducing and stabilizing agents to generate AuNPs, is not needed because these roles are played by nCS. The synthesized nCS-PDMA/AuNPs nanocomposite were characterized by UV-Vis, FT-IR, XRD, SEM, and TEM analysis. The polydispersed nCS-PDMA/AuNPs nanocomposite was observed approximately 25 nm. Furthermore, nCS-PDMA/AuNPs nanocomposite was showed significant antibacterial activity against S. aureus and E. coli. The nCS-PDMA/AuNPs nanocomposite showed strong antioxidant activity by inhibiting the DPPH radicals. In addition, the cytotoxicity of nCS-PDMA/AuNPs nanocomposite was tested in HeLa cells and found to be high toxicity than nCS-PDMA. This work suggests that green synthesized nCS-PDMA/AuNPs nanocomposite may be utilized as an effective antibacterial, antioxidant, and anticancer activity.[Figure: see text]Research highlightsnCS-PDMA capped gold nanoparticles (nCS-PDMA/AuNPs) were prepared.Physical characterization of nCS-PDMA/AuNPs by UV-vis, FTIR, XRD, SEM, and TEM.nCS-PDMA/AuNPs displayed promising inhibitory activity against both bacteria.nCS-PDMA/AuNPs showed significant DPPH radical scavenging activities.nCS-PDMA/AuNPs showed an excellent anticancer activity against HeLa cells.
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk-do, Republic of Korea
| | - Ramasamy Pandimurugan
- Department of Chemistry, Ananda Arts and Science College, Devakottai, Tamilnadu, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk-do, Republic of Korea
| | - Subramanian Palanisamy
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangwon, Republic of Korea
| | - Muthiah Senthilkumar
- Department of Chemistry, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, Tamil Nadu, India
| |
Collapse
|
17
|
Peivandi S, Dehghanzadeh H, Baghizadeh A. Biosynthesis of gold nanoparticles using sansevieria plant extract and its biomedical application. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2078355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sara Peivandi
- Department of Agricultural Sciences, Payame Noor University (PNU), Tehran, I. R. of IRAN
| | - Hamid Dehghanzadeh
- Department of Agricultural Sciences, Payame Noor University (PNU), Tehran, I. R. of IRAN
| | - Amin Baghizadeh
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, I. R. of IRAN
| |
Collapse
|
18
|
Nisar A, Ajabia DK, Agrawal SB, Varma S, Chaudhari BP, Tupe RS. Mechanistic insight into differential interactions of iron oxide nanoparticles with native, glycated albumin and their effect on erythrocytes parameters. Int J Biol Macromol 2022; 212:232-247. [PMID: 35597380 DOI: 10.1016/j.ijbiomac.2022.05.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/05/2022]
Abstract
Nanoparticles and protein bioconjugates have been studied for multiple biomedical applications. We sought to investigate the interaction and structural modifications of bovine serum albumin (BSA) with iron oxide nanoparticles (IONPs). The IONPs were green synthesized using E. crassipes aqueous leaf extract following characterization using transmission electron microscopy, energy dispersive X-ray analysis and X-Ray Diffraction. Two different concentrations of native/glycated albumin (0.5 and 1.5 mg/ml) with IONPs were allowed to interact for 1 h at 37 °C. Glycation markers, protein modification markers, cellular antioxidant, and hemolysis studies showed structural modifications and conformational changes in albumin due to the presence of IONPs. UV-Visible absorbance resulted in hyperchromic and bathochromic effects of IONPs-BSA conjugates. Fluorescence measurements of tyrosine, tryptophan, advanced glycated end products, and ANS binding assay were promising and quenching effects proved IONPs-BSA conjugate formation. In FTIR of BSA-IONPs, transmittance was increased in amide A and B bands while decreased in amide I and II bands. In summary, native PAGE, HPLC, and FTIR analysis displayed a differential behaviour of IONPs with native and glycated BSA. These results provided an understanding of the interaction and structural modifications of glycated and native BSA which may provide fundamental repercussions in future studies.
Collapse
Affiliation(s)
- Akib Nisar
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Katraj, Pune 411041, India
| | - Devangi K Ajabia
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Katraj, Pune 411041, India
| | - Sanskruthi B Agrawal
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sanjana Varma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhushan P Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India.
| |
Collapse
|
19
|
Biogenic synthesis of gold nanoparticles mediated by Spondias dulcis (Anacardiaceae) peel extract and its cytotoxic activity in human breast cancer cell. Toxicol Rep 2022; 9:1092-1098. [DOI: 10.1016/j.toxrep.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022] Open
|
20
|
Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, Baig AA, Rahman MM, Islam F, Emran TB, Cavalu S. Green Metallic Nanoparticles: Biosynthesis to Applications. Front Bioeng Biotechnol 2022; 10:874742. [PMID: 35464722 PMCID: PMC9019488 DOI: 10.3389/fbioe.2022.874742] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
21
|
Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. NANOMATERIALS 2022; 12:nano12071102. [PMID: 35407220 PMCID: PMC9000429 DOI: 10.3390/nano12071102] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Nanoparticles are currently used for cancer theranostics in the clinical field. Among nanoparticles, gold nanoparticles (AuNPs) attract much attention due to their usability and high performance in imaging techniques. The wide availability of biological precursors used in plant-based synthesized AuNPs allows for the development of large-scale production in a greener manner. Conventional cancer therapies, such as surgery and chemotherapy, have significant limitations and frequently fail to produce satisfying results. AuNPs have a prolonged circulation time, allow easy modification with ligands detected via cancer cell surface receptors, and increase uptake through receptor-mediated endocytosis. To exploit these unique features, studies have been carried out on the use of AuNPs as contrast agents for X-ray-based imaging techniques (i.e., computed tomography). As nanocarriers, AuNPs synthesized by nontoxic and biocompatible plants to deliver therapeutic biomolecules could be a significant stride forward in the effective treatment of various cancers. Fluorescent-plant-based markers, including AuNPs, fabricated using Medicago sativa, Olax Scandens, H. ambavilla, and H. lanceolatum, have been used in detecting cancers. Moreover, green synthesized AuNPs using various extracts have been applied for the treatment of different types of solid tumors. However, the cytotoxicity of AuNPs primarily depends on their size, surface reactivity, and surface area. In this review, the benefits of plant-based materials in cancer therapy are firstly explained. Then, considering the valuable position of AuNPs in medicine, the application of AuNPs in cancer therapy and detection is highlighted with an emphasis on limitations faced by the application of such NPs in drug delivery platforms.
Collapse
|
22
|
The Potential Application of Green-Synthesized Metal Nanoparticles in Dentistry: A Comprehensive Review. Bioinorg Chem Appl 2022; 2022:2311910. [PMID: 35281331 PMCID: PMC8913069 DOI: 10.1155/2022/2311910] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 12/26/2022] Open
Abstract
Orodental problems have long been managed using herbal medicine. The development of nanoparticle formulations with herbal medicine has now become a breakthrough in dentistry because the synthesis of biogenic metal nanoparticles (MNPs) using plant extracts can address the drawbacks of herbal treatments. Green production of MNPs such as Ag, Au, and Fe nanoparticles enhanced by plant extracts has been proven to be beneficial in managing numerous orodental disorders, even outperforming traditional materials. Nanostructures are utilized in dental advances and diagnostics. Oral disease prevention medicines, prostheses, and tooth implantation all employ nanoparticles. Nanomaterials can also deliver oral fluid or pharmaceuticals, treating oral cancers and providing a high level of oral healthcare. These are also found in toothpaste, mouthwash, and other dental care products. However, there is a lack of understanding about the safety of nanomaterials, necessitating additional study. Many problems, including medication resistance, might be addressed using nanoparticles produced by green synthesis. This study reviews the green synthesis of MNPs applied in dentistry in recent studies (2010–2021).
Collapse
|
23
|
Novel Green Approaches for the Preparation of Gold Nanoparticles and Their Promising Potential in Oncology. Processes (Basel) 2022. [DOI: 10.3390/pr10020426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The difficulty of achieving targeted drug delivery following administration of currently marketed anticancer therapeutics is a still a concern. Metallic nanoparticles (NPs) developed through nanotechnology breakthroughs appear to be promising in this regard. Research studies pertaining to gold NPs have indicated their promising applicability in cancer diagnosis, drug delivery and therapy. These NPs have also recently paved the path for precise drug delivery and site-specific targeting. Our review paper thus highlights the scope and impact of biogenetically generated gold nanoparticles (NPs) in cancer therapy. In a critical, constructive, and methodical manner, we compare the advantages offered by gold NPs over other metal NPs. Moreover, we also focus on novel ‘greener’ strategies that have been recently explored for the preparation of gold NPs and shed light on the disadvantages of conventional NP synthesis routes. Future prospects pertaining to the use of gold NPs in oncotherapy and domains that require further investigation are also addressed.
Collapse
|
24
|
Wahid I, Rani P, Kumari S, Ahmad R, Hussain SJ, Alamri S, Tripathy N, Khan MIR. Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat. CHEMOSPHERE 2022; 287:132142. [PMID: 34826894 DOI: 10.1016/j.chemosphere.2021.132142] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 05/15/2023]
Abstract
Green synthesis of nanoparticles (NPs) is competent in inducing physiological responses in plants for combating the abiotic stresses. Considering this, salt stress is one of the most alarming conditions that exerts complex and polygenic impacts on morph-physiological functioning of plants; resulting in reduced crop productivity and yield. Therefore, understanding the salt responses and tolerance mechanisms are important for sustaining crop productivity. In the current study, we have examined the effects of biosynthesized gold nanoparticles (AuNPs) on wheat (Triticum aestivum) plants under salt stress. Green-synthesized AuNPs were found beneficial in modulating the K+/Na+ ratio, chlorophyll concentration, defense systems, nitrogen assimilation, stomatal dynamics and growth traits under salt stress condition. Furthermore, the excessive accumulation of oxidative stress markers including reactive oxygen/nitrogen species was controlled in response of AuNPs treatment under salt stress. Overall, modulation of these traits commanded to induce salt stress tolerance in wheat plants.
Collapse
Affiliation(s)
- Iram Wahid
- Department of Biosciences, Integral University, Lucknow, India
| | - Pratibha Rani
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Rafiq Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sofi J Hussain
- Department of Botany, Government Degree College, Kokernag, Jammu & Kashmir, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia
| | - Nirmalya Tripathy
- Department of Pharmacy, Oregon State University, Corvallis, United States
| | | |
Collapse
|
25
|
Mahmood Ansari S, Saquib Q, De Matteis V, Awad Alwathnani H, Ali Alharbi S, Ali Al-Khedhairy A. Marine Macroalgae Display Bioreductant Efficacy for Fabricating Metallic Nanoparticles: Intra/Extracellular Mechanism and Potential Biomedical Applications. Bioinorg Chem Appl 2021; 2021:5985377. [PMID: 34873399 PMCID: PMC8643268 DOI: 10.1155/2021/5985377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
The application of hazardous chemicals during nanoparticle (NP) synthesis has raised alarming concerns pertaining to their biocompatibility and equally to the environmental harmlessness. In the recent decade, nanotechnological research has made a gigantic shift in order to include the natural resources to produce biogenic NPs. Within this approach, researchers have utilized marine resources such as macroalgae and microalgae, land plants, bacteria, fungi, yeast, actinomycetes, and viruses to synthesize NPs. Marine macroalgae (brown, red, and green) are rich in polysaccharides including alginates, fucose-containing sulfated polysaccharides (FCSPs), galactans, agars or carrageenans, semicrystalline cellulose, ulvans, and hemicelluloses. Phytochemicals are abundant in phenols, tannins, alkaloids, terpenoids, and vitamins. However, microorganisms have an abundance of active compounds ranging from sugar molecules, enzymes, canonical membrane proteins, reductase enzymes (NADH and NADPH), membrane proteins to many more. The prime reason for using the aforesaid entities in the metallic NPs synthesis is based on their intrinsic properties to act as bioreductants, having the capability to reduce and cap the metal ions into stabilized NPs. Several green NPs have been verified for their biocompatibility in human cells. Bioactive constituents from the above resources have been found on the green metallic NPs, which has demonstrated their efficacies as prospective antibiotics and anti-cancer agents against a range of human pathogens and cancer cells. Moreover, these NPs can be characterized for the size, shapes, functional groups, surface properties, porosity, hydrodynamic stability, and surface charge using different characterization techniques. The novelty and originality of this review is that we provide recent research compilations on green synthesis of NPs by marine macroalgae and other biological sources (plant, bacteria, fungi, actinomycetes, yeast, and virus). Besides, we elaborated on the detailed intra- and extracellular mechanisms of NPs synthesis by marine macroalgae. The application of green NPs as anti-bacterial, anti-cancer, and popular methods of NPs characterization techniques has also been critically reviewed.
Collapse
Affiliation(s)
- Sabiha Mahmood Ansari
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Quaiser Saquib
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Valeria De Matteis
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Hend Awad Alwathnani
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
26
|
Soni V, Raizada P, Singh P, Cuong HN, S R, Saini A, Saini RV, Le QV, Nadda AK, Le TT, Nguyen VH. Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: A review. ENVIRONMENTAL RESEARCH 2021; 202:111622. [PMID: 34245729 DOI: 10.1016/j.envres.2021.111622] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 05/24/2023]
Abstract
Conventionally utilized physical and chemical routes for constructing nanoparticles are not eco-friendly. They are associated with many shortcomings like the requirement of specially designed equipment, templates, extremely high temperature, and pressure. Biosynthesis seems to be drawn unequivocal attention owing to its upsurge of applications in different fields like; energy, nutrition, pharmaceutical, and medicinal sciences. To harness the biological sources, the present review describes an environment-friendly route to generate biogenic nanoparticles from the natural plant extracts and the followed mechanisms for their synthesis, growth, and stabilization. The present review summarizes the recent trends involved in the photosynthesis of metallic nanoparticles and their effective use in controlling malaria, hepatitis, cancer, like various endemic diseases. Also, various characterization approaches, such as UV-visible spectrophotometry, Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy, are discussed here examine the properties of as-fabricated nanoparticles. Various plant parts like leaves, stems, barks, fruit, and flowers are rich in flavonoids, phenols, steroids, terpenoids, enzymes, and alkaloids, thereby playing an essential role in reducing metal ions that generate metallic nanoparticles. Herein, the uniqueness of phytofabricated nanoparticles along with their distinctive antibacterial, antioxidant, cytotoxic, and drug delivery properties are featured. Lastly, this work highlights the various challenges and future perspectives to further synthesize biogenic metal nanoparticles toward environmental and pharmaceutical advances in the coming years.
Collapse
Affiliation(s)
- Vatika Soni
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Raizada
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Pardeep Singh
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Hoang Ngoc Cuong
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Rangabhashiyam S
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - Adesh Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Reena V Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Thi-Thu Le
- Institute of Hydrogen Technology, Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, D-21502, Geesthacht, Germany
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam.
| |
Collapse
|
27
|
Mobed A, Hasanzadeh M, Seidi F. Anti-bacterial activity of gold nanocomposites as a new nanomaterial weapon to combat photogenic agents: recent advances and challenges. RSC Adv 2021; 11:34688-34698. [PMID: 35494766 PMCID: PMC9042813 DOI: 10.1039/d1ra06030a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Gold nanocomposites are being widely used in numerous biomedical applications owing to their excellent stability and miniaturization. Gold nanocomposites are notable because of their flexibility of functionalization and synthesis, ease of detection, and low toxicity. Cost-effectiveness, long-term stability, non-cytotoxicity, and biocompatibility are the main aspects of ideal nanocomposites. Antibacterial nanocomposites are being developed extensively in the food industry, environmental applications, and biological and medical devices. This review focuses on the applications of metal-based nanoparticles, mainly gold nanoparticles (AuNPs), as antibacterial agents in medical approaches. Additionally, the antibacterial mechanisms of AuNPs and their roles in fighting antibiotic-resistant microorganisms are highlighted in the present review.
Collapse
Affiliation(s)
- Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences Iran
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Recent Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Recent Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
28
|
Das P, Ghosh S, Nayak B. Phyto-fabricated Nanoparticles and Their Anti-biofilm Activity: Progress and Current Status. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.739286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biofilm is the self-synthesized, mucus-like extracellular polymeric matrix that acts as a key virulence factor in various pathogenic microorganisms, thereby posing a serious threat to human health. It has been estimated that around 80% of hospital-acquired infections are associated with biofilms which are found to be present on both biotic and abiotic surfaces. Antibiotics, the current mainstream treatment strategy for biofilms are often found to be futile in the eradication of these complex structures, and to date, there is no effective therapeutic strategy established against biofilm infections. In this regard, nanotechnology can provide a potential platform for the alleviation of this problem owing to its unique size-dependent properties. Accordingly, various novel strategies are being developed for the synthesis of different types of nanoparticles. Bio-nanotechnology is a division of nanotechnology which is gaining significant attention due to its ability to synthesize nanoparticles of various compositions and sizes using biotic sources. It utilizes the rich biodiversity of various biological components which are biocompatible for the synthesis of nanoparticles. Additionally, the biogenic nanoparticles are eco-friendly, cost-effective, and relatively less toxic when compared to chemically or physically synthesized alternatives. Biogenic synthesis of nanoparticles is a bottom-top methodology in which the nanoparticles are formed due to the presence of biological components (plant extract and microbial enzymes) which act as stabilizing and reducing agents. These biosynthesized nanoparticles exhibit anti-biofilm activity via various mechanisms such as ROS production, inhibiting quorum sensing, inhibiting EPS production, etc. This review will provide an insight into the application of various biogenic sources for nanoparticle synthesis. Furthermore, we have highlighted the potential of phytosynthesized nanoparticles as a promising antibiofilm agent as well as elucidated their antibacterial and antibiofilm mechanism.
Collapse
|
29
|
Hassanisaadi M, Bonjar GHS, Rahdar A, Pandey S, Hosseinipour A, Abdolshahi R. Environmentally Safe Biosynthesis of Gold Nanoparticles Using Plant Water Extracts. NANOMATERIALS 2021; 11:nano11082033. [PMID: 34443864 PMCID: PMC8400837 DOI: 10.3390/nano11082033] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/18/2022]
Abstract
Due to their simplicity of synthesis, stability, and functionalization, low toxicity, and ease of detection, gold nanoparticles (AuNPs) are a natural choice for biomedical applications. AuNPs’ unique optoelectronic features have subsequently been investigated and used in high-tech applications such as organic photovoltaics, sensory probes, therapeutic agents, the administration of drugs in biological and medical applications, electronic devices, catalysis, etc. Researchers have demonstrated the biosynthesis of AuNPs using plants. The present study evaluates 109 plant species used in the traditional medicine of Middle East countries as new sources of AuNPs in a wide variety of laboratory environments. In this study, dried samples of bark, bulb, flower, fruit, gum, leaf, petiole, rhizome, root, seed, stamen, and above-ground parts were evaluated in water extracts. About 117 plant parts were screened from 109 species in 54 plant families, with 102 extracts demonstrating a bioreduction of Au3+ to Au0, revealing 37 new plant species in this regard. The color change of biosynthesized AuNPs to gray, violet, or red was confirmed by UV-Visible spectroscopy, TEM, FSEM, DLS, and EDAX of six plants. In this study, AuNPs of various sizes were measured from 27 to 107 nm. This study also includes an evaluation of the potency of traditional East Asian medicinal plants used in this biosynthesis of AuNPs. An environmentally safe procedure such as this could act as a foundation for cosmetic industries whose quality assessment systems give a high priority to non-chemically synthesized products. It is crucial that future optimizations are adequately documented to scale up the described process.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
| | - Gholam Hosein Shahidi Bonjar
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Correspondence: (G.H.S.B.); or (S.P.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Correspondence: (G.H.S.B.); or (S.P.)
| | - Akbar Hosseinipour
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
| | - Roohollah Abdolshahi
- Department of Agronomy and Plant Breeding, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran;
| |
Collapse
|
30
|
Thakur PK, Verma V. A Review on Green Synthesis, Characterization and Anticancer Application of Metallic Nanoparticles. Appl Biochem Biotechnol 2021; 193:2357-2378. [PMID: 34114200 DOI: 10.1007/s12010-021-03598-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Cancer is one of the leading causes of death worldwide and also the main obstacle of accelerating anticipation. It is globally recognized as overwhelmingly challenging in terms of clinical management. Cancer is taken into account because a prime lethal disease affects different organs of the body. Even with the rapid improvements in the medical sciences, there are no proper medicines to treat specific kinds of cancer. One of the fundamental issues within the malignant growth treatment is the side effect because of conventional treatment systems. Nanotechnology might be an extremely encouraging field for the therapeutic and drug areas; thus, it assumes a crucial part in improving humankind's satisfaction. In the infield of nanotechnology, a plant-mediated fusion of metal nanoparticles has been developed as a substitute to defeat the limitations of traditional synthesis approaches similar to physical and synthetic strategies. These tunable properties of nanomaterials make them progressed apparatuses in the biomedical platform particularly for the improvement of new diagnostics and focused on therapeutics for malignancy.This review incorporates the characterization of nanoparticles with size and shape and features critical uses of biosynthesized green nanomaterials in cancer theranostics.
Collapse
Affiliation(s)
- Piyush Kumar Thakur
- Faculty of Science and Technology, ICFAI University, Raipur, Chhattisgarh, 492001, India.
| | - Varsha Verma
- School of Sciences, MATS University, Raipur, Chhattisgarh, 492001, India
| |
Collapse
|
31
|
Yang D, Fan R, Luo F, Chen Z, Gerson AR. Facile and green fabrication of efficient Au nanoparticles catalysts using plant extract via a mesoporous silica-assisted strategy. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Priya, Naveen, Kaur K, Sidhu AK. Green Synthesis: An Eco-friendly Route for the Synthesis of Iron Oxide Nanoparticles. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.655062] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Green approach has received major attention for the synthesis of metal oxide nanoparticles. One such metal oxide nanoparticles are iron oxide nanoparticles (IONPs). IONPs have fetched a great deal of interest in recent era because of their magnetic nature, as they can be easily recovered from the reaction mixture by applying an external magnetic field. Although, a variety of chemical and physical methods of synthesis are known, green synthesis is safer, sustainable and biologically acceptable. Plants and microbes are the main biological materials used for the green synthesis. In present review, the synthesis of IONPs by using plants, bacteria, fungi and algae have been highlighted. IONPs produced by plants, fungi, bacteria and algae usually falls in 1–100 nm range and are of distinct shapes like cubic, tetragonal crystalline, spherical, cylindrical, elliptical, octahedral, orthorhombic, hexagonal rods, nanosphere and quasi spherical. Furthermore, these biomaterials play role of reducing, capping, stabilizing and fabricating agents in green synthesis of nanoparticles. The review put forward a comprehensive report of various routes used for synthesizing IONP, biologically. Intuition into the procedures for synthesis of nanoparticles will help to nourish our learning in the area of nanotechnology.
Collapse
|
33
|
Cudalbeanu M, Peitinho D, Silva F, Marques R, Pinheiro T, Ferreira AC, Marques F, Paulo A, Soeiro CF, Sousa SA, Leitão JH, Tăbăcaru A, Avramescu SM, Dinica RM, Campello MPC. Sono-Biosynthesis and Characterization of AuNPs from Danube Delta Nymphaea alba Root Extracts and Their Biological Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1562. [PMID: 34198512 PMCID: PMC8231883 DOI: 10.3390/nano11061562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/03/2023]
Abstract
Root extracts from Danube Delta Nymphaea alba were used to prepare gold nanoparticles (AuNPRn) by reducing HAuCl4 at different pHs (6.4-8.4) using ultrasonic irradiation: an easy, cheap, eco-friendly and green approach. Their antibacterial and anticancer activities were evaluated against Staphylococcus aureus and Escherichia coli, and A2780 ovarian cancer cells, respectively. The AuNPRn were characterized concerning their phytoconstituents (polyphenols, flavonoids and condensed tannins) and gold content. All of the nanoparticles were negatively charged. AuNPRn exhibited a hydrodynamic size distribution ranging from 32 nm to 280 nm, with the larger nanoparticles being obtained with an Au/root extract ratio of 0.56, pH 7 and 10 min of sonication (AuNPR1), whereas the smallest were obtained with an Au/root extract ratio of 0.24, pH 7.8 and 40 min of sonication (AuNPR4). The TEM/SEM images showed that the AuNPRn had different shapes. The ATR-FTIR indicated that AuNPRn interact mainly with hydroxyl groups present in the polyphenol compounds, which also confirm their high antioxidant capacity, except for AuNPR2 obtained at pH 6.4. Among the AuNPRn, the smallest ones exhibited enhanced antimicrobial and anticancer activities.
Collapse
Affiliation(s)
- Mihaela Cudalbeanu
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (A.T.)
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - David Peitinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal; (D.P.); (F.S.); (R.M.); (F.M.); (A.P.)
| | - Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal; (D.P.); (F.S.); (R.M.); (F.M.); (A.P.)
| | - Rosa Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal; (D.P.); (F.S.); (R.M.); (F.M.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal;
| | - Teresa Pinheiro
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal;
- Department of Bioengineering, iBB-Institute of Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (C.F.S.); (S.A.S.); (J.H.L.)
| | - Ana C. Ferreira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal;
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal; (D.P.); (F.S.); (R.M.); (F.M.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal;
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal; (D.P.); (F.S.); (R.M.); (F.M.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal;
| | - Catarina F. Soeiro
- Department of Bioengineering, iBB-Institute of Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (C.F.S.); (S.A.S.); (J.H.L.)
| | - Sílvia Andreia Sousa
- Department of Bioengineering, iBB-Institute of Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (C.F.S.); (S.A.S.); (J.H.L.)
| | - Jorge Humberto Leitão
- Department of Bioengineering, iBB-Institute of Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (C.F.S.); (S.A.S.); (J.H.L.)
| | - Aurel Tăbăcaru
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (A.T.)
| | - Sorin Marius Avramescu
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Soseaua Panduri, 050663 Bucharest, Romania
| | - Rodica Mihaela Dinica
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (A.T.)
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal; (D.P.); (F.S.); (R.M.); (F.M.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal;
| |
Collapse
|
34
|
Biosynthesis of Gold Clusters and Nanoparticles by Using Extracts of Mexican Plants and Evaluation of Their Catalytic Activity in Oxidation Reactions. Catal Letters 2021. [DOI: 10.1007/s10562-020-03416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Hamida RS, Ali MA, Abdelmeguid NE, Al-Zaban MI, Baz L, Bin-Meferij MM. Lichens-A Potential Source for Nanoparticles Fabrication: A Review on Nanoparticles Biosynthesis and Their Prospective Applications. J Fungi (Basel) 2021; 7:291. [PMID: 33921411 PMCID: PMC8069866 DOI: 10.3390/jof7040291] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Green synthesis of nanoparticles (NPs) is a safe, eco-friendly, and relatively inexpensive alternative to conventional routes of NPs production. These methods require natural resources such as cyanobacteria, algae, plants, fungi, lichens, and naturally extracted biomolecules such as pigments, vitamins, polysaccharides, proteins, and enzymes to reduce bulk materials (the target metal salts) into a nanoscale product. Synthesis of nanomaterials (NMs) using lichen extracts is a promising eco-friendly, simple, low-cost biological synthesis process. Lichens are groups of organisms including multiple types of fungi and algae that live in symbiosis. Until now, the fabrication of NPs using lichens has remained largely unexplored, although the role of lichens as natural factories for synthesizing NPs has been reported. Lichens have a potential reducible activity to fabricate different types of NMs, including metal and metal oxide NPs and bimetallic alloys and nanocomposites. These NPs exhibit promising catalytic and antidiabetic, antioxidant, and antimicrobial activities. To the best of our knowledge, this review provides, for the first time, an overview of the main published studies concerning the use of lichen for nanofabrication and the applications of these NMs in different sectors. Moreover, the possible mechanisms of biosynthesis are discussed, together with the various optimization factors influencing the biological synthesis and toxicity of NPs.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt; (R.S.H.); (N.E.A.)
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh 11543, Saudi Arabia;
- Plant Production Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
| | - Nabila Elsayed Abdelmeguid
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt; (R.S.H.); (N.E.A.)
| | - Mayasar Ibrahim Al-Zaban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11543, Saudi Arabia;
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mashael Mohammed Bin-Meferij
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11543, Saudi Arabia;
| |
Collapse
|
36
|
Chinnasamy G, Chandrasekharan S, Koh TW, Bhatnagar S. Synthesis, Characterization, Antibacterial and Wound Healing Efficacy of Silver Nanoparticles From Azadirachta indica. Front Microbiol 2021; 12:611560. [PMID: 33679635 PMCID: PMC7932996 DOI: 10.3389/fmicb.2021.611560] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Bacteria are the causative agents of numerous diseases. Ever increasing number of bacterial infections has generated the need to find new antibiotic materials and new ways to combat bacterial infections. Our study investigated Azadirachta indica (AI) as an alternate source of antibiotic compounds. Phytochemical and GC-MS analysis revealed presence of flavonoids, phenolic compounds, terpenoids and terpenes. Aqueous extracts of leaves were used to synthesize silver nanoparticles (AI-AgNPs), as established by colorimetric confirmation with maximum absorbance peak at 400 nm. Optimized reaction parameters produced high yield of stable AI-AgNPs, which were characterized by UV-Vis spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy. Results confirmed particle diameter of 33 nm and spherical shape of AI-AgNPs. Fourier transform infrared spectroscopy inferred the presence of functional groups in bioactive constituents involved in conversion of silver ions into elemental silver by acting as capping and reducing agents during formation of AI-AgNPs. X-ray diffraction revealed their crystalline nature. Toxicity studies on Drosophila validated normal egg laying capacity and eclosion of F1 generation on AI-AgNPs (100 μg/mL). DPPH (65.17%) and ABTS (66.20%) assays affirmed strong radical scavenging effect of AI-AgNPs (500 μg/mL). The antibacterial activity of AI-AgNPs (1,000 μg/mL) was confirmed by disc diffusion assay with zone of inhibition against Bacillus cereus (17.7 mm), Escherichia coli (18.7 mm), Pseudomonas aeruginosa (10.3 mm), and Staphylococcus aureus (17.7 mm). Minimum inhibitory concentration and minimum bactericidal concentration values for AI-AgNPs ranged between 390 and 780 μg/mL. Higher bacterial suppression by AI-AgNPs in comparison with AI-extract was further divulged by prominent damage to the bacterial cell walls, disintegration of cell membranes and outflow of intercellular content as evident in SEM images. AI-AgNPs were loaded on PF127 (biocompatible-biodegradable polymer) to form a viscous, spreadable, hydrogel that demonstrated enhanced antibacterial properties in disc diffusion assay (13-18.7 mm). When topically applied on mice, AI-AgNPs-PF127 hydrogel did not show symptoms of skin irritation. Application of AI-AgNPs-PF127 hydrogel on wound sites in mice, significantly increased the wound contraction rate. Our studies present a simple green route to synthesize AI-AgNPs with enhanced antibacterial and free-radical scavenging efficacy; and AI-AgNPs-PF127 hydrogel as a low-toxic, eco-friendly delivery vehicle with potential in wound healing.
Collapse
Affiliation(s)
- Gandhimathi Chinnasamy
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Smitha Chandrasekharan
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Tong Wey Koh
- Diabetes and Neurodegeneration, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Somika Bhatnagar
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, Singapore, Singapore
| |
Collapse
|
37
|
Lopes LC, Lima D, Mendes Hacke AC, Schveigert BS, Calaça GN, Simas FF, Pereira RP, Iacomini M, Viana AG, Pessôa CA. Gold nanoparticles capped with polysaccharides extracted from pineapple gum: Evaluation of their hemocompatibility and electrochemical sensing properties. Talanta 2021; 223:121634. [PMID: 33303133 DOI: 10.1016/j.talanta.2020.121634] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/02/2023]
Abstract
In the present work, gold nanoparticles were synthesized through a green route by using, for the first time, polysaccharides extracted from pineapple gum (PG) as the reducing and capping agent. The obtained nanoparticles (AuNPs-PG) were characterized by UV-VIS, FTIR, TEM, FESEM, EDX, XRD, and zeta potential measurements, which confirmed that PG was effective to produce AuNPs with an average diameter of 10.3 ± 1.6 nm. The AuNPs-PG were employed as the modifier of glassy carbon paste electrodes (CPE/AuNPs-PG), which were applied as sensitive electrochemical sensors to the determination of the antihistamine drug promethazine hydrochloride (PMZ). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements showed that the AuNPs-PG could enhance the electronic transfer properties of the glassy carbon paste, which was due to their large surface area and high electrical conductivity. After optimization of the instrumental parameters of square wave voltammetry (SWV) through a Box-Behnken factorial design, a linear relationship between the anodic peak current and PMZ concentration was obtained in the range from 2.0 to 15.7 μmol L-1 in McIlvaine buffer solution pH 5.0. The detection and quantification limits were found to be equal to 1.33 and 4.44 μmol L-1, respectively. The developed sensors could successfully quantify PMZ in different commercial pharmaceutical formulations, with satisfactory levels of accuracy and precision. In addition to improving the analytical features of the electrodes, hemocompatibility assays carried out on erythrocytes and leukocytes showed that the AuNPs-PG do not exhibit toxic effects on the referred cells. This interesting behavior enables their use in biocompatible electrochemical sensing platforms as well as for future biomedical investigations.
Collapse
Affiliation(s)
- Luma Clarindo Lopes
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil
| | - Dhésmon Lima
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil
| | - Ana Carolina Mendes Hacke
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil
| | - Bianca Siqueira Schveigert
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil
| | - Giselle Nathaly Calaça
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil
| | - Fernanda Fogagnoli Simas
- Department of Cellular Biology, Universidade Federal do Paraná, Av. Coronel Francisco H. dos Santos, 100, 81531-990, Curitiba, Paraná, Brazil
| | - Romaiana Picada Pereira
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Av. Coronel Francisco H. dos Santos, 100, 81531-990, Curitiba, Paraná, Brazil
| | - Adriano Gonçalves Viana
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil
| | - Christiana Andrade Pessôa
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná, Brazil.
| |
Collapse
|
38
|
Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci 2020; 15:819-839. [PMID: 33817269 PMCID: PMC7747521 DOI: 10.1515/biol-2020-0094] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology is a rapidly growing field due to its unique functionality and a wide range of applications. Nanomedicine explores the possibilities of applying the knowledge and tools of nanotechnology for the prevention, treatment, diagnosis and control of disease. In this regard, silver nanoparticles with diameters ranging from 1 to 100 nm are considered most important due to their unique properties, ability to form diverse nanostructures, their extraordinary range of bactericidal and anticancer properties, wound healing and other therapeutic abilities and their cost-effectiveness in production. The current paper reviews various types of physical, chemical and biological methods used in the production of silver nanoparticles. It also describes approaches employing silver nanoparticles as antimicrobial and antibiofilm agents, as antitumour agents, in dentistry and dental implants, as promoters of bone healing, in cardiovascular implants and as promoters of wound healing. The paper also explores the mechanism of action, synthesis methods and morphological characterisation of silver nanoparticles to examine their role in medical treatments and disease management.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
39
|
Kureshi AA, Vaghela HM, Kumar S, Singh R, Kumari P. Green Synthesis of Gold Nanoparticles Mediated by Garcinia Fruits andTheir Biological Applications. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.90] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Green synthesis of gold nanoparticles (AuNPs) using medicinal plant extract is an emerging area of research due to their applicability in nanomedicines. Methods: In this study, aqueous extracts prepared from fruit-pericarps of two Garcinia species, G. indica (GI) and G. cambogia (GC) fruits which are important medicinally and commercially have been utilized for the synthesis of AuNPs. Various analytical techniques were utilized to characterize the synthesized AuNPs. The synthesized AuNPs were investigated for their biological properties such as antioxidant activity using the (2,2-diphenyl-1-picrylhydrazyl) DPPH model, cytotoxicity against MCF-7 (breast) cancer cell line, and antibacterial activity against two bacterial strains viz. B. subtilis and E. coli. Results: The absorption peak of the AuNPs is observed at 541 nm using UV–Visible spectroscopy. The high resolution – scanning electron microscopy images showed spherical with a triangular shape AuNPs and their average sizes were ranging from 2 – 10 nm and it was found to be in good agreement with the particle size of 8 – 11 nm determined using X-ray diffraction analysis. Fourier-transform infrared spectroscopy revealed that water-soluble biomolecules from the aqueous extracts of the Garcinia species played a crucial role in the formation of AuNPs. The synthesized AuNPs exhibited considerable cytotoxicity with IC50 values 34.55 µg/ml (GI) and 35.69 µg/ml (GC) against the MCF-7 cancer cell line. Furthermore, synthesized AuNPs also demonstrated significant antioxidant and antibacterial properties comparable to the standards used. Conclusion: AuNPs have been synthesized using a simple green approach. The synthesized AuNPs demonstrated promising cytotoxicity, antioxidant, and antibacterial properties.
Collapse
Affiliation(s)
- Azazahemad A Kureshi
- Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, India
- Organic Chemistry, Directorate of Medicinal and Aromatic Plants Research, Anand - 387310, India
| | - Hiral M Vaghela
- Department of Chemistry, Government Science College, Gandhinagar - 382016, India
| | - Satyanshu Kumar
- Organic Chemistry, Directorate of Medicinal and Aromatic Plants Research, Anand - 387310, India
| | - Raghuraj Singh
- Organic Chemistry, Directorate of Medicinal and Aromatic Plants Research, Anand - 387310, India
| | - Premlata Kumari
- Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, India
| |
Collapse
|
40
|
Akintelu SA, Olugbeko SC, Folorunso AS. A review on synthesis, optimization, characterization and antibacterial application of gold nanoparticles synthesized from plants. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00317-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Ningaraju S, Munawer U, Raghavendra VB, Balaji KS, Melappa G, Brindhadevi K, Pugazhendhi A. Chaetomium globosum extract mediated gold nanoparticle synthesis and potent anti-inflammatory activity. Anal Biochem 2020; 612:113970. [PMID: 32961250 DOI: 10.1016/j.ab.2020.113970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles (AuNPs) are gaining a lot of attention in recent decades from researchers due to their unique optoelectronic properties and their significance in the field of biomedicine. Keeping this in view, our research work was designed to investigate gold nanoparticles obtained by using a fungal endophytic strain Chaetomium globosum, isolated from Vitex negundo which showed significant activity on enzyme inhibition. In the present study, the fungal isolate C. globosum was characterized using HPLC and LC-MS. A novel compound Catechin was matched with standard Catechin. Further, the endophyte C. globosum extract was utilized to synthesize gold nanoparticles (CgAuNPs) which was analysed by UV-visible spectroscopy. The CgAuNPs exhibited wine red color and the absorption peak appeared at 542 nm confirming the formation of the AuNPs. Further, Fourier Transmission Infrared Spectroscopy (FTIR) was performed to confirm the various functional groups present in mycosynthesized CgAuNPs. FTIR analysis demonstrated the presence of amines, flavonoids, as well as the presence of amide I linkage which possibly reduces Au+ to Au0. The synthesized CgAuNPs exhibited potential cytotoxicity against HeLa cells in a dose dependent manner. Further, CgAuNPs demonstrated significant anti-inflammatory activity. Overall, the present work provides insights into the design of nano delivery and may be applied for clinical studies in future.
Collapse
Affiliation(s)
- Sunayana Ningaraju
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Uzma Munawer
- Teresian Research Foundation, Teresian College, Siddarthanagar, Mysore, 570011, India
| | | | | | - Govindappa Melappa
- P.G. Department of Studies in Botany, Davangere University, Shivagangotri, Davanagere, India
| | - Kathirvel Brindhadevi
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
42
|
Shi XD, Tian YQ, Wu JL, Wang SY. Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides. Crit Rev Food Sci Nutr 2020; 61:2225-2236. [PMID: 32567982 DOI: 10.1080/10408398.2020.1774497] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoparticles with unique properties have potential applications in food, medicine, pharmacology, and agriculture industries. Accordingly, many significant researches have been conducted to develop novel nanoparticles using chemical and biological techniques. This review focuses on the synthesis of selenium nanoparticles (SeNPs) using polysaccharides as templates. Various instrumental techniques being used to confirm the formation of polysaccharide-SeNPs conjugates and characterize the properties of nanoparticles are also introduced. Finally, the biological activities of the synthesized SeNPs and the influence of structural factors of polysaccharides on the property of synthetic nanocomposites are highlighted. In general, the polysaccharides functionalized SeNPs can be easily obtained using sodium selenite as precursor and ascorbic acid as reductant. The final products having different particle size, morphology, and selenium content exhibit abundant physiological activities. Structural factors of polysacchairdes involving molecular weights, substitution of functional groups, and chain conformation play determinant roles on the properties of nanocomposites, resulting in different biological performances. The review on the achievements and current status of polysaccharides conjugated SeNPs provides insights into this exciting research topic for further studies in the future.
Collapse
Affiliation(s)
- Xiao-Dan Shi
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yong-Qi Tian
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jiu-Lin Wu
- Institute of Biomedical and Pharmaceutical Technology & College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Shao-Yun Wang
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
43
|
Li H, Pan S, Xia P, Chang Y, Fu C, Kong W, Yu Z, Wang K, Yang X, Qi Z. Advances in the application of gold nanoparticles in bone tissue engineering. J Biol Eng 2020; 14:14. [PMID: 32391080 PMCID: PMC7201659 DOI: 10.1186/s13036-020-00236-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
The materials used in bone tissue engineering (BTE) have been advancing with each passing day. With the continuous development of nanomedicine, gold nanoparticles (GNPs), which are easy to be synthesized and functionalized, have attracted increasing attention. Recent years have witnessed this amazing material, i.e., GNPs characterized with large surface area to volume ratio, biocompatibility, medical imaging property, hypotoxicity, translocation into the cells, high reactivity, and other properties, perform distinct functions in BTE. However, the low stability of GNPs in the biotic environment makes them in the requirements of modification or recombination before being used. After being combined with the advantages of other materials, the structures of GNPs have exhibited great potential in stem cells, scaffolds, delivery systems, medical imaging, and other aspects. This review will focus on the advances in the application of GNPs after modification or recombination with other materials to BTE.
Collapse
Affiliation(s)
- Hongru Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Su Pan
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Yuxin Chang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Ziyuan Yu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Kai Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Ziqiang Street No. 218, Changchun, TX 130041 PR China
| |
Collapse
|
44
|
Ashraf H, Anjum T, Riaz S, Naseem S. Microwave-Assisted Green Synthesis and Characterization of Silver Nanoparticles Using Melia azedarach for the Management of Fusarium Wilt in Tomato. Front Microbiol 2020; 11:238. [PMID: 32210928 PMCID: PMC7076090 DOI: 10.3389/fmicb.2020.00238] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/31/2020] [Indexed: 11/13/2022] Open
Abstract
These days, research in agriculture is focusing on the theme of sustainability along with protection of agriculture produce. Nanotechnology in the agriculture sector aims for the enhancement of agricultural produce and the reduction of pesticides through providing innovative agrochemical agents and their novel delivery mechanisms. The current investigation involved the green synthesis of silver nanoparticles (AgNPs) from the aqueous leaf extract of Melia azedarach by following a microwave-assisted method to control Fusarium oxysporum, the causal agent of tomato wilt. Biosynthesized Melia leaf extract (MLE)-AgNPs were characterized by UV-visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectrometry, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and zeta potential analysis. The intensity of the peak at 434 nm in UV-vis spectra, attributed to the surface plasmon resonance of MLE-AgNPs, changes with reaction parameters. TEM exhibits spherical shaped nanoparticles with an average particle size range from 12 to 46 nm. Efficient inhibition of F. oxysporum, the causal agent of tomato wilt, was achieved after exposure to MLE-AgNPs both in vivo and in vitro. In vitro studies exhibited repressed fungal mycelial growth with 79-98% inhibition as compared to the control. Significant increases in growth parameters of tomato seedlings were observed after treatment with biosynthesized nanoparticles as compared to F. oxysporum-infected plants grown without them under greenhouse conditions. Furthermore, SEM imaging was done to reveal the prominent damage on the cell wall of hyphae and spores after MLE-AgNP treatment. Propidium iodide (PI) staining of mycelium indicated the extent of cell death, causing irretrievable damage and disintegration of cellular membranes by altering the membrane permeability. Also, 2',7'-dichlorofluorescin diacetate (DCFH-DA) fluorescence specifies intracellular reactive oxygen species (ROS) production in F. oxysporum after treatment with MLE-AgNPs. The current investigation suggested that biosynthesized nanoparticles can revolutionize the field of plant pathology by introducing an environment-friendly approach for disease management and playing a potential part in agriculture industry. However, to date, little work has been done to integrate nanotechnology into phytopathology so, this area of research is in need of adoption and exploration for the management of plant diseases.
Collapse
Affiliation(s)
- Hina Ashraf
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
- Center of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
| | - Tehmina Anjum
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Saira Riaz
- Center of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
| | - Shahzad Naseem
- Center of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
45
|
Ranjana R, Parushuram N, Harisha K, Asha S, Sangappa Y. Silk fibroin a bio-template for synthesis of different shaped gold nanoparticles: Characterization and ammonia detection application. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2019.11.259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Rajan M, George Raj ICM, Rajendran AP. Biosynthesized Nanoparticles and Their Biological Applications. INTEGRATIVE NANOMEDICINE FOR NEW THERAPIES 2020. [DOI: 10.1007/978-3-030-36260-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Singh A, Gupta AK, Singh S. Molecular Mechanisms of Drug Resistance in Mycobacterium tuberculosis: Role of Nanoparticles Against Multi-drug-Resistant Tuberculosis (MDR-TB). Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
48
|
Elbagory AM, Hussein AA, Meyer M. The In Vitro Immunomodulatory Effects Of Gold Nanoparticles Synthesized From Hypoxis hemerocallidea Aqueous Extract And Hypoxoside On Macrophage And Natural Killer Cells. Int J Nanomedicine 2019; 14:9007-9018. [PMID: 31819415 PMCID: PMC6875510 DOI: 10.2147/ijn.s216972] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background Macrophages and Natural Killer (NK) cells are an integral part of the innate immune system. These cells produce pro-inflammatory cytokines in response to bacterial infections. However, prolonged inflammation can be a contributing factor in the etiology of several diseases such as rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, psoriasis and eczema. Reducing the secretion of pro-inflammatory cytokines is an effective treatment strategy for these conditions. Gold nanoparticles (AuNPs) have been shown to have immunosuppressive effects. Extracts of the Hypoxis hemerocallidea plant have also been shown to have immunomodulatory effects. It has been demonstrated previously that extracts of the H. hemerocallidea can be used to synthesize AuNPs. Purpose This study aimed to investigate whether AuNPs synthesized using H. hemerocallidea extract and its major secondary metabolite, hypoxoside, have any immunomodulatory effects in macrophages and NK cells. Methodology AuNPs derived from the H. hemerocallidea extract were synthesized as previously described. Using similar methodologies, this study shows for the first time the synthesis of AuNPs from hypoxoside. The AuNPs were characterized using several optical and spectroscopic techniques. The immunomodulatory effects of the aqueous extract of H. hemerocallidea, hypoxoside, as well as the AuNPs produced from the extract and hypoxoside, were investigated by measuring the cytokine levels in macrophages (IL-1β, IL-6 and TNF-α) and NK cells (IFN-γ) using solid phase sandwich ELISA technique. Results The results show that spherical AuNPs (average size 26 ± 2 nm) were synthesized from hypoxoside. The results also show that the four treatments (H. hemerocallidea extract, hypoxoside and their respective AuNPs can lower the pro-inflammatory cytokine levels in the macrophages cells, while only AuNPs produced from hypoxoside can reduce cytokine responses in NK cells. Conclusion This study shows that all four treatments investigated here could be further explored for the development of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Abdulrahman M Elbagory
- DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
49
|
Luna M, Zarzuela R, Mosquera MJ, Gil MA, Cubillana-Aguilera LM, Delgado-Jaén JJ, Palacios-Santander JM, García-Moreno V, Carmona-Jimenez Y. Biosynthesis of uniform ultra-small gold nanoparticles by aged Dracaena Draco L extracts. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Fahmy HM, El-Feky AS, Abd El-Daim TM, Abd El-Hameed MM, Gomaa DA, Hamad AM, Elfky AA, Elkomy YH, Farouk NA. Eco-Friendly Methods of Gold Nanoparticles Synthesis. NANOSCIENCE & NANOTECHNOLOGY-ASIA 2019; 9:311-328. [DOI: 10.2174/2210681208666180328154926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/14/2018] [Accepted: 05/16/2018] [Indexed: 09/01/2023]
Abstract
Background:Owing to the importance of metallic nanoparticles, different researches and studies have been induced to synthesize them in many ways. One of the ways that paid attention last years is the green synthesis methods of nanoparticles or the so-called ''eco-friendly methods''. The most common sources that has been used for green synthesis of nanoparticles are plants, leaves, fungi and microorganisms. The green synthesis methods are widely used because they are inexpensive, usable, and nontoxic. Moreover, plant extracts are rich in reducing and capping agents.Methods:In the present review, green synthesis methods of gold nanoparticles (AuNps) using Chitosan, Klebsiella pneumoniae, Magnolia Kobus, Elettaria cardamomum (Elaichi) aqueous extract and other agents as a reducing/capping agents will be discussed in details. Moreover, we will make a comparison between different green routes of synthesis and the characterization of the obtained nanoparticles from each route.Results:The characterization and applications of the prepared GNPs from different routes are reviewed.Conclusion:The utilization of gold nanoparticles has been advocated because of their high biocomptability, administration in clinical applicability and in diverse aspects of life. It seems that plants are good candidates for nanoparticles production because they are inexpensive, available and renewable sources in addition, it is too simple to prepare extracts from them. Moreover, the great diversity in the types and amounts of reducing agents from plant extracts is responsible for the effortless generation of metallic nanoparticles of various shapes and morphologies.
Collapse
Affiliation(s)
- Heba M. Fahmy
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Amena S. El-Feky
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Donia A. Gomaa
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Amany M. Hamad
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Alyaa A. Elfky
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Yomna H. Elkomy
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Nawal A. Farouk
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|