1
|
Münzel T, Khraishah H, Schneider A, Lelieveld J, Daiber A, Rajagopalan S. Challenges posed by climate hazards to cardiovascular health and cardiac intensive care: implications for mitigation and adaptation. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2024; 13:731-744. [PMID: 39468673 PMCID: PMC11518858 DOI: 10.1093/ehjacc/zuae113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
Global warming, driven by increased greenhouse gas emissions, has led to unprecedented extreme weather events, contributing to higher morbidity and mortality rates from a variety of health conditions, including cardiovascular disease (CVD). The disruption of multiple planetary boundaries has increased the probability of connected, cascading, and catastrophic disasters with magnified health impacts on vulnerable populations. While the impact of climate change can be manifold, non-optimal air temperatures (NOTs) pose significant health risks from cardiovascular events. Vulnerable populations, especially those with pre-existing CVD, face increased risks of acute cardiovascular events during NOT. Factors such as age, socio-economic status, minority populations, and environmental conditions (especially air pollution) amplify these risks. With rising global surface temperatures, the frequency and intensity of heatwaves and cold spells are expected to increase, emphasizing the need to address their health impacts. The World Health Organization recommends implementing heat-health action plans, which include early warning systems, public education on recognizing heat-related symptoms, and guidelines for adjusting medications during heatwaves. Additionally, intensive care units must be prepared to handle increased patient loads and the specific challenges posed by extreme heat. Comprehensive and proactive adaptation and mitigation strategies with health as a primary consideration and measures to enhance resilience are essential to protect vulnerable populations and reduce the health burden associated with NOTs. The current educational review will explore the impact on cardiovascular events, future health projections, pathophysiology, drug interactions, and intensive care challenges and recommend actions for effective patient care.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Haitham Khraishah
- Harrington Heart and Vascular Institute, University Hospitals at Case Western Reserve University, Cleveland, OH, USA
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Sanjay Rajagopalan
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine and University Hospitals Harrington Heart and Vascular Institute, 11100 Euclid Ave, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
De Vita A, Belmusto A, Di Perna F, Tremamunno S, De Matteis G, Franceschi F, Covino M. The Impact of Climate Change and Extreme Weather Conditions on Cardiovascular Health and Acute Cardiovascular Diseases. J Clin Med 2024; 13:759. [PMID: 38337453 PMCID: PMC10856578 DOI: 10.3390/jcm13030759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Climate change is widely recognized as one of the most significant challenges facing our planet and human civilization. Human activities such as the burning of fossil fuels, deforestation, and industrial processes release greenhouse gases into the atmosphere, leading to a warming of the Earth's climate. The relationship between climate change and cardiovascular (CV) health, mediated by air pollution and increased ambient temperatures, is complex and very heterogeneous. The main mechanisms underlying the pathogenesis of CV disease at extreme temperatures involve several regulatory pathways, including temperature-sympathetic reactivity, the cold-activated renin-angiotensin system, dehydration, extreme temperature-induced electrolyte imbalances, and heat stroke-induced systemic inflammatory responses. The interplay of these mechanisms may vary based on individual factors, environmental conditions, and an overall health background. The net outcome is a significant increase in CV mortality and a higher incidence of hypertension, type II diabetes mellitus, acute myocardial infarction (AMI), heart failure, and cardiac arrhythmias. Patients with pre-existing CV disorders may be more vulnerable to the effects of global warming and extreme temperatures. There is an urgent need for a comprehensive intervention that spans from the individual level to a systemic or global approach to effectively address this existential problem. Future programs aimed at reducing CV and environmental burdens should require cross-disciplinary collaboration involving physicians, researchers, public health workers, political scientists, legislators, and national leaders to mitigate the effects of climate change.
Collapse
Affiliation(s)
- Antonio De Vita
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Antonietta Belmusto
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
| | - Federico Di Perna
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
| | - Saverio Tremamunno
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Giuseppe De Matteis
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Francesco Franceschi
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
| | - Marcello Covino
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
| |
Collapse
|
3
|
Alahmad B, Khraishah H, Royé D, Vicedo-Cabrera AM, Guo Y, Papatheodorou SI, Achilleos S, Acquaotta F, Armstrong B, Bell ML, Pan SC, de Sousa Zanotti Stagliorio Coelho M, Colistro V, Dang TN, Van Dung D, De’ Donato FK, Entezari A, Guo YLL, Hashizume M, Honda Y, Indermitte E, Íñiguez C, Jaakkola JJ, Kim H, Lavigne E, Lee W, Li S, Madureira J, Mayvaneh F, Orru H, Overcenco A, Ragettli MS, Ryti NR, Saldiva PHN, Scovronick N, Seposo X, Sera F, Silva SP, Stafoggia M, Tobias A, Garshick E, Bernstein AS, Zanobetti A, Schwartz J, Gasparrini A, Koutrakis P. Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 Countries. Circulation 2023; 147:35-46. [PMID: 36503273 PMCID: PMC9794133 DOI: 10.1161/circulationaha.122.061832] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate.
Collapse
Affiliation(s)
- Barrak Alahmad
- Environmental Health Department (B.Alahmad, A.Z., J.S., P.K.), Harvard T.H. Chan School of Public Health, Boston, MA
- Environmental and Occupational Health Department, Faculty of Public Health, Kuwait University, Kuwait City (B.Alahmad)
| | - Haitham Khraishah
- Cardiology Division, University of Maryland Medical Center, University of Maryland, Baltimore (H.Khraishah)
| | - Dominic Royé
- Department of Geography, University of Santiago de Compostela, Spain (D.R.)
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine (A.M.V-C.)
- Oeschger Center for Climate Change Research, University of Bern, Switzerland (A.M.V-C.)
- Department of Public Health Environments and Society (A.M.V-C., B.Armstrong), London School of Hygiene and Tropical Medicine, UK
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia (Y.G., S.L.)
| | | | - Souzana Achilleos
- School of Health Sciences, Cyprus University of Technology, Limassol (S.A.)
- Department of Primary Care and Population Health, University of Nicosia Medical School, Cyprus (S.A.)
| | | | - Ben Armstrong
- Department of Public Health Environments and Society (A.M.V-C., B.Armstrong), London School of Hygiene and Tropical Medicine, UK
| | - Michelle L. Bell
- School of the Environment, Yale University, New Haven, CT (M.L.B., W.L.)
| | - Shih-Chun Pan
- National Institute of Environmental Health Science, National Health Research Institutes, Zhunan, Taiwan (S-C.P., Y-L.L.G.)
| | | | - Valentina Colistro
- Department of Quantitative Methods, School of Medicine, University of the Republic, Montevideo, Uruguay (V.C.)
| | - Tran Ngoc Dang
- Department of Environmental Health, Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam (T.N.D., D.V.D.)
| | - Do Van Dung
- Department of Environmental Health, Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam (T.N.D., D.V.D.)
| | | | - Alireza Entezari
- Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran (A.E., F.M.)
| | - Yue-Liang Leon Guo
- National Institute of Environmental Health Science, National Health Research Institutes, Zhunan, Taiwan (S-C.P., Y-L.L.G.)
| | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Japan (M.H.)
| | - Yasushi Honda
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan (Y.H.)
| | - Ene Indermitte
- Department of Family Medicine and Public Health, University of Tartu, Estonia (E.I., H.O.)
| | - Carmen Íñiguez
- CIBER de Epidemiología y Salud Pública, Madrid, Spain (D.R., C.Í.)
- Department of Statistics and Computational Research, Universitat de València, Spain (C.Í.)
| | - Jouni J.K. Jaakkola
- Center for Environmental and Respiratory Health Research (J.J.K.J.), University of Oulu, Finland
- Medical Research Center Oulu (J.J.K.J.), University of Oulu, Finland
- Biocenter Oulu (N.R.I.R., J.J.K.J.), University of Oulu, Finland
| | - Ho Kim
- Graduate School of Public Health, Seoul National University, South Korea (H.Kim)
| | - Eric Lavigne
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Canada (E.L.)
| | - Whanhee Lee
- School of the Environment, Yale University, New Haven, CT (M.L.B., W.L.)
- School of Biomedical Engineering, College of Information and Biomedical Engineering, Pusan National University, Yangsan, South Korea (W.L.)
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia (Y.G., S.L.)
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia (S.L.)
| | - Joana Madureira
- Department of Environmental Health, Instituto Nacional de Saúde Dr Ricardo Jorge, Porto, Portugal (J.M.)
- Epidemiology Research Unit (EPIUnit) (J.M.), Instituto de Saúde Pública, Universidade do Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (J.M.), Instituto de Saúde Pública, Universidade do Porto, Portugal
| | - Fatemeh Mayvaneh
- Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran (A.E., F.M.)
| | - Hans Orru
- Department of Family Medicine and Public Health, University of Tartu, Estonia (E.I., H.O.)
| | - Ala Overcenco
- Laboratory of Management in Science and Public Health, National Agency for Public Health of the Ministry of Health, Chisinau, Moldova (A.O.)
| | - Martina S. Ragettli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (M.S.R.), Switzerland
- University of Basel (M.S.R.), Switzerland
| | - Niilo R.I. Ryti
- Biocenter Oulu (N.R.I.R., J.J.K.J.), University of Oulu, Finland
| | | | - Noah Scovronick
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA (N.S.)
| | - Xerxes Seposo
- School of Tropical Medicine and Global Health, Nagasaki University, Japan (X.S., A.T.)
| | - Francesco Sera
- Department of Statistics, Computer Science and Applications G. Parenti, University of Florence, Italy (F.S.)
| | - Susana Pereira Silva
- Department of Epidemiology, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal (S.P.S.)
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy (F.K.D’D., M.S.)
| | - Aurelio Tobias
- School of Tropical Medicine and Global Health, Nagasaki University, Japan (X.S., A.T.)
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona (A.T.)
| | - Eric Garshick
- Pulmonary, Allergy, Sleep and Critical Care Medicine Section, Department of Medicine, Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA (E.G.)
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital (E.G.), Harvard Medical School, MA
| | - Aaron S. Bernstein
- Center for Climate, Health and the Global Environment (A.S.B.), Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Pediatrics, Boston Children’s Hospital (A.S.B.), Harvard Medical School, MA
| | - Antonella Zanobetti
- Environmental Health Department (B.Alahmad, A.Z., J.S., P.K.), Harvard T.H. Chan School of Public Health, Boston, MA
| | - Joel Schwartz
- Environmental Health Department (B.Alahmad, A.Z., J.S., P.K.), Harvard T.H. Chan School of Public Health, Boston, MA
| | - Antonio Gasparrini
- Centre for Statistical Methodology (A.G.), London School of Hygiene and Tropical Medicine, UK
- Centre on Climate Change and Planetary Health (A.G.), London School of Hygiene and Tropical Medicine, UK
| | - Petros Koutrakis
- Environmental Health Department (B.Alahmad, A.Z., J.S., P.K.), Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
4
|
Khraishah H, Alahmad B, Ostergard RL, AlAshqar A, Albaghdadi M, Vellanki N, Chowdhury MM, Al-Kindi SG, Zanobetti A, Gasparrini A, Rajagopalan S. Climate change and cardiovascular disease: implications for global health. Nat Rev Cardiol 2022; 19:798-812. [PMID: 35672485 DOI: 10.1038/s41569-022-00720-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
Abstract
Climate change is the greatest existential challenge to planetary and human health and is dictated by a shift in the Earth's weather and air conditions owing to anthropogenic activity. Climate change has resulted not only in extreme temperatures, but also in an increase in the frequency of droughts, wildfires, dust storms, coastal flooding, storm surges and hurricanes, as well as multiple compound and cascading events. The interactions between climate change and health outcomes are diverse and complex and include several exposure pathways that might promote the development of non-communicable diseases such as cardiovascular disease. A collaborative approach is needed to solve this climate crisis, whereby medical professionals, scientific researchers, public health officials and policymakers should work together to mitigate and limit the consequences of global warming. In this Review, we aim to provide an overview of the consequences of climate change on cardiovascular health, which result from direct exposure pathways, such as shifts in ambient temperature, air pollution, forest fires, desert (dust and sand) storms and extreme weather events. We also describe the populations that are most susceptible to the health effects caused by climate change and propose potential mitigation strategies, with an emphasis on collaboration at the scientific, governmental and policy levels.
Collapse
Affiliation(s)
- Haitham Khraishah
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.,Environmental & Occupational Health Department, Faculty of Public Health, Kuwait University, Hawalli, Kuwait
| | | | - Abdelrahman AlAshqar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Mazen Albaghdadi
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nirupama Vellanki
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mohammed M Chowdhury
- Department of Vascular and Endovascular Surgery, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Sadeer G Al-Kindi
- University Hospitals, Harrington Heart & Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Antonio Gasparrini
- Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, UK.,Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK.,Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Sanjay Rajagopalan
- University Hospitals, Harrington Heart & Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
Huang HC, Suen PC, Liu JS, Chen CCH, Liu YB, Chen CC. Effects of Apparent Temperature on the Incidence of Ventricular Tachyarrhythmias in Patients With an Implantable Cardioverter-Defibrillator: Differential Association Between Patients With and Without Electrical Storm. Front Med (Lausanne) 2021; 7:624343. [PMID: 33521027 PMCID: PMC7843936 DOI: 10.3389/fmed.2020.624343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 12/04/2022] Open
Abstract
Background: Electrical storm (ES) has profound psychological effects and is associated with a higher mortality in patients with implantable cardioverter–defibrillator (ICD). Assessing the incidence and features of ES, is vital. Previous studies have shown winter peaks for ventricular tachyarrhythmia (VTA) in ICD patients. However, the effects of heat with a high relative humidity remain unclear. Thus, this study aimed to assess the nonlinear and lagged effects of apparent temperature [or heat index (HI)] on VTA among patients with and without ES after ICD implantation. Methods: Of 626 consecutive patients who had ICDs implanted from January 2004 to June 2017 at our hospital, 172 who experienced sustained VTAs in ICD recording were analyzed, and their clinical records were abstracted to assess the association between VTA incidence and HI by time-stratified case-crossover analysis. Cubic splines were used for the nonlinear effect of HI, with adjustment for air pollutant concentrations. Results: A significant seasonal effect for ES patients was noted. Apparent temperature, but not ambient temperature, was associated with VTA occurrences. The low and high HI thresholds for VTA incidence were <15° and >30°C, respectively, with a percentage change in odds ratios of 1.06 and 0.37, respectively, per 1°C. Lagged effects could only be demonstrated in ES patients, which lasted longer for low HI (in the next 4 days) than high HI (in the next 1 day). Conclusion: VTA occurrence in ICD patients was strongly associated with low HI and moderately associated with high HI. Lagged effects of HI on VTA were noted in patients with ES. Furthermore, patients with ES were more vulnerable to heat stress than those without ES. Patients with ICD implantation, particularly in those with ES, should avoid exposure to low and high HI to reduce the risk of VTAs, improve quality of life and possibly reduce mortality.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Chin Suen
- Department of Nursing, College of Medicine, National Taiwan University, National Taiwan University Hospital, Taipei, Taiwan
| | - Jih-Shin Liu
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Cheryl Chia-Hui Chen
- Department of Nursing, College of Medicine, National Taiwan University, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Bin Liu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chu-Chih Chen
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Impact of Extreme Temperatures on Ambulance Dispatches Due to Cardiovascular Causes in North-West Spain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17239001. [PMID: 33287148 PMCID: PMC7729967 DOI: 10.3390/ijerph17239001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Introduction and objectives. The increase in mortality and hospital admissions associated with high and low temperatures is well established. However, less is known about the influence of extreme ambient temperature conditions on cardiovascular ambulance dispatches. This study seeks to evaluate the effects of minimum and maximum daily temperatures on cardiovascular morbidity in the cities of Vigo and A Coruña in North-West Spain, using emergency medical calls during the period 2005–2017. Methods. For the purposes of analysis, we employed a quasi-Poisson time series regression model, within a distributed non-linear lag model by exposure variable and city. The relative risks of cold- and heat-related calls were estimated for each city and temperature model. Results. A total of 70,537 calls were evaluated, most of which were associated with low maximum and minimum temperatures on cold days in both cities. At maximum temperatures, significant cold-related effects were observed at lags of 3–6 days in Vigo and 5–11 days in A Coruña. At minimum temperatures, cold-related effects registered a similar pattern in both cities, with significant relative risks at lags of 4 to 12 days in A Coruña. Heat-related effects did not display a clearly significant pattern. Conclusions. An increase in cardiovascular morbidity is observed with moderately low temperatures without extremes being required to establish an effect. Public health prevention plans and warning systems should consider including moderate temperature range in the prevention of cardiovascular morbidity.
Collapse
|
7
|
Abstract
Cold-related mortality and morbidity remains an important public health problem in the UK and elsewhere. Health burdens have often reported to be higher in the UK compared to other countries with colder climates, however such assessments are usually based on comparison of excess winter mortality indices, which are subject to biases. Daily time-series regression or case-crossover studies provide the best evidence of the acute effects of cold exposure. Such studies report a 6% increase in all-cause deaths in England & Wales for every 1 °C fall in daily mean temperature within the top 5% of the coldest days. In major Scottish cities, a 1 °C reduction in mean temperature below 11 °C was associated with an increase in mortality of 2.9%, 3.4%, 4.8% and 1.7% from all-causes, cardiovascular, respiratory, and non-cardio-respiratory causes respectively. In Northern Ireland, a 1 °C fall during winter months led to increases of 4.5%, 3.9% and 11.2% for all-cause, cardiovascular and respiratory deaths respectively among adults. Raised risks are also observed with morbidity outcomes. Hip fractures among the elderly are only weakly associated with snow and ice conditions in the UK, with the majority of cases occurring indoors. A person's susceptibility to cold weather is affected by both individual- and contextual-level risk factors. Variations in the distributions of health, demographic, socio-economic and built-environment characteristics are likely to explain most differences in cold risk observed between UK regions. Although cold-related health impacts reduced throughout much of the previous century in UK populations, there is little evidence on the contribution that milder winters due to climate change may have made to reductions in more recent decades. Intervention measures designed to minimise cold exposure and reduce fuel poverty will likely play a key role in determining current and future health burdens associated with cold weather.
Collapse
Affiliation(s)
- Shakoor Hajat
- Department of Social & Environmental Health Research, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK.
| |
Collapse
|
8
|
Curtis S, Fair A, Wistow J, Val DV, Oven K. Impact of extreme weather events and climate change for health and social care systems. Environ Health 2017; 16:128. [PMID: 29219105 PMCID: PMC5773887 DOI: 10.1186/s12940-017-0324-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This review, commissioned by the Research Councils UK Living With Environmental Change (LWEC) programme, concerns research on the impacts on health and social care systems in the United Kingdom of extreme weather events, under conditions of climate change. Extreme weather events considered include heatwaves, coldwaves and flooding. Using a structured review method, we consider evidence regarding the currently observed and anticipated future impacts of extreme weather on health and social care systems and the potential of preparedness and adaptation measures that may enhance resilience. We highlight a number of general conclusions which are likely to be of international relevance, although the review focussed on the situation in the UK. Extreme weather events impact the operation of health services through the effects on built, social and institutional infrastructures which support health and health care, and also because of changes in service demand as extreme weather impacts on human health. Strategic planning for extreme weather and impacts on the care system should be sensitive to within country variations. Adaptation will require changes to built infrastructure systems (including transport and utilities as well as individual care facilities) and also to institutional and social infrastructure supporting the health care system. Care sector organisations, communities and individuals need to adapt their practices to improve resilience of health and health care to extreme weather. Preparedness and emergency response strategies call for action extending beyond the emergency response services, to include health and social care providers more generally.
Collapse
Affiliation(s)
- Sarah Curtis
- Department of Geography, Durham University, Durham, DH1 3LE UK
| | - Alistair Fair
- Edinburgh School of Architecture & Landscape Architecture, University of Edinburgh, Edinburgh, UK
| | - Jonathan Wistow
- School of Applied Social Science, Durham University, Durham, UK
| | - Dimitri V. Val
- School of Energy, Geoscience, Infrastructure and Society, Hariot-Watt University, Edinburgh, UK
| | - Katie Oven
- Department of Geography, Durham University, Durham, DH1 3LE UK
| |
Collapse
|
9
|
Kim J, Kim H. The association of ambient temperature with incidence of cardiac arrhythmias in a short timescale. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1931-1933. [PMID: 28550343 DOI: 10.1007/s00484-017-1382-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
The body response time and an association between the exposure to outdoor temperature and cardiac arrhythmia were not fully understood. Hence, we further investigated the association between ambient temperature and the exacerbations of arrhythmia symptoms on a short timescale using the emergency department (ED) visit data. We used a total of 17,088 arrhythmia-related ED visits in Seoul, from 2008 to 2011 and fitted the model adjusting for other meteorological variables and air pollutants under the case-crossover analysis with the same year-month time stratification. The association was presented as an odds ratio (OR) with a 95% confidence interval (CI) by a 5 °C decrease in the ambient temperature. The delay time (h) between exposure and the onset of arrhythmia exacerbation was considered with time blocks for every 3 h as 1-3 h, up to 118-120 h; and daily lags (1 day), from 25-48 h to 97-120 h, as a multi-time average of exposures. The overall association was increased at lag 4-6 h and the increased association was statistically significant at lag 40-42 h (OR 1.027, 95% CI 1.003-1.051) and the adverse association continued at 97-120 h (OR 1.053, 95% CI 1.027-1.080). However, the delay of several days between ambient temperature and body response should be further investigated considering the modification according to varied demographic characteristics or different environmental circumstances.
Collapse
Affiliation(s)
- Jayeun Kim
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Ho Kim
- Institute of Health and Environment, Seoul National University, Seoul, South Korea.
- Department of Public Health Science Graduate School of Public Health, Seoul National University, 1 Gwanak-Ro, Gwanak_Gu, Seoul, 08826, South Korea.
| |
Collapse
|
10
|
Čulić V. The association of air temperature with cardiac arrhythmias. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1927-1929. [PMID: 28578481 DOI: 10.1007/s00484-017-1381-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
The body response to meteorological influences may activate pathophysiological mechanisms facilitating the occurrence of cardiac arrhythmias in susceptible patients. Putative underlying mechanisms include changes in systemic vascular resistance and blood pressure, as well as a network of proinflammatory and procoagulant processes. Such a chain reaction probably occurs within the time window of several hours, so use of daily average values of meteorological elements do not seem appropriate for investigation in this area. In addition, overall synoptic situation, and season-specific combinations of meteorological elements and air pollutant levels probably cause the overall effect rather than a single atmospheric element. Particularly strong interrelations have been described among wind speed, air pressure and temperature, relative air humidity, and suspended particulate matter. This may be the main reason why studies examining the association between temperature and ventricular arrhythmias have found linear positive, negative, J-shaped or no association. Further understanding of the pathophysiological adaptation to atmospheric environment may help in providing recommendations for protective measures during "bad" weather conditions in patients with cardiac arrhythmias.
Collapse
Affiliation(s)
- Viktor Čulić
- Department of Cardiology, University Hospital Center Split, Šoltanska 1, 21000, Split, Croatia.
- University of Split School of Medicine, Split, Croatia.
| |
Collapse
|
11
|
Cloutier JM, Liu S, Hiebert B, Tam JW, Seifer CM. Relationship of Extreme Cold Weather and Implantable Cardioverter Defibrillator Shocks. Am J Cardiol 2017; 120:1002-1007. [PMID: 28754564 DOI: 10.1016/j.amjcard.2017.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/21/2017] [Accepted: 06/13/2017] [Indexed: 11/30/2022]
Abstract
Cold weather to 0°C has been implicated as a risk factor for ventricular arrhythmias and implantable cardioverter defibrillator (ICD) shocks. The effect of more extreme cold weather on the risk of ventricular arrhythmias and ICD shocks is unknown. We sought to describe the relationship between extreme cold weather and the risk of ICD shocks. We retrospectively identified patients seen at the Pacemaker and Defibrillator Clinic at St. Boniface Hospital in Winnipeg, Manitoba, Canada between 2010 and 2015 with an ICD shock. We excluded multiple shocks occurring on the same day in a single patient. We collected weather data, and evaluated the relationship between ICD shocks and weather on the same day as the shock using Negative Binomial regression. Three hundred and sixty patients experienced a total of 1,355 shocks. When excluding multiple shocks occurring in a single patient on the same day, there were 756 unique shocks. The daily high (DH) was the strongest predictor of receiving an ICD shock. Compared with the warmest days (DH above 10°C), shocks were 25% more common on the coldest days (DH below -10°C), and 8% more common on cold days (DH between -10°C and 10°C). This linear trend was statistically significant, with a p-value of 0.04. In conclusion, we found an association between extreme cold weather and ICD shocks.
Collapse
Affiliation(s)
- Justin M Cloutier
- University of Manitoba, Section of Cardiology, Winnipeg, Manitoba, Canada
| | - Shuangbo Liu
- University of Manitoba, Section of Cardiology, Winnipeg, Manitoba, Canada
| | - Brett Hiebert
- Cardiac Sciences Program, Winnipeg Regional Health Authority, Winnipeg, Manitoba, Canada
| | - James W Tam
- University of Manitoba, Section of Cardiology, Winnipeg, Manitoba, Canada; Cardiac Sciences Program, Winnipeg Regional Health Authority, Winnipeg, Manitoba, Canada
| | - Colette M Seifer
- University of Manitoba, Section of Cardiology, Winnipeg, Manitoba, Canada; Cardiac Sciences Program, Winnipeg Regional Health Authority, Winnipeg, Manitoba, Canada.
| |
Collapse
|
12
|
Kim J, Kim H. Influence of ambient temperature and diurnal temperature range on incidence of cardiac arrhythmias. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:407-416. [PMID: 27568189 DOI: 10.1007/s00484-016-1221-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
We investigated the association between ambient temperature and diurnal temperature range (DTR) and the exacerbation of arrhythmia symptoms, using data from 31,629 arrhythmia-related emergency department (ED) visits in Seoul, Korea. Linear regression analyses with allowances for over-dispersion were applied to temperature variables and ED visits, adjusted for various environmental factors. The effects were expressed as percentage changes in the risk of arrhythmia-related ED visits up to 5 days later, with 95 % confidence intervals (CI), per 1 °C increase in DTR and 1 °C decrease in mean temperature. The overall risk of ED visits increased by 1.06 % (95 % CI 0.39 %, 1.73 %) for temperature and by 1.84 % (0.34, 3.37 %) for DTR. A season-specific effect was detected for temperature during both fall (1.18 % [0.01, 2.37 %]) and winter (0.87 % [0.07, 1.67 %]), and for DTR during spring (3.76 % [0.34, 7.29 %]). Females were more vulnerable, with 1.57 % [0.56, 2.59 %] and 3.84 % [1.53, 6.20 %] for the changes in temperature and DTR, respectively. An age-specific effect was detected for DTR, with 3.13 % [0.95, 5.36 %] for age ≥ 65 years, while a greater increased risk with temperature decrease was observed among those aged <65 (1.08 % [0.17, 2.00 %]) than among those aged ≥65 (1.02 % [0.06, 1.99 %]). Cardiac arrest was inversely related with temperature (1.61 % [0.46, 2.79 %]), while other cardiac arrhythmias depended more on the change in DTR (4.72 % [0.37, 9.26 %]). These findings provide evidence that low-temperature and elevated DTR influence the occurrence of arrhythmia exacerbations or symptoms, suggesting a possible strategy for reducing risk by encouraging vulnerable populations to minimize exposure.
Collapse
Affiliation(s)
- Jayeun Kim
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Ho Kim
- Institute of Health and Environment, Seoul National University, Seoul, South Korea.
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, Seoul National University, 1 Gwanak-Ro, Gwanak_Gu, Seoul, 151-752, South Korea.
| |
Collapse
|
13
|
Zanobetti A, Coull BA, Kloog I, Sparrow D, Vokonas PS, Gold DR, Schwartz JD. Fine-scale spatial and temporal variation in temperature and arrhythmia episodes in the VA Normative Aging Study. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:96-104. [PMID: 28001123 PMCID: PMC5543304 DOI: 10.1080/10962247.2016.1252808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
UNLABELLED Many studies have demonstrated that cold and hot temperatures are associated with increased deaths and hospitalization rates; new findings indicate also an association with more specific cardiac risk factors. Most of these existing studies have relied on few weather stations to characterize exposures; few have used residence-specific estimates of temperature, or examined the exposure-response function. We investigated the association of arrhythmia episodes with spatial and temporal variation in temperature. We also evaluated the association btween monitored ambient temperature (central) and the same outcome. This longitudinal analysis included 701 older men participating in the VA Normative Aging Study. Arrhythmia episodes were measured as ventricular ectopy (VE) (bigeminy, trigeminy, or couplets episodes) by 4-min electrocardiogram (ECG) monitoring in repeated visits during 2000-2010. The outcome was defined as having or not VE episodes during a study visit. We applied a mixed-effect logistic regression model with a random intercept for subject, controlling for seasonality, weekday, medication use, smoking, diabetes status, body mass index, and age. We also examined effect modification by personal characteristics, confounding by air pollution, and the exposure-response function. For 1°C increase in the same day residence-specific temperature, the odds of having VE episodes was 1.10 (95% confidence interval [CI]: 1.04-1.17). The odds associated with 1°C increase in central temperature was 1.05 (95% CI: 1.02-1.09). The exposure-response function was nonlinear for averages of temperature, presenting a J-shaped pattern, suggesting greater risk at lower and higher temperatures. Increased warm temperature and decreased cold temperature may increase the risk of ventricular arrhythmias. IMPLICATIONS This is the first study to provide evidence that residence-specific temperature exposure is associated with increased risk of ventricular arrhythmias in cohort of elderly subjects without known chronic medical conditions; that the delayed effect of temperature has a nonlinear relationship; and therefore that both warm and cold temperature increase the risk of having ventricular arrhythmias. Moreover, we show that the use of residence-specific temperature data reduces downward bias due to exposure error, by comparing the estimated health effect based on our spatiotemporal exposure prediction model to those based on a single local weather monitor.
Collapse
Affiliation(s)
- Antonella Zanobetti
- Department of Environmental Health, Harvard School of Public Health, Boston, MA
| | - Brent A. Coull
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Itai Kloog
- Department of Environmental Health, Harvard School of Public Health, Boston, MA
- The Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - David Sparrow
- VA Normative Aging Study, VA Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Pantel S. Vokonas
- VA Normative Aging Study, VA Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Diane R. Gold
- Department of Environmental Health, Harvard School of Public Health, Boston, MA
- Channing Laboratory, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard School of Public Health, Boston, MA
| |
Collapse
|
14
|
Shiue I, Perkins DR, Bearman N. Relationships of physiologically equivalent temperature and hospital admissions due to I30-I51 other forms of heart disease in Germany in 2009-2011. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6343-6352. [PMID: 26620859 PMCID: PMC4820499 DOI: 10.1007/s11356-015-5727-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
We aimed to understand relationships of the weather as biometeorological and hospital admissions due to other forms of heart disease by subtypes, which have been paid less attention, in a national setting in recent years. This is an ecological study. Ten percent of daily hospital admissions of the included hospitals (n = 1618) across Germany that were available between 1 January 2009 and 31 December 2011 (n = 5,235,600) were extracted from Statistisches Bundesamt, Germany. We identified I30-I51 other forms of heart disease by the International Classification of Diseases version 10 as the study outcomes. Daily weather data from 64 weather stations that have covered 13 German states, including air temperature, humidity, wind speed, cloud cover, radiation flux and vapour pressure, were obtained and generated into physiologically equivalent temperature (PET). Admissions due to other diseases of pericardium, nonrheumatic mitral valve disorders, nonrheumatic aortic valve disorders, cardiomyopathy, atrioventricular and left bundle-branch block, other conduction disorders, atrial fibrillation and flutter, and other cardiac arrhythmias peaked when PET was between 0 and 10 °C. Complications and ill-defined descriptions of heart disease admissions peaked at PET 0 °C. Cardiac arrest and heart failure admissions peaked when PET was between 0 and -10 °C while the rest did not vary significantly. A common drop of admissions was found when PET was above 10 °C. More medical resources could have been needed for heart health on days when PETs were <10 °C than on other days. Adaptation to such weather change for medical professionals and the general public would seem to be imperative.
Collapse
Affiliation(s)
- Ivy Shiue
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, England, UK.
- Owens Institute of Behavioral Research, University of Georgia, Athens, GA, USA.
| | - David R Perkins
- Center for Climate Change Communication, George Mason University, Fairfax, VA, USA
| | - Nick Bearman
- School of Environmental Sciences, University of Liverpool, Liverpool, England, UK
| |
Collapse
|
15
|
Nguyen JL, Laden F, Link MS, Schwartz J, Luttmann-Gibson H, Dockery DW. Weather and triggering of ventricular arrhythmias in patients with implantable cardioverter-defibrillators. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:175-81. [PMID: 24169878 PMCID: PMC4503240 DOI: 10.1038/jes.2013.72] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/11/2013] [Indexed: 05/20/2023]
Abstract
Outdoor ambient weather has been hypothesized to be responsible for the seasonal distribution of cardiac arrhythmias. Because people spend most of their time indoors, we hypothesized that weather-related arrhythmia risk would be better estimated using an indoor measure or an outdoor measure that correlates well with indoor conditions, such as absolute humidity. The clinical records of 203 patients in eastern Massachusetts, USA, with an implantable cardioverter-defibrillator were abstracted for arrhythmias between 1995 and 2002. We used case-crossover methods to examine the association between weather and ventricular arrhythmia (VA). Among 84 patients who experienced 787 VAs, lower estimated indoor temperature (odds ratio (OR)=1.16, 95% confidence interval (CI) 1.05-1.27 for a 1 °C decrease in the 24-h average) and lower absolute humidity (OR=1.06, 95% CI 1.03-1.08 for a 0.5 g/m(3) decrease in the 96-h average) were associated with increased risk. Lower outdoor temperature increased risk only in warmer months, likely attributable to the poor correlation between outdoor and indoor temperature during cooler months. These results suggest that lower temperature and drier air are associated with increased risk of VA onset among implantable cardioverter-defibrillator patients.
Collapse
Affiliation(s)
- Jennifer L. Nguyen
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Francine Laden
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mark S. Link
- Cardiac Arrhythmia Service, Division of Cardiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Heike Luttmann-Gibson
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Douglas W. Dockery
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Lowe R, Ballester J, Creswick J, Robine JM, Herrmann FR, Rodó X. Evaluating the performance of a climate-driven mortality model during heat waves and cold spells in Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1279-94. [PMID: 25625407 PMCID: PMC4344666 DOI: 10.3390/ijerph120201279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/19/2015] [Indexed: 11/16/2022]
Abstract
The impact of climate change on human health is a serious concern. In particular, changes in the frequency and intensity of heat waves and cold spells are of high relevance in terms of mortality and morbidity. This demonstrates the urgent need for reliable early-warning systems to help authorities prepare and respond to emergency situations. In this study, we evaluate the performance of a climate-driven mortality model to provide probabilistic predictions of exceeding emergency mortality thresholds for heat wave and cold spell scenarios. Daily mortality data corresponding to 187 NUTS2 regions across 16 countries in Europe were obtained from 1998–2003. Data were aggregated to 54 larger regions in Europe, defined according to similarities in population structure and climate. Location-specific average mortality rates, at given temperature intervals over the time period, were modelled to account for the increased mortality observed during both high and low temperature extremes and differing comfort temperatures between regions. Model parameters were estimated in a Bayesian framework, in order to generate probabilistic simulations of mortality across Europe for time periods of interest. For the heat wave scenario (1–15 August 2003), the model was successfully able to anticipate the occurrence or non-occurrence of mortality rates exceeding the emergency threshold (75th percentile of the mortality distribution) for 89% of the 54 regions, given a probability decision threshold of 70%. For the cold spell scenario (1–15 January 2003), mortality events in 69% of the regions were correctly anticipated with a probability decision threshold of 70%. By using a more conservative decision threshold of 30%, this proportion increased to 87%. Overall, the model performed better for the heat wave scenario. By replacing observed temperature data in the model with forecast temperature, from state-of-the-art European forecasting systems, probabilistic mortality predictions could potentially be made several months ahead of imminent heat waves and cold spells.
Collapse
Affiliation(s)
- Rachel Lowe
- Institut Català de Ciències del Clima (IC3), Carrer Doctor Trueta, 203, 3a, 08005 Barcelona, Spain.
| | - Joan Ballester
- Institut Català de Ciències del Clima (IC3), Carrer Doctor Trueta, 203, 3a, 08005 Barcelona, Spain.
| | - James Creswick
- World Health Organization (WHO) Regional Office for Europe, European Centre for Environment and Health, Platz der Vereinten Nationen 1, 53113 Bonn, Germany.
| | - Jean-Marie Robine
- National Institute of Health and Medical Research, INSERM U988 and U1198, Université Montpellier II, U1198 MMDN-Bâtiment 24, Place Eugène Bataillon-CC105, 34095 Montpellier Cedex 05, France.
| | - François R Herrmann
- Division of Geriatrics, Department of Internal Medicine, Rehabilitation and Geriatrics, Geneva University Hospitals, University of Geneva, Ch. Pont-Bochet, 1226 Thônex, Switzerland.
| | - Xavier Rodó
- Institut Català de Ciències del Clima (IC3), Carrer Doctor Trueta, 203, 3a, 08005 Barcelona, Spain.
| |
Collapse
|
17
|
Filippi S, Gizzi A, Cherubini C, Luther S, Fenton FH. Mechanistic insights into hypothermic ventricular fibrillation: the role of temperature and tissue size. Europace 2014; 16:424-34. [PMID: 24569897 PMCID: PMC3934849 DOI: 10.1093/europace/euu031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/27/2014] [Indexed: 12/26/2022] Open
Abstract
AIMS Hypothermia is well known to be pro-arrhythmic, yet it has beneficial effects as a resuscitation therapy and valuable during intracardiac surgeries. Therefore, we aim to study the mechanisms that induce fibrillation during hypothermia. A better understanding of the complex spatiotemporal dynamics of heart tissue as a function of temperature will be useful in managing the benefits and risks of hypothermia. METHODS AND RESULTS We perform two-dimensional numerical simulations by using a minimal model of cardiac action potential propagation fine-tuned on experimental measurements. The model includes thermal factors acting on the ionic currents and the gating variables to correctly reproduce experimentally recorded restitution curves at different temperatures. Simulations are implemented using WebGL, which allows long simulations to be performed as they run close to real time. We describe (i) why fibrillation is easier to induce at low temperatures, (ii) that there is a minimum size required for fibrillation that depends on temperature, (iii) why the frequency of fibrillation decreases with decreasing temperature, and (iv) that regional cooling may be an anti-arrhythmic therapy for small tissue sizes however it may be pro-arrhythmic for large tissue sizes. CONCLUSION Using a mathematical cardiac cell model, we are able to reproduce experimental observations, quantitative experimental results, and discuss possible mechanisms and implications of electrophysiological changes during hypothermia.
Collapse
Affiliation(s)
- Simonetta Filippi
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
- International Center for Relativistic Astrophysics—I.C.R.A, University Campus Bio-Medico of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
| | - Alessio Gizzi
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
- International Center for Relativistic Astrophysics—I.C.R.A, University Campus Bio-Medico of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
| | - Christian Cherubini
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
- International Center for Relativistic Astrophysics—I.C.R.A, University Campus Bio-Medico of Rome, Via A. del Portillo 21, I-00128 Rome, Italy
| | - Stefan Luther
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, 837 State Street Atlanta, Atlanta, GA 30332, USA
| |
Collapse
|