1
|
Chaudhari BB, Dilli Batcha JS, Raju AP, Matcha S, Lewis LE, Moorkoth S, Mallayasamy S. Assessment of Piperacillin-Tazobactam Population Pharmacokinetic Models in Neonates: An External Validation. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00929-w. [PMID: 39681814 DOI: 10.1007/s13318-024-00929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Neonatal pharmacotherapy has gained attention from clinicians and regulatory agencies for optimizing the dosage of the drug which improves therapeutic outcomes in this special population. Piperacillin-tazobactam antibiotic is commonly used as a therapeutic option for treatment of severe infection in neonatal intensive care units. There are few population pharmacokinetic (PopPK) studies of piperacillin and tazobactam published for this specific population and which were not validated in other study settings. The aim of this study was to externally evaluate the published population pharmacokinetic models for piperacillin-tazobactam. METHODS A systematic review was conducted through Scopus, PubMed, and Embase databases to identify PopPK models. Clinical data collected in neonates treated with piperacillin-tazobactam were used for evaluation of these models. Various prediction-based metrics were used for assessing the bias and precision of PopPK models using individual predictions. RESULTS Three PopPK models were identified for external evaluation. A total of 53 plasma samples were collected from 46 neonates admitted in the neonatal intensive care unit. The PopPK models reported by Cohen-Wolkowiez et al. for piperacillin and Li et al. for tazobactam were able to predict well for our clinical data. CONCLUSION The PopPK models by Cohen-Wolkowiez et al. and Li et al. predicted our data well for piperacillin and tazobactam with the lower relative median absolute predictive error (rMAPE) of 8.61% and 16.48% and relative root mean square error (rRMSE) of 0.01 and 0.03, respectively. External evaluation of the published PopPK models of piperacillin and tazobactam resulted in enhancing their credibility to be implemented in clinical practice.
Collapse
Affiliation(s)
- Bhim Bahadur Chaudhari
- Department of Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jaya Shree Dilli Batcha
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
- Center for Pharmacometrics, Manipal Academy of Higher Education, Manipal, India
| | - Arun Prasath Raju
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
- Center for Pharmacometrics, Manipal Academy of Higher Education, Manipal, India
| | - Saikumar Matcha
- Titus family Department of Clinical Pharmacy, Alfred E. Mann school of pharmacy and pharmaceutical sciences, University of Southern California, Los Angeles, USA
| | - Leslie E Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Sudheer Moorkoth
- Department of Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Surulivelrajan Mallayasamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.
- Center for Pharmacometrics, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
2
|
Jiang N, Ying G, Yin Y, Guo J, Lozada J, Valdivia Padilla A, Gómez A, Gomes de Melo BA, Lugo Mestre F, Gansevoort M, Palumbo M, Calá N, Garciamendez-Mijares CE, Kim GA, Takayama S, Gerhard-Herman MD, Zhang YS. A closed-loop modular multiorgan-on-chips platform for self-sustaining and tightly controlled oxygenation. Proc Natl Acad Sci U S A 2024; 121:e2413684121. [PMID: 39541351 PMCID: PMC11588096 DOI: 10.1073/pnas.2413684121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
To mimic physiological microenvironments in organ-on-a-chip systems, physiologically relevant parameters are required to precisely access drug metabolism. Oxygen level is a critical microenvironmental parameter to maintain cellular or tissue functions and modulate their behaviors. Current organ-on-a-chip setups are oftentimes subjected to the ambient incubator oxygen level at 21%, which is higher than most if not all physiological oxygen concentrations. Additionally, the physiological oxygen level in each tissue is different ranging from 0.5 to 13%. Here, a closed-loop modular multiorgan-on-chips platform is developed to enable not only real-time monitoring of the oxygen levels but, more importantly, tight control of them in the range of 4 to 20% across each connected microtissue-on-a-chip in the circulatory culture medium. This platform, which consists of microfluidic oxygen scavenger(s), an oxygen generator, a monitoring/controller system, and bioreactor(s), allows for independent, precise upregulation and downregulation of dissolved oxygen in the perfused culture medium to meet the physiological oxygen level in each modular microtissue compartment, as needed. Furthermore, drug studies using the platform demonstrate that the oxygen level affects drug metabolism in the parallelly connected liver, kidney, and arterial vessel microtissues without organ-organ interactions factored in. Overall, this platform can promote the performances of organ-on-a-chip devices in drug screening by providing more physiologically relevant and independently adjustable oxygen microenvironments for desired organ types on a single- or a multiorgan-on-chip(s) configuration.
Collapse
Affiliation(s)
- Nan Jiang
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Guoliang Ying
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Yixia Yin
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Jie Guo
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Jorge Lozada
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Alejandra Valdivia Padilla
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Ameyalli Gómez
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Bruna Alice Gomes de Melo
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Francisco Lugo Mestre
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Merel Gansevoort
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Marcello Palumbo
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Noemi Calá
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Carlos Ezio Garciamendez-Mijares
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Ge-Ah Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA30318
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA30318
| | - Marie Denis Gerhard-Herman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Yu Shrike Zhang
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
- Harvard Stem Cell Institute, Harvard University,Cambridge, MA02138
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA02142
| |
Collapse
|
3
|
Zhang M, Huang L, Zhu Y, Zeng L, Jia ZJ, Cheng G, Li H, Zhang L. Epidemiology of Vancomycin in Combination With Piperacillin/Tazobactam-Associated Acute Kidney Injury in Children: A Systematic Review and Meta-analysis. Ann Pharmacother 2024; 58:1034-1044. [PMID: 38279799 DOI: 10.1177/10600280231220379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Several studies have shown that vancomycin combined with piperacillin/tazobactam (VPT) increased the risk of acute kidney injury (AKI) compared with other antibiotics in children. However, the epidemiology of VPT-associated AKI in children is unknown. OBJECTIVE To evaluate the incidence and risk factors of VPT-associated AKI in children. DATA SOURCES Literature databases of PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP Database, WanFang Database, and China Biology Medicine Disc were searched from inception to November 2023. References of included studies were also manually checked. STUDY SELECTION AND DATA EXTRACTION Two independent reviewers selected studies, extracted data, and quality assessment. Meta-analyses were performed to quantify the incidence and risk factors of VPT-associated AKI in children. DATA SYNTHESIS Sixteen cohort studies were identified. Overall, the incidence of VPT-associated AKI in children was 24.3% (95% CI: 17.9%-30.6%). The incidence of VPT-associated AKI in critically ill children (26.6%) was higher than that in noncritically ill children (10.9%). Moreover, higher serum vancomycin trough concentration (>15 mg/L), use of vasopressors, combination of nephrotoxins and intensive care unit admission were risk factors for VPT-associated AKI in children (P < 0.05). RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Identifying high-risk groups and determining safer treatments is critical to reducing the incidence of VPT-associated AKI in children. CONCLUSIONS The incidence of VPT-associated AKI in children is high, especially in critically ill children. Medication regimens should be personalized based on the presence of individual risk factors. Moreover, renal function was regularly assessed throughout treatment with VPT.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Liang Huang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yu Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Linan Zeng
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Zhi-Jun Jia
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Guo Cheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Sichuan University, Chengdu, China
| | - Hailong Li
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lingli Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Alakeel YS, Alahmed Y, Alanazi G, Alawbathani B, Alshutwi K, Almeshary M, Aldhahri F, Alshakrah M. An evaluation of the empirical vancomycin dosing guide in pediatric cardiology. BMC Pediatr 2024; 24:575. [PMID: 39261805 PMCID: PMC11389283 DOI: 10.1186/s12887-024-05048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Higher doses of vancomycin are currently prescribed due to the emergence of bacterial tolerance and resistance. This study aimed to evaluate the efficacy and safety of the currently adopted vancomycin dosing guide in pediatric cardiology. METHODS This was a single-center prospective cohort study with pediatric cardiac patients, younger than 14 years, from June 2020 to March 2021. The patients received intravenous vancomycin (40 mg/kg/day divided every 6-8 h) according to the department's vancomycin medication administration guide (MAG) for at least three days. RESULTS In total, 88 cardiac patients were included, with a median age of 0.82 years (IQR: 0.25-2.9), and 51 (58%) received cardiopulmonary bypass surgery (CPB). The majority (71.6%, n = 61) achieved a serum vancomycin level within the therapeutic range (7-20 mg/L). Infants, young children, and children exposed to CPB surgery had an increased incidence of subtherapeutic vancomycin levels, [7 (29.2%); P = 0.033], [13 (54.2%); P = 0.01], and [21 (87.5%); P = 0.009] respectively. After the treatment, 8 (10%) patients had an elevated Serum creatinine (SCr) and 2 (2.5%) developed acute kidney injury (AKI). However, no significant difference was found between the patients developing AKI or an elevated SCr and the group who did not, in terms of clinical, therapeutic, and demographic characteristics, except for the decreased incidence of SCr elevation in patients receiving an ACE inhibitor, [4 (36.4%); P = 0.036]. CONCLUSION Our institution followed MAG recommendations; however, subtherapeutic serum concentrations were evident in infants, young children, and CPB patients. Strategies to prevent AKI should be investigated, as the possible causes have not been identified in this study.
Collapse
Affiliation(s)
- Yousif S Alakeel
- Department Pharmaceutical Care Services, King Abdulaziz Medical City, Ministry of the National Guard - Health Affairs, Riyadh, Saudi Arabia.
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
- Department of Pharmaceutical Care Services, King Abdulaziz Medical City, Ministry of the National Guard - Health Affairs, Riyadh, Saudi Arabia.
| | - Yazeed Alahmed
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Pediatrics, College of Medicine, Qassim University, Qassim, Saudi Arabia
| | - Ghadah Alanazi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Bushra Alawbathani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Kadi Alshutwi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Meshary Almeshary
- Department Pharmaceutical Care Services, King Abdulaziz Medical City, Ministry of the National Guard - Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Fahad Aldhahri
- Department Pharmaceutical Care Services, King Abdulaziz Medical City, Ministry of the National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Meshal Alshakrah
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Saudi Medication Safety Center, Ministry of the National Guard - Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
D'Agate S, Ruiz Gabarre D, Della Pasqua O. Population pharmacokinetics and dose rationale for aciclovir in term and pre-term neonates with herpes. Pharmacol Res Perspect 2024; 12:e1193. [PMID: 38775304 PMCID: PMC11110484 DOI: 10.1002/prp2.1193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 05/25/2024] Open
Abstract
Aciclovir is considered the first-line treatment against Herpes simplex virus (HSV) infections in new-borns and infants. As renal excretion is the major route of elimination, in renally-impaired patients, aciclovir doses are adjusted according to the degree of impairment. However, limited attention has been given to the implications of immature renal function or dysfunction due to the viral disease itself. The aim of this investigation was to characterize the pharmacokinetics of aciclovir taking into account maturation and disease processes in the neonatal population. Pharmacokinetic data obtained from 2 previously published clinical trials (n = 28) were analyzed using a nonlinear mixed effects modeling approach. Post-menstrual age (PMA) and creatinine clearance (CLCR) were assessed as descriptors of maturation and renal function. Simulation scenarios were also implemented to illustrate the use of pharmacokinetic data to extrapolate efficacy from adults. Aciclovir pharmacokinetics was described by a one-compartment model with first-order elimination. Body weight and diagnosis (systemic infection) were statistically significant covariates on the volume of distribution, whereas body weight, CLCR and PMA had a significant effect on clearance. Median clearance varied from 0.2 to 1.0 L/h in subjects with PMA <34 or ≥34 weeks, respectively. Population estimate for volume of distribution was 1.93 L with systemic infection increasing this value by almost 3-fold (2.67 times higher). A suitable model parameterization was identified, which discriminates the effects of developmental growth, maturation, and organ function. Exposure to aciclovir was found to increase with decreasing PMA and renal function (CLCR), suggesting different dosing requirement for pre-term neonates.
Collapse
Affiliation(s)
- S. D'Agate
- Clinical Pharmacology & Therapeutics GroupUniversity College LondonLondonUK
| | - D. Ruiz Gabarre
- Clinical Pharmacology & Therapeutics GroupUniversity College LondonLondonUK
- Present address:
Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - O. Della Pasqua
- Clinical Pharmacology & Therapeutics GroupUniversity College LondonLondonUK
| |
Collapse
|
6
|
Shimamoto Y, Fukushima K, Mizuno T, Ichikawa H, Kurosaki K, Maeda S, Okuda M. Model-Informed Vancomycin Dosing Optimization to Address Delayed Renal Maturation in Infants and Young Children with Critical Congenital Heart Disease. Clin Pharmacol Ther 2024; 115:239-247. [PMID: 37994537 DOI: 10.1002/cpt.3095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023]
Abstract
Ensuring safe and effective drug therapy in infants and young children often requires accounting for growth and organ development; however, data on organ function maturation are scarce for special populations, such as infants with congenital diseases. Children with critical congenital heart disease (CCHD) often require multiple staged surgeries depending on their age and disease severity. Vancomycin (VCM) is used to treat postoperative infections; however, the standard pediatric dose (60-80 mg/kg/day) frequently results in overexposure in children with CCHD. In this study, we characterized the maturation of VCM clearance in pediatric patients with CCHD and determined the appropriate dosing regimen using population pharmacokinetic (PK) modeling and simulations. We analyzed 1,254 VCM serum concentrations from 152 postoperative patients (3 days-13 years old) for population PK analysis. The PK model was developed using a two-compartment model with allometrically scaled body weight, estimated glomerular filtration rate (eGFR), and postmenstrual age as covariates. The observed clearance in patients aged ≤ 1 year and 1-2 years was 33% and 40% lower compared with that of non-CCHD patients, respectively, indicating delayed renal maturation in patients with CCHD. Simulation analyses suggested VCM doses of 25 mg/kg/day (age ≤ 3 months, eGFR 40 mL/min/1.73 m2 ) and 35 mg/kg/day (3 months < age ≤ 3 years, eGFR 60 mL/min/1.73 m2 ). In conclusion, this study revealed delayed renal maturation in children with CCHD, could be due to cyanosis and low cardiac output. Model-informed simulations identified the lower VCM doses for children with CCHD compared with standard pediatric guidelines.
Collapse
Affiliation(s)
- Yuko Shimamoto
- Department of Pharmacy, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Hospital Pharmacy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keizo Fukushima
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hajime Ichikawa
- Department of Pediatric Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kenichi Kurosaki
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Shinichiro Maeda
- Center for Advanced Education and Research in Pharmaceutical Sciences Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masahiro Okuda
- Department of Hospital Pharmacy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Zhang M, Lang B, Li H, Huang L, Zeng L, Jia ZJ, Cheng G, Zhu Y, Zhang L. Incidence and risk factors of drug-induced kidney injury in children: a systematic review and meta-analysis. Eur J Clin Pharmacol 2023; 79:1595-1606. [PMID: 37787852 DOI: 10.1007/s00228-023-03573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE To comprehensively summarize the incidence and risk factors of drug-induced kidney injury (DIKI) in children. METHODS We systematically searched seven databases from inception to November 2022. Two independent reviewers selected studies, extracted data, and assessed the risk of bias. Meta-analyses were conducted to quantify the incidence and risk factors of DIKI in children. RESULTS A total of 69 studies comprising 195,894 pediatric patients were included. Overall, the incidence of DIKI in children was 18.2% (95%CI: 16.4%-20.1%). The incidence of DIKI in critically ill children (19.6%, 95%CI: 15.9%-23.3%) was higher than that in non-critically ill children (16.1%, 95%CI: 12.9%-19.4%). Moreover, the risk factors for DIKI in children were intensive care unit (ICU) admission (OR = 1.59, 95% CI: 1.42-1.78, P = 0.000), treatment days (OR = 1.04, 95% CI: 1.03-1.05, P = 0.000), surgical intervention (OR = 1.43, 95% CI: 1.00-2.02, P = 0.048), infection (OR = 2.30, 95% CI: 1.44-3.66, P = 0.000), patent ductus arteriosus (OR = 4.78, 95% CI: 1.82-12.57, P = 0.002), chronic kidney disease (OR = 2.78, 95% CI: 1.92-4.02, P = 0.000), combination with antibacterial agents (OR = 1.98, 95% CI: 1.54-2.55, P = 0.000), diuretics (OR = 1.97, 95% CI: 1.51-2.56, P = 0.000), combination with antiviral agents (OR = 1.50, 95% CI: 1.11-2.04, P = 0.008), combination with non-steroidal anti-inflammatory drugs (OR = 1.79, 95% CI: 1.40-2.28, P = 0.000), and combination with immunosuppressive agents (OR = 2.84, 95% CI: 1.47-5.47, P = 0.002). CONCLUSION The incidence of DIKI in children is high, especially in critically ill children. Identifying high-risk groups and determining safer treatments is critical to reducing the incidence of DIKI in children. In clinical practice, clinicians should adjust medication regimens for high-risk pediatric groups, such as ICU admission, some underlying diseases, combination with nephrotoxic drugs, etc., and regularly evaluate kidney function throughout treatment.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bingchen Lang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Hailong Li
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Liang Huang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Linan Zeng
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhi-Jun Jia
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Guo Cheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Sichuan University, Chengdu, China
| | - Yu Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Lingli Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China.
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China.
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Zhang M, Li H, Huang L, Liu Y, Jiao XF, Zeng L, Jia ZJ, Cheng G, Zhang L, Zhang W. Drug-associated kidney injury in children: a disproportionality analysis of the FDA Adverse Event Reporting System. Eur J Pediatr 2023; 182:4655-4661. [PMID: 37561197 DOI: 10.1007/s00431-023-05146-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Drug-associated kidney injury is related to longer hospitalization and increased risk of chronic kidney disease and mortality. However, there is currently a lack of large population studies on drug-associated kidney injury in children. This study aimed to study perform data mining to generate hypotheses on drugs, which may deserve to be assessed as per their potential risk of increasing kidney injury in children. We extracted and analyzed reports on drugs associated with kidney injury in children in the FDA Adverse Event Reporting System (FAERS). We conducted a disproportionality analysis using proportional reporting ratio (PRR) to evaluate the association between drugs and kidney injury in children. Meanwhile, comparisons were performed with drug labels to identify drugs that, despite not having kidney injury currently mentioned in their labels, may potentially be associated with risks of kidney injury in children. A total of 6347 children had drug-associated kidney injury in the FAERS database. The top five drugs with the highest PRR were gentamicin (PRR = 12.28, N = 157 cases, Chi-Squared = 1602.77), piperacillin-tazobactam (PRR = 9.77, N = 129 cases, Chi-Squared = 1003.24), amlodipine (PRR = 8.98, N = 271 cases, Chi-Squared = 1861.46), vancomycin (PRR = 8.91, N = 295 cases, Chi-Squared = 1998.64), and ceftriaxone (PRR = 8.00, N = 251 cases, Chi-Squared = 1494.02). According to drug labels, 9 drugs (9/30) were classified as potential nephrotoxins. CONCLUSIONS Approximately one-third of drugs associated with kidney injury in children do not list kidney injury as a side effect in their drug labels. Future studies are therefore warranted to evaluate whether these drugs are associated with such a risk. WHAT IS KNOWN • Nephrotoxic drugs are an increasingly common cause of acute kidney injury in hospitalized children. • Currently, no study has systematically combed drugs associated with kidney injury in children. WHAT IS NEW • Approximately a third of drugs showing signals for potential kidney injury in children in data mining do not mention this side effect in their drug labels. • This study provides data on drugs needing further study to determine whether they might increase the risk of kidney injury in children.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research On Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hailong Li
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research On Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Liang Huang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research On Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Liu
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research On Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xue-Feng Jiao
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research On Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Linan Zeng
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research On Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhi-Jun Jia
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research On Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Guo Cheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Sichuan University, Chengdu, China
| | - Lingli Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Medical Big Data Center, Sichuan University, Chengdu, China.
| | - Wei Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China.
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China.
- NMPA Key Laboratory for Technical Research On Drug Products In Vitro and In Vivo Correlation, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Clinical value of therapeutic drug monitoring for levetiracetam in pediatric patients with epilepsy. Brain Dev 2023; 45:285-292. [PMID: 36759254 DOI: 10.1016/j.braindev.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE To identify pediatric patients who require therapeutic drug monitoring (TDM) of levetiracetam (LEV). METHODS We retrospectively investigated 2413 routine therapeutic drug monitoring data on serum LEV concentration from 1398 pediatric patients (age, 0-15 years). Samples were grouped by age (infants, < 1 year; preschool children, 1-5 years; primary school children, 6-11 years; and adolescents, 12-15 years), and the LEV concentration-to-dose (CD) ratio was calculated. RESULTS The mean CD ratio was highest in adolescents (analysis of variance, p < 0.001); 22.5 % and 15.7 % higher in adolescents than in preschool children and school children, respectively (Scheffé test, p < 0.001); and higher in infants than in preschool children. Preschool children had the lowest ratio and tended to show an increase in the ratio from age 2 to 5 years. Use of enzyme-inducing antiseizure medication reduced the CD ratio by 6.1 % in infants, 12.2 % in preschool children, 5.9 % in primary school children, and 9.4 % in adolescents. The mean CD ratio was 2.7 %, 26.9 %, and 39.3 % higher in preschool children, primary school children, and adolescents with defined chronic kidney disease (CKD) than in the respective age group of patients without CKD. The therapeutic concentration range for a long-term LEV therapy was 11 to 32 μg/mL. CONCLUSIONS LEV pharmacokinetics are significantly different between infant and preschool children, so TDM of LEV is clinically useful in these patients. In pediatric patients at higher risk for CKD, glomerular filtration rate and LEV levels should be carefully monitored.
Collapse
|
10
|
Glomerular filtration rate in critically ill neonates and children: creatinine-based estimations versus iohexol-based measurements. Pediatr Nephrol 2023; 38:1087-1097. [PMID: 35916956 PMCID: PMC9925555 DOI: 10.1007/s00467-022-05651-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) and augmented renal clearance (ARC), both alterations of the glomerular filtration rate (GFR), are prevalent in critically ill children and neonates. AKI and ARC prevalence estimates are based on estimation of GFR (eGFR) using serum creatinine (SCr), which is known to be inaccurate. We aimed to test our hypothesis that AKI prevalence will be higher and ARC prevalence will be lower in critically ill children when using iohexol-based measured GFR (mGFR), rather than using eGFR. Additionally, we aimed to investigate the performance of different SCr-based eGFR methods. METHODS In this single-center prospective study, critically ill term-born neonates and children were included. mGFR was calculated using a plasma disappearance curve after parenteral administration of iohexol. AKI diagnosis was based on the KDIGO criteria, SCr-based eGFR, and creatinine clearance (CrCL). Differences between eGFR and mGFR were determined using Wilcoxon signed-rank tests and by calculating bias and accuracy (percentage of eGFR values within 30% of mGFR values). RESULTS One hundred five children, including 43 neonates, were included. AKI prevalence was higher based on mGFR (48%), than with KDIGO or eGFR (11-40%). ARC prevalence was lower with mGFR (24%) compared to eGFR (38-51%). eGFR equations significantly overestimated mGFR (60-71 versus 41 ml/min/1.73 m2, p < 0.001-0.002). Accuracy was highest with eGFR equations based on age- and sex-dependent equations (up to 59%). CONCLUSION Iohexol-based AKI prevalence was higher and ARC prevalence lower compared to standard SCr-based eGFR methods. Age- and sex-dependent equations for eGFR (eGFR-Smeets for neonates and eGFR-Pierce for children) best approached measured GFR and should preferably be used to optimize diagnosis of AKI and ARC in this population. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
|
11
|
Hodiamont CJ, van den Broek AK, de Vroom SL, Prins JM, Mathôt RAA, van Hest RM. Clinical Pharmacokinetics of Gentamicin in Various Patient Populations and Consequences for Optimal Dosing for Gram-Negative Infections: An Updated Review. Clin Pharmacokinet 2022; 61:1075-1094. [PMID: 35754071 PMCID: PMC9349143 DOI: 10.1007/s40262-022-01143-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 11/04/2022]
Abstract
Gentamicin is an aminoglycoside antibiotic with a small therapeutic window that is currently used primarily as part of short-term empirical combination therapy. Gentamicin dosing schemes still need refinement, especially for subpopulations where pharmacokinetics can differ from pharmacokinetics in the general adult population: obese patients, critically ill patients, paediatric patients, neonates, elderly patients and patients on dialysis. This review summarizes the clinical pharmacokinetics of gentamicin in these patient populations and the consequences for optimal dosing of gentamicin for infections caused by Gram-negative bacteria, highlighting new insights from the last 10 years. In this period, several new population pharmacokinetic studies have focused on these subpopulations, providing insights into the typical values of the most relevant pharmacokinetic parameters, the variability of these parameters and possible explanations for this variability, although unexplained variability often remains high. Both dosing schemes and pharmacokinetic/pharmacodynamic (PK/PD) targets varied widely between these studies. A gentamicin starting dose of 7 mg/kg based on total body weight (or on adjusted body weight in obese patients) appears to be the optimal strategy for increasing the probability of target attainment (PTA) after the first administration for the most commonly used PK/PD targets in adults and children older than 1 month, including critically ill patients. However, evidence that increasing the PTA results in higher efficacy is lacking; no studies were identified that show a correlation between estimated or predicted PK/PD target attainment and clinical success. Although it is unclear if performing therapeutic drug monitoring (TDM) for optimization of the PTA is of clinical value, it is recommended in patients with highly variable pharmacokinetics, including patients from all subpopulations that are critically ill (such as elderly, children and neonates) and patients on intermittent haemodialysis. In addition, TDM for optimization of the dosing interval, targeting a trough concentration of at least < 2 mg/L but preferably < 0.5–1 mg/L, has proven to reduce nephrotoxicity and is therefore recommended in all patients receiving more than one dose of gentamicin. The usefulness of the daily area under the plasma concentration–time curve for predicting nephrotoxicity should be further investigated. Additionally, more research is needed on the optimal PK/PD targets for efficacy in the clinical situations in which gentamicin is currently used, that is, as monotherapy for urinary tract infections or as part of short-term combination therapy.
Collapse
Affiliation(s)
- Caspar J Hodiamont
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Annemieke K van den Broek
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Suzanne L de Vroom
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan M Prins
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ron A A Mathôt
- Hospital Pharmacy and Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Reinier M van Hest
- Hospital Pharmacy and Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Hu TM. A General Biphasic Bodyweight Model for Scaling Basal Metabolic Rate, Glomerular Filtration Rate, and Drug Clearance from Birth to Adulthood. AAPS J 2022; 24:67. [PMID: 35538161 DOI: 10.1208/s12248-022-00716-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
The objective of this study is to propose a unified, continuous, and bodyweight-only equation to quantify the changes of human basal metabolic rate (BMR), glomerular filtration rate (GFR), and drug clearance (CL) from infancy to adulthood. The BMR datasets were retrieved from a comprehensive historical database of male and female subjects (0.02 to 64 years). The CL datasets for 17 drugs and the GFR dataset were generated from published maturation and growth models with reported parameter values. A statistical approach was used to simulate the model-generated CL and GFR data for a hypothetical population with 26 age groups (from 0 to 20 years). A biphasic equation with two power-law functions of bodyweight was proposed and evaluated as a general model using nonlinear regression and dimensionless analysis. All datasets universally reveal biphasic curves with two distinct linear segments on log-log plots. The biphasic equation consists of two reciprocal allometric terms that asymptotically determine the overall curvature. The fitting results show a superlinear scaling phase (asymptotic exponent >1; ca. 1.5-3.5) and a sublinear scaling phase (asymptotic exponent <1; ca. 0.5-0.7), which are separated at the phase transition bodyweight ranging from 5 to 20 kg with a mean value of 10 kg (corresponding to 1 year of age). The dimensionless analysis generalizes and offers quantitative realization of the maturation and growth process. In conclusion, the proposed mixed-allometry equation is a generic model that quantitatively describes the phase transition in the human maturation process of diverse human functions.
Collapse
Affiliation(s)
- Teh-Min Hu
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
13
|
Smeets N, IntHout J, van der Burgh M, Schwartz G, Schreuder M, de Wildt S. Maturation of Glomerular Filtration Rate in Term-Born Neonates: An Individual Participant Data Meta-Analysis. J Am Soc Nephrol 2022; 33:1277-1292. [PMID: 35474022 PMCID: PMC9257816 DOI: 10.1681/asn.2021101326] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/28/2022] [Indexed: 11/03/2022] Open
Abstract
Background: The evidence from individual studies to support the maturational pattern of glomerular filtration rate (GFR) in healthy term-born neonates is inconclusive. We performed an individual participant data (IPD) meta-analysis of reported measured GFR (mGFR) data aimed to establish neonatal GFR reference values. Furthermore, we aimed to optimise neonatal creatinine-based GFR estimations Methods: We identified studies reporting mGFR measured by exogenous markers or creatinine clearance (CrCL) in healthy term-born neonates. The relationship between postnatal age and clearance was investigated using cubic splines with generalized additive linear mixed models. From our reference values, we estimated an updated coefficient for the Schwartz equation (eGFR(ml/min/1.73m2)=(k*height (cm))/serum creatinine(mg/dl)). Results: Forty-eight out of 1521 screened articles reported mGFR in healthy term-born neonates, and 978 mGFR values from 881 neonates were analysed. IPD were available for 367 neonates and the other 514 neonates were represented by 41 aggregated data points as means/medians per group. GFR doubled in the first five days after birth from 19.6 (95%CI 14.7;24.6) ml/min/1.73m2 to 40.6 (95%CI 36.7;44.5) ml/min/1.73m2, then more gradually increased to 59.4 (95%CI 45.9;72.9) ml/min/1.73m2 by four weeks of age. A coefficient of 0.31 to estimate GFR best fitted the data. Conclusions: These reference values for healthy term-born neonates show a biphasic increase in GFR with the largest increase between days 1 and 5. Together with the re-examined Schwartz equation, this can help identify altered GFR in term-born neonates. To enable widespread implementation of our proposed eGFR equation, validation in a large cohort of neonates is required.
Collapse
Affiliation(s)
- Nori Smeets
- N Smeets, Department of Pharmacology and Toxicology, Radboudumc Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Joanna IntHout
- J IntHout, Department for Health Evidence, Section Biostatistics, Radboudumc, Nijmegen, Netherlands
| | - Maurice van der Burgh
- M van der Burgh, Department of Pharmacology and Toxicology, Radboudumc Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - George Schwartz
- G Schwartz, Department of Pediatrics, Pediatric Nephrology, University of Rochester Medical Center, Rochester, United States
| | - Michiel Schreuder
- M Schreuder, Department of Pediatrics, division of Pediatric Nephrology, Radboudumc, Nijmegen, Netherlands
| | - Saskia de Wildt
- S de Wildt, Department of Pharmacology and Toxicology, Radboudumc Radboud Institute for Health Sciences, Nijmegen, Netherlands
| |
Collapse
|
14
|
Wu Y, Allegaert K, Flint RB, Simons SHP, Krekels EHJ, Knibbe CAJ, Völler S. Prediction of glomerular filtration rate maturation across preterm and term neonates and young infants using inulin as marker. AAPS J 2022; 24:38. [PMID: 35212832 DOI: 10.1208/s12248-022-00688-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/30/2022] [Indexed: 11/30/2022] Open
Abstract
Describing glomerular filtration rate (GFR) maturation across the heterogeneous population of preterm and term neonates and infants is important to predict the clearance of renally cleared drugs. This study aims to describe the GFR maturation in (pre)term neonates and young infants (PNA < 90 days) using individual inulin clearance data (CLinulin). To this end, published GFR maturation models were evaluated by comparing their predicted GFR with CLinulin retrieved from literature. The best model was subsequently optimized in NONMEM V7.4.3 to better fit the CLinulin values. Our study evaluated seven models and collected 381 individual CLinulin values from 333 subjects with median (range) birthweight (BWb) 1880 g (580-4950), gestational age (GA) 34 weeks (25-43), current weight (CW) 1890 g (480-6200), postnatal age (PNA) 3 days (0-75), and CLinulin 2.20 ml/min (0.43-17.90). The De Cock 2014 model (covariates: BWb and PNA) performed the best in predicting CLinulin, followed by the Rhodin 2009 model (covariates: CW and postmenstrual age). The final optimized model shows that GFR at birth is determined by BWb, thereafter the maturation rate of GFR is dependent on PNA and GA, with a higher GA showing an overall faster maturation. To conclude, using individual CLinulin data, we found that a model for neonatal GFR requires a distinction between prenatal maturation quantified by BWb and postnatal maturation. To capture postnatal GFR maturation in (pre)term neonates and young infants, we developed an optimized model in which PNA-related maturation was dependent on GA.
Collapse
Affiliation(s)
- Yunjiao Wu
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands.,Departments of Development and Regeneration and Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Robert B Flint
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sinno H P Simons
- Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Elke H J Krekels
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Catherijne A J Knibbe
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Clinical Pharmacy, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Swantje Völler
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands. .,Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands. .,Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
15
|
Rieder MJ, Elzagallaai AA. Pharmacogenomics in Children. Methods Mol Biol 2022; 2547:569-593. [PMID: 36068477 DOI: 10.1007/978-1-0716-2573-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Historically genetics has not been considered when prescribing drugs for children. However, it is clear that genetics are not only an important determinant of disease in children but also of drug response for many important drugs that are core agents used in the therapy of common problems in children. Advances in therapy and in the ethical construct of children's research have made pharmacogenomic assessment for children much easier to pursue. It is likely that pharmacogenomics will become part of the therapeutic decision-making process for children, notably in areas such as childhood cancer where weighing benefits and risks of therapy is crucial.
Collapse
Affiliation(s)
- Michael J Rieder
- Division of Paediatric Clinical Pharmacology, Department of Paediatrics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
| | - Abdelbaset A Elzagallaai
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
16
|
Hall AM, Trepiccione F, Unwin RJ. Drug toxicity in the proximal tubule: new models, methods and mechanisms. Pediatr Nephrol 2022; 37:973-982. [PMID: 34050397 PMCID: PMC9023418 DOI: 10.1007/s00467-021-05121-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/23/2021] [Accepted: 05/05/2021] [Indexed: 10/28/2022]
Abstract
The proximal tubule (PT) reabsorbs most of the glomerular filtrate and plays an important role in the uptake, metabolism and excretion of xenobiotics. Some therapeutic drugs are harmful to the PT, and resulting nephrotoxicity is thought to be responsible for approximately 1 in 6 of cases of children hospitalized with acute kidney injury (AKI). Clinically, PT dysfunction leads to urinary wasting of important solutes normally reabsorbed by this nephron segment, leading to systemic complications such as bone demineralization and a clinical scenario known as the renal Fanconi syndrome (RFS). While PT defects can be diagnosed using a combination of blood and urine markers, including urinary excretion of low molecular weight proteins (LMWP), standardized definitions of what constitutes clinically significant toxicity are lacking, and identifying which patients will go on to develop progressive loss of kidney function remains a major challenge. In addition, much of our understanding of cellular mechanisms of drug toxicity is still limited, partly due to the constraints of available cell and animal models. However, advances in new and more sophisticated in vitro models of the PT, along with the application of high-content analytical methods that can provide readouts more relevant to the clinical manifestations of nephrotoxicity, are beginning to extend our knowledge. Such technical progress should help in discovering new biomarkers that can better detect nephrotoxicity earlier and predict its long-term consequences, and herald a new era of more personalized medicine.
Collapse
Affiliation(s)
- Andrew M. Hall
- grid.7400.30000 0004 1937 0650Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Francesco Trepiccione
- grid.9841.40000 0001 2200 8888Department of Translational Medical Science, University of Campania ‘Luigi Vanvitelli’, Naples, Italy ,grid.428067.f0000 0004 4674 1402Biogem Research Institute, Ariano Irpino, Italy
| | - Robert J. Unwin
- grid.83440.3b0000000121901201Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
17
|
Gowa MA, Yamin R, Murtaza H, Nawaz H, Jamal G, Lohano PD. Frequency of Drug Induced Acute Kidney Injury in Pediatric Intensive Care Unit. Cureus 2021; 13:e19689. [PMID: 34950540 PMCID: PMC8687793 DOI: 10.7759/cureus.19689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Acute kidney injury (AKI) is known to complicate one-third of cases in pediatric intensive care units (PICU), and almost one-fourth of these are due to nephrotoxic drugs (NTDs). Although stopping NTDs seems the most obvious option, it is not practically applicable. Many NTDs are the only existing option, and their potential benefits outweigh the risk of drug-induced AKI. Objectives: To assess the proportion of children receiving NTDs in the PICU and highlight the children who developed AKI. Methods: A prospective observational study was conducted in the PICU of the National Institute of Child Health, Karachi. All children admitted to the PICU for at least 72 hours not diagnosed with any acute or chronic kidney disease were included. Serum creatinine (SCr) was done at admission and then after 72 hours. Data was entered and analyzed using IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp. Results: Of 99 children, 53 (53.5%) were male. NTD exposure was positive in 97 (97.9%), and 72 (72.7%) had high exposure (≥3 NTDs). Drug-induced AKI was diagnosed in 46 (46.5%). It was significantly related to high SCr even at admission and high NTDs exposure. The mortality rate in the AKI group was 17% compared to 4% in the non-AKI (p=0.02). Conclusion: Almost half of all PICU admissions were infants. Almost all patients were exposed to NTDs, and three-fourth experienced high exposure. AKI developed in 46% of patients and may be predicted by raised creatinine at the time of admission. Children exposed to ≥3 NTDs had a higher chance of drug-induced AKI.
Collapse
Affiliation(s)
- Murtaza A Gowa
- Pediatrics Critical Care, National Institute of Child Health, Karachi, PAK
| | - Rabia Yamin
- Pediatrics, National Institute of Child Health, Karachi, PAK
| | - Hina Murtaza
- Pediatrics, National Institute of Child Health, Karachi, PAK
| | - Hira Nawaz
- Pediatrics and Child Health, National Institute of Child Health, Karachi, PAK
| | - Ghazala Jamal
- Pediatrics and Child Health, National Institute of Child Health, Karachi, PAK
| | - Pooja D Lohano
- Pediatrics, National Institute of Child Health, Karachi, PAK
| |
Collapse
|
18
|
Gong J, Ma L, Li M, Ma L, Chen C, Zhao S, Zhou Y, Cui Y. Nonsteroidal anti-inflammatory drugs associated acute kidney injury in hospitalized children: A systematic review and meta-analysis. Pharmacoepidemiol Drug Saf 2021; 31:117-127. [PMID: 34757665 DOI: 10.1002/pds.5385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Nonsteroidal anti-inflammatory drugs (NSAIDs) are regarded as nephrotoxins. Children commonly use NSAIDs and are susceptible to nephropathy, but the relationship between acute kidney injury (AKI) and use of NSAIDs is not well examined yet. OBJECTIVE To evaluate the relationship between AKI and use of NSAIDs in hospitalized pediatric patients who are susceptible to nephropathy. METHODS We conducted this systematic review and meta-analysis of observational studies by searching PubMed, Embase, and Cochrane Database for articles published up to June 1, 2020. Reports included involved children (age < 18 years) who used NSAIDs for various reasons and were admitted in the hospital. The main outcome measure was whether AKI occurred, and pooled odds ratio (OR) and 95% confidence intervals (CI) were calculated using generic inverse variance methods. RESULTS Seven studies reporting risk of AKI in the hospitalized pediatric patients receiving NSAIDs were included applying a random-effects model. In the hospitalized pediatric population, the pooled OR of AKI for present NSAID exposure was 1.55 (95%CI 1.26-1.92). CONCLUSIONS NSAID exposure was associated with an approximate 1.6-fold rise in the odds of developing AKI in hospitalized pediatric patients. Avoidance, cautious use of NSAIDs and further evidence are needed. This study was registered with PROSPERO (identifier: CRD42021219779).
Collapse
Affiliation(s)
- Jun Gong
- Department of Pharmacy, Peking University First Hospital, Beijing, People's Republic of China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Lingyue Ma
- Department of Pharmacy, Peking University First Hospital, Beijing, People's Republic of China
| | - Mengya Li
- Department of Pharmacy, Peking University First Hospital, Beijing, People's Republic of China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Lingyun Ma
- Department of Pharmacy, Peking University First Hospital, Beijing, People's Republic of China
| | - Chaoyang Chen
- Department of Pharmacy, Peking University First Hospital, Beijing, People's Republic of China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Simiao Zhao
- Department of Pharmacy, Peking University First Hospital, Beijing, People's Republic of China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, People's Republic of China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, People's Republic of China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| |
Collapse
|
19
|
Hartman SJF, Brüggemann RJ, Orriëns L, Dia N, Schreuder MF, de Wildt SN. Pharmacokinetics and Target Attainment of Antibiotics in Critically Ill Children: A Systematic Review of Current Literature. Clin Pharmacokinet 2021; 59:173-205. [PMID: 31432468 PMCID: PMC7007426 DOI: 10.1007/s40262-019-00813-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pharmacokinetics (PK) are severely altered in critically ill patients due to changes in volume of distribution (Vd) and/or drug clearance (Cl). This affects the target attainment of antibiotics in critically ill children. We aimed to identify gaps in current knowledge and to compare published PK parameters and target attainment of antibiotics in critically ill children to healthy children and critically ill adults. METHODS Systematic literature search in PubMed, EMBASE and Web of Science. Articles were labelled as relevant when they included information on PK of antibiotics in critically ill, non-neonatal, pediatric patients. Extracted PK-parameters included Vd, Cl, (trough) concentrations, AUC, probability of target attainment, and elimination half-life. RESULTS 50 relevant articles were identified. Studies focusing on vancomycin were most prevalent (17/50). Other studies included data on penicillins, cephalosporins, carbapenems and aminoglycosides, but data on ceftriaxone, ceftazidime, penicillin and metronidazole could not be found. Critically ill children generally show a higher Cl and larger Vd than healthy children and critically ill adults. Reduced target-attainment was described in critically ill children for multiple antibiotics, including amoxicillin, piperacillin, cefotaxime, vancomycin, gentamicin, teicoplanin, amikacin and daptomycin. 38/50 articles included information on both Vd and Cl, but a dosing advice was given in only 22 articles. CONCLUSION The majority of studies focus on agents where TDM is applied, while other antibiotics lack data altogether. The larger Vd and higher Cl in critically ill children might warrant a higher dose or extended infusions of antibiotics in this patient population to increase target-attainment. Studies frequently fail to provide a dosing advice for this patient population, even if the necessary information is available. Our study shows gaps in current knowledge and encourages future researchers to provide dosing advice for special populations whenever possible.
Collapse
Affiliation(s)
- Stan J F Hartman
- Department of Pharmacology-Toxicology, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| | | | - Lynn Orriëns
- Department of Pharmacology-Toxicology, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Nada Dia
- Department of Pharmacology-Toxicology, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Michiel F Schreuder
- Division of Pediatric Nephrology, Department of Pediatrics, Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Saskia N de Wildt
- Department of Pharmacology-Toxicology, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.,Department of Intensive Care Medicine, Radboudumc, Nijmegen, The Netherlands.,Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Bury D, Tissing WJE, Muilwijk EW, Wolfs TFW, Brüggemann RJ. Clinical Pharmacokinetics of Triazoles in Pediatric Patients. Clin Pharmacokinet 2021; 60:1103-1147. [PMID: 34002355 PMCID: PMC8416858 DOI: 10.1007/s40262-021-00994-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
Triazoles represent an important class of antifungal drugs in the prophylaxis and treatment of invasive fungal disease in pediatric patients. Understanding the pharmacokinetics of triazoles in children is crucial to providing optimal care for this vulnerable population. While the pharmacokinetics is extensively studied in adult populations, knowledge on pharmacokinetics of triazoles in children is limited. New data are still emerging despite drugs already going off patent. This review aims to provide readers with the most current knowledge on the pharmacokinetics of the triazoles: fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole. In addition, factors that have to be taken into account to select the optimal dose are summarized and knowledge gaps are identified that require further research. We hope it will provide clinicians guidance to optimally deploy these drugs in the setting of a life-threatening disease in pediatric patients.
Collapse
Affiliation(s)
- Didi Bury
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim J E Tissing
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eline W Muilwijk
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacy, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Tom F W Wolfs
- Department of Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Infectious Diseases, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Roger J Brüggemann
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Chapron BD, Chapron A, Leeder JS. Recent advances in the ontogeny of drug disposition. Br J Clin Pharmacol 2021; 88:4267-4284. [PMID: 33733546 DOI: 10.1111/bcp.14821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Developmental changes that occur throughout childhood have long been known to impact drug disposition. However, pharmacokinetic studies in the paediatric population have historically been limited due to ethical concerns arising from incorporating children into clinical trials. As such, much of the early work in the field of developmental pharmacology was reliant on difficult-to-interpret in vitro and in vivo animal studies. Over the last 2 decades, our understanding of the mechanistic processes underlying age-related changes in drug disposition has advanced considerably. Progress has largely been driven by technological advances in mass spectrometry-based methods for quantifying proteins implicated in drug disposition, and in silico tools that leverage these data to predict age-related changes in pharmacokinetics. This review summarizes our current understanding of the impact of childhood development on drug disposition, particularly focusing on research of the past 20 years, but also highlighting select examples of earlier foundational research. Equally important to the studies reviewed herein are the areas that we cannot currently describe due to the lack of research evidence; these gaps provide a map of drug disposition pathways for which developmental trends still need to be characterized.
Collapse
Affiliation(s)
- Brian D Chapron
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Alenka Chapron
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA.,Schools of Medicine and Pharmacy, University of Missouri-Kansas City, MO, USA
| |
Collapse
|
22
|
An Update on Pharmaceutical Strategies for Oral Delivery of Therapeutic Peptides and Proteins in Adults and Pediatrics. CHILDREN-BASEL 2020; 7:children7120307. [PMID: 33352795 PMCID: PMC7766037 DOI: 10.3390/children7120307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
While each route of therapeutic drug delivery has its own advantages and limitations, oral delivery is often favored because it offers convenient painless administration, sustained delivery, prolonged shelf life, and often lower manufacturing cost. Its limitations include mucus and epithelial cell barriers in the gastrointestinal (GI) tract that can block access of larger molecules including Therapeutic protein or peptide-based drugs (TPPs), resulting in reduced bioavailability. This review describes these barriers and discusses different strategies used to modify TPPs to enhance their oral bioavailability and/or to increase their absorption. Some seek to stabilize the TTPs to prevent their degradation by proteolytic enzymes in the GI tract by administering them together with protease inhibitors, while others modify TPPs with mucoadhesive polymers like polyethylene glycol (PEG) to allow them to interact with the mucus layer, thereby delaying their clearance. The further barrier provided by the epithelial cell membrane can be overcome by the addition of a cell-penetrating peptide (CPP) and the use of a carrier molecule such as a liposome, microsphere, or nanosphere to transport the TPP-CPP chimera. Enteric coatings have also been used to help TPPs reach the small intestine. Key efficacious TPP formulations that have been approved for clinical use will be discussed.
Collapse
|
23
|
Wu YE, Wang YK, Tang BH, Dong L, Li X, Zhang W, Li DF, Tian LY, van den Anker J, You DP, Zhao W. Population Pharmacokinetics and Dosing Optimization of Amoxicillin in Chinese Infants. J Clin Pharmacol 2020; 61:538-546. [PMID: 32996155 DOI: 10.1002/jcph.1752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022]
Abstract
Amoxicillin is used to treat various bacterial infections (eg, pneumonia, sepsis, meningitis) in infants. Despite its frequent use, there is a lack of population pharmacokinetic studies in infants, resulting in a substantial variability in dosing regimens used in clinical practice. Therefore, the objective of this study was to evaluate the population pharmacokinetics of intravenous amoxicillin in infants and suggest an optimal dosage regimen. Blood samples were collected for the determination of amoxicillin concentrations using an opportunistic sampling strategy. The amoxicillin plasma concentrations were determined using high-performance liquid chromatography. Population pharmacokinetic analysis was performed using NONMEM. A total of 62 pharmacokinetic samples from 47 infants (age range, 0.09 to 2.0 years) were available for analysis. A 2-compartment model with first-order elimination was most suitable to describe the population pharmacokinetics of amoxicillin, and covariate analysis showed that only current body weight was a significant covariate. Monte Carlo simulation demonstrated that the currently used dosage regimen (25 mg/kg twice daily) resulted in only 22.4% of infants reaching their pharmacodynamic target, using a minimum inhibitory concentration (MIC) break point of 2 mg/L, whereas a dosage regimen (60 mg/kg thrice daily), as supported by the British National Formulary for Children, resulted in 80.9% of infants achieving their pharmacodynamic target. It is recommended to change antibiotics for infections caused by Escherichia coli (MIC = 8.0 mg/L) because only 27.9% of infants reached target using 60 mg/kg thrice daily.
Collapse
Affiliation(s)
- Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ya-Kun Wang
- Department of Respiratory Care, Children's Hospital of Hebei Province affiliated to Hebei Medical University, Shijiazhuang, China
| | - Bo-Hao Tang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Dong
- Department of Pharmacy, Children's Hospital of Hebei Province affiliated to Hebei Medical University, Shijiazhuang, China
| | - Xue Li
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Di-Fei Li
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li-Yuan Tian
- Department of Respiratory Care, Children's Hospital of Hebei Province affiliated to Hebei Medical University, Shijiazhuang, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Medical Center, Washington, District of Columbia, USA.,Departments of Pediatrics, Pharmacology & Physiology, Genomics & Precision Medicine, the George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA.,Department of Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Dian-Ping You
- Pediatric Research Institute, Children's Hospital of Hebei Province affiliated to Hebei Medical University, Shijiazhuang, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Pediatric Research Institute, Children's Hospital of Hebei Province affiliated to Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Smeets NJL, Schreuder MF, Dalinghaus M, Male C, Lagler FB, Walsh J, Laer S, de Wildt SN. Pharmacology of enalapril in children: a review. Drug Discov Today 2020; 25:S1359-6446(20)30336-6. [PMID: 32835726 DOI: 10.1016/j.drudis.2020.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022]
Abstract
Enalapril is an angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of (paediatric) hypertension, heart failure and chronic kidney diseases. Because its disposition, efficacy and safety differs across the paediatric continuum, data from adults cannot be automatically extrapolated to children. This review highlights paediatric enalapril pharmacokinetic data and demonstrates that these are inadequate to support with certainty an age-related effect on enalapril/enalaprilat pharmacokinetics. In addition, our review shows that evidence to support effective and safe prescribing of enalapril in children is limited, especially in young children and heart failure patients; studies in these groups are either absent or show conflicting results. We provide explanations for observed differences between age groups and indications, and describe areas for future research.
Collapse
Affiliation(s)
- Nori J L Smeets
- Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute of Molecular Sciences, Radboudumc Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Michiel Dalinghaus
- Department of Pediatric Cardiology, Erasmus MC - Sophia, Rotterdam, the Netherlands
| | - Christoph Male
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | - Stephanie Laer
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, the Netherlands; Department of Intensive Care and Pediatric Surgery, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
25
|
Schijvens AM, de Wildt SN, Schreuder MF. Pharmacokinetics in children with chronic kidney disease. Pediatr Nephrol 2020; 35:1153-1172. [PMID: 31375913 PMCID: PMC7248054 DOI: 10.1007/s00467-019-04304-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
Abstract
In children, the main causes of chronic kidney disease (CKD) are congenital diseases and glomerular disorders. CKD is associated with multiple physiological changes and may therefore influence various pharmacokinetic (PK) parameters. A well-known consequence of CKD on pharmacokinetics is a reduction in renal clearance due to a decrease in the glomerular filtration rate. The impact of renal impairment on pharmacokinetics is, however, not limited to a decreased elimination of drugs excreted by the kidney. In fact, renal dysfunction may lead to modifications in absorption, distribution, transport, and metabolism as well. Currently, insufficient evidence is available to guide dosing decisions on many commonly used drugs. Moreover, the impact of maturation on drug disposition and action should be taken into account when selecting and dosing drugs in the pediatric population. Clinicians should take PK changes into consideration when selecting and dosing drugs in pediatric CKD patients in order to avoid toxicity and increase efficiency of drugs in this population. The aim of this review is to summarize known PK changes in relation to CKD and to extrapolate available knowledge to the pediatric CKD population to provide guidance for clinical practice.
Collapse
Affiliation(s)
- Anne M Schijvens
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Radboud University Medical Center, Amalia Children's Hospital, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Michiel F Schreuder
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Radboud University Medical Center, Amalia Children's Hospital, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
26
|
The Effect of Size, Maturation, Global Asphyxia, Cerebral Ischemia, and Therapeutic Hypothermia on the Pharmacokinetics of High-Dose Recombinant Erythropoietin in Fetal Sheep. Int J Mol Sci 2020; 21:ijms21093042. [PMID: 32344930 PMCID: PMC7247678 DOI: 10.3390/ijms21093042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
High-dose human recombinant erythropoietin (rEPO) is a promising potential neuroprotective treatment in preterm and full-term neonates with hypoxic-ischemic encephalopathy (HIE). There are limited data on the pharmacokinetics of high-dose rEPO in neonates. We examined the effects of body weight, gestation age, global asphyxia, cerebral ischemia, hypothermia and exogenous rEPO on the pharmacokinetics of high-dose rEPO in fetal sheep. Near-term fetal sheep on gestation day 129 (0.87 gestation) (full term 147 days) received sham-ischemia (n = 5) or cerebral ischemia for 30 min followed by treatment with vehicle (n = 4), rEPO (n = 8) or combined treatment with rEPO and hypothermia (n = 8). Preterm fetal sheep on gestation day 104 (0.7 gestation) received sham-asphyxia (n = 1) or complete umbilical cord occlusion for 25 min followed by i.v. infusion of vehicle (n = 8) or rEPO (n = 27) treatment. rEPO was given as a loading bolus, followed by a prolonged continuous infusion for 66 to 71.5 h in preterm and near-term fetuses. A further group of preterm fetal sheep received repeated bolus injections of rEPO (n = 8). The plasma concentrations of rEPO were best described by a pharmacokinetic model that included first-order and mixed-order elimination with linear maturation of elimination with gestation age. There were no detectable effects of therapeutic hypothermia, cerebral ischemia, global asphyxia or exogenous treatment on rEPO pharmacokinetics. The increase in rEPO elimination with gestation age suggests that to maintain target exposure levels during prolonged treatment, the dose of rEPO may have to be adjusted to match the increase in size and growth. These results are important for designing and understanding future studies of neuroprotection with high-dose rEPO.
Collapse
|
27
|
Sassen SDT, Zwaan CM, van der Sluis IM, Mathôt RAA. Pharmacokinetics and population pharmacokinetics in pediatric oncology. Pediatr Blood Cancer 2020; 67:e28132. [PMID: 31876123 DOI: 10.1002/pbc.28132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/28/2022]
Abstract
Pharmacokinetic research has become increasingly important in pediatric oncology as it can have direct clinical implications and is a crucial component in individualized medicine. Population pharmacokinetics has become a popular method especially in children, due to the potential for sparse sampling, flexible sampling times, computing of heterogeneous data, and identification of variability sources. However, population pharmacokinetic reports can be complex and difficult to interpret. The aim of this article is to provide a basic explanation of population pharmacokinetics, using clinical examples from the field of pediatric oncology, to facilitate the translation of pharmacokinetic research into the daily clinic.
Collapse
Affiliation(s)
- Sebastiaan D T Sassen
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Ron A A Mathôt
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Matsuo Y, Matsumoto S, Wajima T, Matsubara K. Pharmacokinetic modeling and simulation for dose rationale of doripenem in neonates and infants. Drug Metab Pharmacokinet 2020; 35:145-150. [PMID: 31969257 DOI: 10.1016/j.dmpk.2019.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 11/18/2022]
Abstract
The aims of this study were to construct a population pharmacokinetic model of doripenem in neonates and infants and to assess the dosing regimen for patients <3 months of age using Monte-Carlo pharmacokinetic/pharmacodynamic (PKPD) simulations. In the population pharmacokinetic analysis using 187 plasma concentrations from 47 neonates and infants, a two-compartment model well described plasma doripenem concentrations with the most significant covariates of chronological age and gestational age identified for the pharmacokinetics of doripenem. Monte-Carlo simulations suggested that the selected dosages for neonates and infants based on chronological age and gestational age (5 or 10 mg/kg) would provide ≥90% target attainment of 40%fT>MIC against MIC of 2 μg/mL in all age groups. These results would be useful for understanding the PKPD characteristics of doripenem, which could provide essential information on optimal therapeutic treatment for neonates and infants.
Collapse
Affiliation(s)
- Yumiko Matsuo
- Clinical Pharmacology & Pharmacokinetics, Project Management Department, Shionogi & Co., Ltd, Japan.
| | - Sayaka Matsumoto
- Clinical Pharmacology & Pharmacokinetics, Project Management Department, Shionogi & Co., Ltd, Japan
| | - Toshihiro Wajima
- Clinical Pharmacology & Pharmacokinetics, Project Management Department, Shionogi & Co., Ltd, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Japan
| |
Collapse
|
29
|
Dhont E, Van Der Heggen T, De Jaeger A, Vande Walle J, De Paepe P, De Cock PA. Augmented renal clearance in pediatric intensive care: are we undertreating our sickest patients? Pediatr Nephrol 2020; 35:25-39. [PMID: 30374606 DOI: 10.1007/s00467-018-4120-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/04/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
Many critically ill patients display a supraphysiological renal function with enhanced renal perfusion and glomerular hyperfiltration. This phenomenon described as augmented renal clearance (ARC) may result in enhanced drug elimination through renal excretion mechanisms. Augmented renal clearance seems to be triggered by systemic inflammation and therapeutic interventions in intensive care. There is growing evidence that ARC is not restricted to the adult intensive care population, but is also prevalent in critically ill children. Augmented renal clearance is often overlooked due to the lack of reliable methods to assess renal function in critically ill children. Standard equations to calculate glomerular filtration rate (GFR) are developed for patients who have a steady-state creatinine production and a stable renal function. Those formulas are not reliable in critically ill patients with acutely changing GFR and tend to underestimate true GFR in patients with ARC. Tools for real-time, continuous, and non-invasive measurement of fluctuating GFR are most needed to identify changes in kidney function during critical illness and therapeutic interventions. Such devices are currently being validated and hold a strong potential to become the standard of practice. In the meantime, urinary creatinine clearance is considered the most reliable method to detect ARC in critically ill patients. Augmented renal clearance is clearly associated with subtherapeutic antimicrobial concentrations and subsequent therapeutic failure. This warrants the need for adjusted dosing regimens to optimize pharmacokinetic and pharmacodynamic target attainment. This review aims to summarize current knowledge on ARC in critically ill children, to give insight into its possible pathophysiological mechanism, to evaluate screening methods for ARC in the pediatric intensive care population, and to illustrate the effect of ARC on drug exposure, therapeutic efficacy, and clinical outcome.
Collapse
Affiliation(s)
- Evelyn Dhont
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium. .,Pediatric Intensive Care 1K12D, Ghent University Hospital, Heymanslaan 10, 9000, Ghent, Belgium.
| | | | - Annick De Jaeger
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Johan Vande Walle
- Department of Pediatrics, Ghent University Hospital, Ghent, Belgium.,Department of Pediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Peter De Paepe
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| | - Pieter A De Cock
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium.,Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.,Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
30
|
Romański M, Wachowiak J, Główka FK. Treosulfan Pharmacokinetics and its Variability in Pediatric and Adult Patients Undergoing Conditioning Prior to Hematopoietic Stem Cell Transplantation: Current State of the Art, In-Depth Analysis, and Perspectives. Clin Pharmacokinet 2019; 57:1255-1265. [PMID: 29557088 PMCID: PMC6132445 DOI: 10.1007/s40262-018-0647-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Treosulfan is a prodrug that undergoes a highly pH- and temperature-dependent nonenzymatic conversion to the monoepoxide {(2S,3S)-1,2-epoxy-3,4-butanediol 4-methanesulfonate [S,S-EBDM]} and diepoxide {(2S,3S)-1,2:3,4-diepoxybutane [S,S-DEB]}. Currently, treosulfan is tested in clinical trials as an alternative to busulfan in conditioning prior to hematopoietic stem cell transplantation (HSCT). Of note, the optimal dosing of the prodrug is still unresolved, especially in infants. In this paper, the pharmacokinetics of treosulfan, together with its biologically active epoxides, is comprehensively reviewed for the first time, with the focus on conditioning prior to HSCT. Most of the insightful data presented in this review comes from studies that have been conducted in the last 3 years. The article widely discusses the volume of distribution and total clearance of treosulfan. In particular, the interindividual variability of these key parameters in infants, children above 1 year of age, and adults is analyzed, including possible covariates. A clinically important aspect of the formation rate-limited elimination of S,S-EBDM and S,S-DEB is described, including the correlation between the exposure of the prodrug and S,S-EBDM in children. The significance of the elimination half-life of treosulfan and its epoxides for successful conditioning prior to HSCT is also raised. Furthermore, the organ disposition of treosulfan and S,S-EBDM in rats is discussed in the context of the clinical toxicity and myeloablative activity of treosulfan versus busulfan. Moreover, perspectives for future therapeutic drug monitoring of treosulfan are presented. The review is intended to be helpful to pharmacists and doctors in the comprehension of the clinical pharmacokinetics of treosulfan.
Collapse
Affiliation(s)
- Michał Romański
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland.
| | - Jacek Wachowiak
- Department of Pediatric Hematology, Oncology and Transplantology, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572, Poznan, Poland
| | - Franciszek K Główka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| |
Collapse
|
31
|
Physiologically Based Pharmacokinetic Modeling of Oxycodone in Children to Support Pediatric Dosing Optimization. Pharm Res 2019; 36:171. [DOI: 10.1007/s11095-019-2708-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
|
32
|
Population Pharmacokinetics and Safety of Piperacillin-Tazobactam Extended Infusions in Infants and Children. Antimicrob Agents Chemother 2019; 63:AAC.01260-19. [PMID: 31427292 DOI: 10.1128/aac.01260-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/09/2019] [Indexed: 11/20/2022] Open
Abstract
Piperacillin-tazobactam (TZP) is frequently used to treat severe hospital-acquired infections in children. We performed a single-center, pharmacokinetic (PK) trial of TZP in children ranging in age from 2 months to 6 years from various clinical subpopulations. Children who were on TZP per the standard of care were prospectively included and assigned to receive a dose of 80 mg/kg of body weight every 6 h infused over 2 h (ages 2 to 5 months) or a dose of 90 mg/kg every 8 h infused over 4 h (ages 6 months to 6 years). Separate population PK models were developed for piperacillin and tazobactam using nonlinear mixed-effects modeling. Optimal dosing was judged based on the ability to maintain free piperacillin concentrations above the piperacillin MIC for enterobacteria and Pseudomonas aeruginosa for ≥50% of the dosing interval. Any untoward event occurring during treatment was collected as an adverse event. A total of 79 children contributed 174 PK samples. The median (range) age and weight were 1.7 years (2 months to 6 years) and 11.4 kg (3.8 to 27.6 kg), respectively. A 2-compartment model with first-order elimination best described the piperacillin and tazobactam data. Both final population PK models included weight and concomitant furosemide administration on clearance and weight on the volume of distribution of the central compartment. The optimal dosing regimens in children with normal renal function, based on the piperacillin component, were 75 mg/kg/dose every 4 h infused over 0.5 h in infants ages 2 to ≤6 months and 130 mg/kg/dose every 8 h infused over 4 h in children ages >6 months to 6 years against bacteria with MICs up to 16 mg/liter. A total of 44 children (49%) had ≥1 adverse event, with 3 of these (site infiltrations) considered definitely associated with the extended infusions.
Collapse
|
33
|
Rieder M. Adverse Drug Reactions Across the Age Continuum: Epidemiology, Diagnostic Challenges, Prevention, and Treatments. J Clin Pharmacol 2019; 58 Suppl 10:S36-S47. [PMID: 30248196 DOI: 10.1002/jcph.1115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/11/2018] [Indexed: 12/15/2022]
Abstract
Adverse drug reactions (ADRs) are common and important complications of drug therapy for children. The risk for ADRs changes over childhood, as do the nature and types of ADRs. Importantly, the risk and nature of ADRs in children are markedly different from those of adults, and adult data cannot be relied on to guide safe drug therapy in children. There are groups of children, notably those with complex and chronic diseases, who are at substantial risk for ADRs. The evaluation of an undesired effect during therapy is ideally accomplished by an organized approach that is a skill that clinicians who care for children-especially those children at high risk for ADRs must have. Additionally, clinicians as well as drug regulatory agencies and industry need to be both vigilant and astute as well as aware that ADRs in children are often different in nature and frequency from those in adults. The increasing use of pharmacogenomics to guide drug dosing and the increasing number of biological agents will provide new sets of challenges to clinicians over the next decade.
Collapse
Affiliation(s)
- Michael Rieder
- Department of Paediatrics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
34
|
Abstract
Abstract
Purpose
The changes in physiological functions as children grow and organ systems mature result in pharmacokinetic alterations throughout childhood. These alterations in children result in absorption, distribution, metabolism, and excretion of drugs that are different from those seen in the typical adult diseased population.
Summary
Changes in gastrointestinal motility and gastric pH in neonates and infants affect the absorption rate and bioavailability of drugs. Skin absorption rate and extent can be altered by different skin structures and perfusion in young children. Intramuscular and rectal absorption become less predictable in children due to erratic absorption site perfusion and other factors. Children’s body compositions also differ greatly from that in adults. Water-soluble drugs distribute more extensively in newborns due to larger water content than in older children and adults. Drug elimination and excretion are also affected in pediatric population due to differences in liver and renal function. Immature enzyme development and renal function result in reduced clearance of drugs in young children. There are limited pharmacokinetic data available for many drugs used in children.
Conclusion
Considering the changes in pharmacokinetics in children can help pharmacists optimize the dosing and monitoring of drugs and do the best they can to help this vulnerable population.
Collapse
|
35
|
Population Pharmacokinetics and Dosing of Milrinone After Patent Ductus Arteriosus Ligation in Preterm Infants. Pediatr Crit Care Med 2019; 20:621-629. [PMID: 30664589 DOI: 10.1097/pcc.0000000000001879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The postoperative course of patent ductus arteriosus ligation is often complicated by postligation cardiac syndrome, occurring in 10-45% of operated infants. Milrinone might prevent profound hemodynamic instability and improve the recovery of cardiac function in this setting. The present study aimed to describe the population pharmacokinetics of milrinone in premature neonates at risk of postligation cardiac syndrome and give dosing recommendations. DESIGN A prospective single group open-label pharmacokinetics study. SETTINGS Two tertiary care neonatal ICUs: Tallinn Children's Hospital and Tartu University Hospital, Estonia. PATIENTS Ten neonates with postmenstrual age of 24.6-30.1 weeks and postnatal age of 5-27 days undergoing patent ductus arteriosus ligation and at risk of postligation cardiac syndrome, based on echocardiographic assessment of left ventricular output of less than 200 mL/kg/min 1 hour after the surgery. INTERVENTIONS Milrinone at a dose of 0.73 μg/kg/min for 3 hours followed by 0.16 μg/kg/min for 21 hours. Four blood samples from each patient for milrinone plasma concentration measurements were collected. MEASUREMENTS AND MAIN RESULTS Concentration-time data of milrinone were analyzed with nonlinear mixed-effects modeling software (NONMEM Version 7.3 [ICON Development Solutions, Ellicott City, MD]). Probability of target attainment simulations gave a dosing schedule that maximally attains concentration targets of 150-250 μg/L. Milrinone pharmacokinetics was described by a one-compartmental linear model with allometric scaling to bodyweight and an age maturation function of glomerular filtration rate. Parameter estimates for a patient with the median weight were 0.350 (L/hr) for clearance and 0.329 (L) for volume of distribution. The best probability of target attainment was achieved with a loading dose of 0.50 μg/kg/min for 3 hours followed by 0.15 μg/kg/min (postmenstrual age < 27 wk) or 0.20 μg/kg/min (postmenstrual age ≥ 27 wk). CONCLUSIONS Population pharmacokinetic modeling and simulations suggest a slow loading dose followed by maintenance infusion to reach therapeutic milrinone plasma concentrations within the timeframe of the postligation cardiac syndrome.
Collapse
|
36
|
Rodrigues C, Chiron C, Ounissi M, Dulac O, Gaillard S, Nabbout R, Jullien V. Pharmacokinetic evaluation of vigabatrin dose for the treatment of refractory focal seizures in children using adult and pediatric data. Epilepsy Res 2019; 150:38-45. [PMID: 30639958 DOI: 10.1016/j.eplepsyres.2019.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/13/2018] [Accepted: 01/06/2019] [Indexed: 11/27/2022]
Abstract
Vigabatrin is indicated as adjunctive therapy for refractory focal seizures. For children, European recommendations indicate maintenance doses varying from 30 to 100 mg/kg/day for this indication. Since cumulated dose was associated with retinal toxicity, it is essential to administrate the lowest effective dose to patients. This work was conducted with the purpose to determine the pediatric doses of vigabatrin that allow a similar exposure than effective doses in adults (2-3 g/day) through a pharmacokinetic (PK) study, using both pediatric and adult data. For this study, we focused on the active S(+) enantiomer of vigabatrin. First, the adult effective exposition range of vigabatrin-S was determined from an adult PK model. Then, this same model was scaled to the pediatric population using allometry and maturation principles to account for growth and development. The ability of the model to predict pediatric data was assessed by comparing population predictions with observed pediatric data. Finally, the extrapolated pediatric model was used to simulate pediatric expositions which were compared to the adult exposition range (36.5-77.9 mg.h/L). From those simulations, we determined that, for children aged between 3 months and 18 years, doses between 40 and 50 mg/kg/day allow vigabatrin-S expositions similar to those found in adults at the recommended posology. We proposed those doses as optimal maintenance doses that may be increased, if necessary, by slow titration.
Collapse
Affiliation(s)
- Christelle Rodrigues
- INSERM U1129, Paris, France; Paris Descartes University, CEA, Gif-sur-Yvette, France.
| | - Catherine Chiron
- INSERM U1129, Paris, France; Paris Descartes University, CEA, Gif-sur-Yvette, France.
| | - Marwa Ounissi
- INSERM U1129, Paris, France; Paris Descartes University, CEA, Gif-sur-Yvette, France.
| | - Olivier Dulac
- INSERM U1129, Paris, France; Paris Descartes University, CEA, Gif-sur-Yvette, France.
| | - Ségolène Gaillard
- Centre d'Investigation Clinique - CIC 1407- Hospices Civils de Lyon, France.
| | - Rima Nabbout
- INSERM U1129, Paris, France; Paris Descartes University, CEA, Gif-sur-Yvette, France; Reference Centre for Rare Epilepsies, APHP, Necker-Enfants Malades Hospital, Imagine Institute, Paris, France.
| | - Vincent Jullien
- INSERM U1129, Paris, France; Paris Descartes University, CEA, Gif-sur-Yvette, France; Service de Pharmacologie, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015 Paris, France.
| |
Collapse
|
37
|
Rieder M. Adverse Drug Reactions in Children: Pediatric Pharmacy and Drug Safety. J Pediatr Pharmacol Ther 2019; 24:4-9. [PMID: 30837807 PMCID: PMC6397008 DOI: 10.5863/1551-6776-24.1.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An underappreciated problem in child health is the risk for adverse drug reactions (ADRs). While there is an impression that children are at a lower risk than adults for ADRs, in fact a number of factors germane to pediatric therapy place certain groups of children at a high risk for adverse events associated with therapy. Given the importance of drug safety, an understanding of a diagnostic classification for ADRs and of how to approach a possible ADR clinically are key skills for pediatric pharmacists. As drug therapy for children evolves, becomes more complex, and begins to use novel molecules and biologicals there will be an increasing need for pediatric pharmacists to be more involved in clinical care, education, and research specific to drug safety.
Collapse
|
38
|
Childress AC, Stark JG. Diagnosis and Treatment of Attention-Deficit/Hyperactivity Disorder in Preschool-Aged Children. J Child Adolesc Psychopharmacol 2018; 28:606-614. [PMID: 30388032 DOI: 10.1089/cap.2018.0057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder defined as a persistent pattern of inactivity and/or hyperactivity that interferes with behavioral function or development. Diagnosis and treatment of ADHD in the preschool-aged population (children 3-5 years old) is more complicated compared with older children because of developmental and physiological differences. This article reviews the available literature regarding the challenges associated with ADHD diagnosis and treatment in preschool-aged children, as well as the unmet needs of preschool-aged children with ADHD. METHODS Key considerations for ADHD diagnosis and treatment patterns in preschool-aged children are summarized in this review, including the need for early intervention, the association with comorbidities, and the differences in pharmacokinetic profiles between preschool-aged children and older children. RESULTS Efficacy and safety data are lacking, as clinical trial design and execution pose unique challenges in this population. Preschool-aged children often have difficulty with pill swallowing and tolerating phlebotomy necessary for the collection of pharmacokinetic and safety data. However, early diagnosis and treatment are essential to mitigate ADHD symptoms and comorbidities that may develop during childhood and adolescence in patients with persistent ADHD. CONCLUSION This review describes the established diagnostic and treatment modalities, along with the unmet needs of preschool-aged children with ADHD.
Collapse
Affiliation(s)
- Ann C Childress
- 1 Center for Psychiatry and Behavioral Medicine, Inc. , Las Vegas, Nevada
| | | |
Collapse
|
39
|
Chung H, Hong KT, Lee JW, Rhee SJ, Kim S, Yoon SH, Yu KS, Kang HJ. Pharmacokinetics of fludarabine and its association with clinical outcomes in paediatric haematopoietic stem cell transplantation patients. Bone Marrow Transplant 2018; 54:284-292. [DOI: 10.1038/s41409-018-0260-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/15/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
|
40
|
Di Nardo M, Wildschut ED. Drugs pharmacokinetics during veno-venous extracorporeal membrane oxygenation in pediatrics. J Thorac Dis 2018; 10:S642-S652. [PMID: 29732182 DOI: 10.21037/jtd.2017.11.02] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Data evaluating pharmacokinetic/pharmacodynamic (PK/PD) aspect in the pediatric population are scarce especially regarding the pediatric intensive care unit. Dosing of frequently used drugs (sedatives, analgesics, antibiotics and cardiovascular drugs) are mainly based on non "pediatric intensive care unit (PICU)" patients, and sometimes are translated from adult patients. Among PICU patients, the most complex patients are the ones who are critically ill and are receiving mechanical circulatory/respiratory support for cardiac and/or respiratory failure. The use of extracorporeal membrane oxygenation is associated with major PK and PD changes, especially in neonates and children. The objective of this review is to assess the current literature for pediatric PK data in patients receiving extracorporeal membrane oxygenation (ECMO).
Collapse
Affiliation(s)
- Matteo Di Nardo
- Pediatric Intensive Care Unit, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Enno Diederick Wildschut
- Intensive Care and Department of Pediatric Surgery Erasmus MC, Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
41
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
42
|
Karageorgos SA, Miligkos M, Dakoutrou M, Tsioutis C. Clinical Effectiveness, Safety Profile, and Pharmacokinetics of Daptomycin in Pediatric Patients: A Systematic Review. J Pediatric Infect Dis Soc 2016; 5:446-457. [PMID: 27557822 DOI: 10.1093/jpids/piw048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
Abstract
Infections by Gram-positive pathogens pose a public health risk, especially due to increasing antibiotic resistance. Daptomycin has efficacy against most clinically important Gram-positive bacteria. Although experience regarding use of daptomycin in adults is increasing, studies on pediatric populations are limited. We aimed to evaluate the efficacy, safety, and pharmacokinetics of daptomycin in pediatric settings. We searched MEDLINE and Clinicaltrials.gov (through April 2016) and included 29 original studies in the final analysis. Available evidence suggests that daptomycin in pediatric patients has a favorable safety and tolerability profile and is an efficacious alternative for treatment of Gram-positive bacteremia, endocarditis, and infections of the skin, soft tissues, joints, and bones, especially when resistant strains are involved. However, future studies need to address several issues to determine the optimal dose and various pharmacokinetic parameters in different pediatric age groups.
Collapse
Affiliation(s)
- Spyridon A Karageorgos
- Infectious Diseases Working Group, Society of Junior Doctors, Athens.,University of Crete School of Medicine, Heraklion, Crete
| | - Michael Miligkos
- Infectious Diseases Working Group, Society of Junior Doctors, Athens.,Laboratory of Biomathematics, University of Thessaly School of Medicine, Larissa
| | - Maria Dakoutrou
- Infectious Diseases Working Group, Society of Junior Doctors, Athens.,First Department of Paediatrics, "Aghia Sophia" Children's Hospital, University of Athens, Greece
| | - Constantinos Tsioutis
- Infectious Diseases Working Group, Society of Junior Doctors, Athens.,Nicosia Polyclinic, Nicosia, Cyprus
| |
Collapse
|
43
|
Burris JF, Tortorici MA, Mandic M, Neely M, Reed MD. Dosage Adjustments Related to Young or Old Age and Organ Impairment. J Clin Pharmacol 2016; 56:1461-1473. [PMID: 27539787 DOI: 10.1002/jcph.816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 11/11/2022]
Abstract
Differences in physiology related to young or old age and/or organ system impairment alter the absorption, distribution, metabolism, and excretion of many medications and consequently their effectiveness and toxicity. This module discusses common alterations in medication use and dosage that are required in the pediatric age group, in the elderly, and in patients with renal or hepatic disease.
Collapse
Affiliation(s)
- James F Burris
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Maja Mandic
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Neely
- Children's Hospital of Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael D Reed
- Rainbow Babies and Children's Hospital, University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
44
|
[Dosing regimens of antibiotics in neonates: Variations in clinical practice and what should be done?]. Arch Pediatr 2016; 23:966-73. [PMID: 27451383 DOI: 10.1016/j.arcped.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 03/31/2016] [Accepted: 06/03/2016] [Indexed: 01/04/2023]
Abstract
There is wide variation in neonatal dosages of antibiotics in clinical practice, both nationally and internationally. This reflects the lack of evaluation of drugs in this therapeutic class, although widely prescribed. Given this situation, optimization of antibiotic prescription is required to ensure efficacy and safety of neonatal treatment and reduce microbial resistance. Rational prescription should be based on the knowledge of developmental pharmacokinetics and pharmacodynamics. Rigorous studies, conducted in collaboration between neonatologists and pharmacologists, are essential to develop and validate evidence-based neonatal dosage regimens.
Collapse
|
45
|
Abstract
Exposure to environmental chemicals has adverse effects on the health and survival of humans. Emerging evidence supports the idea that exposure to endocrine-disrupting compounds (EDCs) can perturb an individual’s physiological set point and as a result increase his/her propensity toward several diseases. The purpose of this review is to provide an update on di-(2-ethylhexyl) phthalate, the primary plasticizer found in plastic medical devices used in neonatal intensive care units, its effects on the fetus and newborn, epidemiological studies, pharmacokinetics, toxicity and epigenetic implications. We searched the PubMed databases to identify relevant studies. Phthalates are known EDCs that primarily are used to improve the flexibility of polyvinyl chloride plastic products and are called plasticizers in lay terms. Neonates and infants are particularly vulnerable to the effects of phthalates, beginning with maternal exposure and placental transfer during gestation and during infancy following birth. In line with the developmental origins of adult disease, a focus on the effects of environmental chemicals in utero or early childhood on the genesis of adult diseases through epigenome modulation is timely and important. The epigenetic effects of phthalates have not been fully elucidated, but accumulating evidence suggests that they may be associated with adverse health effects, some of which may be heritable. Phthalate exposure during pregnancy and the perinatal period is particularly worrisome in health-care settings. Although the clinical significance of phthalate exposure has been difficult to assess with epidemiologic studies, the evidence that physiological changes occur due to exposure to phthalates is growing and points toward the need for more investigation at a molecular, specifically epigenetic level.
Collapse
|
46
|
Scotcher D, Jones C, Posada M, Rostami-Hodjegan A, Galetin A. Key to Opening Kidney for In Vitro-In Vivo Extrapolation Entrance in Health and Disease: Part I: In Vitro Systems and Physiological Data. AAPS JOURNAL 2016; 18:1067-1081. [PMID: 27365096 DOI: 10.1208/s12248-016-9942-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
The programme for the 2015 AAPS Annual Meeting and Exhibition (Orlando, FL; 25-29 October 2015) included a sunrise session presenting an overview of the state-of-the-art tools for in vitro-in vivo extrapolation (IVIVE) and mechanistic prediction of renal drug disposition. These concepts are based on approaches developed for prediction of hepatic clearance, with consideration of scaling factors physiologically relevant to kidney and the unique and complex structural organisation of this organ. Physiologically relevant kidney models require a number of parameters for mechanistic description of processes, supported by quantitative information on renal physiology (system parameters) and in vitro/in silico drug-related data. This review expands upon the themes raised during the session and highlights the importance of high quality in vitro drug data generated in appropriate experimental setup and robust system-related information for successful IVIVE of renal drug disposition. The different in vitro systems available for studying renal drug metabolism and transport are summarised and recent developments involving state-of-the-art technologies highlighted. Current gaps and uncertainties associated with system parameters related to human kidney for the development of physiologically based pharmacokinetic (PBPK) model and quantitative prediction of renal drug disposition, excretion, and/or metabolism are identified.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christopher Jones
- DMPK, Oncology iMed, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, UK
| | - Maria Posada
- Drug Disposition, Lilly Research Laboratories, Indianapolis, Indiana, 46203, USA
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.,Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
47
|
Samardzic J, Allegaert K, Wilbaux M, Pfister M, van den Anker JN. Quantitative clinical pharmacology practice for optimal use of antibiotics during the neonatal period. Expert Opin Drug Metab Toxicol 2016; 12:367-75. [PMID: 26817821 DOI: 10.1517/17425255.2016.1147559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION For safe and effective neonatal antibiotic therapy, knowledge of the pharmacokinetic parameters of antibacterial agents in neonates is a prerequisite. Fast maturational changes during the neonatal period influence pharmacokinetic and pharmacodynamic parameters and their variability. Consequently, the need for applying quantitative clinical pharmacology and determining optimal drug dosing regimens in neonates has become increasingly recognized. AREAS COVERED Modern quantitative approaches, such as pharmacometrics, are increasingly utilized to characterize, understand and predict the pharmacokinetics of a drug and its effect, and to quantify the variability in the neonatal population. Individual factors, called covariates in modeling, are integrated in such approaches to explain inter-individual pharmacokinetic variability. Pharmacometrics has been shown to be a relevant tool to evaluate, optimize and individualize drug dosing regimens. EXPERT OPINION Challenges for optimal use of antibiotics in neonates can largely be overcome with quantitative clinical pharmacology practice. Clinicians should be aware that there is a next step to support the clinical decision-making based on clinical characteristics and therapeutic drug monitoring, through Bayesian-based modeling and simulation methods. Pharmacometric modeling and simulation approaches permit us to characterize population average, inter-subject and intra-subject variability of pharmacokinetic parameters such as clearance and volume of distribution, and to identify and quantify key factors that influence the pharmacokinetic behavior of antibiotics during the neonatal period.
Collapse
Affiliation(s)
- Janko Samardzic
- a Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty , University of Belgrade , Belgrade , Serbia.,b Division of Paediatric Pharmacology and Pharmacometrics , University of Basel Children's Hospital , Basel , Switzerland
| | - Karel Allegaert
- c Department of Development and Regeneration , KU Leuven , Leuven , Belgium.,d Intensive Care and Department of Pediatric Surgery , Erasmus MC Sophia Children's Hospital , Rotterdam , the Netherlands
| | - Mélanie Wilbaux
- b Division of Paediatric Pharmacology and Pharmacometrics , University of Basel Children's Hospital , Basel , Switzerland
| | - Marc Pfister
- b Division of Paediatric Pharmacology and Pharmacometrics , University of Basel Children's Hospital , Basel , Switzerland
| | - John N van den Anker
- b Division of Paediatric Pharmacology and Pharmacometrics , University of Basel Children's Hospital , Basel , Switzerland.,d Intensive Care and Department of Pediatric Surgery , Erasmus MC Sophia Children's Hospital , Rotterdam , the Netherlands.,e Division of Pediatric Clinical Pharmacology , Children's National Medical Center , Washington , DC , USA
| |
Collapse
|
48
|
Bhongsatiern J, Stockmann C, Yu T, Constance JE, Moorthy G, Spigarelli MG, Desai PB, Sherwin CMT. Renal Function Descriptors in Neonates: Which Creatinine-Based Formula Best Describes Vancomycin Clearance? J Clin Pharmacol 2015; 56:528-40. [PMID: 26412385 DOI: 10.1002/jcph.650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 09/23/2015] [Indexed: 11/06/2022]
Abstract
Growth and maturational changes have been identified as significant covariates in describing variability in clearance of renally excreted drugs such as vancomycin. Because of immaturity of clearance mechanisms, quantification of renal function in neonates is of importance. Several serum creatinine (SCr)-based renal function descriptors have been developed in adults and children, but none are selectively derived for neonates. This review summarizes development of the neonatal kidney and discusses assessment of the renal function regarding estimation of glomerular filtration rate using renal function descriptors. Furthermore, identification of the renal function descriptors that best describe the variability of vancomycin clearance was performed in a sample study of a septic neonatal cohort. Population pharmacokinetic models were developed applying a combination of age-weight, renal function descriptors, or SCr alone. In addition to age and weight, SCr or renal function descriptors significantly reduced variability of vancomycin clearance. The population pharmacokinetic models with Léger and modified Schwartz formulas were selected as the optimal final models, although the other renal function descriptors and SCr provided reasonably good fit to the data, suggesting further evaluation of the final models using external data sets and cross validation. The present study supports incorporation of renal function descriptors in the estimation of vancomycin clearance in neonates.
Collapse
Affiliation(s)
- Jiraganya Bhongsatiern
- Department of Pharmaceutical Sciences, The James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Chris Stockmann
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Tian Yu
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jonathan E Constance
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ganesh Moorthy
- Department of Pharmaceutical Sciences, The James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Michael G Spigarelli
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Pankaj B Desai
- Department of Pharmaceutical Sciences, The James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Catherine M T Sherwin
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.,Clinical Trials Office, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
49
|
Sing CW, Cheung CL, Wong ICK. Pharmacogenomics--how close/far are we to practising individualized medicine for children? Br J Clin Pharmacol 2015; 79:419-28. [PMID: 25855823 DOI: 10.1111/bcp.12338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The translation of pharmacogenomics into clinical practice is a key approach for practising individualized medicine, which aims to maximize drug efficacy and minimize drug toxicity. Since the completion of both the Human Genome Project and the International HapMap project, the development of pharmacogenomics has been greatly facilitated. However, progress in translating pharmacogenomics into clinical practice, especially in paediatric medicine, is unexpectedly slow. Many challenges from different areas remain. This paper discusses the existing applications and the limitations to the implementation of paediatric pharmacogenomics, as well as possible solutions for overcoming these limitations and challenges.
Collapse
|
50
|
Towards Rational Dosing Algorithms for Vancomycin in Neonates and Infants Based on Population Pharmacokinetic Modeling. Antimicrob Agents Chemother 2015; 60:1013-21. [PMID: 26643337 DOI: 10.1128/aac.01968-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/22/2015] [Indexed: 01/08/2023] Open
Abstract
Because of the recent awareness that vancomycin doses should aim to meet a target area under the concentration-time curve (AUC) instead of trough concentrations, more aggressive dosing regimens are warranted also in the pediatric population. In this study, both neonatal and pediatric pharmacokinetic models for vancomycin were externally evaluated and subsequently used to derive model-based dosing algorithms for neonates, infants, and children. For the external validation, predictions from previously published pharmacokinetic models were compared to new data. Simulations were performed in order to evaluate current dosing regimens and to propose a model-based dosing algorithm. The AUC/MIC over 24 h (AUC24/MIC) was evaluated for all investigated dosing schedules (target of >400), without any concentration exceeding 40 mg/liter. Both the neonatal and pediatric models of vancomycin performed well in the external data sets, resulting in concentrations that were predicted correctly and without bias. For neonates, a dosing algorithm based on body weight at birth and postnatal age is proposed, with daily doses divided over three to four doses. For infants aged <1 year, doses between 32 and 60 mg/kg/day over four doses are proposed, while above 1 year of age, 60 mg/kg/day seems appropriate. As the time to reach steady-state concentrations varies from 155 h in preterm infants to 36 h in children aged >1 year, an initial loading dose is proposed. Based on the externally validated neonatal and pediatric vancomycin models, novel dosing algorithms are proposed for neonates and children aged <1 year. For children aged 1 year and older, the currently advised maintenance dose of 60 mg/kg/day seems appropriate.
Collapse
|